JP3629857B2 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP3629857B2
JP3629857B2 JP34750396A JP34750396A JP3629857B2 JP 3629857 B2 JP3629857 B2 JP 3629857B2 JP 34750396 A JP34750396 A JP 34750396A JP 34750396 A JP34750396 A JP 34750396A JP 3629857 B2 JP3629857 B2 JP 3629857B2
Authority
JP
Japan
Prior art keywords
control
vehicle
behavior
power source
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34750396A
Other languages
English (en)
Other versions
JPH10184415A (ja
Inventor
淳 田端
豊 多賀
隆次 茨木
祐志 畑
強 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34750396A priority Critical patent/JP3629857B2/ja
Publication of JPH10184415A publication Critical patent/JPH10184415A/ja
Application granted granted Critical
Publication of JP3629857B2 publication Critical patent/JP3629857B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hydraulic Control Valves For Brake Systems (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両の制御装置に係り、特に、動力源やホイールブレーキを電子制御する挙動制御手段の制御精度を向上させる技術に関するものである。
【0002】
【従来の技術】
車両の挙動を制御するために、動力源やホイールブレーキを電子制御する挙動制御手段、例えばVSC(Vehicle Stability Control;車両走行安定化制御)やABS(Antilock Brake System)等を搭載した車両が近年提案されている。VSCは、旋回時の車両の挙動を安定させるために動力源の出力を増減制御するとともにホイールブレーキのブレーキ力を増減制御するもので、ABSは、制動時の車輪のロックを防止して車両安定性や操舵性を確保するするためにホイールブレーキのブレーキ力を低減するものであり、例えば特開昭62−253559号公報には、このような挙動制御手段について記載されている。
【0003】
【発明が解決しようとする課題】
ところで、このような挙動制御手段による制御は複雑で高い精度が要求されるため、駆動系に加わる種々の外乱によって制御精度が損なわれたり、動力源のイナーシャ(慣性)によって十分な制御精度が得られない可能性があった。例えば、(a) 車両走行のための動力の発生原理が異なる複数種類の動力源、例えばエンジンおよび電動モータと、(b) 運転状態に応じて前記複数種類の動力源を切り換えて使用する動力源切換手段とを有する所謂ハイブリッド車両に、前記挙動制御手段のうち、特に動力源の出力を制御するものを搭載した場合、挙動制御手段による制御中に動力源が切り換えられると、挙動制御手段による動力源の出力制御の対象が変化するため、その制御が難しくなることは勿論、ホイールブレーキのブレーキ力を制御する場合も動力源のイナーシャの変化によって制御精度が低下し、十分な挙動制御が期待できなくなるのである。また、動力源のイナーシャが変化しない場合でも、上記ハイブリッド車両や大型車両などで動力源のイナーシャが大きい場合には、例えばホイールブレーキのブレーキ力を解放した後に実際に車輪が回転し始めるまでの遅れ時間が長いなど、挙動制御手段による制御の応答性が悪くて十分な制御精度が得られ難いのである。
【0004】
本発明は以上の事情を背景として為されたもので、その目的とするところは、動力源やホイールブレーキを電子制御する挙動制御手段の制御精度を向上させることにある。
【0005】
【課題を解決するための手段】
かかる目的を達成するために、第1発明は、(a) 車両走行のための動力の発生原理が異なる複数種類の動力源と、(b) 運転状態に応じて前記複数種類の動力源を切り換えて使用する動力源切換手段とを有する車両の制御装置において、(c) 車両の挙動を制御するために、前記動力源およびホイールブレーキの少なくとも一方を電子制御する挙動制御手段と、(d) その挙動制御手段による制御中は、前記動力源切換手段による前記動力源の切換を禁止する切換禁止手段とを設けたことを特徴とする。
【0006】
第2発明は、(a) 車両走行のための動力の発生原理が異なる複数種類の動力源と、(b) 運転状態に応じて前記複数種類の動力源を切り換えて使用する動力源切換手段とを有する車両の制御装置において、(c) 車両の挙動を制御するために、前記動力源およびホイールブレーキの少なくとも一方を電子制御する挙動制御手段と、(d) 前記動力源切換手段による前記動力源の切換中は、前記挙動制御手段による制御を禁止する挙動制御禁止手段とを設けたことを特徴とする。
【0007】
第3発明は、(a) 車両走行のための動力の発生原理が異なる2種類の動力源と、(b) 3つの回転要素のうちの2つが前記2種類の動力源にそれぞれ連結され、それ等の動力を合成、分配して駆動系に出力する3軸式動力入出力手段と、(c) その3軸式動力入出力手段の任意の2つの回転要素を連結してその3軸式動力入出力手段を一体回転させる直結クラッチとを有する車両の制御装置において、(d) 車両の挙動を制御するために、ホイールブレーキを電子制御する挙動制御手段と、(e) その挙動制御手段による制御時には、前記動力源のイナーシャが小さくなるように前記直結クラッチを制御するイナーシャ低減手段とを設けたことを特徴とする。
【0008】
第4発明は、第3発明において、(a) 前記2種類の動力源は、燃料の燃焼エネルギーで作動するエンジン、および電気エネルギーで作動する電動モータであり、(b) 前記3軸式動力入出力手段は遊星歯車装置で、 (c) 前記イナーシャ低減手段は、前記直結クラッチを係合するものであることを特徴とする。
【0009】
第5発明は、(a) 車両走行のための動力を発生する動力源として用いられるエンジンおよび電動モータと、(b) そのエンジンおよび電動モータと自動変速機の出力軸との間に設けられた油圧摩擦式の断続クラッチとを有する車両の制御装置において、(c) 車両の挙動を制御するために、ホイールブレーキを電子制御する挙動制御手段と、(d) その挙動制御手段による制御時には、前記断続クラッチをスリップ状態または低圧待機状態とするイナーシャ低減手段とを設けたことを特徴とする。なお、低圧待機状態とは、断続クラッチの摩擦板を係合させるための油圧アクチュエータのピストンを押し戻すためのリターンスプリングと略釣り合う程度の油圧に制御することを意味する。
第6発明は、第5発明において、前記断続クラッチは、前記エンジンおよび電動モータを同時に駆動輪から遮断できるように設けられていることを特徴とする。
第7発明は、 (a) 車両走行のための動力の発生原理が異なる複数種類の動力源を備えており、 (b) その複数種類の動力源の作動状態が異なる複数の運転モードを切り換えて走行する車両の制御装置において、 (c) 車両の挙動を制御するために、前記動力源およびホイールブレーキの少なくとも一方を電子制御する挙動制御手段を有する一方、 (d) その挙動制御手段による制御中は前記運転モードの切換を保留することを特徴とする。
【0010】
発明は、第1発明〜第発明の何れかにおいて、前記挙動制御手段は、旋回時の車両の挙動を安定させるために前記動力源の出力を増減制御するとともに前記ホイールブレーキのブレーキ力を増減制御する挙動安定化手段であることを特徴とする。
【0011】
発明は、第1発明〜第発明の何れかにおいて、前記挙動制御手段は、制動時の車輪のロックを防止するために前記ホイールブレーキのブレーキ力を低減するアンチロックブレーキ手段であることを特徴とする。
10発明は、第1発明〜第発明の何れかにおいて、蓄電装置の蓄電量SOCを考慮して制御が行われることを特徴とする。
【0012】
【発明の効果】
第1発明においては、挙動制御手段による制御中は、動力源切換手段による動力源の切換が禁止されるため、動力源の出力制御を高い精度で行うことができるとともに、イナーシャ(厳密には慣性モーメント)の変化がないためホイールブレーキのブレーキ制御が容易になるなど、動力源の切換に起因する挙動制御手段の制御精度の低下が防止される。
【0013】
第2発明では、動力源切換手段による動力源の切換中は、挙動制御手段による制御が禁止されるため、動力源の切換に起因して挙動制御手段の制御が損なわれる恐れがない。
【0014】
第3発明は、2種類の動力源と、3軸式動力入出力手段と、その3軸式動力入出力手段を一体回転させる直結クラッチとを有する車両に関するもので、挙動制御手段による制御時には、動力源のイナーシャが小さくなるように直結クラッチを制御するようになっているため、挙動制御手段による制御の応答性が向上して優れた制御精度が得られるようになる。
【0015】
第5発明は、動力源として用いられるエンジンおよび電動モータと自動変速機の出力軸との間に油圧摩擦式の断続クラッチが設けられている場合で、挙動制御手段による制御時には、その断続クラッチをスリップ状態または低圧待機状態とするようになっているため、動力源のイナーシャの影響が小さくなり、挙動制御手段による制御の応答性が向上して優れた制御精度が得られるようになる。また、断続クラッチはスリップ状態または低圧待機状態とされるため、挙動制御手段による制御の終了時に、断続クラッチを係合して動力源から車輪へ動力を伝達する通常の駆動状態、或いはエンジンブレーキ等の動力源ブレーキ状態へ速やかに復帰できる。
第7発明は、複数種類の動力源の作動状態が異なる複数の運転モードを切り換えて走行する場合で、挙動制御手段による制御中は運転モードの切換が保留されるため、動力源の出力制御を高い精度で行うことができるとともに、イナーシャ(厳密には慣性モーメント)の変化がないためホイールブレーキのブレーキ制御が容易になるなど、運転モードの切換に起因する挙動制御手段の制御精度の低下が防止される。
【0016】
【発明の実施の形態】
ここで、第1発明〜第3発明は、例えば燃料の燃焼エネルギーで作動するエンジンと電気エネルギーで作動する電動モータとを車両走行用の動力源として備えているハイブリッド車両に好適に適用される。また、第1発明および第2発明の動力源切換手段は、例えばエンジンのみを動力源として走行するエンジン運転モード、電動モータのみを動力源として走行するモータ運転モード、エンジンおよび電動モータの両方を動力源として走行するエンジン+モータ運転モードなど、エンジンおよび電動モータの作動状態が異なる複数の運転モードを備えており、車速(または動力源回転数)およびアクセル操作量などの運転状態をパラメータとする動力源マップ等の予め定められたモード切換条件に従って自動的に切り換えるように構成される。
【0017】
上記ハイブリッド車両としては、第3発明のように3軸式動力入出力手段を有するミックス式、或いは電気トルコン式のものに好適に適用されるが、エンジンおよび電動モータを車両走行時の動力源として備えている種々のタイプのハイブリッド車両に適用され得る。第1発明および第2発明は、電動モータが駆動輪毎に設けられているハイブリッド車両にも適用可能である。
【0018】
挙動制御手段は、運転者のアクセル操作に優先して動力源の出力を増大、減少、或いは増減したり、ブレーキ操作に優先してホイールブレーキのブレーキ力を増大、減少、或いは増減したりするもの(第3発明および第4発明では、少なくともホイールブレーキのブレーキ力を制御する)で、第発明の挙動安定化手段や第発明のアンチロックブレーキ手段が好適に採用されるが、この他にも、例えば運転者のアクセル操作に優先して動力源の出力制御のみを行うものなど、種々の態様で実施できる。
【0019】
第3発明の3軸式動力入出力手段としては、シンプル式の遊星歯車装置が好適に用いられるが、他の遊星歯車装置や傘歯車式の差動装置などを採用することもできる。
【0020】
第3発明のイナーシャ低減手段は、例えば第4発明のように直結クラッチを係合するように構成されるが、駆動輪側から見た動力源のイナーシャの大小、すなわちブレーキ制御に伴う駆動輪の回転変化に対する動力源の回転抵抗は、3軸式動力入出力手段のギヤ比や、2種類の動力源と3軸式動力入出力手段との連結形態、2種類の動力源の慣性モーメントなどによって異なるため、直結クラッチを係合するか解放するかは、それ等に基づいて演算等により総合的に定められる。第4発明は、直結クラッチを係合した方がイナーシャが小さくなる場合であるが、同じ連結形態でも直結クラッチを解放した方がイナーシャが小さくなる場合があり、その場合は直結クラッチを解放することになる。直結クラッチは完全に係合または解放するようにしても良いが、例えば油圧式摩擦クラッチの場合には、スリップ状態としたり、解放する時に低圧待機状態としたりしても良く、それ等の場合には通常の駆動状態への復帰を速やかに行うことができる。第4発明における直結クラッチの係合は、スリップ状態であっても良い。
【0021】
第3発明は、例えば (a) 前記2種類の動力源が、燃料の燃焼エネルギーで作動するエンジン、および電気エネルギーで作動する電動モータであり、 (b) 前記3軸式動力入出力手段はシンプル式の遊星歯車装置で、前記エンジンに連結された前記第1回転要素としてのリングギヤと、前記電動モータに連結された前記第2回転要素としてのサンギヤと、前記駆動系に連結された第3回転要素としてのキャリアとを有するものであり、 (c) 前記直結クラッチは、前記サンギヤとキャリアとを連結するものであり、 (d) 前記イナーシャ低減手段は、前記直結クラッチを係合するものである態様で実施され、その場合の動力源のイナーシャについて具体的に検討する。例えば簡略化して考えた場合、エンジンの慣性モーメントをIE 、電動モータの慣性モーメントをIM 、ブレーキ制御による車輪の回転変化に伴うキャリアの回転変化をNC とすると、直結クラッチが係合(ON)の場合の動力源のイナーシャIONは次式(1) で表され、直結クラッチが解放(OFF)の場合の動力源のイナーシャIOFF は次式(2) で表される。エンジンの慣性モーメントIE は、一般に電動モータの慣性モーメントIM よりも十分に大きいため、直結クラッチOFFの場合のエンジンの回転変化を0と仮定し、遊星歯車装置のギヤ比(サンギヤの歯数/リングギヤの歯数)をρとすると、イナーシャIOFF は(3) 式で表される。したがって、イナーシャIONとIOFF の大小関係は、IE と〔{(1+ρ)/ρ}2 −1〕IM との大小関係で表され、次式(4) を満足する場合にION<IOFF となる。
ON=(IE +IM )・NC 2 /2 ・・・(1)
OFF =IE ・NE 2 /2+IM ・NM 2 /2 ・・・(2)
OFF =IM ・NM 2 /2
=IM ・〔{(1+ρ)/ρ}NC 2 /2 ・・・(3)
E <〔{(1+ρ)/ρ}2 −1〕IM ・・・(4)
【0022】
ここで、ギヤ比ρは一般に0.3〜0.6程度で、例えばρ=0.4とすると上記(4) 式はI<11.25Iとなり、エンジンの慣性モーメントIが電動モータの慣性モーメントの11.25倍よりも小さい場合には、第4発明のように直結クラッチを係合した方が動力源のモーメントは小さくなる。ρ=0.6でも(4) 式はI<6.1Iであり、エンジンの慣性モーメントIが電動モータの慣性モーメントの6.1倍よりも小さければ、直結クラッチを係合した方が動力源のモーメントは小さくなる。この場合は、計算式にて動力源のイナーシャを求めたが、実験的に直結クラッチが係合の場合と解放の場合の動力源のイナーシャを求めて比較しても良い。
【0023】
また、上記態様では、イナーシャを小さくする上で電動モータのトルクを0、すなわち自由回転可能な無負荷状態とすることが望ましい。また、リングギヤとエンジンとの間にエンジン用のクラッチが設けられている場合には、そのクラッチを係合させるエンジン運転モードやエンジン+モータ運転モード、エンジンブレーキモードなどで有効である。この意味において、イナーシャ低減手段は、上記直結クラッチの制御の他、エンジン用のクラッチの制御、電動モータのトルク制御などにより、運転モード毎に異なる制御で動力源のイナーシャを低減するように構成することが望ましい。
【0024】
第5発明の断続クラッチは、例えば上記リングギヤにエンジン用のクラッチを介してエンジンが連結されている場合のエンジン用のクラッチ、或いは自動変速機のクラッチやブレーキなどである。また、かかる断続クラッチは、動力源ブレーキ(エンジンブレーキや電動モータの回生制動)を作動させるために、自動変速機の一方向クラッチと並列に設けられているコースト係合手段(クラッチやブレーキ)など、駆動輪から動力源側への正方向の動力伝達のみを遮断するものであっても良く、その場合はブレーキ制御によるブレーキ力の低下に伴って駆動輪が速やかに増速回転させられる。
【0025】
以下、本発明の実施例を図面を参照しつつ詳細に説明する。図1は、本発明の一実施例である制御装置を備えているハイブリッド車両のハイブリッド駆動装置10の骨子図である。このハイブリッド駆動装置10は4輪駆動車両用のもので、燃料の燃焼エネルギーで作動するエンジン12と、電気エネルギーで作動する電動モータとしてのモータジェネレータ14と、シングルピニオン型の遊星歯車装置16と、自動変速機18と、トランスファ158とを車両の前後方向に沿って備えている。エンジン12およびモータジェネレータ14は、車両走行のための動力の発生原理が異なる複数種類の動力源に相当する。
【0026】
前記3軸式動力入出力手段としての遊星歯車装置16は機械的に力を合成分配する合成分配機構で、モータジェネレータ14と共に電気式トルコン24を構成しており、前記第1回転要素としてのリングギヤ16rは第1クラッチCE を介してエンジン12に連結され、前記第2回転要素としてのサンギヤ16sはモータジェネレータ14のロータ軸14rに連結され、前記第3回転要素としてのキャリア16cは自動変速機18の入力軸26に連結されている。また、サンギヤ16sおよびキャリア16cは前記直結クラッチとしての第2クラッチCE によって連結されるようになっている。なお、エンジン12の出力は、回転変動やトルク変動を抑制するためのフライホイール28およびスプリング、ゴム等の弾性部材によるダンパ装置30を介して第1クラッチCE に伝達される。第1クラッチCE および第2クラッチCE は、何れも油圧アクチュエータによって係合、解放される摩擦式の多板クラッチである。
【0027】
自動変速機18は、前置式オーバードライブプラネタリギヤユニットから成る副変速機20と、単純連結3プラネタリギヤトレインから成る前進4段、後進1段の主変速機22とを組み合わせたものである。具体的には、副変速機20はシングルピニオン型の遊星歯車装置32と、油圧アクチュエータによって摩擦係合させられる油圧式のクラッチC 、ブレーキB と、一方向クラッチF とを備えて構成されている。主変速機22は、3組のシングルピニオン型の遊星歯車装置34、36、38と、油圧アクチュエータによって摩擦係合させられる油圧式のクラッチC , C 、ブレーキB ,B ,B ,B と、一方向クラッチF ,F とを備えて構成されている。そして、図2に示されているソレノイドバルブSL1〜SL4の励磁、非励磁により油圧回路44が切り換えられたり、シフトレバーに機械的に連結されたマニュアルシフトバルブによって油圧回路44が機械的に切り換えられたりすることにより、係合手段であるクラッチC ,C ,C 、ブレーキB ,B ,B ,B ,B がそれぞれ係合、解放制御され、図3に示されているようにニュートラル(N)と前進5段(1st〜5th)、後進1段(Rev)の各変速段が成立させられる。なお、上記自動変速機18や前記電気式トルコン24は、中心線に対して略対称的に構成されており、図1では中心線の下半分が省略されている。
【0028】
自動変速機18の出力軸19には、自動変速機18からの出力トルクTを後輪出力軸154と前輪出力軸156とに分配して伝達するトランスファ158(センタデフ装置)が配設されている。自動変速機18の出力軸19の延長上にシンプル遊星歯車装置160が配置されており、そのキャリア162に自動変速機18の出力軸19が連結されている。また、そのリングギヤ163は、前記出力軸19と同一軸線上に配置した後輪出力軸154に一体回転するように連結されている。
【0029】
サンギヤ164は、出力軸19の外周側に同一軸線上に配置された駆動スプロケット166に一体化されており、これと対をなす従動スプロケット167が、出力軸19と平行に配置された前輪出力軸156に取り付けられるとともに、これらのスプロケット166、167にチェーン168が巻き掛けられている。サンギヤ164およびキャリア162は油圧アクチュエータによって係合、解放される差動制限用の湿式多板クラッチCによって連結されるようになっている。
【0030】
図3のクラッチ、ブレーキ、一方向クラッチの欄の「○」は係合、「●」はシフトレバーがエンジンブレーキレンジ、すなわち「3」、「2」、または「L」レンジへ操作された場合に係合、そして、空欄は非係合を表している。その場合に、ニュートラルN、後進変速段Rev、及びエンジンブレーキレンジは、シフトレバーに機械的に連結されたマニュアルシフトバルブによって油圧回路44が機械的に切り換えられることによって成立させられ、シフトレバーがD(前進)レンジへ操作された場合の1st〜5thの相互間の変速はソレノイドバルブSL1〜SL4によって電気的に制御される。また、前進変速段の変速比は1stから5thとなるに従って段階的に小さくなり、4thの変速比i =1(直結)である。図3に示されている変速比は一例である。
【0031】
油圧回路44は図4に示す回路を備えている。図4において符号70は1−2シフトバルブを示し、符号71は2−3シフトバルブを示し、符号72は3−4シフトバルブを示している。これらのシフトバルブ70、71、72の各ポートの各変速段での連通状態は、それぞれのシフトバルブ70、71、72の下側に示している通りである。なお、その数字は各変速段を示す。
【0032】
2−3シフトバルブ71のポートのうち第1変速段および第2変速段で入力ポート73に連通するブレーキポート74に、第3ブレーキB が油路75を介して接続されている。この油路にはオリフィス76が介装されており、そのオリフィス76と第3ブレーキB との間にダンパーバルブ77が接続されている。このダンパーバルブ77は、第3ブレーキB にライン圧PLが急激に供給された場合に少量の油圧を吸入して緩衝作用を行うものである。
【0033】
符号78はB−3コントロールバルブであって、第3ブレーキB の係合圧を制御するようになっている。すなわち、このB−3コントロールバルブ78は、スプール79とプランジャ80とこれらの間に介装したスプリング81とを備えており、スプール79によって開閉される入力ポート82に油路75が接続され、またこの入力ポート82に選択的に連通させられる出力ポート83が第3ブレーキB に接続されている。さらにこの出力ポート83は、スプール79の先端側に形成したフィードバックポート84に接続されている。一方、上記スプリング81を配置した箇所に開口するポート85には、2−3シフトバルブ71のポートのうち第3変速段以上の変速段でDレンジ圧(ライン圧PL)を出力するポート86が油路87を介して連通させられている。また、プランジャ80の端部側に形成した制御ポート88には、リニアソレノイドバルブSLUが接続され、信号圧PSLU が作用させられるようになっている。したがって、B−3コントロールバルブ78は、スプリング81の弾性力とポート85に供給される油圧とによって調圧レベルが設定され、且つ制御ポート88に供給される信号圧PSLU が高いほどスプリング81による弾性力が大きくなるように構成されている。
【0034】
図4における符号89は、2−3タイミングバルブであって、この2−3タイミングバルブ89は、小径のランドと2つの大径のランドとを形成したスプール90と第1のプランジャ91とこれらの間に配置したスプリング92とスプール90を挟んで第1のプランジャ91とは反対側に配置された第2のプランジャ93とを有している。2−3タイミングバルブ89の中間部のポート94に油路95が接続され、また、この油路95は2−3シフトバルブ71のポートのうち第3変速段以上の変速段でブレーキポート74に連通させられるポート96に接続されている。油路95は途中で分岐して、前記小径ランドと大径ランドとの間に開口するポート97にオリフィスを介して接続されており、上記ポート94に選択的に連通させられるポート98は油路99を介してソレノイドリレーバルブ100に接続されている。そして、第1のプランジャ91の端部に開口しているポートにリニアソレノイドバルブSLUが接続され、また第2のプランジャ93の端部に開口するポートに第2ブレーキB がオリフィスを介して接続されている。
【0035】
前記油路87は第2ブレーキB に対して油圧を供給・排出するためのものであって、その途中には小径オリフィス101とチェックボール付きオリフィス102とが介装されている。また、この油路87から分岐した油路103には、第2ブレーキB から排圧する場合に開くチェックボールを備えた大径オリフィス104が介装され、この油路103は以下に説明するオリフィスコントロールバルブ105に接続されている。
【0036】
オリフィスコントロールバルブ105は第2ブレーキB からの排圧速度を制御するためのバルブであって、そのスプール106によって開閉されるように中間部に形成したポート107には第2ブレーキB が接続されており、このポート107より図での下側に形成したポート108に前記油路103が接続されている。第2ブレーキB を接続してあるポート107より図での上側に形成したポート109は、ドレインポートに選択的に連通させられるポートであって、このポート109には、油路110を介して前記B−3コントロールバルブ78のポート111が接続されている。尚、このポート111は、第3ブレーキB を接続してある出力ポート83に選択的に連通させられるポートである。
【0037】
オリフィスコントロールバルブ105のポートのうちスプール106を押圧するスプリングとは反対側の端部に形成した制御ポート112が油路113を介して、3−4シフトバルブ72のポート114に接続されている。このポート114は、第3変速段以下の変速段で第3ソレノイドバルブSL3の信号圧を出力し、また、第4変速段以上の変速段で第4ソレノイドバルブSL4の信号圧を出力するポートである。さらに、このオリフィスコントロールバルブ105には、前記油路95から分岐した油路115が接続されており、この油路115を選択的にドレインポートに連通させるようになっている。
【0038】
なお、前記2−3シフトバルブ71において第2変速段以下の変速段でDレンジ圧を出力するポート116が、前記2−3タイミングバルブ89のうちスプリング92を配置した箇所に開口するポート117に油路118を介して接続されている。また、3−4シフトバルブ72のうち第3変速段以下の変速段で前記油路87に連通させられるポート119が油路120を介してソレノイドリレーバルブ100に接続されている。
【0039】
符号121は第2ブレーキB 用のアキュムレータを示し、その背圧室にはリニアソレノイドバルブSLNが出力する信号圧PSLN に応じて調圧されたアキュムレータコントロール圧Pacが供給されるようになっている。2→3変速時に前記2−3シフトバルブ71が切り換えられると、第2ブレーキB には油路87を介してDレンジ圧(ライン圧PL)が供給されるが、このライン圧PLによってアキュムレータ121のピストン121pが上昇を開始する。このピストン121pが上昇している間は、ブレーキB に供給される油圧(係合圧)PB2は、スプリング121sの下向きの付勢力およびピストン121pを下向きに付勢する上記アキュムレータコントロール圧Pacと釣り合う略一定、厳密にはスプリング121sの圧縮変形に伴って漸増させられ、ピストン121pが上昇端に達するとライン圧PLまで上昇させられる。すなわち、ピストン121pが移動する変速過渡時の係合圧PB2は、アキュムレータコントロール圧Pacによって定まるのである。
【0040】
アキュムレータコントロール圧Pacは、第3変速段成立時に係合制御される上記第2ブレーキB 用のアキュムレータ121の他、図示は省略するが第1変速段成立時に係合制御されるクラッチC 用のアキュムレータ、第4変速段成立時に係合制御されるクラッチC 用のアキュムレータ、第5変速段成立時に係合制御されるブレーキB 用のアキュムレータにも供給され、それ等の係合・解放時の過渡油圧が制御される。
【0041】
図4の符号122はC−0エキゾーストバルブを示し、さらに符号123はクラッチC 用のアキュムレータを示している。C−0エキゾーストバルブ122は2速レンジでの第2変速段のみにおいてエンジンブレーキを効かせるためにクラッチC を係合させるように動作するものである。
【0042】
このような油圧回路44によれば、第2変速段から第3変速段への変速、すなわち第3ブレーキB を解放すると共に第2ブレーキB を係合する所謂クラッチツウクラッチ変速において、入力軸26の入力トルクなどに基づいて第3ブレーキB の解放過渡油圧や第2ブレーキB の係合過渡油圧を制御することにより、変速ショックを好適に軽減することができる。その他の変速についても、リニアソレノイドバルブSLNのデューティ制御によってアキュムレータコントロール圧Pacを調圧することにより、クラッチC 、C やブレーキB の過渡油圧が制御される。
【0043】
ハイブリッド駆動装置10は、図2に示されるようにハイブリッド制御用コントローラ50及び自動変速制御用コントローラ52を備えている。これらのコントローラ50、52は、CPUやRAM、ROM等を有するマイクロコンピュータを備えて構成され、エンジン回転数センサ62からエンジン回転数Nを表す信号が供給される他、車速V(自動変速機18の出力軸19の回転数Nに対応)、自動変速機18の入力軸26の回転数N、エンジントルクT、モータトルクT、モータ回転数N、蓄電装置58(図5参照)の蓄電量SOC、ブレーキのON、OFF、アクセル操作量θAC、シフトレバーの操作レンジなどに関する情報が、種々の検出手段などから供給されるようになっており、予め設定されたプログラムに従って信号処理を行う。なお、エンジントルクTはスロットル弁開度や燃料噴射量などから求められ、モータトルクTはモータ電流などから求められ、蓄電量SOCはモータジェネレータ14がジェネレータとして機能する充電時のモータ電流や充電効率などから求められる。
【0044】
前記エンジン12は、ハイブリッド制御用コントローラ50によってスロットル弁開度や燃料噴射量、点火時期などが制御されることにより、アクセル操作量θAC等の運転状態に応じて出力が制御される。モータジェネレータ14は、図5に示すようにM/G制御器(インバータ)56を介してバッテリー等の蓄電装置58に接続されており、ハイブリッド制御用コントローラ50により、その蓄電装置58から電気エネルギーが供給されて所定のトルクで回転駆動される回転駆動状態と、回生制動(モータジェネレータ14自体の電気的な制動トルク)によりジェネレータとして機能して蓄電装置58に電気エネルギーを充電する充電状態と、ロータ軸14rが自由回転することを許容する無負荷状態とに切り換えられる。また、前記第1クラッチCE 及び第2クラッチCE は、ハイブリッド制御用コントローラ50により電磁弁等を介して油圧回路44が切り換えられることにより、係合或いは解放状態が切り換えられる。自動変速機18は、自動変速制御用コントローラ52によって前記ソレノイドバルブSL1〜SL4、リニアソレノイドバルブSLU、SLT、SLNの励磁状態が制御され、油圧回路44が切り換えられたり油圧制御が行われたりすることにより、運転状態(例えばアクセル操作量θACおよび車速Vなど)に応じて予め設定された変速パターンに従って変速段が自動的に切り換えられる。
【0045】
更に、ハイブリッド制御用コントローラ50には、図5に示すようにVSC制御用コントローラ130およびABS制御用コントローラ150が接続されている。VSC制御用コントローラ130には、車体鉛直軸まわりの回転角速度すなわちヨーレートを検出するヨーレートセンサ132、車両の加速度を検出或いは算出するGセンサ134、ステアリングホイールの操舵角を検出する操舵角センサ136、各車輪の回転速度を検出する車輪速センサ138が接続されており、それらセンサにより検出されたヨーレート、車両加速度、操舵角、車輪回転速度を表す信号がVSC制御用コントローラ130に供給される。また、ABS制御用コントローラ150にも、車輪速センサ138が接続されており、車輪回転速度を表す信号が供給されている。VSC制御用コントローラ130およびABS制御用コントローラ150は、前記と同様のマイクロコンピュータであって、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って入力信号を処理し、それぞれ各車輪の制動油圧を増減制御するハイドロブースタアクチュエータ140の電磁弁と、各車輪の制動油圧を減圧するブレーキアクチュエータ152の電磁弁を制御する。また、VSC制御用コントローラ130およびABS制御用コントローラ150は、それぞれ前記ハイブリッド制御用コントローラ50、自動変速制御用コントローラ52と相互に通信可能に接続されており、一方に必要な信号が他方から適宜送信されるようになっており、VSC制御用コントローラ130は必要に応じて前記エンジン12およびモータジェネレータ14の出力を増減制御するようになっている。尚、VSC制御用コントローラ130は前記挙動安定化手段に対応しており、ABS制御用コントローラ150は前記アンチロックブレーキ手段に対応している。
【0046】
上記VSC制御用コントローラ130は、運転者のブレーキ操作に優先してホイールブレーキのブレーキ力を増減制御したり、アクセル操作に優先してエンジン12やモータジェネレータ14の出力を増減制御したりすることにより、車両旋回時の異常な挙動を安定させるためのもので、車両の強いオーバーステア傾向やアンダーステア傾向を緩和する。例えば図17の(a) は、右旋回時に強いオーバーステアが発生した場合で、旋回外側の前輪、この場合は左前輪のホイールブレーキを作動させることにより、車両の外向きにモーメントを発生させてオーバーステア傾向を抑制する。図17の(b) は、右旋回時に強いアンダーステアが発生した場合で、後輪、特に旋回内側に位置する右後輪に大きなブレーキを作動させることにより、旋回方向のモーメントを発生させてアンダーステア傾向を抑制する。また、図18は、車両旋回時の異常な挙動を安定させるために、動力源の出力およびホイールブレーキの両方を制御した場合の一例を示すタイムチャートである。一方、ABS制御用コントローラ150は、運転者のブレーキ操作に優先してホイールブレーキのブレーキ力を低減制御することにより、制動時の車輪のロックを防止して車両安定性や操舵性を確保する。
【0047】
上記ハイブリッド制御用コントローラ50は、例えば本願出願人が先に出願した特願平7−294148号に記載されているように、図6に示すフローチャートに従って図7に示す9つの運転モードの1つを選択し、その選択したモードでエンジン12及び電気式トルコン24を作動させる。尚、本制御作動は、前記動力源切換手段に対応している。
【0048】
図6において、ステップS1ではエンジン始動要求があったか否かを、例えばエンジン12を動力源として走行したり、エンジン12によりモータジェネレータ14を回転駆動して蓄電装置58を充電したりするために、エンジン12を始動すべき旨の指令があったか否か等によって判断し、始動要求があればステップS2でモード9を選択する。モード9は、図7から明らかなように第1クラッチCE を係合(ON)し、第2クラッチCE を係合(ON)し、モータジェネレータ14により遊星歯車装置16を介してエンジン12を回転駆動すると共に、燃料噴射などのエンジン始動制御を行ってエンジン12を始動する。このモード9は、車両停止時には前記自動変速機18をニュートラルにして行われ、モード1のように第1クラッチCE を解放したモータジェネレータ14のみを動力源とする走行時には、第1クラッチCE を係合すると共に走行に必要な要求出力以上の出力でモータジェネレータ14を作動させ、その要求出力以上の余裕出力でエンジン12を回転駆動することによって行われる。また、車両走行時であっても、一時的に自動変速機18をニュートラルにしてモード9を実行することも可能である。
【0049】
ステップS1の判断が否定された場合、すなわちエンジン始動要求がない場合には、ステップS3を実行することにより、制動力の要求があるか否かを、例えばブレーキがONか否か、シフトレバーの操作レンジがLや2などのエンジンブレーキレンジで、且つアクセル操作量θACが0か否か、或いは単にアクセル操作量θACが0か否か、等によって判断する。この判断が肯定された場合にはステップS4を実行する。ステップS4では、蓄電装置58の蓄電量SOCが予め定められた最大蓄電量B以上か否かを判断し、SOC≧BであればステップS5でモード8を選択し、SOC<BであればステップS6でモード6を選択する。最大蓄電量Bは、蓄電装置58に電気エネルギーを充電することが許容される最大の蓄電量で、蓄電装置58の充放電効率などに基づいて例えば80%程度の値が設定される。
【0050】
上記ステップS5で選択されるモード8は、図7に示されるように第1クラッチCE を係合(ON)し、第2クラッチCE を係合(ON)し、モータジェネレータ14を無負荷状態とし、エンジン12を停止状態すなわちスロットル弁を閉じると共に燃料噴射量を0とするものであり、これによりエンジン12の引き擦り回転やポンプ作用による制動力、すなわちエンジンブレーキが車両に作用させられ、運転者によるブレーキ操作が軽減されて運転操作が容易になる。また、モータジェネレータ14は無負荷状態とされ、自由回転させられるため、蓄電装置58の蓄電量SOCが過大となって充放電効率等の性能を損なうことが回避される。
【0051】
ステップS6で選択されるモード6は、図7から明らかなように第1クラッチCE を解放(OFF)し、第2クラッチCE を係合(ON)し、エンジン12を停止し、モータジェネレータ14を充電状態とするもので、車両の運動エネルギーでモータジェネレータ14が回転駆動されることにより、蓄電装置58を充電するとともにその車両にエンジンブレーキのような回生制動力を作用させるため、運転者によるブレーキ操作が軽減されて運転操作が容易になる。また、第1クラッチCE が解放されてエンジン12が遮断されているため、そのエンジン12の回転抵抗によるエネルギー損失がないとともに、蓄電量SOCが最大蓄電量Bより少ない場合に実行されるため、蓄電装置58の蓄電量SOCが過大となって充放電効率等の性能を損なうことがない。
【0052】
ステップS3の判断が否定された場合、すなわち制動力の要求がない場合にはステップS7を実行し、エンジン発進が要求されているか否かを、例えばモード3などエンジン12を動力源とする走行中の車両停止時か否か、すなわち車速V≒0か否か等によって判断する。この判断が肯定された場合には、ステップS8においてアクセルがONか否か、すなわちアクセル操作量θACが略零の所定値より大きいか否かを判断し、アクセルONの場合にはステップS9でモード5を選択し、アクセルがONでなければステップS10でモード7を選択する。
【0053】
上記ステップS9で選択されるモード5は、図7から明らかなように第1クラッチCE を係合(ON)し、第2クラッチCE を解放(OFF)し、エンジン12を運転状態とし、モータジェネレータ14の回生制動トルクを制御することにより、車両を発進させるものである。具体的に説明すると、遊星歯車装置16のギヤ比をρとすると、エンジントルクT:遊星歯車装置16の出力トルク:モータトルクT=1:(1+ρ):ρとなるため、例えばギヤ比ρを一般的な値である0.5程度とすると、エンジントルクTの半分のトルクをモータジェネレータ14が分担することにより、エンジントルクTの約1.5倍のトルクがキャリア16cから出力される。すなわち、モータジェネレータ14のトルクの(1+ρ)/ρ倍の高トルク発進を行うことができるのである。また、モータ電流を遮断してモータジェネレータ14を無負荷状態とすれば、ロータ軸14rが逆回転させられるだけでキャリア16cからの出力は0となり、車両停止状態となる。すなわち、この場合の遊星歯車装置16は発進クラッチおよびトルク増幅装置として機能するのであり、モータトルク(回生制動トルク)Tを0から徐々に増大させて反力を大きくすることにより、エンジントルクTの(1+ρ)倍の出力トルクで車両を滑らかに発進させることができるのである。
【0054】
ここで、本実施例では、エンジン12の最大トルクの略ρ倍のトルク容量のモータジェネレータ、すなわち必要なトルクを確保しつつできるだけ小型で小容量のモータジェネレータ14が用いられており、装置が小型で且つ安価に構成される。また、本実施例ではモータトルクTの増大に対応して、スロットル弁開度や燃料噴射量を増大させてエンジン12の出力を大きくするようになっており、反力の増大に伴うエンジン回転数Nの低下に起因するエンジンストール等を防止している。
【0055】
ステップS10で選択されるモード7は、図7から明らかなように第1クラッチCE を係合(ON)し、第2クラッチCE を解放(OFF)し、エンジン12を運転状態とし、モータジェネレータ14を無負荷状態として電気的にニュートラルとするもので、モータジェネレータ14のロータ軸14rが逆方向へ自由回転させられることにより、自動変速機18の入力軸26に対する出力が零となる。これにより、モード3などエンジン12を動力源とする走行中の車両停止時に一々エンジン12を停止させる必要がないとともに、前記モード5のエンジン発進が実質的に可能となる。
【0056】
ステップS7の判断が否定された場合、すなわちエンジン発進の要求がない場合にはステップS11を実行し、要求出力Pdが予め設定された第1判定値P1以下か否かを判断する。要求出力Pdは、走行抵抗を含む車両の走行に必要な出力で、アクセル操作量θACやその変化速度、車速V(出力軸回転数N)、自動変速機18の変速段などに基づいて、予め定められたデータマップや演算式などにより算出される。また、第1判定値P1はエンジン12のみを動力源として走行する中負荷領域とモータジェネレータ14のみを動力源として走行する低負荷領域の境界値であり、エンジン12による充電時を含めたエネルギー効率を考慮して、排出ガス量や燃料消費量などができるだけ少なくなるように実験等によって定められている。
【0057】
ステップS11の判断が肯定された場合、すなわち要求出力Pdが第1判定値P1以下の場合には、ステップS12で蓄電量SOCが予め設定された最低蓄電量A以上か否かを判断し、SOC≧AであればステップS13でモード1を選択する一方、SOC<AであればステップS14でモード3を選択する。最低蓄電量Aはモータジェネレータ14を動力源として走行する場合に蓄電装置58から電気エネルギーを取り出すことが許容される最低の蓄電量であり、蓄電装置58の充放電効率などに基づいて例えば70%程度の値が設定される。
【0058】
上記モード1は、前記図7から明らかなように第1クラッチCE を解放(OFF)し、第2クラッチCE を係合(ON)し、エンジン12を停止し、モータジェネレータ14を要求出力Pdで回転駆動させるもので、モータジェネレータ14のみを動力源として車両を走行させる。この場合も、第1クラッチCE が解放されてエンジン12が遮断されるため、前記モード6と同様に引き擦り損失が少なく、自動変速機18を適当に変速制御することにより効率の良いモータ駆動制御が可能である。また、このモード1は、要求出力Pdが第1判定値P1以下の低負荷領域で且つ蓄電装置58の蓄電量SOCが最低蓄電量A以上の場合に実行されるため、エンジン12を動力源として走行する場合よりもエネルギー効率が優れていて燃費や排出ガスを低減できるとともに、蓄電装置58の蓄電量SOCが最低蓄電量Aより低下して充放電効率等の性能を損なうことがない。
【0059】
ステップS14で選択されるモード3は、図7から明らかなように第1クラッチCE および第2クラッチCE を共に係合(ON)し、エンジン12を運転状態とし、モータジェネレータ14を回生制動により充電状態とするもので、エンジン12の出力で車両を走行させながら、モータジェネレータ14によって発生した電気エネルギーを蓄電装置58に充電する。エンジン12は、要求出力Pd以上の出力で運転させられ、その要求出力Pdより大きい余裕動力分だけモータジェネレータ14で消費されるように、そのモータジェネレータ14の電流制御が行われる。
【0060】
ステップS11の判断が否定された場合、すなわち要求出力Pdが第1判定値P1より大きい場合には、ステップS15において、要求出力Pdが第1判定値P1より大きく第2判定値P2より小さいか否か、すなわちP1<Pd<P2か否かを判断する。第2判定値P2は、エンジン12のみを動力源として走行する中負荷領域とエンジン12およびモータジェネレータ14の両方を動力源として走行する高負荷領域の境界値であり、エンジン12による充電時を含めたエネルギー効率を考慮して、排出ガス量や燃料消費量などができるだけ少なくなるように実験等によって予め定められている。そして、P1<Pd<P2であればステップS16でSOC≧Aか否かを判断し、SOC≧Aの場合にはステップS17でモード2を選択し、SOC<Aの場合には前記ステップS14でモード3を選択する。また、Pd≧P2であればステップS18でSOC≧Aか否かを判断し、SOC≧Aの場合にはステップS19でモード4を選択し、SOC<Aの場合にはステップS17でモード2を選択する。
【0061】
上記モード2は、前記図7から明らかなように第1クラッチCE および第2クラッチCE を共に係合(ON)し、エンジン12を要求出力Pdで運転し、モータジェネレータ14を無負荷状態とするもので、エンジン12のみを動力源として車両を走行させる。また、モード4は、第1クラッチCE および第2クラッチCE を共に係合(ON)し、エンジン12を運転状態とし、モータジェネレータ14を回転駆動するもので、エンジン12およびモータジェネレータ14の両方を動力源として車両を高出力走行させる。このモード4は、要求出力Pdが第2判定値P2以上の高負荷領域で実行されるが、エンジン12およびモータジェネレータ14を併用しているため、エンジン12およびモータジェネレータ14の何れか一方のみを動力源として走行する場合に比較してエネルギー効率が著しく損なわれることがなく、燃費や排出ガスを低減できる。また、蓄電量SOCが最低蓄電量A以上の場合に実行されるため、蓄電装置58の蓄電量SOCが最低蓄電量Aより低下して充放電効率等の性能を損なうことがない。
【0062】
上記モード1〜4の運転条件についてまとめると、蓄電量SOC≧Aであれば、Pd≦P1の低負荷領域ではステップS13でモード1を選択してモータジェネレータ14のみを動力源として走行し、P1<Pd<P2の中負荷領域ではステップS17でモード2を選択してエンジン12のみを動力源として走行し、P2≦Pdの高負荷領域ではステップS19でモード4を選択してエンジン12およびモータジェネレータ14の両方を動力源として走行する。また、SOC<Aの場合には、要求出力Pdが第2判定値P2より小さい中低負荷領域でステップS14のモード3を実行することにより蓄電装置58を充電するが、要求出力Pdが第2判定値P2以上の高負荷領域ではステップS17でモード2が選択され、充電を行うことなくエンジン12により高出力走行が行われる。
【0063】
ステップS17のモード2は、P1<Pd<P2の中負荷領域で且つSOC≧Aの場合、或いはPd≧P2の高負荷領域で且つSOC<Aの場合に実行されるが、中負荷領域では一般にモータジェネレータ14よりもエンジン12の方がエネルギー効率が優れているため、モータジェネレータ14を動力源として走行する場合に比較して燃費や排出ガスを低減できる。また、高負荷領域では、モータジェネレータ14およびエンジン12を併用して走行するモード4が望ましいが、蓄電装置58の蓄電量SOCが最低蓄電量Aより小さい場合には、上記モード2によるエンジン12のみを動力源とする運転が行われることにより、蓄電装置58の蓄電量SOCが最低蓄電量Aよりも少なくなって充放電効率等の性能を損なうことが回避される。
【0064】
次に、第1、第7、第8発明が適用された本実施例の特徴部分、即ち、旋回時の車両の挙動を安定させるために動力源の出力を増減制御するとともにホイールブレーキのブレーキ力を増減制御する挙動安定化手段に対応するVSC制御の制御精度を向上させるための制御作動を図8のフローチャートに基づいて説明する。尚、本制御作動において、ステップSA2、SA5〜SA6は前記切換禁止手段に対応しており、ハイブリッド制御用コントローラ50により実行される。
【0065】
図8において、ステップSA1ではVSC制御用コントローラ130によりVSC制御が正常に作動するか否かがチェックされる。この判断が肯定された場合は、ステップSA2において、VSC制御用コントローラ130によるVSC制御が作動中であるか否かが判断される。この判断が否定された場合は、ステップSA3において、図6の運転モード判断サブルーチンに従って運転モードの切換え判断がなされたか否かがハイブリッド制御用コントローラ50により判断される。このステップSA3の判断が肯定された場合は、ステップSA4において図6の運転モード判断サブルーチンに従って、現在の運転状態に応じた運転モードの切換えが実行される。
【0066】
一方、ステップSA2の判断が肯定された場合は、ステップSA5において、図6の運転モード判断サブルーチンに従って運転モードの切換え判断がなされたか否かがハイブリッド制御用コントローラ50により判断される。ステップSA5の判断が肯定された場合は、ステップSA6において運転モードの切換えが一時的に保留させられる。
【0067】
上述のように本実施例によれば、ステップSA2でVSC制御が作動中であると判断された場合は、ステップSA6で運転モードの切換えが一時的に保留させられるため、動力源の出力制御を高い精度で行うことができるとともに、イナーシャ(厳密には慣性モーメント)の変化がないためホイールブレーキのブレーキ制御が容易になるなど、動力源の切換に起因するVSC制御の制御精度の低下が防止される。
【0068】
次に、第2、第発明が適用された本実施例の特徴部分、即ち、旋回時の車両の挙動を安定させるために動力源の出力を増減制御するとともにホイールブレーキのブレーキ力を増減制御する挙動安定化手段に対応するVSC制御の制御精度を向上させるための制御作動を図9のフローチャートに基づいて説明する。尚、本制御作動において、ステップSB2、SB5〜SB6は前記挙動制御禁止手段に対応しており、VSC制御用コントローラ130により実行される。
【0069】
図9において、ステップSB1ではVSC制御用コントローラ130によりVSC制御が正常に作動するか否かがチェックされる。この判断が肯定された場合は、ステップSB2において、ハイブリッド制御用コントローラ50により運転モードの切換え中であるか否かが判断される。この判断が否定された場合は、ステップSB3において、VSC制御用コントローラ130によりVSC制御の作動判断がなされたか否かが判断される。この判断が肯定された場合は、ステップSB4においてVSC制御用コントローラ130によりVSC制御が実行される。
【0070】
一方、ステップSB2の判断が肯定された場合は、ステップSB5において、VSC制御用コントローラ130によりVSC制御の作動判断がなされたか否かが判断される。この判断が肯定された場合は、ステップSB6においてVSC制御の実行が一時的に保留させられる。尚、本実施例では、このように運転モードの切換え中はVSC制御の実行を一時的に保留するように構成されているが、VSC制御が行われる領域に隣接する境界領域、例えばアンダーステア傾向或いはオーバーステア傾向が出始めた時点で前もって運転モードの切換えを実行することにより、VSC制御の保留を回避するように構成することも出来る。
【0071】
上述のように本実施例によれば、ステップSB2で運転モードの切換え中であると判断された場合には、ステップSB6でVSC制御が一時的に保留させられるため、動力源の切換に起因してVSC制御が損なわれる恐れがなくなる。
【0072】
次に、第1、第7、第9発明が適用された本実施例の特徴部分、即ち、制動時の車輪のロックを防止するために前記ホイールブレーキのブレーキ力を低減するアンチロックブレーキ手段に対応するABS制御の制御精度を向上させるための制御作動を図10のフローチャートに基づいて説明する。尚、本制御作動において、ステップSC2、SC5〜SC6は前記切換禁止手段に対応しており、ハイブリッド制御用コントローラ50により実行される。
【0073】
図10において、ステップSC1ではABS制御用コントローラ150によりABS制御が正常に作動するか否かがチェックされる。この判断が肯定された場合は、ステップSC2においてABS制御用コントローラ150によるABS制御が作動中であるか否かが判断される。この判断が否定された場合は、ステップSC3において、図6の運転モード判断サブルーチンに従って運転モードの切換え判断がなされたか否かがハイブリッド制御用コントローラ50により判断される。この判断が肯定された場合は、ステップSC4においてハイブリッド制御用コントローラ50により運転モードの切換えが実行される。
【0074】
一方、ステップSC2の判断が肯定された場合は、ステップSC5において、図6の運転モード判断サブルーチンに従って運転モードの切換え判断がなされたか否かがハイブリッド制御用コントローラ50により判断される。この判断が肯定された場合は、ステップSC6において運転モードの切換えが一時的に保留させられる。
【0075】
上述のように本実施例によれば、ステップSC2でABS制御が作動中であると判断された場合は、ステップSC6で運転モードの切換えが一時的に保留させられるため、動力源の出力制御を高い精度で行うことができるとともに、イナーシャ(厳密には慣性モーメント)の変化がないためホイールブレーキのブレーキ制御が容易になるなど、動力源の切換に起因するABS制御の制御精度の低下が防止される。
【0076】
次に、第2、第発明が適用された本実施例の特徴部分、即ち、制動時の車輪のロックを防止するために前記ホイールブレーキのブレーキ力を低減するアンチロックブレーキ手段に対応するABS制御の制御精度を向上させるための制御作動を図11のフローチャートに基づいて説明する。尚、本制御作動において、ステップSD2、SD5〜SD6は前記挙動制御禁止手段に対応しており、ABS制御用コントローラ150により実行される。
【0077】
図11において、ステップSD1では、ABS制御用コントローラ150によりABS制御が正常に作動するか否かがチェックされる。この判断が肯定された場合は、ステップSD2においてハイブリッド制御用コントローラ50により運転モードの切換え中であるか否かが判断される。この判断が否定された場合は、ステップSD3において、ABS制御用コントローラ150によりABS制御の作動判断がなされたか否かが判断される。この判断が肯定された場合は、ステップSD4においてABS制御が実行される。
【0078】
一方、ステップSD2の判断が肯定された場合は、ステップSD5においてABS制御用コントローラ150によりABS制御の作動判断がなされたか否かが判断される。この判断が肯定された場合は、ステップSD6においてABS制御の実行が一時的に保留させられる。なお、ABS制御が行われる領域に隣接する境界領域、例えばブレーキオンによる急制動が予測される時点において予め運転モードの切換えを実行することにより、ABS制御の保留を回避するようにしても良い。
【0079】
上述のように本実施例によれば、ステップSD2で運転モードの切換え中であると判断された場合には、ステップSD6でABS制御が一時的に保留させられるため、動力源の切換に起因してABS制御が損なわれる恐れがなくなる。
【0080】
次に、第3、第4、第8、第9発明が適用された本実施例の特徴部分、即ち、旋回時の車両の挙動を安定させるために前記動力源の出力を増減制御するとともに前記ホイールブレーキのブレーキ力を増減制御する挙動安定化手段に対応するVSC制御、或いは制動時の車輪のロックを防止するために前記ホイールブレーキのブレーキ力を低減するアンチロックブレーキ手段に対応するABS制御の制御精度を向上させるための制御作動を図12のフローチャートに基づいて説明する。尚、本制御作動において、ステップSE1、SE5は前記イナーシャ低減手段に対応しており、ハイブリッド制御用コントローラ50により実行される。
【0081】
図12において、ステップSE1では、VSC制御用コントローラ130およびABS制御用コントローラ150によりVSC制御またはABS制御が作動中であるか否かが判断される。この判断が肯定された場合は、ステップSE2において、ハイブリッド制御用コントローラ50により図6の運転モード判断サブルーチンに従ってモード1、6、7の何れかが選択されているか否かが判断される。この判断が肯定された場合は本ルーチンは終了させられる。
【0082】
一方、ステップSE2の判断が否定された場合は、ステップSE3においてハイブリッド制御用コントローラ50により図6の運転モード判断サブルーチンに従ってモード3、4の何れかが選択されているか否かが判断される。この判断が肯定された場合は、ステップSE4においてモータジェネレータ14へ供給される電流が遮断されてモータトルクTが0とされることによりモータジェネレータ14が自由回転可能な無負荷状態とされる。次に、ステップSE5において、第2クラッチCEが係合(ON)されたまま維持される。
【0083】
一方、ステップSE3の判断が否定された場合は、ステップSE6においてハイブリッド制御用コントローラ50により図6の運転モード判断サブルーチンに従ってモード2、8の何れかが選択されているか否かが判断される。この判断が肯定された場合は、ステップSE5において第2クラッチCEが係合(ON)されたまま維持される。本実施例では、エンジン12の慣性モーメントI、モータジェネレータ14の慣性モーメントI、および遊星歯車装置16のギヤ比ρが前記(4) 式を満足するように設定されており、第2クラッチCEの係合状態が維持されることにより動力源全体のイナーシャが小さめに維持される。
【0084】
一方、ステップSE6の判断が否定された場合は、ステップSE7においてハイブリッド制御用コントローラ50により図6の運転モード判断サブルーチンに従ってモード5が選択されているか否かが判断される。この判断が肯定された場合は、ステップSE8においてモータジェネレータ14へ供給される電流が遮断されてモータトルクTが0とされることによりモータジェネレータ14が自由回転可能な無負荷状態とされる。
【0085】
上述のように本実施例によれば、ステップSE1でVSC制御またはABS制御が作動中であると判断された場合には、ステップSE3、SE6でモード2、3、4、8が選択されていると判断された場合、即ち、モータジェネレータ14と比べて大きなイナーシャを有するエンジン12が回転駆動される運転モードが選択されている場合には、動力源のイナーシャが小さくなるように第2クラッチCEが係合(ON)されたまま維持されるため、VSC制御またはABS制御の応答性が向上して優れた制御精度が得られるようになる。
【0086】
次に、第5、第6、第8、第9発明が適用された本実施例の特徴部分、即ち、旋回時の車両の挙動を安定させるために前記動力源の出力を増減制御するとともに前記ホイールブレーキのブレーキ力を増減制御する挙動安定化手段に対応するVSC制御、或いは制動時の車輪のロックを防止するために前記ホイールブレーキのブレーキ力を低減するアンチロックブレーキ手段に対応するABS制御の制御精度を向上させるための制御作動を図13のフローチャートに基づいて説明する。尚、本制御作動において、ステップSF1、SF3は前記イナーシャ低減手段に対応しており、自動変速制御用コントローラ52により実行される。
【0087】
図13において、ステップSF1ではVSC制御用コントローラ130およびABS制御用コントローラ150によりVSC制御またはABS制御が作動中であるか否かが判断される。この判断が肯定された場合は、ステップSF2においてハイブリッド制御用コントローラ50により、図6の運転モード判断サブルーチンに従って回生制動力を発生させるモード6またはエンジンブレーキ力を発生させるモード8が選択されているか否かが判断される。この判断が肯定された場合は、ステップSF3において図3に●で示されるコーストブレーキおよびコーストクラッチがスリップ状態又は低圧待機状態に設定されることにより、増速時の動力源のイナーシャが低減させられる。これ等のコーストブレーキB 1 、B 4 およびコーストクラッチC 0 は断続クラッチに相当する。なお、ステップSF3による制御の応答遅れを考慮して、ステップSF1では現在の車両状態がVSC制御またはABS制御がなされる直前の状態、例えば境界領域にあるか否かが判断されても良い。
【0088】
一方、ステップSF1の判断が否定された場合は、ステップSF4においてステップSF2と同様にハイブリッド制御用コントローラ50により、モード6またはモード8が選択されているか否かが判断される。この判断が肯定された場合は、ステップSF5において図3に●で示されるコーストブレーキおよびコーストクラッチが係合(ON)させられることにより、回生制動力またはエンジンブレーキ力が発生させられる。
【0089】
上述のように本実施例によれば、ステップSF1でVSC制御またはABS制御が作動中であると判断された場合には、ステップSF3においてコーストブレーキおよびコーストクラッチがスリップ状態または低圧待機状態とされるため、動力源のイナーシャの影響が小さくなり、VSC制御またはABS制御の応答性が向上して優れた制御精度が得られるようになる。また、コーストブレーキおよびコーストクラッチはスリップ状態または低圧待機状態とされるため、VSC制御またはABS制御の終了時に、コーストブレーキおよびコーストクラッチを係合して車輪から動力源へ動力を伝達する動力源ブレーキ状態へ速やかに復帰できる。
【0090】
次に、第5、第8、第9発明が適用された本実施例の特徴部分、即ち、旋回時の車両の挙動を安定させるために前記動力源の出力を増減制御するとともに前記ホイールブレーキのブレーキ力を増減制御する挙動安定化手段に対応するVSC制御、或いは制動時の車輪のロックを防止するために前記ホイールブレーキのブレーキ力を低減するアンチロックブレーキ手段に対応するABS制御の制御精度を向上させるための制御作動を図14のフローチャートに基づいて説明する。尚、本制御作動において、ステップSG1、SG3は前記イナーシャ低減手段に対応しており、ハイブリッド制御用コントローラ50により実行される。
【0091】
図14において、ステップSG1ではVSC制御用コントローラ130およびABS制御用コントローラ150によりVSC制御またはABS制御が作動中であるか否かが判断される。この判断が肯定された場合は、ステップSG2において、例えばエンジン回転数センサ62から供給される信号や現在の運転モードなどに基づいてエンジン12が作動中(エンジンブレーキを発生させるモード8を含む)であるか否かが判断される。この判断が肯定された場合は、ステップSG3において第1クラッチCE1 がスリップ状態または低圧待機状態とされることによりエンジン12のイナーシャが低減させられる。この第1クラッチCE 1 は断続クラッチに相当する。この場合も、ステップSG3による制御の応答遅れを考慮して、ステップSG1では現在の車両状態がVSC制御またはABS制御がなされる直前の状態、例えば境界領域にあるか否かが判断されても良い。
【0092】
一方、ステップSG1の判断が否定された場合は、ステップSG4において、前記ステップSG2と同様にしてエンジン12が作動中であるか否かが判断される。この判断が肯定された場合は、ステップSG5において第1クラッチCEが係合(ON)させられる。
【0093】
上述のように本実施例によれば、ステップSG1でVSC制御またはABS制御が作動中であると判断された場合には、ステップSG3において第1クラッチCEがスリップ状態または低圧待機状態とされるため、エンジン12のイナーシャの影響が小さくなり、VSC制御またはABS制御の応答性が向上して優れた制御精度が得られるようになる。また、第1クラッチCEはスリップ状態または低圧待機状態とされるため、VSC制御またはABS制御の終了時に、第1クラッチCEを係合してエンジン12から車輪へ動力を伝達する通常の駆動状態、或いはエンジンブレーキ状態へ速やかに復帰できる。
【0094】
以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明は他の態様で実施することもできる。
【0095】
例えば、前記実施例では後進1段および前進5段の変速段を有する自動変速機18が用いられていたが、図15に示すように前記副変速機20を省略して主変速機22のみから成る自動変速機60を採用し、図16に示すように前進4段および後進1段で変速制御を行うようにすることもできる。
【0096】
また、前記実施例ではトランスファ158を備えている4輪駆動車両について説明したが、後輪または前輪のみを駆動輪として走行する車両など、種々の車両に本発明は適用され得る。
【0097】
その他一々例示はしないが、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である制御装置を備えているハイブリッド車両のハイブリッド駆動装置の構成を説明する骨子図である。
【図2】図1のハイブリッド駆動装置が備えている制御系統を説明する図である。
【図3】図1の自動変速機の各変速段を成立させる係合要素の作動を説明する図である。
【図4】図1の自動変速機が備えている油圧回路の一部を示す図である。
【図5】図2のハイブリッド制御用コントローラと電気式トルコン等との接続関係を説明する図である。
【図6】図1のハイブリッド駆動装置の基本的な作動を説明するフローチャートである。
【図7】図6のフローチャートにおける各モード1〜9の作動状態を説明する図である。
【図8】第1、第7、第8発明が適用された制御作動を説明するフローチャートである。
【図9】第2、第発明が適用された制御作動を説明するフローチャートである。
【図10】第1、第7、第9発明が適用された制御作動を説明するフローチャートである。
【図11】第2、第発明が適用された制御作動を説明するフローチャートである。
【図12】第3、第4、第8、第9発明が適用された制御作動を説明するフローチャートである。
【図13】第5、第6、第8、第9発明が適用された制御作動を説明するフローチャートである。
【図14】第5、第8、第9発明が適用された制御作動を説明するフローチャートである。
【図15】図1とは異なる自動変速機を備えているハイブリッド車両のハイブリッド駆動装置の骨子図である。
【図16】図15の自動変速機の各変速段を成立させる係合要素の作動を説明する図である。
【図17】車両の挙動を安定させるためのVSC制御の一例を説明する図である。
【図18】動力源トルクおよびホイールブレーキの両方を制御してVSC制御を行った場合の一例を示すタイムチャートである。
【符号の説明】
12:エンジン
14:モータジェネレータ(電動モータ)
16:遊星歯車装置(3軸式動力入出力手段)
16r:リングギヤ(第1回転要素)
16s:サンギヤ(第2回転要素)
16c:キャリア(第3回転要素)
18、60:自動変速機
19:出力軸
50:ハイブリッド制御用コントローラ
52:自動変速制御用コントローラ
130:VSC制御用コントローラ(挙動制御手段、挙動安定化手段)
150:ABS制御用コントローラ(挙動制御手段、アンチロックブレーキ手段)
CE 1 :第1クラッチ(断続クラッチ)
CE2 :第2クラッチ(直結クラッチ)
0 :クラッチ(断続クラッチ)
1 、B 4 :ブレーキ(断続クラッチ)
ステップS1〜S19:動力源切換手段
ステップSA2、SA5〜SA6、SC2、SC5〜SC6:切換禁止手段
ステップSB2、SB5〜SB6、SD2、SD5〜SD6:挙動制御禁止手段
ステップSE1、SE5、SF1、SF3、SG1、SG3:イナーシャ低減手段

Claims (10)

  1. 車両走行のための動力の発生原理が異なる複数種類の動力源と、
    運転状態に応じて前記複数種類の動力源を切り換えて使用する動力源切換手段と
    を有する車両の制御装置において、
    車両の挙動を制御するために、前記動力源およびホイールブレーキの少なくとも一方を電子制御する挙動制御手段と、
    該挙動制御手段による制御中は、前記動力源切換手段による前記動力源の切換を禁止する切換禁止手段と
    を設けたことを特徴とする車両の制御装置。
  2. 車両走行のための動力の発生原理が異なる複数種類の動力源と、
    運転状態に応じて前記複数種類の動力源を切り換えて使用する動力源切換手段と
    を有する車両の制御装置において、
    車両の挙動を制御するために、前記動力源およびホイールブレーキの少なくとも一方を電子制御する挙動制御手段と、
    前記動力源切換手段による前記動力源の切換中は、前記挙動制御手段による制御を禁止する挙動制御禁止手段と
    を設けたことを特徴とする車両の制御装置。
  3. 車両走行のための動力の発生原理が異なる2種類の動力源と、
    3つの回転要素のうちの2つが前記2種類の動力源にそれぞれ連結され、それ等の動力を合成、分配して駆動系に出力する3軸式動力入出力手段と、
    該3軸式動力入出力手段の任意の2つの回転要素を連結して該3軸式動力入出力手段を一体回転させる直結クラッチと
    を有する車両の制御装置において、
    車両の挙動を制御するために、ホイールブレーキを電子制御する挙動制御手段と、
    該挙動制御手段による制御時には、前記動力源のイナーシャが小さくなるように前記直結クラッチを制御するイナーシャ低減手段と
    を設けたことを特徴とする車両の制御装置。
  4. 請求項3において、
    前記2種類の動力源は、燃料の燃焼エネルギーで作動するエンジン、および電気エネルギーで作動する電動モータであり、
    前記3軸式動力入出力手段は遊星歯車装置で、
    前記イナーシャ低減手段は、前記直結クラッチを係合するものである
    ことを特徴とする車両の制御装置。
  5. 車両走行のための動力を発生する動力源として用いられるエンジンおよび電動モータと、
    該エンジンおよび電動モータと自動変速機の出力軸との間に設けられた油圧摩擦式の断続クラッチと
    を有する車両の制御装置において、
    車両の挙動を制御するために、ホイールブレーキを電子制御する挙動制御手段と、
    該挙動制御手段による制御時には、前記断続クラッチをスリップ状態または低圧待機状態とするイナーシャ低減手段と
    を設けたことを特徴とする車両の制御装置。
  6. 前記断続クラッチは、前記エンジンおよび電動モータを同時に駆動輪から遮断できるように設けられている
    ことを特徴とする請求項5に記載の車両の制御装置。
  7. 車両走行のための動力の発生原理が異なる複数種類の動力源を備えており、該複数種類の動力源の作動状態が異なる複数の運転モードを切り換えて走行する車両の制御装置において、
    車両の挙動を制御するために、前記動力源およびホイールブレーキの少なくとも一方を電子制御する挙動制御手段を有する一方、
    該挙動制御手段による制御中は前記運転モードの切換を保留する
    ことを特徴とする車両の制御装置。
  8. 請求項1〜の何れか1項において、
    前記挙動制御手段は、旋回時の車両の挙動を安定させるために前記動力源の出力を増減制御するとともに前記ホイールブレーキのブレーキ力を増減制御する挙動安定化手段である
    ことを特徴とする車両の制御装置。
  9. 請求項1〜の何れか1項において、
    前記挙動制御手段は、制動時の車輪のロックを防止するために前記ホイールブレーキのブレーキ力を低減するアンチロックブレーキ手段である
    ことを特徴とする車両の制御装置。
  10. 請求項1〜の何れか1項において、
    蓄電装置の蓄電量SOCを考慮して制御が行われる
    ことを特徴とする車両の制御装置。
JP34750396A 1996-12-26 1996-12-26 車両の制御装置 Expired - Fee Related JP3629857B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34750396A JP3629857B2 (ja) 1996-12-26 1996-12-26 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34750396A JP3629857B2 (ja) 1996-12-26 1996-12-26 車両の制御装置

Publications (2)

Publication Number Publication Date
JPH10184415A JPH10184415A (ja) 1998-07-14
JP3629857B2 true JP3629857B2 (ja) 2005-03-16

Family

ID=18390673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34750396A Expired - Fee Related JP3629857B2 (ja) 1996-12-26 1996-12-26 車両の制御装置

Country Status (1)

Country Link
JP (1) JP3629857B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7909728B2 (en) 2005-05-19 2011-03-22 Toyota Jidosha Kabushiki Kaisha Vehicle drive device controller
JP4244961B2 (ja) 2005-05-26 2009-03-25 トヨタ自動車株式会社 車両用駆動装置の制御装置
JP2007331540A (ja) * 2006-06-14 2007-12-27 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
JPH10184415A (ja) 1998-07-14

Similar Documents

Publication Publication Date Title
JP3933728B2 (ja) ハイブリッド車両の制御装置
JP4179380B2 (ja) 車両用動力伝達装置の制御装置
JPH09284914A (ja) ハイブリッド車両の駆動制御装置
JPH09331602A (ja) ハイブリッド車両の制御装置
JP3371728B2 (ja) 車両の制動制御装置
JP3577846B2 (ja) ハイブリッド車両の制御装置
JP3620541B2 (ja) ハイブリッド車両の駆動制御装置
JP3780568B2 (ja) ハイブリッド車両の制御装置
JPH10304514A (ja) ハイブリッド車両の駆動力制御装置
JP3680277B2 (ja) ハイブリッド車両の制御装置
JP3610714B2 (ja) ハイブリッド駆動制御装置
JP3629857B2 (ja) 車両の制御装置
JP3709666B2 (ja) 電気自動車のクリープトルク制御装置
JPH10290502A (ja) クリープトルク制御装置
JP3346375B2 (ja) ハイブリッド車両の制御装置
JPH10325344A (ja) ハイブリッド駆動制御装置
JP3646724B2 (ja) ハイブリッド駆動装置
JP3149785B2 (ja) ハイブリッド車両の制御装置
JP3642116B2 (ja) ハイブリッド車両の制御装置
JPH1089116A (ja) ハイブリッド車両の駆動制御装置
JP3675080B2 (ja) クリープトルク制御装置
JP4208008B2 (ja) ハイブリッド車両の駆動制御装置
JPH11178109A (ja) ハイブリッド駆動装置
JP4075959B2 (ja) ハイブリッド車両の制御装置
JPH1018878A (ja) ハイブリッド車両の駆動制御装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees