JP3627462B2 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP3627462B2
JP3627462B2 JP22681597A JP22681597A JP3627462B2 JP 3627462 B2 JP3627462 B2 JP 3627462B2 JP 22681597 A JP22681597 A JP 22681597A JP 22681597 A JP22681597 A JP 22681597A JP 3627462 B2 JP3627462 B2 JP 3627462B2
Authority
JP
Japan
Prior art keywords
throttle valve
air amount
intake air
valve opening
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22681597A
Other languages
English (en)
Other versions
JPH1162673A (ja
Inventor
直秀 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22681597A priority Critical patent/JP3627462B2/ja
Publication of JPH1162673A publication Critical patent/JPH1162673A/ja
Application granted granted Critical
Publication of JP3627462B2 publication Critical patent/JP3627462B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の制御装置に関し、特に、電子制御スロットル弁を備えた内燃機関において吸入空気量を先行させ、燃料供給量をこれに追従させて空燃比を制御する方式の内燃機関の制御装置に関する。
【0002】
【従来の技術】
従来、電子制御燃料噴射制御方式の内燃機関においては、吸入空気量を計測し、それに見合う燃料噴射量を演算して空燃比を調節している。この空燃比の調節方法は、吸入空気量はアクセルペダルの踏込み量に応じて決まるという考え方に基づいている。このため、機関の加速時や減速時等のように吸入空気量の変化が大きい時には、機関を制御するコンピュータにおける吸入空気量の計測誤差が生じるという問題があった。
【0003】
そこで、アクセルペダルの踏込み量に応じてスロットル弁を電気的なアクチュエータを用いて制御する電子制御スロットル弁を使用し、噴射燃料量を先に決定し、後から吸入空気量を追従させる燃料供給量先行、空気量追従制御方式のエンジン制御装置がある(特公平7−33781号公報参照)。
特公平7−33781号公報に記載のエンジン制御装置には、アクセルペダルの操作位置に応じて燃料供給量とスロットル弁開度を調節するようにした燃料供給量先行、空気量追従制御方式のエンジンにおいて、燃料供給量の制御に対して、アクセルペダルの操作位置とエンジンの回転速度に応じて、燃料が実際にシリンダに吸入されるまでの時間を所定遅れ時間として、スロットル弁の開度制御にこの所定時間の遅れ時間を設定する技術が開示されている。
【0004】
この遅れ時間の設定により、噴射された燃料が実際にシリンダ内に吸入されるまでの時間が考慮され、シリンダ内における燃料量と吸入空気量とが精密に制御されることになる。
【0005】
【発明が解決しようとする課題】
しかしながら、特公平7−33781号公報に記載のエンジン制御装置においては、実際には、頻繁にエンジンの運転条件が変化するため、前述のように演算された遅れ時間はエンジン回転数、燃料噴射量の変化によって変動する時間であり、特に急激なアクセルペダルの操作時には変動量が過大であるため、スロットル弁が応答しきれない場合が発生し、毎回のスロットル弁開度制御に当てはめてスロットル弁開度を目標値に制御することが困難であり、正確な空燃比を常に得ることができないという問題点があった。
【0006】
そこで、本発明は、吸入空気量を先に決定し、燃料供給量をこれに追従させて空燃比を制御する空気量先行、燃料供給量追従制御方式を採用した電子制御スロットル弁装置を備える内燃機関において、推定した将来の吸入空気量と、推定した現在の吸入空気量との定常的なずれを相殺することにより、常に正確な空燃比を得ることができる内燃機関の制御装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
前記目的を達成する本発明の第1の発明の構成が図1に示される。第1の発明に記載の内燃機関の制御装置は、アクセルペダルの操作位置に応じてスロットル弁開度と燃料供給量を制御するようにした空気量先行燃料追従制御方式の内燃機関の制御装置であって、アクセルペダルの操作位置に応じたスロットル弁開度目標値を算出するスロットル弁開度目標値の算出手段と、算出されたスロットル弁開度目標値から、スロットル弁の応答遅れを考慮してスロットル弁開度推定値を算出するスロットル弁開度推定値の算出手段と、スロットル弁開度目標値を所定時間の間記憶するスロットル弁開度目標値の記憶手段と、スロットル弁開度推定値を所定時間の間記憶するスロットル弁開度推定値の記憶手段と、記憶されたスロットル弁開度目標値を所定時間の経過後にスロットル弁開度制御値として出力するスロットル弁開度制御値の出力手段と、このスロットル弁開度制御値に従ってスロットル弁を開閉駆動するスロットル弁の駆動手段と、機関の運転状態に応じて燃料噴射気筒の吸気弁閉弁時刻を算出する吸気弁閉弁時刻の算出手段と、記憶されたスロットル弁開度推定値と、燃料噴射気筒の吸気弁閉弁時刻とから、吸気弁閉弁時刻における推定吸入空気量を現在の時刻において算出する推定吸入空気量の算出手段と、内燃機関の吸気通路に設けられて実際の吸入空気量を検出する吸入空気量の検出手段と、記憶されたスロットル弁開度推定値のうち、現在時刻におけるスロットル弁開度推定値から、現在時刻における吸入空気量を算出する現在の吸入空気量の算出手段と、吸気弁閉弁時刻における推定吸入空気量から現在時刻における吸入空気量を減算して求めた偏差を、現在時刻における実際の吸入空気量に加えることにより、補正された燃料噴射気筒の吸気弁閉弁時刻の吸入空気量を算出する補正吸入空気量の算出手段と、この補正された燃料噴射気筒の吸気弁閉弁時刻の吸入空気量と目標空燃比とから燃料供給量を算出する燃料供給量の算出手段と、算出された燃料供給量の燃料を供給する燃料供給手段と、を備えることを特徴としている。
【0008】
また、前記目的を達成する本発明の第2の発明の内燃機関の制御装置の構成が図2に示される。第2の発明に記載の内燃機関の制御装置は、アクセルペダルの操作位置に応じてスロットル弁開度と燃料供給量を制御するようにした空気量先行燃料追従制御方式の内燃機関の制御装置であって、アクセルペダルの操作位置に応じたスロットル弁開度目標値を算出するスロットル弁開度目標値の算出手段と、算出されたスロットル弁開度目標値から、スロットル弁の応答遅れを考慮してスロットル弁開度推定値を算出するスロットル弁開度推定値の算出手段と、スロットル弁開度目標値を所定時間の間記憶するスロットル弁開度目標値の記憶手段と、スロットル弁開度推定値を所定時間の間記憶するスロットル弁開度推定値の記憶手段と、記憶されたスロットル弁開度目標値を所定時間の経過後にスロットル弁開度制御値として出力するスロットル弁開度制御値の出力手段と、このスロットル弁開度制御値に従ってスロットル弁を開閉駆動するスロットル弁の駆動手段と、機関の運転状態に応じて燃料噴射気筒の吸気弁閉弁時刻を算出する吸気弁閉弁時刻の算出手段と、記憶されたスロットル弁開度推定値から現在時刻以降の推定吸入空気量を算出する推定吸入空気量の算出手段と、算出された推定吸入空気量を記憶する推定吸入空気量の記憶手段と、内燃機関の吸気通路に設けられて
実際の吸入空気量を検出する吸入空気量の検出手段と、記憶された推定吸入空気量のうち、現在時刻に対応する推定吸入空気量を現在時刻における吸入空気量とする現在の吸入空気量の算出手段と、記憶された推定吸入空気量のうちの吸気弁閉弁時刻における推定吸入空気量から現在時刻における吸入空気量を減算して求めた偏差を、現在時刻における実際の吸入空気量に加えることにより、補正された燃料噴射気筒の吸気弁閉弁時刻の吸入空気量を算出する補正吸入空気量の算出手段と、この補正された燃料噴射気筒の吸気弁閉弁時刻の吸入空気量と目標空燃比とから燃料供給量を算出する燃料供給量の算出手段と、算出された燃料供給量の燃料を供給する燃料供給手段と、を備えることを特徴としている。
【0009】
更に、前記目的を達成する本発明の第3の発明の内燃機関の制御装置の構成が図3に示される。第1の発明に記載の内燃機関の制御装置では算出されたスロットル弁開度目標値からスロットル弁開度推定値がその都度算出されて記憶されていたが、第3の発明に記載の内燃機関の制御装置では、吸気弁閉弁時の推定吸入空気量の算出手段が現在の時刻において推定吸入空気量を算出する前に、記憶されたスロットル弁開度目標値と燃料噴射気筒の吸気弁閉弁時刻とから、吸気弁閉弁時刻におけるスロットル弁開度推定値をスロットル弁の応答遅れを考慮して算出すると共に、現在の吸入空気量の算出手段が現在時刻における吸入空気量を算出する前に、記憶されたスロットル弁開度目標値のうち、現在時刻におけるスロットル弁開度目標値から、スロットル弁の応答遅れを考慮してスロットル弁開度推定値を算出することを特徴としている。
【0010】
更にまた、前記目的を達成する本発明の第4の発明の内燃機関の制御装置の構成が図4に示される。第2の発明に記載の内燃機関の制御装置では算出されたスロットル弁開度目標値からスロットル弁開度推定値がその都度算出されて記憶されていたが、第4の発明に記載の内燃機関の制御装置では、推定吸入空気量の算出手段が、現在時刻以降の推定吸入空気量を算出する前に、記憶されたスロットル弁開度目標値から、スロットル弁の応答遅れを考慮してスロットル弁開度推定値を算出することを特徴としている。
【0011】
本発明の内燃機関の制御装置によれば、現在時刻以降のスロットル開度の推移が推定、記憶され、現在の時点における燃料噴射量の算出時に、燃料が実際にシリンダに供給される時間後に相当する推定スロットル開度値が記憶装置から呼び出され、この推定スロットル開度値に見合った推定吸入空気量が算出され、その吸入空気量変化に従って燃料量の噴射実行される場合、推定した時点以降の吸入空気量と、推定した現在の吸入空気量との定常ずれを相殺するために、第1、第3の発明では、現在の吸入空気量を推定するために使用するスロットル弁開度として、実際のスロットル弁開度ではなく、過去において推定されたスロットル開度の内の、現在時刻に対応する推定スロットル開度が使用され、第2、第4の発明では、過去において推定されて記憶された推定時以降の吸入空気量の内の、現在時刻に対応する記憶値が現在時刻の推定吸入空気量として使用される。
【0012】
【発明の実施の形態】
以下添付図面を用いて本発明の実施の形態を、具体的な実施例に基づいて詳細に説明する。
図5には本発明の一実施例の制御装置を備えた電子制御燃料噴射式の多気筒内燃機関1が概略的に示されている。図5において、内燃機関1の吸気通路2には図示しないエアクリーナの下流側にエアフローメータ16とスロットル弁3がこの順に設けられている。
【0013】
エアフローメータ16にはメジャリングプレート17があり、吸気はこのメジャリングプレート17を押し開けてスロットル弁3側に流入する。メジャリングプレート17の開度は吸入空気量によって決まる。メジャリングプレート17には図示しないポテンショメータが接続されており、メジャリングプレート17の開度、即ち、吸入空気量がこのポテンショメータによって電圧値に置き換えられてエアフローメータ16から出力される。
【0014】
また、スロットル弁3の軸の一端にはこのスロットル弁3を駆動するアクチュエータ4が設けられており、他端にはスロットル弁3の開度を検出するスロットル開度センサ5が設けられている。即ち、この実施例のスロットル弁3はアクチュエータ4によって開閉駆動される電子制御スロットルである。
スロットル弁3の下流側の吸気通路2にはサージタンク6があり、このサージタンク6内には吸気の圧力を検出する圧力センサ7が設けられている。更に、サージタンク6の下流側には、各気筒毎に燃料供給系から加圧燃料を吸気ポートへ供給するための燃料噴射弁8が設けられている。エアフローメータ16からの出力、スロットル開度センサ5の出力、及び、圧力センサ7の出力は、マイクロコンピュータを内蔵したECU(エンジン・コントロール・ユニット)10に入力される。
【0015】
また、内燃機関1のシリンダブロックの冷却水通路9には、冷却水の温度を検出するための水温センサ11が設けられている。水温センサ11は冷却水の温度に応じたアナログ電圧の電気信号を発生する。排気通路12には、排気ガス中の3つの有害成分HC,CO,NOxを同時に浄化する三元触媒コンバータ(図示せず)が設けられており、この触媒コンバータの上流側の排気通路12には、空燃比センサの一種であるOセンサ13が設けられている。Oセンサ13は排気ガス中の酸素成分濃度に応じて電気信号を発生する。これら水温センサ11及びOセンサ13の出力はECU10に入力される。
【0016】
更に、このECU10には、アクセルペダル14に取り付けられたアクセル踏込量センサ15からのアクセル踏込量信号や、図示しないディストリビュータに取付けられたクランク角センサからの機関回転数Neが入力される。
以上のような構成において、図示しないキースイッチがオンされると、ECU10が通電されてプログラムが起動し、各センサからの出力が取り込まれ、スロットル弁3を開閉するアクチュエータ4や燃料噴射弁8、或いはその他のアクチュエータの制御が開始される。ECU10には、各種センサからのアナログ信号をディジタル信号に変換するA/D変換器が含まれ、各種センサからの入力ディジタル信号や各アクチュエータを駆動する信号が出入りする入出力インタフェース101、演算処理を行うCPU102、ROM103やRAM104等のメモリや、クロック105等が設けられており、これらはバス106で相互に接続されている。ECU10の構成については公知であるので、これ以上の説明を省略する。
【0017】
ここで、図5のように構成された内燃機関の制御装置における本発明の制御の一例について説明する。この実施例では、運転者による現在のアクセルペダルの操作量に対して、電子制御スロットルにおけるスロットル弁の、このアクセルペダルの操作量に対する目標開度(開度目標値)を所定時間だけ記憶してその出力を保留し、所定時間後に電子制御スロットルのアクチュエータにこの開度目標値をスロットル弁の開度制御値として出力するようにする。従って、現在のアクセルペダルの操作量は、極僅かな所定時間だけ意図的に遅延させられて電子制御スロットルのアクチュエータに伝えられ、スロットル弁はこの所定時間だけ遅れてアクセルペダルの操作量に追従する。
【0018】
一方、スロットル弁開度の制御値に対して、スロットル弁3を駆動するアクチュエータ4には応答遅れがある。即ち、アクセルペダルの踏込量(スロットル弁開度の目標値)が直線的に変化しても、スロットル弁の推定開度はこれに遅れて追従する。これを図6を用いて説明する。
図6では、機関の第1気筒♯1の燃料噴射量を算出する時点を現在の時刻toとし、スロットル弁開度の目標値を遅延する時間をD、機関の第1気筒♯1の吸気弁の閉弁時刻をTとする。現在の時刻toでは、エアフローメータ16からの吸入空気量GN、内燃機関1の機関回転数Ne、吸気圧力P、アクセルペダルの踏込み量(操作位置)等の運転状態パラメータが各種センサからECU10に取り込まてれおり、現在のアクセルペダルの操作位置に応じたスロットル弁開度の目標値TAとスロットル弁の推定開度(スロットル弁開度の推定値)TA′が計算されると共に、機関の運転状態から第1気筒♯1の吸気行程の終了時点、即ち、吸気弁の閉弁時刻Tが計算される。計算されたスロットル弁開度の目標値TAと推定開度TA′はECU10のRAM104に記憶される。
【0019】
更に、現在の時刻toにおいて閉弁時刻Tが求められた後は、時刻Tから所定遅延時間Dだけ前の時刻tnが算出され、この時刻tnにおけるスロットル弁の推定開度TA′が算出される。時刻tnにおけるスロットル弁の推定開度TA′が時刻Tにおけるスロットル弁の推定開度である。そして、吸気弁の閉弁時刻Tにおけるスロットル弁の推定開度TA′が分かると、それに応じた吸入空気量から燃料噴射量を算出することができる。時刻t1における第2気筒♯2についても、第1気筒♯1と同様の方法で、第2気筒♯2の吸気弁の閉弁時刻T1における燃料噴射量を算出することができる。
【0020】
一方、アクセルペダルの踏込量に応じたスロットル弁開度の目標値TAが直線的に変化するのに対して、スロットル弁はこれに遅れて追従するので、スロットル弁の推定開度TA′は、スロットル弁開度の目標値TAよりも小さめに推定する必要がある。従って、燃料噴射気筒(図6では第1気筒♯1)の吸気弁閉弁時刻Tにおけるスロットル弁の推定開度TA′も、スロットル弁開度の目標値TAより小さい。そして、時刻Tにおいてアクチュエータ4に与えられた推定開度TA′に対して、アクチュエータ4はスロットル弁の開度をこの推定開度TA′に遅滞なく追従させるようにスロットル弁を駆動する。
【0021】
ところで、空気量先行、燃料追従方式の空燃比の制御方式では、スロットル弁3のアクセルペダルの操作量に対する追従を意図的に遅らせた分だけ、これからスロットル弁3がどのように動くかが把握でき、それに合わせて吸入空気量がどのように推移するかを計算で求めることができる。この結果、次の燃料噴射気筒の吸気弁の閉弁時刻におけるスロットル弁3の開度から吸入空気量が分かるので、この吸入空気量に合わせた燃料噴射量を、次の燃料噴射気筒の吸気弁の閉弁時刻を求めたた時点で算出することができ、この算出した燃料噴射量を吸気弁の閉弁時刻よりも前の所定のタイミング、つまり所定のクランク角位置であることを検出して噴射できるのである。
【0022】
なお、この場合、意図的な遅延時間は、現在から次の燃料噴射気筒の吸気弁が閉弁する時刻迄の時間よりも長く設定してある。この意図的な遅延時間は、内燃機関1の回転数Neに応じて、燃料噴射量を算出する時点から次の燃料噴射気筒の吸気弁が閉弁する時刻迄の時間よりも長くなるような値を予め計算しておき、マップの形でECU10のメモリ内に格納しておいて、機関の回転数Neに応じて読み出せば良い。
【0023】
ここで、次の燃料噴射気筒の吸気弁の閉弁時刻におけるスロットル弁3の開度から計算される吸入空気量について説明する。
最初に、本発明者がこれまでに案出した燃料噴射気筒の吸気弁の閉弁時刻における吸入空気量の算出手順は、以下のようなものであった。
(1) まず、一定時間内の将来のスロットル弁開度の推移を推定し、これをスロットル弁開度の推定値TA′として記憶装置に格納しておき、燃料噴射量を算出する現在時刻において燃料が実際にシリンダに吸入される時間後に相当するスロットル弁開度の推定値TA′を記憶装置から読み出し、このスロットル弁開度の推定値TA′に見合った推定吸入空気量GNVLVを算出する。
【0024】
(2) 次に、推定吸入空気量GNVLVと実際の吸入空気量GN(エアフローメータにより計測)との間において定常的に存在するずれを相殺するために、現在の実際のスロットル開度TARから現在の吸入空気量GNBSEを推定する。
(3) そして、(1) で算出した推定吸入空気量GNVLVからこの現在の吸入空気量GNBSEを減算し、燃料噴射気筒の吸気弁の閉弁時刻における吸入空気量GNFWDの現在の吸入空気量GNBSEとの差分(GNVLV−GNBSE)を算出する。
【0025】
(4) この差分(GNVLV−GNBSE)を現在の実際の吸入空気量GNに加算する。これより、燃料噴射気筒の吸気弁の閉弁時刻での吸入空気量GNFWDを求める式は以下のようになる。
GNFWD=(GNVLV−GNBSE)+GN
ところが、スロットル弁開度の推定値TA′と、実際のスロットル弁開度TARとの間には定常的なずれが存在する可能性がある。よって、本発明の第1の実施例では、現在の吸入空気量GNBSEの推定を以下のような手順で行う。
【0026】
(1−1) まず、一定時間内の将来のスロットル弁開度の推移を推定し、これをスロットル弁開度の推定値TA′として記憶装置に格納しておき、燃料噴射量を算出する現在時刻において燃料が実際にシリンダに吸入される時間後に相当するスロットル弁開度の推定値TA′を記憶装置から読み出し、このスロットル弁開度の推定値TA′に見合った推定吸入空気量GNVLVを算出する。
【0027】
(2−1) 推定吸入空気量GNVLVと実際の吸入空気量GN(エアフローメータにより計測)との間において定常的に存在するずれを相殺するために、(1) において記憶された過去のスロットル弁開度の推定値TA′の内、現在時刻におけるスロットル弁開度推定値TA′から、現在時刻における吸入空気量GNBSE′を算出し、これを現在の吸入空気量GNBSEとする。
【0028】
(3−1) そして、(1) で算出した推定吸入空気量GNVLVからこの現在の吸入空気量GNBSEを減算し、燃料噴射気筒の吸気弁の閉弁時刻における吸入空気量GNFWDの現在の吸入空気量GNBSEとの差分(GNVLV−GNBSE)を算出する。
(4−1) この差分(GNVLV−GNBSE)を現在の実際の吸入空気量GNに加算することにより、燃料噴射気筒の吸気弁の閉弁時刻での吸入空気量GNFWDを求める。
【0029】
第1の実施例では手順の(2−1) のみが従来の手順と異なる。この結果、(3−1) における推定吸入空気量GNVLVと現在時刻における吸入空気量GNBSEとが同じスロットル弁開度推定値TA′を基準にして算出されるので、両者に定常的なずれがあっても相殺されることになる。
また、本発明の第2の実施例では、前述の(3) における現在の吸入空気量GNBSEの推定を以下のような手順で行う。
【0030】
(1−2) まず、一定時間内の将来のスロットル弁開度の推移を推定し、これをスロットル弁開度の推定値TA′として記憶装置に格納すると共に、スロットル弁開度の推定値TA′から将来の推定吸入空気量GNVLVを算出してこれも記憶装置に格納する。
(2−2) 記憶された過去の推定吸入空気量GNVLVの内、現在時刻に対応する推定吸入空気量GNVLVを、現在時刻における吸入空気量GNBSEとする。
【0031】
(3−2) そして、(1) で記憶した推定吸入空気量GNVLVのうち、吸気弁閉弁時刻に対応するものを読み出し、この吸気弁閉弁時刻に対応する推定吸入空気量GNVLVから(2) で算出した現在の吸入空気量GNBSEを減算し、燃料噴射気筒の吸気弁の閉弁時刻における吸入空気量GNFWDの現在の吸入空気量GNBSEとの差分(GNVLV−GNBSE)を算出する。
【0032】
(4−2) この差分(GNVLV−GNBSE)を現在の実際の吸入空気量GNに加算することにより、燃料噴射気筒の吸気弁の閉弁時刻での吸入空気量GNFWDを求める。
第2の実施例では手順の(1−2) 〜(3−2) が従来の手順と異なる。この結果、(3−2) における推定吸入空気量GNVLVと現在時刻における吸入空気量GNBSEとが同じ将来の推定吸入空気量GNVLVを基準にして算出されるので、両者に定常的なずれがあっても相殺されることになる。
【0033】
以上のような第1と第2の実施例に加えて、以下に説明する第1の実施例の変形実施例である第3の実施例と、第2の実施例の変形実施例である第4の実施例がある。
第3の実施例が第1の実施例と異なる点は、第1の実施例においてスロットル弁開度の目標値TAから算出されたスロットル弁の推定開度TA′の記憶が省略されている点である。即ち、第3の実施例では、スロットル弁の推定開度TA′が必要な時には、これに対応するスロットル弁開度の目標値TAが読み出され、読み出されたスロットル弁開度の目標値TAからスロットル弁の推定開度TA′が算出される。
【0034】
同様に、第4の実施例が第2の実施例と異なる点は、第2の実施例においてスロットル弁開度の目標値TAから算出されたスロットル弁の推定開度TA′の記憶が省略されている点である。即ち、第4の実施例では、スロットル弁の推定開度TA′が必要な時には、これに対応するスロットル弁開度の目標値TAが読み出され、読み出されたスロットル弁開度の目標値TAからスロットル弁の推定開度TA′が算出される。
【0035】
以上のような本発明の第1の実施例の制御手順の一例を図7から図9に示すフローチャートを用いて説明する。図7〜図9のルーチンは所定時間毎、例えば8ms毎に実行される。
図7のステップ501ではまず、内燃機関1の運転状態の検出が行われる。この運転状態の検出は、機関回転数Ne、吸気圧力P、アクセルペダルの踏込み量(操作位置)等の運転状態パラメータを各種センサからECU10に取り込むことによって行うことができる。続くステップ502では、アクセルペダルの操作位置が読み込まれ、次のステップ503においてこのアクセルペダルの操作位置に対応するスロットル弁開度の目標値TAが算出され、ECU10のRAM104に記憶される。
【0036】
続くステップ504では、今回のスロットル弁開度の目標値TAから、スロットル弁の遅れを考慮した推定開度TA′が算出される。そして、ステップ505においてはこのスロットル弁の推定開度TA′から燃料噴射量を計算する現在の時刻における吸入空気量GNBSE′が算出され、続くステップ506ではステップ504で算出されたスロットル弁の推定開度TA′と現在の時刻toにおける吸入空気量GNBSE′がECU10のRAM104に記憶される。
【0037】
ステップ507ではステップ501で検出した機関の運転状態から、次の燃料噴射気筒の吸気弁閉弁時刻Tが算出される。続くステップ508ではステップ506で記憶されたスロットル弁の推定開度TA′と、ステップ507で算出された吸気弁閉弁時刻Tとから、燃料噴射気筒の吸気弁の閉弁時におけるスロットル弁の推定開度TA′が算出される。
【0038】
そして、ステップ509においては、図8で詳述される手順に基づいて、吸気弁閉弁時刻Tにおける推定吸入空気量GNFWDが算出され、続くステップ510においてこの推定吸入空気量GNFWDに応じた燃料噴射量が算出される。この燃料噴射量は、説明は省略するが、機関の運転状態に応じて他のルーチンで求められる目標空燃比になるように、スロットル弁開度から求められる吸入空気量に基づいて演算される。
【0039】
次のステップ511では、演算された吸気弁の閉弁時刻Tと、この吸気弁の閉弁時刻Tに対応する燃料噴射量がECU10内のRAM104に記憶されてこのルーチンが終了する。
図8は図7のステップ509における吸気弁閉弁時刻Tにおける推定吸入空気量GNFWDの算出手順の詳細を示すものである。
【0040】
ステップ601では吸気弁閉弁時刻Tにおけるスロットル弁の推定開度TA′に見合った推定吸入空気量GNVLVが算出される。続くステップ602においては、エアフローメータ16から現在の吸入空気量GNが読み出され、ステップ603ではステップ506で記憶された現在の吸入空気量GNBSE′が読み出される。そして、次のステップ604においてスロットル弁の推定開度TA′から求められた現在の吸入空気量GNBSE′が現在の吸入空気量GNBSEとされ、続くステップ605において推定吸入空気量GNFWDが下記の式から算出される。
【0041】
GNFWD = (GNVLV−GNBSE)+GN
一方、図9に示す噴射制御ルーチンでは、ステップ701において所定時間毎に吸気弁の閉弁時刻よりも前の所定タイミングを表す所定クランク角位置か否かが判定される。そして、所定クランク角位置である時にはステップ702に進み、この所定クランク角位置に対応する燃料噴射量がECU10のRAM104から読み出され、この燃料噴射量が噴射弁8から噴射されてステップ703に進む。一方、ステップ701で所定クランク角位置ではない時にはそのままステップ703に進む。
【0042】
ステップ703では、現在の時刻から所定時間Dだけ前にECU10のRAM104に記憶されたスロットル弁開度の目標値が読み出され、これがスロットル弁開度の制御値としてアクチュエータ4に出力される。アクチュエータ4によりこのスロットル弁開度の制御値に基づいてスロットル弁3が開閉駆動される。
次に、本発明の第2の実施例の制御手順の一例を図10、図11に示すフローチャートを用いて説明する。図10、図11のルーチンも所定時間毎、例えば8ms毎に実行される。なお、第2の実施例の制御手順において、第1の実施例と同じ制御手順には同じステップ番号を付して説明する。
【0043】
図10のステップ501からステップ504は第1の実施例と同じであり、まず、内燃機関1の運転状態の検出が行われた後、アクセルペダルの操作位置が読み込まれ、このスロットル弁開度の目標値TAから、スロットル弁の遅れを考慮した推定開度TA′が算出される。
続くステップ801では、ステップ504で算出されたスロットル弁の推定開度TA′から将来の推定吸入空気量GNVLVが算出され、続くステップ802ではステップ504で算出されたスロットル弁の推定開度TA′とステップ802で算出された将来の推定吸入空気量GNVLVがECU10のRAM104に記憶される。
【0044】
この後のステップ507からステップ511は第1の実施例の制御手順と同じである。即ち、ステップ507ではステップ501で検出した機関の運転状態から次の燃料噴射気筒の吸気弁閉弁時刻Tが算出され、ステップ508ではステップ506で記憶されたスロットル弁の推定開度TA′と、ステップ507で算出された吸気弁閉弁時刻Tとから、燃料噴射気筒の吸気弁の閉弁時におけるスロットル弁の推定開度TA′が算出される。
【0045】
そして、ステップ509においては、図11で詳述される手順に基づいて、吸気弁閉弁時刻Tにおける推定吸入空気量GNFWDが算出され、続くステップ510においてこの推定吸入空気量GNFWDに応じた燃料噴射量が算出される。次のステップ511では、演算された吸気弁の閉弁時刻Tと、この吸気弁の閉弁時刻Tに対応する燃料噴射量がECU10内のRAM104に記憶されてこのルーチンが終了する。
【0046】
図11は図10のステップ509における吸気弁閉弁時刻Tにおける推定吸入空気量GNFWDの算出手順の詳細を示すものである。この算出手順においても第1の実施例と同じ手順には同じステップ番号が付されている。
ステップ601では吸気弁閉弁時刻Tにおけるスロットル弁の推定開度TA′に見合った推定吸入空気量GNVLVが算出される。そして、ステップ602においては、エアフローメータ16から現在の吸入空気量GNが読み出される。続くステップ901ではステップ802で記憶された将来の推定吸入空気量GNVLVのうち、現在時刻に対応する将来の推定吸入空気量GNVLV′が読み出される。そして、次のステップ902において、スロットル弁の推定開度TA′に見合った推定吸入空気量GNVLV′が現在の吸入空気量GNBSEとされ、続くステップ605では推定吸入空気量GNFWDが下記の式から算出される。
【0047】
GNFWD = (GNVLV−GNBSE)+GN
この後に実行される噴射制御ルーチンは、図9で説明した噴射制御ルーチンと全く同じである。
次に、本発明の第3の実施例の制御手順の一例を図12、図13に示すフローチャートを用いて説明する。第3の実施例は第1の実施例の変形実施例である。図12、図13のルーチンも所定時間毎、例えば8ms毎に実行される。なお、第3の実施例の制御手順において、第1の実施例と同じ制御手順には同じステップ番号を付して説明する。
【0048】
第3の実施例が第1の実施例と異なる点は、第1の実施例においてスロットル弁開度の目標値TAから算出されたスロットル弁の推定開度TA′の記憶が省略されている点である。従って、図12のステップ501からステップ503は第1の実施例と同じであり、まず、内燃機関1の運転状態の検出が行われた後、アクセルペダルの操作位置が読み込まれ、このスロットル弁開度の目標値TAが算出される。そして、第3の実施例では、第1の実施例のステップ504におけるスロットル弁の推定開度TA′の算出、ステップ505における現在の吸入空気量GNBSE′の算出、及びステップ506におけるスロットル弁の推定開度TA′と現在の吸入空気量GNBSE′の記憶が省略されている。
【0049】
よって、第3の実施例ではステップ503でスロットル弁開度の目標値TAが算出された後は、ステップ507で噴射気筒の吸気弁の開弁時刻Tが算出される。そして、第1の実施例では、噴射気筒の吸気弁の開弁時刻Tが算出された後に、記憶されたスロットル弁の推定開度TA′と、ステップ507で算出された吸気弁閉弁時刻Tとから、燃料噴射気筒の吸気弁の閉弁時におけるスロットル弁の推定開度TA′が算出されていたが、第3の実施例では、スロットル弁の推定開度TA′が記憶されていないので、噴射気筒の吸気弁の開弁時刻Tが算出された後は、ステップ201において、記憶されたスロットル弁開度の目標値TAとステップ507で算出された吸気弁閉弁時刻Tとから、燃料噴射気筒の吸気弁の閉弁時におけるスロットル弁の推定開度TA′が算出される。
【0050】
ステップ201の後に実行されるステップ509においては、図13で詳述される手順に基づいて、吸気弁閉弁時刻Tにおける推定吸入空気量GNFWDが算出され、続くステップ510においてこの推定吸入空気量GNFWDに応じた燃料噴射量が算出される。次のステップ511では、演算された吸気弁の閉弁時刻Tと、この吸気弁の閉弁時刻Tに対応する燃料噴射量がECU10内のRAM104に記憶されてこのルーチンが終了する。
【0051】
図13は図12のステップ509における吸気弁閉弁時刻Tにおける推定吸入空気量GNFWDの算出手順の詳細を示すものであり、第1の実施例におけるステップ602と604の間にあるステップ603がステップ202に変わった点を除いて、第1の実施例の手順と全く同じである。
即ち、ステップ601では吸気弁閉弁時刻Tにおけるスロットル弁の推定開度TA′に見合った推定吸入空気量GNVLVが算出され、ステップ602でエアフローメータ16から現在の吸入空気量GNが読み出される。そして、第1の実施例では現在の吸入空気量GNBSE′が記憶されていたのでこの読み出しが行われているが、第3の実施例では現在の吸入空気量GNBSE′は記憶されていない。従って、ステップ602に続くステップ202では、記憶されたスロットル開度の目標値TAの内、現在時刻におけるスロットル弁開度目標値TAから、現在時刻におけるスロットル弁の推定開度TA′が算出され、この現在時刻におけるスロットル弁の推定開度TA′から、現在の吸入空気量GNBSE′が算出出される。続くステップ604、605において推定吸入空気量GNFWDが求められる手順は第1の実施例と同じである。また、この後に実行される噴射制御ルーチンは、図9で説明した噴射制御ルーチンと全く同じである。
【0052】
このように、第3の実施例では、スロットル弁の推定開度TA′が必要な時には、これに対応するスロットル弁開度の目標値TAが読み出され、読み出されたスロットル弁開度の目標値TAからスロットル弁の推定開度TA′が算出される。この結果、第3の実施例では、第1の実施例に比べてメモリの個数、或いは容量が少なくて済む。
【0053】
最後に、本発明の第4の実施例の制御手順の一例を図14に示すフローチャートを用いて説明する。第4の実施例は第2の実施例の変形実施例である。図14のルーチンも所定時間毎、例えば8ms毎に実行される。なお、第4の実施例の制御手順において、第2の実施例と同じ制御手順には同じステップ番号を付して説明する。
【0054】
第4の実施例が第2の実施例と異なる点は、第2の実施例においてスロットル弁開度の目標値TAから算出されたスロットル弁の推定開度TA′の記憶が省略されている点である。従って、図14のステップ501からステップ801は第2の実施例と同じであるのでその説明を省略する。ステップ801で将来の推定吸入空気量GNVLVが算出された後は、ステップ301においてこの将来の推定吸入空気量GNVLVがECU10のRAM104に記憶される。
【0055】
この後のステップ507では、ステップ501で検出した機関の運転状態から次の燃料噴射気筒の吸気弁閉弁時刻Tが算出され、続くステップ302ではステップ503で記憶されたスロットル弁開度の目標値TAと、ステップ507で算出された吸気弁閉弁時刻Tとから、燃料噴射気筒の吸気弁の閉弁時におけるスロットル弁開度の目標値TAが算出され、算出された目標値TAに基づいてスロットル弁の推定開度TA′が算出される。ここで算出されたスロットル弁の推定開度TA′は、噴射気筒の吸気弁閉弁時刻Tにおけるスロットル弁の推定開度TA′である。
【0056】
そして、ステップ509においては、図11で詳述した手順と同じ手順で吸気弁閉弁時刻Tにおける推定吸入空気量GNFWDが算出され、続くステップ510においてこの推定吸入空気量GNFWDに応じた燃料噴射量が算出される。次のステップ511では、演算された吸気弁の閉弁時刻Tと、この吸気弁の閉弁時刻Tに対応する燃料噴射量がECU10内のRAM104に記憶されてこのルーチンが終了する。また、この後に実行される噴射制御ルーチンは、図9で説明した噴射制御ルーチンと全く同じである。
【0057】
このように、第4の実施例でも、スロットル弁の推定開度TA′は、必要な時にこれに対応するスロットル弁開度の目標値TAを読み出すことによって算出される。この結果、第4の実施例では、第2の実施例に比べてメモリの個数、或いは容量が少なくて済む。
このように、以上説明した実施例の内燃機関の制御装置では、空気量先行、燃料供給量追従制御方式を採用し、電子制御スロットル弁装置で吸入空気量を制御する内燃機関において、第1と第3の実施例ではスロットル弁の推定開度から現在の吸入空気量が算出され、第2と第4の実施例では推定した将来の吸入空気量から現在の吸入空気量が算出されることにより、推定した将来の吸入空気量と、推定した現在の吸入空気量との定常的なずれが相殺され、常に正確な空燃比を得ることができる。
【0058】
【発明の効果】
以上説明したように、本発明の請求項1と3に記載の発明によれば、演算されたスロットル弁開度目標値を所定時間の間記憶するスロットル弁目標値記憶手段を有する内燃機関の制御装置において、現在の吸入空気量を推定するために使用するスロットル弁開度に、現在時刻における推定スロットル開度を使用したので、推定した将来の吸入空気量と推定した現在の吸入空気量との間の定常的なずれを相殺することができ、空気量先行、燃料供給量追従制御方式を採用し、電子制御スロットル弁装置で吸入空気量を制御する内燃機関の制御装置において常に正確な空燃比を得ることができる。
【0059】
また、本発明の請求項2と4に記載の発明によれば、演算されたスロットル弁開度目標値を所定時間の間記憶するスロットル弁目標値記憶手段を有する内燃機関の制御装置において、予想した将来の吸入空気量を記憶しておき、この現在時刻に対応するものを現在時刻の推定吸入空気量として使用したので、推定した将来の吸入空気量と推定した現在の吸入空気量との間の定常的なずれを相殺することができ、空気量先行、燃料供給量追従制御方式を採用し、電子制御スロットル弁装置で吸入空気量を制御する内燃機関の制御装置において常に正確な空燃比を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の内燃機関の制御装置の構成を示す構成図である。
【図2】本発明の第2の実施例の内燃機関の制御装置の構成を示す構成図である。
【図3】本発明の第3の実施例の内燃機関の制御装置の構成を示す構成図である。
【図4】本発明の第4の実施例の内燃機関の制御装置の構成を示す構成図である。
【図5】本発明の内燃機関の制御装置の一実施例の全体構成を示す構成図である。
【図6】本発明の制御におけるアクセル開度、スロットル弁開度、及び吸気弁の閉弁時刻の関係を時間の経過と共に示す説明図である。
【図7】本発明の内燃機関の制御装置における第1の実施例の制御手順の一例を示すフローチャートである。
【図8】図7のステップ509の手順の詳細を示すフローチャートである。
【図9】噴射制御手順を示すフローチャートである。
【図10】本発明の内燃機関の制御装置における第2の実施例の制御手順の一例を示すフローチャートである。
【図11】図10のステップ509の手順の詳細を示すフローチャートである。
【図12】本発明の内燃機関の制御装置における第3の実施例の制御手順の一例を示すフローチャートである。
【図13】図12のステップ509の手順の詳細を示すフローチャートである。
【図14】本発明の内燃機関の制御装置における第4の実施例の制御手順の一例を示すフローチャートである。
【符号の説明】
1…内燃機関
2…吸気通路
3…スロットル弁
4…アクチュエータ
5…スロットル開度センサ
7…圧力センサ
8…燃料噴射弁
10…ECU(エンジン・コントロール・ユニット)
11…水温センサ
12…排気通路
13…Oセンサ
14…アクセルペダル
15…アクセル踏込量センサ
16…エアフローメータ

Claims (4)

  1. アクセルペダルの操作位置に応じてスロットル弁開度と燃料供給量を制御するようにした空気量先行燃料追従制御方式の内燃機関の制御装置であって、
    アクセルペダルの操作位置に応じたスロットル弁開度目標値(TA)を算出するスロットル弁開度目標値の算出手段と、
    算出されたスロットル弁開度目標値(TA)から、スロットル弁の応答遅れを考慮してスロットル弁開度推定値(TA') を算出するスロットル弁開度推定値の算出手段と、
    スロットル弁開度目標値(TA)を所定時間(D) の間記憶するスロットル弁開度目標値の記憶手段と、
    スロットル弁開度推定値(TA') を所定時間(D) の間記憶するスロットル弁開度推定値の記憶手段と、
    記憶されたスロットル弁開度目標値(TA)を前記所定時間(D) の経過後にスロットル弁開度制御値として出力するスロットル弁開度制御値の出力手段と、
    このスロットル弁開度制御値に従ってスロットル弁を開閉駆動するスロットル弁の駆動手段と、
    機関の運転状態に応じて燃料噴射気筒の吸気弁閉弁時刻(T) を算出する吸気弁閉弁時刻の算出手段と、
    前記記憶されたスロットル弁開度推定値(TA') と、燃料噴射気筒の吸気弁閉弁時刻(T) とから、吸気弁閉弁時刻における推定吸入空気量(GNVLV) を現在の時刻(to)において算出する推定吸入空気量の算出手段と、
    内燃機関の吸気通路に設けられて実際の吸入空気量(GN)を検出する吸入空気量の検出手段と、
    前記記憶されたスロットル弁開度推定値(TA') のうち、現在時刻(to)におけるスロットル弁開度推定値(TA') から、現在時刻(to)における吸入空気量(GNBSE')を算出する現在の吸入空気量の算出手段と、
    前記吸気弁閉弁時刻(T) における推定吸入空気量(GNVLV) から前記現在時刻における吸入空気量(GNBSE')を減算して求めた偏差を、現在時刻(to)における実際の吸入空気量(GN)に加えることにより、補正された前記燃料噴射気筒の吸気弁閉弁時刻(T) の吸入空気量(GNFWD) を算出する補正吸入空気量の算出手段と、
    この補正された前記燃料噴射気筒の吸気弁閉弁時刻 (T) の吸入空気量(GNFWD) と目標空燃比とから燃料供給量を算出する燃料供給量の算出手段と、
    算出された燃料供給量の燃料を供給する燃料供給手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. アクセルペダルの操作位置に応じてスロットル弁開度と燃料供給量を制御するようにした空気量先行燃料追従制御方式の内燃機関の制御装置であって、
    アクセルペダルの操作位置に応じたスロットル弁開度目標値(TA)を算出するスロットル弁開度目標値の算出手段と、
    算出されたスロットル弁開度目標値(TA)から、スロットル弁の応答遅れを考慮してスロットル弁開度推定値(TA') を算出するスロットル弁開度推定値の算出手段と、
    スロットル弁開度目標値(TA)を所定時間の間記憶するスロットル弁開度目標値の記憶手段と、
    スロットル弁開度推定値(TA') を所定時間の間記憶するスロットル弁開度推定値の記憶手段と、
    記憶されたスロットル弁開度目標値(TA)を前記所定時間の経過後にスロットル弁開度制御値として出力するスロットル弁開度制御値の出力手段と、
    このスロットル弁開度制御値に従ってスロットル弁を開閉駆動するスロットル弁の駆動手段と、
    機関の運転状態に応じて燃料噴射気筒の吸気弁閉弁時刻(T) を算出する吸気弁閉弁時刻の算出手段と、
    前記記憶されたスロットル弁開度推定値(TA') から前記現在時刻 (to) 以降の推定吸入空気量(GNVLV) を算出する推定吸入空気量の算出手段と、
    算出された推定吸入空気量(GNVLV) を記憶する推定吸入空気量の記憶手段と、
    内燃機関の吸気通路に設けられて実際の吸入空気量(GN)を検出する吸入空気量の検出手段と、
    前記記憶された推定吸入空気量(GNVLV) のうち、現在時刻(to)に対応する推定吸入空気量(GNVLV) を現在時刻(to)における吸入空気量(GNBSE) とする現在の吸入空気量の算出手段と、
    前記記憶された推定吸入空気量(GNVLV) のうちの前記吸気弁閉弁時刻(T) における推定吸入空気量(GNVLV) から前記現在時刻(to)における吸入空気量(GNBSE) を減算して求めた偏差を、現在時刻における実際の吸入空気量(GN)に加えること
    により、補正された前記燃料噴射気筒の吸気弁閉弁時刻(T) の吸入空気量(GNFWD)
    を算出する補正吸入空気量の算出手段と、
    この補正された前記燃料噴射気筒の吸気弁閉弁時刻 (T) の吸入空気量(GNFWD) と目標空燃比とから燃料供給量を算出する燃料供給量の算出手段と、
    算出された燃料供給量の燃料を供給する燃料供給手段と、
    を備えることを特徴とする内燃機関の制御装置。
  3. アクセルペダルの操作位置に応じてスロットル弁開度と燃料供給量を制御するようにした空気量先行燃料追従制御方式の内燃機関の制御装置であって、
    アクセルペダルの操作位置に応じたスロットル弁開度目標値(TA)を算出するスロットル弁開度目標値の算出手段と、
    スロットル弁開度目標値(TA)を所定時間(D) の間記憶するスロットル弁開度目標値の記憶手段と、
    記憶されたスロットル弁開度目標値(TA)を前記所定時間(D) の経過後にスロットル弁開度制御値として出力するスロットル弁開度制御値の出力手段と、
    このスロットル弁開度制御値に従ってスロットル弁を開閉駆動するスロットル弁の駆動手段と、
    機関の運転状態に応じて燃料噴射気筒の吸気弁閉弁時刻(T) を算出する吸気弁閉弁時刻の算出手段と、
    前記記憶されたスロットル弁開度目標値(TA)と、燃料噴射気筒の吸気弁閉弁時刻(T) とから、吸気弁閉弁時刻(to)におけるスロットル弁開度推定値(TA') をスロットル弁の応答遅れを考慮して算出した後に、吸気閉弁時刻(T) における推定吸入空気量(GNVLV) を現在の時刻(to)において算出する推定吸入空気量の算出手段と、
    内燃機関の吸気通路に設けられて実際の吸入空気量(GN)を検出する吸入空気量の検出手段と、
    前記記憶されたスロットル弁開度目標値(TA)のうち、現在時刻(to)におけるスロットル弁開度目標値(TA)から、スロットル弁の応答遅れを考慮してスロットル弁開度推定値(TA') を算出し、この推定値(TA') から、現在時刻(to)における吸入空気量(GNBSE')を算出する現在の吸入空気量の算出手段と、
    前記吸気弁閉弁時刻(T) における推定吸入空気量(GNVLV) から前記現在時刻(to)における吸入空気量(GNBSE')を減算して求めた偏差を、現在時刻(to)における実際の吸入空気量(GN)に加えることにより、補正された前記燃料噴射気筒の吸気
    弁閉弁時刻(T) の吸入空気量(GNFWD) を算出する補正吸入空気量の算出手段と、
    この補正された前記燃料噴射気筒の吸気弁閉弁時刻 (T) の吸入空気量(GNFWD) と目標空燃比とから燃料供給量を算出する燃料供給量の算出手段と、
    算出された燃料供給量の燃料を供給する燃料供給手段と、
    を備えることを特徴とする内燃機関の制御装置。
  4. アクセルペダルの操作位置に応じてスロットル弁開度と燃料供給量を制御するようにした空気量先行燃料追従制御方式の内燃機関の制御装置であって、
    アクセルペダルの操作位置に応じたスロットル弁開度目標値(TA)を算出するスロットル弁開度目標値の算出手段と、
    スロットル弁開度目標値(TA)を所定時間(D) の間記憶するスロットル弁開度目標値の記憶手段と、
    記憶されたスロットル弁開度目標値(TA)を前記所定時間(D) の経過後にスロットル弁開度制御値として出力するスロットル弁開度制御値の出力手段と、
    このスロットル弁開度制御値に従ってスロットル弁を開閉駆動するスロットル弁の駆動手段と、
    機関の運転状態に応じて燃料噴射気筒の吸気弁閉弁時刻(T) を算出する吸気弁閉弁時刻の算出手段と、
    前記記憶されたスロットル弁開度目標値(TA)から、スロットル弁の応答遅れを考慮してスロットル弁開度推定値(TA') を算出した後に、前記現在時刻 (to) 以降の推定吸入空気量(GNVLV) を算出する推定吸入空気量の算出手段と、
    算出された推定吸入空気量(GNVLV) を記憶する推定吸入空気量の記憶手段と、
    内燃機関の吸気通路に設けられて実際の吸入空気量(GN)を検出する吸入空気量の検出手段と、
    前記記憶された推定吸入空気量(GNVLV) のうち、現在時刻(to)に対応する推定吸入空気量(GNVLV) を現在時刻(to)における吸入空気量(GNBSE) とする現在の吸入空気量の算出手段と、
    前記記憶された推定吸入空気量(GNVLV) のうちの前記吸気弁閉弁時刻(T) における推定吸入空気量(GNVLV) から前記現在時刻(to)における吸入空気量(GNBSE) を減算して求めた偏差を、現在時刻における実際の吸入空気量(GN)に加えること
    により、補正された前記燃料噴射気筒の吸気弁閉弁時刻(T) の吸入空気量(GNFWD)
    を算出する補正吸入空気量の算出手段と、
    この補正された前記燃料噴射気筒の吸気弁閉弁時刻 (T) の吸入空気量(GNFWD) と目標空燃比とから燃料供給量を算出する燃料供給量の算出手段と、
    算出された燃料供給量の燃料を供給する燃料供給手段と、
    を備えることを特徴とする内燃機関の制御装置。
JP22681597A 1997-08-22 1997-08-22 内燃機関の制御装置 Expired - Fee Related JP3627462B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22681597A JP3627462B2 (ja) 1997-08-22 1997-08-22 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22681597A JP3627462B2 (ja) 1997-08-22 1997-08-22 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JPH1162673A JPH1162673A (ja) 1999-03-05
JP3627462B2 true JP3627462B2 (ja) 2005-03-09

Family

ID=16851045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22681597A Expired - Fee Related JP3627462B2 (ja) 1997-08-22 1997-08-22 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP3627462B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028001A (ja) * 2002-06-27 2004-01-29 Mitsubishi Electric Corp 電子スロットルバルブの制御装置
US9784190B2 (en) 2013-04-23 2017-10-10 Nissan Motor Co., Ltd. Internal combustion engine control device and control method

Also Published As

Publication number Publication date
JPH1162673A (ja) 1999-03-05

Similar Documents

Publication Publication Date Title
KR100238367B1 (ko) 공기량선행 연료공급량추종 제어방식의 내연기관 제어장치
KR100445852B1 (ko) 내연 엔진 제어 장치
US7287525B2 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
JP4614104B2 (ja) 内燃機関の吸入空気量検出装置
JP2000170557A (ja) 内燃機関における可変弁制御機構の機能性のモニタ方法
JP2908924B2 (ja) エンジンの流入空気量検出方法、この方法を実行する装置、この装置を備えた燃料噴射量制御装置
JP3733669B2 (ja) 内燃機関の制御装置
JP3627462B2 (ja) 内燃機関の制御装置
JP2991127B2 (ja) 内燃機関の制御装置
JPH1182102A (ja) 内燃機関の制御装置
JP3209056B2 (ja) 内燃機関の空燃比制御装置
JP3658931B2 (ja) 内燃機関の制御装置
JPH09317568A (ja) ディーゼルエンジンの異常検出装置
JP2657713B2 (ja) 電子制御燃料噴射式内燃機関の燃料リーク診断装置
JP2595148B2 (ja) 内燃機関制御装置
JP4023084B2 (ja) 吸入空気量予測装置及び吸気圧予測装置
JPH09324691A (ja) 内燃機関の燃料噴射制御装置
JPH06185396A (ja) 基本燃料噴射方法
JP2005069021A (ja) 内燃機関の吸入空気量推定装置
JPH0357861A (ja) 内燃機関の吸気温度検出装置
JPH10122057A (ja) エンジンのegr制御装置
JPH0463933A (ja) 燃料噴射制御装置
JPH05248908A (ja) 熱式吸入空気量検出装置
JP2004156449A (ja) 内燃機関の制御装置
JPH0261351A (ja) 内燃機関の電子制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees