JP3630120B2 - 磁気変換デバイスの特性解析方法及びプログラム - Google Patents

磁気変換デバイスの特性解析方法及びプログラム Download PDF

Info

Publication number
JP3630120B2
JP3630120B2 JP2001215270A JP2001215270A JP3630120B2 JP 3630120 B2 JP3630120 B2 JP 3630120B2 JP 2001215270 A JP2001215270 A JP 2001215270A JP 2001215270 A JP2001215270 A JP 2001215270A JP 3630120 B2 JP3630120 B2 JP 3630120B2
Authority
JP
Japan
Prior art keywords
calculated
magnetic field
transient
magnetization
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001215270A
Other languages
English (en)
Other versions
JP2003030805A (ja
Inventor
研一 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001215270A priority Critical patent/JP3630120B2/ja
Priority to US10/192,541 priority patent/US6700368B2/en
Publication of JP2003030805A publication Critical patent/JP2003030805A/ja
Application granted granted Critical
Publication of JP3630120B2 publication Critical patent/JP3630120B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/12Timing analysis or timing optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Heads (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばインダクティブ磁気記録ヘッド等の磁気変換デバイスの電磁界や磁化等の特性を解析する方法及び磁気デバイスの特性解析プログラムに関する。
【0002】
【従来の技術】
近年、パーソナルコンピュータの普及に伴い、情報のネットワーク化が急速に進んでいる。このため、扱われる情報も、従来の数値データのみならず画像データ等も含むため、その情報量が飛躍的に増大化しつつある。このような膨大な量の情報を扱うには、高速なMPUと共に、高速かつ大容量、そして信頼性の高いハードディスクシステムが必要になる。
【0003】
ハードディスク等の記録媒体上に磁気記録するためには、軟磁性体にコイルを巻いた磁気ヘッドが用いられる。面内方向に磁化容易軸を有するいわゆる長手方向記録媒体においては、磁気ヘッドの微小なギャップ間隔だけ離隔した軟磁性体による2つの磁極からの漏れ磁界によって記録が行われる。このため、磁気記録媒体における記録状態は、その媒体の特性のみならず、記録磁界に影響を与える種々の要因によって大きく左右される。
【0004】
記録磁界に影響を与える要因としては、媒体・ヘッド保護膜、潤滑層の厚み、ヘッド磁極リセス、ヘッド浮上量に基づくヘッド・媒体間の磁気的スペーシング、ギャップ長、磁極、コイル起磁力、記録ドライバのIC及び電気回路等が挙げられる。これらのうち、ヘッド磁極の形状、磁気特性及び磁化構造が磁気ヘッド設計における重要なパラメータとなっている。
【0005】
磁気ヘッドの設計には、コンピュータによるシミュレーション解析が従来よりしばしば用いられている。これは、正確、迅速にかつ定量的に解析を行うためであり、このようなコンピュータシミュレーションは、今日においては、磁気ヘッド設計の有力なツールとなっている(日本応用磁気学会誌、Vol.25、No.3−1、pp.133〜148、2001)。
【0006】
磁気抵抗効果(MR)再生ヘッドの設計には、マイクロマグネティックシミュレーションによる磁化解析が行われる(IEEE Trans Magn.、Vol.34、No.4、p1516、1998)。この方法は、異方性磁気抵抗効果(AMR)ヘッドにおいてはMR膜及びその横バイアス層(SAL層)のみを、また、スピンバルブMRヘッドにおいては磁化自由層及び磁化固定層のみを要素として分割し、これらに働く実効磁界(静磁界、異方性磁界、交換磁界及び外部磁界の和)から要素内の磁化をLandau−Lifshitz−Gilbert(LLG)方程式(Jpn.J.Appl.Phys.、28、p2485、1989)によって解くものである。この方法において、最も計算時間を要する静磁界は、積分方程式法(IEM、Integral Equation Method)によって解かれる。
【0007】
一方、磁気記録ヘッドの解析には、有限要素法(FEM、Finite Element Method)、時間領域差分法(FDTD法、Finite Difference Time Domain Method)、積分方程式法(IEM)、境界要素法等を用いた電磁界解析が行われるのみであり、磁化解析は行われない。その理由は、計算時間が長くなり過ぎて計算不能なためである。
【0008】
即ち、MR再生ヘッドにおいては、パターンサイズが1μm程度であり、厚みも0.1μm以下と非常に薄い薄膜のみを離散化の対象としており、従って、静磁界計算は、要素数が1000オーダーの小規模な計算で済むので1回の静磁界計算時間が極めて短い時間となる。これに対して、磁気記録ヘッドにおいては、パターンサイズが数十μmであり、厚みもμmのオーダーの複雑な形状の磁極を要素に分割するため、要素数が数万〜数十万と膨大なものとなる。しかも、渦電流を考慮するべく表皮深さを表現するためにより細かな領域分割が不可欠となる。このため、1回の静磁界計算時間が非常に長くなる。
【0009】
定常状態における磁化Mを計算するには、この磁化Mをセルフコンシステントに逐次計算する必要があり、磁化Mが更新されるたびに静磁界の計算を繰り返すことが必要となる。マイクロマグネティックシミュレーションで用いられるIEMにより静磁界を解くと、その計算時間は要素数Nの3乗に比例するから、磁化の更新のたびにIEMの繰り返し計算を行うことは、1回の静磁界計算時間が短くないと莫大な時間がかかることになる。従って、磁気記録ヘッドにおいては、現在のスーパーコンピュータを使ってもほぼ不可能に近い計算時間となることから、多数回の静磁界計算を必要とする磁化解析は行われず、少数回の磁界計算で済む電磁界解析が行われる。
【0010】
【発明が解決しようとする課題】
しかしながら、磁極の異方性や磁歪等の磁気特性、形状等は、その磁化構造を左右し、磁気ヘッド記録能力に大きな影響を与えるので、磁気記録ヘッドの解析においても磁化による解析を行うことが望まれていた。
【0011】
従って本発明の目的は、磁気記録ヘッド等の磁気変換デバイスについても磁化解析が可能な特性解析方法及びプログラムを提供することにある。
【0018】
【課題を解決するための手段】
本発明によれば、解析すべき領域内の磁気変換デバイスの形状を表すデータに少なくとも基づいて、この領域内の磁気変換デバイスを複数の多面体要素に細分化する細分化段階と、各多面体要素の導電率及び誘電率と1タイムステップ(Δt)前に算出した過渡的な電界と1/2タイムステップ(Δt/2)前に算出した過渡的な磁界と1/2タイムステップ(Δt/2)前の電流密度とを用いて各多面体要素の過渡的な電界を算出し、1タイムステップ(Δt)前に算出した過渡的な磁界と1/2タイムステップ(Δt/2)前に算出した過渡的な電界と1タイムステップ(Δt)前に算出した磁化による磁化電流とを用いて各多面体要素の過渡的な磁界を算出し、算出した過渡的な磁界から実効磁界を算出し、算出した実効磁界を用いて磁化の変分を求めその時の磁化を算出する過渡的計算段階とを備えており、所定数のタイムステップが終了するまで過渡的計算段階を繰り返すことにより解析すべき領域内の全ての多面体要素の電界、磁界及び磁化を求める磁気変換デバイスの特性解析方法が提供される。
【0019】
各多面体要素の導電率σ及び誘電率εと1タイムステップ(Δt)前に算出した過渡的な電界En−1と1/2タイムステップ(Δt/2)前に算出した過渡的な磁界Hn−1/2と1/2タイムステップ(Δt/2)前の電流密度Jn−1/2とを用いて各多面体要素の過渡的な電界Eを算出し、1タイムステップ(Δt)前に算出した過渡的な磁界Hn−1/2と1/2タイムステップ(Δt/2)前に算出した過渡的な電界Eと1タイムステップ(Δt)前に算出した磁化から求めた磁化電流J とを用いて各多面体要素の過渡的な磁界Hn+1/2を算出するという、FDTD法とLLG方程式とのタイムステップを同期させて同時に電界E、磁界H及び磁化Mを解いている。
【0020】
磁界の計算手法には、前述したように有限要素法(FEM)、時間領域差分法(FDTD法)、積分方程式法(IEM)等があるが、計算時間は、次の表1に示すように、IEMでは要素数Nの3乗に、FEMではN×バンド幅(BW)に、FDMD法ではN×4/3乗にそれぞれ比例する。
【0021】
【表1】
Figure 0003630120
【0022】
従って、FDTD法によれば、要素数の増大に対して計算時間の増加が最も少ないこととなり、従来より短時間で磁化を計算することができるから実用可能となる。
【0023】
また、IEMやFEMではある時刻の電磁界の定常状態を求めるが、FDTD法ではある状態までたどり着くのにタイムステップ毎に途中の電磁界の過渡状態を逐次計算する。即ち、FDTD法の基本式は、次の(1)及び(2)式に示すように、電界及び磁界の時間に対する変分として表される。
【数4】
Figure 0003630120
これらの式は、磁界の回転が電界をつくり、電界の回転が磁界を生み出すことを示している。ただし、σは導電率、εは誘電率、μを透磁率、Jは電流密度、Jは磁化電流である。
【0024】
一方、マイクロマグネティクスにおいて磁化を計算する際には、(3)式に表されるLLG方程式が用いられる。ただし、ΔMは磁化の変分、αはダンピング定数、γはジャイロ定数、Mは磁化、Heffは(4)式で与えられる実効磁界、HはFDTD法により算出した過渡的な磁界であり、静磁界と電流磁界との和で表されるもの、Hは異方性磁界、Hexは交換磁界である。
【数5】
Figure 0003630120
eff=H+H+Hex (4)
このLLG方程式も磁化の時間変分として表されており、終状態である定常状態を求めるには過渡状態も逐次計算する必要がある。従って、時間に対する差分法として、(1)〜(3)式を扱うことによりFDTD法とLLG方程式とのタイムステップを同期させ、同時に電界E、磁界H及び磁化Mを解くことが可能となるのである。また、このようにして求めた電界E、磁界H及び磁化Mとジャイロ定数とから、強磁性共鳴周波数を得ることもできる。このように、本発明によれば、電界E、磁界H及び磁化Mの各々の過渡状態、定常状態及び強磁性共鳴周波数を求めることが可能となる。
【0025】
過渡的計算段階が、解析すべき領域の境界における前記算出した過渡的な電界に、2タイムステップ(2Δt)前に算出した過渡的な電界及び1タイムステップ(Δt)前に算出した過渡的な電界を用いて、2次吸収境界条件を与える段階を含んでいることが好ましい。
【0026】
過渡的な電界Eが、σを導電率、εを誘電率、Δtをタイムステップ、Hn−1/2を1/2タイムステップ前の磁界、Jn−1/2を1/2タイムステップ前の電流密度とすると、
【数6】
Figure 0003630120
から算出されることが好ましい。
【0027】
過渡的な磁界Hn+1/2が、μを透磁率、J をその1/2タイムステップ前の磁化電流とすると、
【数7】
Figure 0003630120
から算出されることも好ましい。
【0028】
本発明によれば、さらにまた、コンピュータを、解析すべき領域内の磁気変換デバイスの形状を表すデータに少なくとも基づいて、この領域内の磁気変換デバイスを複数の多面体要素に細分化する細分化手段と、各多面体要素の導電率及び誘電率と1タイムステップ(Δt)前に算出した過渡的な電界と1/2タイムステップ(Δt/2)前に算出した過渡的な磁界と1/2タイムステップ(Δt/2)前の電流密度とを用いて各多面体要素の過渡的な電界を算出し、1タイムステップ(Δt)前に算出した過渡的な磁界と1/2タイムステップ(Δt/2)前に算出した過渡的な電界と1タイムステップ(Δt)前に算出した磁化による磁化電流とを用いて各多面体要素の過渡的な磁界を算出し、算出した過渡的な磁界から実効磁界を算出し、算出した実効磁界を用いて磁化の変分を求めその時の磁化を算出する過渡的計算手段として機能させ、所定数のタイムステップが終了するまで過渡的計算手段を繰り返して実行することにより解析すべき領域内の全ての多面体要素の電界、磁界及び磁化を求める磁気変換デバイスの特性解析プログラムが提供される。
【0029】
【発明の実施の形態】
図1及び図2は本発明の一実施形態として、垂直磁気記録用の単磁極型記録ヘッドの電磁界及び磁化解析のためのモデルを概略的に示した正面図及び側面図である。
【0030】
これらの図において、10はこの記録ヘッドのメインポール部、11はヨーク部、12はリーターン部をそれぞれ示している。これらメインポール部10、ヨーク部11及びリーターン部12は磁性体で形成されており、磁極を構成している。記録ヘッドにはこの他に、非磁性導電対で形成されたコイル(図示なし)が設けられている。磁気記録媒体側には、メインポール部10から、スペーシングと記録層の厚み分だけ離れた位置に軟磁性体による裏打ち層が設けられている。
【0031】
表2には、本実施形態における記録ヘッドの各部分及び記録媒体の裏打ち層のパラメータが示されている。
【0032】
【表2】
Figure 0003630120
【0033】
記録ヘッドの全ての磁性体及び導電体、さらにその周りの空間は、多数の多面体要素(四面体又は六面体要素)に分割(細分化)され、各要素の辺上に未知の電界E、面上に未知の磁界Hが設定される。単位要素(格子)における電界、磁界の配置例が図3に示されている。
【0034】
FDTD法では、電界Eと磁界Hとが交互に、タイムステップの半分Δt/2の時間的ずれ、格子長の半分Δd/2の空間的ずれを持ちながら逐次計算される。図1及び図2に示した各要素内において、媒質が一定であり、等方性かつ非分散性であるとする。即ち、各要素内で導電率σ、誘電率ε及び透磁率μ等が一定であるとする。電界E及び磁界Hについて、中心差分式によって時間変分を表すと次の(5)、(6)式のようになる。
【数8】
Figure 0003630120
(1)、(2)、(5)及び(6)式よりE及びHn+1/2を解くと、以下の(7)及び(8)式のようになる。
【数9】
Figure 0003630120
【0035】
従って、電界Eは、1タイムステップ前の電界En−1と1/2タイムステップ前の磁界Hn−1/2及び電流Jn−1/2とによって算出され、さらにこの電界Eと磁化電流J と1/2タイムステップ前の磁界Hn−1/2とにより1/2タイムステップ後の磁界Hn+1/2が算出される。
【0036】
このようにして得られた磁界Hn+1/2、異方性磁界H及び交換磁界Hexの和((4)式)から実効磁界Heffを算出し、この算出した実効磁界Heff、ダンピング定数α及びジャイロ定数γを用いて、(3)式に表されるLLG方程式から磁化の変分ΔMが算出される。その結果、磁化Mを求めることができる。
【0037】
図4は、本実施形態の磁気記録ヘッドについて磁気飽和を考慮したFDTD法による電磁界計算アルゴリズムの一例を示すフローチャートである。
【0038】
まず、記録ヘッド、記録媒体及び空間からなる計算領域の形状データと、各要素の透磁率μ、導電率σ及び誘電率εと、磁性体部分の要素の透磁率−磁束密度曲線(μ−B曲線)とを入力し、コイルには電磁界のソースである電流波形を入力する(ステップS41)。
【0039】
次いで、入力した形状データに基づいて、自動計算により各部を小さな六面体要素に細分化する(ステップS42)。
【0040】
次いで、時刻tをt=0と初期化(ステップS43)した後、導電率σ、誘電率ε及び現在の電流密度Jn−1/2から(7)式により、1/2タイムステップ後(t=Δt/2)の過渡的な電界Eを算出する(ステップS44)。
【0041】
最初のルーチンでは境界条件による電界の更新処理(ステップS45)はスキップし、時刻tをΔt/2だけ進めてt=Δtとする(ステップS46)。
【0042】
次いで、ステップS44で求めた電界E及び透磁率μから(8)式により、t=Δtにおける過渡的な磁界Hn+1/2を算出する(ステップS47)。
【0043】
次いで、この算出した磁界Hn+1/2から磁束密度Bn+1/2を求め、入力されているμ−B曲線より非線形透磁率μ(B)を求める(ステップS48)。次のΔt後の磁界計算ルーチンでは、現在の透磁率μ及び求めた非線形透磁率μ(B)から、μn+1=(1−β)μ+βμ(B)によって更新した透磁率μn+1を使用する。ただし、βは、緩和定数であり、0<β≦1である。
【0044】
次いで、所定の時間が経過したか(所定数のタイプステップが終了したか)どうか判別し(ステップS49)、経過していない場合は、時刻tをΔt/2だけ進めてt=t+Δt/2とする(ステップS50)。
【0045】
次いで、導電率σ、誘電率ε、1タイムステップΔt前の電界En−1、1/2タイムステップ(Δt/2)前の磁界Hn−1/2、電流密度Jn−1/2から(7)式により、時刻tにおける過渡的な電界Eを算出する(ステップS44)。
【0046】
次いで、計算領域境界の電界Eにおいての反射を防ぐため、2タイムステップ2Δt前の電界En−2及び1タイムステップΔt前の電界En−1を用いて2次吸収境界条件を適用し、電界Eを更新する(ステップS45)。
【0047】
次いで、時刻tをΔt/2だけ進めてt=t+Δtとした(ステップS46)後、1タイムステップΔt前の磁界Hn−1/2、ステップS44で求めた1/2タイムステップ(Δt/2)前の電界E及び更新した透磁率μn+1から(8)式により、tにおける過渡的な磁界Hn+1/2を算出する(ステップS47)。
【0048】
次いで、この算出した磁界Hn+1/2から磁束密度Bn+1/2を求め、入力されているμ−B曲線より非線形透磁率μ(B)を求める(ステップS48)。次のΔt後の磁界計算ルーチンでは、この求めた非線形透磁率μ(B)により更新した透磁率を使用する。
【0049】
次いで、所定の時間が経過したか(所定数のタイプステップが終了したか)どうか判別し(ステップS49)、経過していない場合は、時刻tをΔt/2だけ進めてステップS44〜S50を繰り返して実行する。所定の時間が経過した(所定数のタイプステップが終了した)場合は、その所定の時刻の電界E及び磁界Hn+1/2を保存して処理を終了する(ステップS51)。
【0050】
このように、以上述べたFDTD法による電磁界計算アルゴリズムによれば、磁気飽和を考慮した電磁界解析を容易に行うことができる。
【0051】
図5は、この電磁界計算アルゴリズムで求めた、垂直2層膜磁気記録媒体に組み合わせた垂直単磁極ヘッドの磁束密度分布ベクトル図(xy平面)である。同図(A)はヨーク部及びメインポール部を示しており、同図(B)はメインポール部を拡大して示している。ただし、電流として、200psで線形に立上る波形を入力し、250ps後の様子を示している。ヨーク部及びメインポール部共に、磁束密度は主として高さ方向(y方向)成分のみが観察される。
【0052】
図6は、本実施形態の磁気記録ヘッドについてFDTD法による電磁界、磁化計算アルゴリズムの一例を示すフローチャートである。
【0053】
まず、記録ヘッド、記録媒体及び空間からなる計算領域の形状データと、各要素の透磁率μ、導電率σ及び誘電率εと、磁性体部分の要素の異方性磁界H及び交換磁界Hexとを入力し、コイルには電磁界のソースである電流波形を入力する。ただし、磁性体の透磁率μはここでは真空の透磁率と同じμ=1とする。さらに、LLG方程式のためのダンピング定数α、ジャイロ定数γ及び初期磁化状態Minitを設定する(ステップS61)。
【0054】
次いで、入力した形状データに基づいて、自動計算により各部を小さな六面体要素に細分化する(ステップS62)。
【0055】
次いで、時刻tをt=0と初期化(ステップS63)した後、導電率σ、誘電率ε及び現在の電流密度Jn−1/2から(7)式により、1/2タイムステップ後(t=Δt/2)の過渡的な電界Eを算出する(ステップS64)。
【0056】
最初のルーチンでは境界条件による電界の更新処理(ステップS65)はスキップし、時刻tをΔt/2だけ進めてt=Δtとする(ステップS66)。
【0057】
次いで、ステップS64で求めた電界E及び初期磁化Minitによる磁化電流Jから(8)式により、t=Δtにおける過渡的な磁界Hn+1/2を算出する(ステップS67)。
【0058】
次いで、この算出した磁界Hn+1/2、異方性磁界H及び交換磁界Hexの和((4)式)から実効磁界Heffを算出する(ステップS68)。
【0059】
次いで、(3)式のLLG方程式により、磁化の変分ΔMを求め、Mn+1/2=Minit+ΔMからこの時刻における磁化Mn+1/2を算出する(ステップS69)。
【0060】
次いで、所定の時間が経過したか(所定数のタイプステップが終了したか)どうか判別し(ステップS70)、経過していない場合は、時刻tをΔt/2だけ進めてt=t+Δt/2とする(ステップS71)。
【0061】
次いで、導電率σ、誘電率ε、1タイムステップΔt前の電界En−1、1/2タイムステップ(Δt/2)前の磁界Hn−1/2、電流密度Jn−1/2から(7)式により、時刻tにおける過渡的な電界Eを算出する(ステップS64)。
【0062】
次いで、計算領域境界の電界Eにおいての反射を防ぐため、2タイムステップ2Δt前の電界En−2及び1タイムステップΔt前の電界En−1を用いて2次吸収境界条件を適用し、電界Eを更新する(ステップS65)。
【0063】
次いで、時刻tをΔt/2だけ進めてt=t+Δt/2とした(ステップS66)後、1タイムステップΔt前の磁界Hn−1/2、ステップS64で求めた1/2タイムステップ(Δt/2)前の電界E及び1タイムステップΔt前の磁化Mn−1/2による磁化電流J から(8)式により、tにおける過渡的な磁界Hn+1/2を算出する(ステップS67)。
【0064】
次いで、この算出した磁界Hn+1/2、異方性磁界H及び交換磁界Hexの和((4)式)から実効磁界Heffを算出する(ステップS68)。
【0065】
次いで、(3)式のLLG方程式により、磁化の変分ΔMを求め、Mn+1/2=Minit+ΔMからこの時刻における磁化Mn+1/2を算出する(ステップS69)。
【0066】
次いで、所定の時間が経過したか(所定数のタイプステップが終了したか)どうか判別し(ステップS70)、経過していない場合は、時刻tをΔt/2だけ進めてステップS64〜S71を繰り返して実行する。所定の時間が経過した(所定数のタイプステップが終了した)場合は、その所定の時刻の電界E、磁界Hn+1/2及び磁化Mn+1/2を保存して処理を終了する(ステップS72)。
【0067】
なお、強磁性共鳴周波数を求める場合には、ジャイロ定数γと磁化に垂直な実効磁界とから算出する。
【0068】
図7は、このFDTD法電磁界、磁化計算アルゴリズムで求めた、垂直2層膜磁気記録媒体に組み合わせた垂直単磁極ヘッドの残留磁化状態(初期状態からの緩和状態)における磁化分布ベクトル図(xy平面)である。同図(A)はヨーク部及びメインポール部を示しており、同図(B)はメインポール部を拡大して示している。ただし、初期状態として、磁化は全てトラック幅方向(+x方向)に設定し、異方性磁界H(10Oe)はヨーク部では高さ方向(y方向)に、メインポール部ではトラック幅方向(x方向)に与えている。ヨーク部の端部では、磁極が発生しないようにエッジに平行に磁化が向いており、この影響と高さ方向の異方性磁界Hのため、ヨーク部の内部では、左右において高さ方向で反平行を向くような磁区構造が現れている。一方、メインポール部の残留磁化状態は、幅が広がった部分では多くがトラック幅方向に向いているが、先端部では高さ方向に渦を巻いていることが分かる。また、ABS側(xz平面)から見ても、先端で渦を巻いた構造が観察される。
【0069】
図8は、図7の残留磁化状態からコイルの励磁によりメインポール部が磁化されていく過渡状態を示す磁化分布ベクトル図である。ここで、ダンピング定数αとして1を、ジャイロ定数γとして1.76×10rad/(s・Oe)を与えた。同図(A)の残留磁化状態ではメインポール部先端が渦を巻き、磁極が生じないような磁区構造をとっているが、コイルによる励磁によって同図(B)から(D)に示す順に先端の渦がほどけながら磁化されていく様子が観察される。
【0070】
図9は、図4のFDTD法電磁界計算アルゴリズム及び図6のFDTD法電磁界、磁化計算アルゴリズムによって求めた、記録ヘッドの記録媒体表面におけるヘッド最大磁界の時間経過をそれぞれ示す特性図である。
【0071】
FDTD法電磁界計算では、導電率(渦電流)、誘電率に基づいた電磁界の伝達による遅れによりヘッド磁界の遅れが生じているが、FDTD法電磁界、磁化計算では、電磁界効果と磁化とのダイナミクスによりヘッド磁界の遅れが生じている。
【0072】
このように、以上述べたFDTD法による電磁界、磁化計算アルゴリズムによれば、FDTD法とLLG方程式とのタイムステップを同期させているので、同時にかつ容易に電界E、磁界H及び磁化Mを解くことが可能となる。
【0073】
なお、以上の説明は、磁気変換デバイスとして垂直磁気記録用の単磁極型記録ヘッドを例にあげて行っているが、本発明が、その他の磁気ヘッドに対しても、また、磁気ヘッド以外の磁気変換素子に対しても適用可能であることは明らかである。
【0074】
以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
【0076】
【発明の効果】
以上詳細に説明したように本発明によれば、各多面体要素の導電率σ及び誘電率εと1タイムステップ(Δt)前に算出した過渡的な電界En−1と1/2タイムステップ(Δt/2)前に算出した過渡的な磁界Hn−1/2と1/2タイムステップ(Δt/2)前の電流密度Jn−1/2とを用いて各多面体要素の過渡的な電界Eを算出し、1タイムステップ(Δt)前に算出した過渡的な磁界Hn−1/2と1/2タイムステップ(Δt/2)前に算出した過渡的な電界Eと1タイムステップ(Δt)前に算出した磁化から求めた磁化電流J とを用いて各多面体要素の過渡的な磁界Hn+1/2を算出しているので、FDTD法とLLG方程式とのタイムステップを同期させて同時にかつ容易に電界E、磁界H及び磁化Mを解くことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態として、垂直磁気記録用の単磁極型記録ヘッドの電磁界及び磁化解析のためのモデルを概略的に示した正面図である。
【図2】図1のモデルの側面図である。
【図3】図1の実施形態の単位要素における電界、磁界の配置例を示す図である。
【図4】図1の実施形態における磁気記録ヘッドについて磁気飽和を考慮したFDTD法による電磁界計算アルゴリズムの一例を示すフローチャートである。
【図5】図4の電磁界計算アルゴリズムで求めた記録ヘッドの磁束密度分布ベクトル図である。
【図6】図1の実施形態の磁気記録ヘッドについてFDTD法による電磁界、磁化計算アルゴリズムの一例を示すフローチャートである。
【図7】図6の電磁界、磁化計算アルゴリズムで求めた記録ヘッドの残留磁化状態における磁化分布ベクトル図である。
【図8】図7の残留磁化状態からコイルの励磁によりメインポール部が磁化されていく過渡状態を示す磁化分布ベクトル図である。
【図9】図4のFDTD法電磁界計算アルゴリズム及び図6のFDTD法電磁界、磁化計算アルゴリズムによって求めた、記録ヘッドの記録媒体表面におけるヘッド最大磁界の時間経過をそれぞれ示す特性図である。
【符号の説明】
10 メインポール部
11 ヨーク部
12 リーターン部

Claims (7)

  1. 解析すべき領域内の磁気変換デバイスの形状を表すデータに少なくとも基づいて、該領域内の磁気変換デバイスを複数の多面体要素に細分化する細分化段階と、前記各多面体要素の導電率及び誘電率と1タイムステップ(Δt)前に算出した過渡的な電界と1/2タイムステップ(Δt/2)前に算出した過渡的な磁界と1/2タイムステップ(Δt/2)前の電流密度とを用いて該各多面体要素の過渡的な電界を算出し、1タイムステップ(Δt)前に算出した過渡的な磁界と1/2タイムステップ(Δt/2)前に算出した過渡的な電界と1タイムステップ(Δt)前に算出した磁化による磁化電流とを用いて該各多面体要素の過渡的な磁界を算出し、該算出した過渡的な磁界から実効磁界を算出し、該算出した実効磁界を用いて磁化の変分を求めその時の磁化を算出する過渡的計算段階とを備えており、所定数のタイムステップが終了するまで前記過渡的計算段階を繰り返すことにより前記解析すべき領域内の全ての多面体要素の電界、磁界及び磁化を求めることを特徴とする磁気変換デバイスの特性解析方法。
  2. 前記過渡的計算段階が、前記解析すべき領域の境界における前記算出した過渡的な電界に、2タイムステップ(2Δt)前に算出した過渡的な電界及び1タイムステップ(Δt)前に算出した過渡的な電界を用いて、2次吸収境界条件を与える段階を含んでいることを特徴とする請求項1に記載の方法。
  3. 前記過渡的な電界Eが、σを導電率、εを誘電率、Δtをタイムステップ、Hn−1/2を1/2タイムステップ前の磁界、Jn−1/2を1/2タイムステップ前の電流密度とすると、
    Figure 0003630120
    から算出されることを特徴とする請求項1又は2に記載の方法。
  4. 前記過渡的な磁界Hn+1/2が、μを透磁率、J をその1/2タイムステップ前の磁化電流とすると、
    Figure 0003630120
    から算出されることを特徴とする請求項1から3のいずれか1項に記載の方法。
  5. 前記磁化の変分ΔMが、αをダンピング定数、γをジャイロ定数、Heffを実効磁界、Mを磁化とすると、
    Figure 0003630120
    から算出されることを特徴とする請求項1から4のいずれか1項に記載の方法。
  6. 前記実効磁界Heffが、算出した過渡的な磁界をH、異方性磁界をH、交換磁界をHexとすると、
    eff=H+H+Hex
    から算出されることを特徴とする請求項1から5のいずれか1項に記載の方法。
  7. コンピュータを、解析すべき領域内の磁気変換デバイスの形状を表すデータに少なくとも基づいて、該領域内の磁気変換デバイスを複数の多面体要素に細分化する細分化手段と、前記各多面体要素の導電率及び誘電率と1タイムステップ(Δt)前に算出した過渡的な電界と1/2タイムステップ(Δt/2)前に算出した過渡的な磁界と1/2タイムステップ(Δt/2)前の電流密度とを用いて該各多面体要素の過渡的な電界を算出し、1タイムステップ(Δt)前に算出した過渡的な磁界と1/2タイムステップ(Δt/2)前に算出した過渡的な電界と1タイムステップ(Δt)前に算出した磁化による磁化電流とを用いて該各多面体要素の過渡的な磁界を算出し、該算出した過渡的な磁界から実効磁界を算出し、該算出した実効磁界を用いて磁化の変分を求めその時の磁化を算出する過渡的計算手段として機能させ、所定数のタイムステップが終了するまで前記過渡的計算手段を繰り返して実行することにより前記解析すべき領域内の全ての多面体要素の電界、磁界及び磁化を求めることを特徴とする磁気変換デバイスの特性解析プログラム。
JP2001215270A 2001-07-16 2001-07-16 磁気変換デバイスの特性解析方法及びプログラム Expired - Fee Related JP3630120B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001215270A JP3630120B2 (ja) 2001-07-16 2001-07-16 磁気変換デバイスの特性解析方法及びプログラム
US10/192,541 US6700368B2 (en) 2001-07-16 2002-07-11 Method and program for analyzing characteristics of a magnetic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215270A JP3630120B2 (ja) 2001-07-16 2001-07-16 磁気変換デバイスの特性解析方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2003030805A JP2003030805A (ja) 2003-01-31
JP3630120B2 true JP3630120B2 (ja) 2005-03-16

Family

ID=19049946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215270A Expired - Fee Related JP3630120B2 (ja) 2001-07-16 2001-07-16 磁気変換デバイスの特性解析方法及びプログラム

Country Status (2)

Country Link
US (1) US6700368B2 (ja)
JP (1) JP3630120B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100067A (ja) * 2003-09-24 2005-04-14 Fujitsu Ltd マイクロ磁化解析プログラムおよび解析装置
JP2007213384A (ja) 2006-02-10 2007-08-23 Fujitsu Ltd マイクロ磁化解析プログラム、方法及び装置
WO2011114492A1 (ja) * 2010-03-18 2011-09-22 富士通株式会社 磁性体のシミュレーション方法及びプログラム
US9837108B2 (en) * 2010-11-18 2017-12-05 Seagate Technology Llc Magnetic sensor and a method and device for mapping the magnetic field or magnetic field sensitivity of a recording head
JP5742616B2 (ja) * 2011-09-15 2015-07-01 富士通株式会社 磁性体のシミュレーションプログラム、シミュレーション装置及びシミュレーション方法
JP5915157B2 (ja) * 2011-12-21 2016-05-11 富士通株式会社 磁性体特性解析プログラム、磁性体特性解析装置、及び磁性体特性解析方法
CN103793588A (zh) * 2012-10-29 2014-05-14 崔文衡 幼儿体育英才指数化及等级分类方法
JP6317776B2 (ja) * 2016-03-31 2018-04-25 株式会社Subaru 航空機機体構造材の耐雷試験方法
JP2021110997A (ja) * 2020-01-07 2021-08-02 住友重機械工業株式会社 シミュレーション方法、シミュレーション装置、及びプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898549A (en) * 1997-10-27 1999-04-27 International Business Machines Corporation Anti-parallel-pinned spin valve sensor with minimal pinned layer shunting
JPH11273033A (ja) * 1998-03-18 1999-10-08 Tdk Corp 磁気抵抗効果多層膜及び該磁気抵抗効果多層膜を備えた薄膜磁気ヘッド

Also Published As

Publication number Publication date
JP2003030805A (ja) 2003-01-31
US20030083832A1 (en) 2003-05-01
US6700368B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US7236899B1 (en) Micro-magnetization analysis program, method, and apparatus
JP5556882B2 (ja) 磁性体のシミュレーション方法及びプログラム
JP3630120B2 (ja) 磁気変換デバイスの特性解析方法及びプログラム
Berkov et al. Quasistatic remagnetization processes in two-dimensional systems with random on-site anisotropy and dipolar interaction: Numerical simulations
US8803517B2 (en) Magnetic-field analyzing apparatus and magnetic-field analyzing program
Livingston et al. The intermediate state in type I superconductors
US7058527B2 (en) Micromagnetization analytical program and apparatus
Scholz et al. Micromagnetic modeling of head field rise time for high data-rate recording
Escobar et al. Advanced micromagnetic analysis of write head dynamics using Fastmag
Schrefl et al. Dynamic micromagnetic write head fields during magnetic recording in granular media
Wei et al. A simplified model of high density tape recording
Okuno et al. Chaotic oscillation of domain wall in non-equilibrium state
Sohn et al. Recording comparison of ECC versus conventional media at equal grain size
Jubert et al. Micromagnetic modeling of particulate tape media with increasing perpendicular orientation
Kanai et al. Write field calculation for a narrow-track, single-pole head with a thin underlayer of perpendicular medium
Dimian et al. Analysis of Magnetization Switching via Vortex Formation in Soft Magnetic Nanoparticles
Recio High Speed Switching in Magnetic Recording Thin-Film Heads
Baskoro et al. Effect of Write Head Movement On Magnetic Spin Domain Reversal of Nanocube Co/Pd Alloy Material Using Micromagnetic Simulation
Tsukamoto et al. Micromagnetic simulation of recording write heads a comparison of various micromagnetic software
Cepişcă et al. Evaluation of the parameters of a magnetic hysteresis model
Senanan et al. Effect of medium permeability on the perpendicular recording process
Bai Micromagnetic modeling of write heads for high-density and high-data-rate perpendicular recording
Ferrett Data recovery from magnetic media using magnetic force microscopy
Recio et al. Micromagnetic Modelling on Magnetisation Dynamics with Lossy Magnetic Material in Thin Film Heads by FDTD Computations
Wang Transition Shifts in Heat-Assisted Magnetic Recording and Magnetoresistance Enhancement by Wave-Vector Filtering

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees