JP3625721B2 - 電気自動車のバッテリー制御装置 - Google Patents
電気自動車のバッテリー制御装置 Download PDFInfo
- Publication number
- JP3625721B2 JP3625721B2 JP37512599A JP37512599A JP3625721B2 JP 3625721 B2 JP3625721 B2 JP 3625721B2 JP 37512599 A JP37512599 A JP 37512599A JP 37512599 A JP37512599 A JP 37512599A JP 3625721 B2 JP3625721 B2 JP 3625721B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- temperature
- capacity
- control unit
- electric vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 claims description 57
- 238000001816 cooling Methods 0.000 claims description 21
- 238000007599 discharging Methods 0.000 claims description 17
- 239000004065 semiconductor Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 14
- 230000006866 deterioration Effects 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Description
【発明の属する技術分野】
本発明は、電気自動車を走行させる駆動用バッテリーの制御装置に関し、とくに、イグニッションスイッチをオフにする状態においても、駆動用バッテリーの高温障害を監視する制御装置に関する。
【0002】
【従来の技術】
電気自動車を走行させるモータの電源に使用される駆動用バッテリーは、極めて過酷な環境で使用される。駆動用バッテリーを配設している車内温度が大幅に変動するからである。たとえば、夏期における車内温度は、極めて高温に上昇することがある。駆動用バッテリーは、高温になると自己放電が激しくなって発熱する。温度が非常に高い環境にあって、さらに発熱量が多くなると、駆動用バッテリーは熱暴走して発煙するなど、多大な弊害を及ぼす。とくに、駆動用バッテリーは、大容量の電池を多数に使用しているので、高温時における自己放電による発熱量が極めて大きく、熱暴走する確率が高くなる。
【0003】
【発明が解決しようとする課題】
電池が異常な高温になるのを防止するために、電池温度を検出してファンで強制的に冷却している。電池温度が設定温度よりも高くなると、ファンが回転して駆動用バッテリーを冷却する。駆動用バッテリーの温度は、周囲温度が高いとき、あるいは、大電流で急速充電するときに高くなる。駆動用バッテリーをエンジンで充電するとき、充電電流を制御して駆動用バッテリーの温度上昇を少なくできる。しかしながら、駆動用バッテリーは常にエンジンでは充電されない。たとえば、自動車が長い坂道を下るときに、回生ブレーキによる発電電力で充電されることもある。このとき、発電電力を有効に利用するために、駆動用バッテリーの充電電流が大きくなって、電池温度が高くなることがある。ただ、この状態においては、電池温度を検出してファンの運転を制御するので、電池温度が高くなるとファンを運転して強制的に冷却できる。
【0004】
しかしながら、自動車のイグニッションスイッチをオフにすると、ファンの回転を制御する制御回路が動作しなくなるので、この状態で駆動用バッテリーの温度が異常に高くなると、自己放電による熱暴走を起こすことがある。
【0005】
本願出願人は、この欠点を解消するために、常にコントロールユニットを動作状態に保持して、このコントロールユニットに接続している温度センサーで電池の周囲温度を検出し、さらに、電池の充電電流と放電電流から残存容量を検出して、周囲温度が設定温度よりも高く、しかも、電池の残存容量が熱暴走を起こす可能性のある容量よりも大きいときには、電池を強制的に放電させて熱暴走を制御する方法を開発した。
【0006】
この方法は、周囲温度が高くなったときに、駆動用バッテリーの残存容量を少なくして熱暴走を防止するので、イグニッションスイッチをオフにした状態においても、駆動用バッテリーの残存容量や温度を検出する必要があり、この回路が電力を消費する欠点がある。また、この方法は、イグニッションスイッチをオフにする状態においても、駆動用バッテリーの残存容量を検出するので、コントロールユニットの回路構成が複雑になり、電力消費も大きくなる欠点もある。
【0007】
本発明は、この欠点を解決することを目的に開発されたものである。本発明の重要な目的は、コントロールユニットの電力消費を少なくできるにもかかわらず、駆動用バッテリーの高温障害を確実に監視できる電気自動車のバッテリー制御装置を提供することにある。
【0008】
また、本発明の他の大切な目的は、コントロールユニットに電力を供給する電装用バッテリーの放電を少なくして、このバッテリーの過放電を防止しながら、長期間にわたってイグニッションスイッチをオフにする状態においても、駆動用バッテリーの高温障害を有効に防止できる電気自動車のバッテリー制御装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明の電気自動車のバッテリー制御装置は、電気自動車を走行させるモータを駆動する駆動用バッテリー1と、自動車に搭載される電装用バッテリー2から電源が供給されて駆動用バッテリー1の充放電を制御するコントロールユニット3と、イグニッションスイッチ4がオンの状態で、電装用バッテリー2からコントロールユニット3に電力を供給する電源スイッチ5とを備える。さらに、バッテリー制御装置は、コントロールユニット3の電源スイッチ5に、温度を検出する温度検出回路6を接続しており、イグニッションスイッチ4がオフの状態で、温度が設定温度よりも高くなると温度検出回路6がこのことを検出して電源スイッチ5がオンに切り換えられて、コントロールユニット3に電源が供給されるようにしている。さらに、温度検出回路6が、電源スイッチ5をオフとする状態で、駆動用バッテリー1の温度を所定の周期で記憶する記憶回路9を備えており、記憶回路9に記憶される温度データ−を、電源スイッチ5がオンになったコントロールユニット3に供給する。
【0010】
さらに、本発明の電気自動車の駆動装置は、好ましくは、温度検出回路6が温度センサー7を有する。この温度センサー7は、駆動用バッテリー1の温度、駆動用バッテリー1を搭載している収納室の温度、電気自動車の室内温度または車外温度のいずれかの温度を検出する。
【0011】
さらに、本発明の電気自動車のバッテリー制御装置は、好ましくは、電装用バッテリー2から温度検出回路6に電力を供給する。
【0012】
さらに、本発明の電気自動車のバッテリー制御装置は、好ましくは、温度検出回路6を、温度が設定温度よりも高くなるとオンになるバイメタルとする。
【0013】
さらにまた、本発明のバッテリー制御装置は、好ましくは、駆動用バッテリー1を冷却する冷却ファン8を備える。イグニッションスイッチ4がオフのときに、温度が設定温度よりも高くなると、温度検出回路6がこのことを検出して電源スイッチ5をオンに切り換え、さらに、冷却ファン8を運転して駆動用バッテリー1を冷却する。冷却ファン8は、コントロールユニット3で制御して駆動用バッテリー1を冷却することもできる。
【0014】
記憶回路9には、EEPROMやRAM等の半導体メモリが使用できる。
【0015】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電気自動車のバッテリー制御装置を例示するものであって、本発明はバッテリー制御装置を以下のものに特定しない。
【0016】
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲の欄」、および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
【0017】
本発明の電気自動車のバッテリー制御装置は、エンジンとモータの両方で車輪を駆動するハイブリッドカー、あるいは、エンジンを搭載しない電気自動車に搭載される。ただ、本発明のバッテリー制御装置は、ハイブリッドカーに最適である。それは、ハイブリッドカーに搭載される駆動用バッテリーは、エンジンで充電されるので、残存容量が大きくなって熱暴走を起こす確率が高くなるからである。
【0018】
以下、電気自動車がハイブリッドカーである実施例について詳述する。図1の回路図に示すバッテリー制御装置は、自動車の走行用のモータ(図示せず)に電力を供給する駆動用バッテリー1と、この駆動用バッテリー1の充放電を制御するコントロールユニット3と、駆動用バッテリー1を熱暴走しないように冷却する冷却ファン8と、電装用バッテリー2からコントロールユニット3に電力を供給する電源スイッチ5と、この電源スイッチ5を制御するイグニッションスイッチ4及び温度検出回路6と、駆動用バッテリー1の温度を所定の周期で記憶する記憶回路9と、駆動用バッテリーの残存容量を表示する容量表示装置10とを備える。
【0019】
コントロールユニット3は、駆動用バッテリー1の熱暴走を防止しながら充放電を制御する。このコントロールユニット3は、駆動用バッテリー1から電力を供給せずに、電装用バッテリー2から電力を供給する。したがって、コントロールユニット3は、電源スイッチ5を介して電装用バッテリー2に接続される。電装用バッテリー2は、電気自動車に搭載している電装品に電力を供給するバッテリーで、ほとんど例外なく、12Vまたは24Vの鉛バッテリーである。ただし、電装用バッテリーには、鉛バッテリーに代わって他の二次電池も使用できるのは言うまでもない。電装用バッテリー2は、エンジンで回転される発電機で充電され、あるいは、駆動用バッテリー1の出力電圧をDC/DCコンバータで降圧して充電される。
【0020】
コントロールユニット3に電力を供給する電源スイッチ5は、イグニッションスイッチ4と温度検出回路6でオンオフに制御される。イグニッションスイッチ4がオンになると、電源スイッチ5はオンに切り換えられる。イグニッションスイッチ4がオフになると、電源スイッチ5はオフになり、コントロールユニット3への電力供給は遮断される。ただし、イグニッションスイッチ4がオフの状態、いいかえると、電気自動車が使用されない状態においても、温度が高くなって駆動用バッテリー1が熱暴走を起こす確率が高くなるときには、温度検出回路6が電源スイッチ5をオンに切り換える。温度検出回路6は、駆動用バッテリー1が熱暴走を起こす可能性が少ないときに、電源スイッチ5をオフとする。
【0021】
電源スイッチ5は、イグニッションスイッチ4がオンとなるか、あるいは、駆動用バッテリー1が熱暴走を起こす確率が高くなる温度になるとき、オンに切り換えられて、コントロールユニット3を動作状態とする。
【0022】
温度検出回路6は、駆動用バッテリー1の温度、駆動用バッテリー1を搭載している収納室の温度、あるいはまた、電気自動車の室内温度または車外温度のいずれかの温度を検出して、電源スイッチ5を制御する。最も簡単な温度検出回路は、バイメタルである。この温度検出回路は、バイメタルを温度を検出する位置に配設し、検出した温度が設定温度より低いときにオフ、設定温度よりも高くなるとオンに切り換えられて、電源スイッチを制御する。この温度検出回路は、電力を消費しないで電源スイッチをオンオフに切り変えできる。
【0023】
ただ、温度検出回路は、サーミスタや熱電対やPTCのように、温度によって電気抵抗が変化する温度センサー7と、この温度センサー7の信号で電源スイッチ5を制御する電子回路で構成することもできる。この温度検出回路6は、温度センサー7を、温度を検出する位置に配設する。この温度検出回路6は、電子回路に電装用バッテリー2から電力を供給する。温度検出回路6の電子回路は、イグニッションスイッチ4のオンオフに関係なく電力を供給して動作状態に保持される。したがって、この電子回路は、可能なかぎり低消費電力とする。
【0024】
コントロールユニット3は、動作状態においては、駆動用バッテリー1の充放電と冷却ファン8を制御し、さらに、温度と残存容量を検出しながら、駆動用バッテリー1の充放電を制御する。イグニッションスイッチ4がオフのときに、温度検出回路6で電源スイッチ5がオンにされて動作状態となったコントロールユニット3は、検出した温度が設定温度よりも高くなって、駆動用バッテリー1が熱暴走を起こす確率が高くなると、駆動用バッテリー1を放電させて残存容量を少なくする。
【0025】
さらに、イグニッションスイッチ4がオンの状態で、動作状態にあるコントロールユニット3は、駆動用バッテリー1の残存容量を、上限容量と下限容量との間の実使用領域として、熱暴走を防止しながら充放電させる。駆動用バッテリー1を放電するときは、駆動用バッテリー1でモータを回転させて自動車を走行させる。駆動用バッテリー1は、エンジンで回転される発電機で充電され、あるいは自動車が回生ブレーキをかけるときに、発電機に併用されるモータや、専用の発電機で充電される。
【0026】
イグニッションスイッチ4がオンのとき、あるいは、温度検出回路6で電源スイッチ5がオンに切り替えられて動作状態となっているコントロールユニット3は、温度を検出して、駆動用バッテリー1が熱暴走しないように残存容量を制御しながら、駆動用バッテリー1の充電と放電を制御する。さらに、コントロールユニット3は、冷却ファン8も制御して、駆動用バッテリー1の熱暴走を防止する。駆動用バッテリー1が熱暴走する温度は、電池の残存容量により変化し、電池の残存容量が大きくなるにしたがって、低い温度で熱暴走を起こすようになる。このため、コントロールユニット3は、好ましくは、温度によって残存容量を制御しなが充放電させる。ただ、残存容量をあらかじめ設定された所定の範囲に制御しながら、駆動用バッテリーを充放電することもできる。
【0027】
コントロールユニット3は、温度が高くなって駆動用バッテリー1が熱暴走を起こす確率が高くなると、駆動用バッテリー1を放電して残存容量を少なくし、あるいは、冷却ファン8を運転して駆動用バッテリー1を強制的に冷却する。冷却ファン8を運転する方法は、駆動用バッテリー1の残存容量を少なくしながら、強制冷却するので、理想的な状態で熱暴走を防止できる。ただ、本発明のバッテリー制御装置は、温度が高くなって、駆動用バッテリーが熱暴走を起こす確率が高くなったときに、冷却ファンを運転することなく、たとえば、駆動用バッテリーで電装用バッテリーを充電し、あるいは、自動車の電装品に電力を供給して、駆動用バッテリーを放電させて残存容量を少なくすることもできる。また、本発明のバッテリー制御装置は、電源スイッチがオンになって、コントロールユニットを動作状態とするときに冷却ファンを運転して、駆動用バッテリーを強制的に冷却するともできる。この装置は、冷却ファンの運転を電源スイッチで制御する。温度が低下すると、冷却ファンの運転を停止する。
【0028】
コントロールユニット3が、駆動用バッテリー1の熱暴走を防止するために検出する温度は、駆動用バッテリー1の温度、駆動用バッテリー1を配設している収納室の温度、電気自動車の室内温度または車外温度のいずれかである。コントロールユニットが検出する温度と、温度検出回路が検出する温度とが同じであるとき、両方の回路に温度センサーを併用できる。この温度センサーは、温度センサーの信号を、温度検出回路とコントロールユニットの両方に入力する。ただし、コントロールユニットと温度検出回路は、必ずしも同じ温度を検出する必要はない。たとえば、コントロールユニットは、駆動用バッテリーの温度を検出して、温度検出回路が車外温度を検出することもできる。
【0029】
イグニッションスイッチ4をオフにする状態で、自己放電が原因で電池が熱暴走するのは、収納室の温度や車内または車外温度が高いときである。したがって、温度検出回路6は、好ましくは、駆動用バッテリー1の収納室の温度や、自動車の車内温度あるいは車外温度を検出して、電源スイッチ5を制御する。ただし、駆動用バッテリーの温度を検出して、温度検出回路を制御することもできるのは言うまでもない。
【0030】
コントロールユニット3は、検出した温度で、駆動用バッテリー1の残存容量の上限、すなわち上限容量を制限するように、駆動用バッテリー1の充放電を制御する。駆動用バッテリー1は、検出温度が高くなると、残存容量が小さくても熱暴走を起こす可能性が高くなるので、好ましくは、検出温度によって駆動用バッテリー1の上限容量を変化させる。この場合、上限容量は、検出温度が高くなるにしたがって低くする。たとえば、検出温度が低いときは、図2に示すように、上限容量を高く設定するが、検出温度が高くなると、図3に示すように上限容量を低くするのがよい。
【0031】
ただ、上限容量を低くすることは実使用領域を狭くする。実使用領域は駆動用バッテリー1を充放電できる範囲であるから、実使用領域が狭くなると、実質的に駆動用バッテリー1を放電できる容量が少なくなる。この欠点は、図4に示すように、上限容量と下限容量の両方を低くして解消できる。
【0032】
上限容量を低く設定すると、電池の熱暴走をより確実に阻止できる。ただ、上限容量を低くすることは、駆動用バッテリー1を放電できる容量を減少させる。したがって、上限容量は、熱暴走を起こさない範囲で、できるかぎり高く設定するのがよい。上限容量と下限容量は、駆動用バッテリー1に内蔵される電池のタイプや大きさにより最適値に設定するが、たとえば、温度が低いときの上限容量は、最大充電容量の50〜70%、好ましくは約60%に設定する。下限容量は、電池の寿命を長くするために、たとえば、30〜45%、好ましくは約40%に設定する。
【0033】
検出温度が高くなると、上限容量を低くし、あるいは上限容量と下限容量の両方を低くする。上限容量と下限容量をどの程度に低下させるかも、駆動用バッテリー1に内蔵される二次電池のタイプや大きさを考慮して最適値に設定する。
【0034】
表1は、Dサイズ(単1電池とおなじ外形)のニッケル−水素電池6個を直列に設定した電源モジュール16本を、1段に8本平行に並べて2段に積み重ねたものが、熱暴走する温度と残存容量を示している。この表に示すように、残存容量が規格容量の75%ないし100%である電池は、電池温度が100℃以上になると熱暴走する。これに対して、残存容量を規格容量の50%にまるまで放電させた電池は、電池温度が120℃になるまで熱暴走しない。
【0035】
【表1】
【0036】
以上の電池は、残存容量を50%とする状態では電池温度が100℃において熱暴走しない。さらに、残存容量を75%とする状態では、電池温度が80℃になっても熱暴走しない。このことから、電池温度が100℃のときに、バッテリーパック1を充放電させる実使用領域の上限容量を50%に設定して、電池温度が120℃になるまでの熱暴走を防止できる。
【0037】
電池温度によらず、収納室、車内、車外温度等の環境温度で上限容量を設定する場合は、上限容量を低くする検出温度を低くする。電池温度に比較してこれらの環境温度が相当に低くなるからである。環境温度で上限容量を低くする場合、たとえば、周囲温度が30℃よりも低いときに、上限容量を60%に設定して、周囲温度が30℃を越えると上限容量を50%に設定して熱暴走を防止する。
【0038】
コントロールユニット3は、環境温度と電池温度の両方で上限容量を変更することもできる。この装置は、環境温度と電池温度のいずれかが設定温度になると上限容量を低くして、熱暴走をより確実に防止する。
【0039】
検出温度が高くなったときに、上限容量を10%低くする設定する方法は、下限容量も10%低くして、実使用領域を同じにできる。下限容量も低下させる方法は、上限容量の低下量に等しく、あるいはほぼ等しく下限容量を低下させる。
【0040】
コントロールユニット3は、図示しないが、容量検知部と充放電制御部とを備える。容量検知部は、電池の電圧と、電流と、温度を検出して駆動用バッテリー1の相対残存容量を演算し、この相対残存容量が実使用領域となるように充放電制御部を制御して駆動用バッテリー1を充放電させる。
【0041】
以上のバッテリー制御装置は、駆動用バッテリー1の残存容量が実使用領域となるように充放電を制御するが、駆動用バッテリーを構成している複数の電池モジュールの残存容量が実使用領域となるように制御することもできる。この方法は、駆動用バッテリー全体の残存容量が実使用領域となるように制御する方法に比較して、各々の電池モジュールを理想的な状態で充放電できる特長がある。この方法は、各々の電池モジュールの残存容量を演算し、全ての電池モジュールの残存容量が実使用領域となるように充放電を制御する。さらに、各々の電池モジュールの残存容量が実使用領域となるように充放電させる方法は、全ての電池モジュールの温度を検出して、いずれかの電池モジュールの温度が設定温度よりも高くなると、上限容量を低く設定し、あるいは、各々の電池モジュールを制御する上限容量を、各々の電池モジュールの検出温度で設定することもできる。
【0042】
駆動用バッテリーの残存容量は、放電できる電流と時間の積、すなわちAhで表示される絶対容量と、最大充電容量に対する残存容量の比率で表示する相対残存容量とがある。駆動用バッテリーの残存容量を絶対容量で検出する方法は、実使用領域も絶対容量で設定し、駆動用バッテリーの残存容量を相対残存容量で演算する方法は、実使用領域を相対残存容量で設定する。相対残存容量で演算して制御する方法は、電池が劣化して最大充電容量が減少する駆動用バッテリーにおいて理想的な状態で充放電を制御できる。
【0043】
以上の実施例は、相対残存容量で実使用領域を特定しているので、駆動用バッテリーの残存容量も相対残存容量で演算する。相対残存容量は、充電できる最大の容量である最大充電容量に対する残存容量で演算する。
【0044】
容量検知部には、環境温度や電池温度等を検出するために温度センサーを接続している。電池温度を検出する温度センサーは、各々の電池モジュールに接近して配設され、あるいは各々の電池モジュールに接触して設けられる。周囲温度を検出する温度センサーは、自動車の外部に配設される。さらに、駆動用バッテリーを配設している車内温度を検出する温度センサーは、駆動用バッテリーの近傍である車内、あるいは、駆動用バッテリーの給気路等に配設される。
【0045】
容量検知部を内蔵するコントロールユニット3は、充電電流と放電電流に加えて、電池温度もパラメターとして残存容量を演算して、より正確に残存容量を演算できる。駆動用バッテリーは、温度が高くなると、自己放電量が多くなって、残存容量を減少させるからである。図に示すバッテリー制御装置は、温度センサーから出力される温度信号を記憶回路に記憶し、記憶回路から温度信号がコントロールユニットに出力される。
【0046】
記憶回路9は、EEPROMまたはRAM等の半導体メモリである。記憶回路9は、イグニッションスイッチを電源スイッチがオフになって、コントロールユニットが動作しない状態においても、温度センサーから出力される温度を所定の周期で記憶する。記憶回路は、たとえば、1秒〜2分の周期で、図5に示すように変化する温度を記憶する。記憶回路は、電源スイッチをオフとする状態においても動作状態にあって温度を記憶する。記憶回路は、できるかぎり消費電力を少なくするのがよい。このことから、記憶回路にはEPROMが適している。
【0047】
電源スイッチ5がオンになってコントロールユニット3が動作状態になると、記憶回路9に記憶している温度データーがコントロールユニット3に入力される。コントロールユニット3は、入力される温度データーをパラメターとして、駆動用バッテリー1の自己放電量を積算して演算し、残存容量を正しく補正する。
【0048】
記憶回路9は、記憶素子に加えて、消費電力の少ない省電力タイプのマイコンを内蔵することもできる。この記憶回路は、温度データーで電源スイッチをオンにする設定温度を変更することもできる。たとえば、温度が上昇する勾配と時間から将来に上昇する温度を推測し、推測される温度が設定温度よりも上昇する場合、設定温度になる前に、すなわち、設定温度よりも低い温度で電源スイッチをオンに切り換える。この装置は、駆動用バッテリーをより理想的な状態で保護できる。
【0049】
容量検知部は、駆動用バッテリー1に流れる電流を検出するために、駆動用バッテリー1と直列に電流検出抵抗を接続している。電流検出抵抗に発生する電圧は増幅して容量検知部に入力され、容量検知部は入力される電圧で駆動用バッテリー1の電流を検出する。充電電流と放電電流は、電流検出抵抗に発生する+−が逆になるので、+−の極性で充電と放電を識別できる。
【0050】
複数の電池を直列に接続している駆動用バッテリーは、各々の電池の電圧と温度とを別々に検出し、あるいは、複数の電池を直列に接続した電池モジュールを接続している駆動用バッテリーは、電池モジュールを1ユニットとして、電圧と温度を検出する。
【0051】
容量検知部は、劣化情報記憶装置の記憶される劣化情報から電池の最大充電容量を演算する。劣化情報から最大充電容量を演算する方法は、電池モジュールを満充電する必要がなく、また、完全に放電する必要もなく、速やかに最大充電容量を演算できる。
【0052】
劣化情報から最大充電容量を演算するには、たとえば、電池モジュールの内部抵抗を検出して、内部抵抗から電池モジュールの最大充電容量を演算する。駆動用バッテリー全体の最大充電容量を演算するには、駆動用バッテリー全体の内部抵抗を検出する。電池は劣化すると内部抵抗が大きくなると共に、最大充電容量が減少する。電池の内部抵抗は、劣化する状態と関連しているので、内部抵抗から最大充電容量を演算することができる。内部抵抗に対する劣化情報は劣化情報記憶装置に記憶させる。容量検知部は、電池の内部抵抗を検出し、この内部抵抗を劣化情報記に比較して、最大充電容量を演算する。
【0053】
電池モジュールの内部抵抗は、電池モジュールに流れる電流と電圧から検出できる。内部抵抗による電圧降下が、電池モジュールの出力電圧を低下させるからである。内部抵抗による電圧降下は、電池モジュールに電流を流さないときの出力電圧と、電池モジュールに所定の電流を流す状態での出力電圧との差から演算できる。電圧降下を電流で割ると内部抵抗が演算される。
【0054】
さらに、容量検知部は、充電容量から放電容量を減算して、残存容量を演算して、容量表示装置10で表示する。充電容量は、充電電流の積算値と充電効率との積で演算される。放電容量は放電電流の積算値で演算できる。残存容量が演算されると、残存容量/最大充電容量で相対残存容量を演算する。
【0055】
容量検知部は、検出した相対残存容量を上限容量と下限容量に比較して、相対残存容量が実使用領域にあるように、充放電制御部を制御して駆動用バッテリーを充放電させる。
【0056】
【発明の効果】
本発明の電気自動車のバッテリー制御装置は、コントロールユニットの電力消費を少なくして、駆動用バッテリーの高温障害を正確に監視できる特長がある。それは、本発明のバッテリー制御装置が、コントロールユニットの電源スイッチに、温度を検出する温度検出回路を接続し、イグニッションスイッチがオフのときに、温度が設定温度よりも高くなると温度検出回路がこのことを検出して、電源スイッチをオンに切り換えて、電装用バッテリーがコントロールユニットに電源を供給するからである。本発明の制御装置は、イグニッションスイッチがオフで、温度が設定温度よりも低いときには、電装用バッテリーからコントロールユニットに電力が供給されない。このため、イグニッションスイッチをオフにして、温度が低いとき、すなわち、駆動用バッテリーが熱暴走を起こさない状態で、コントロールユニットは電装用バッテリーの電力を消費しない。温度が高くなって、駆動用バッテリーが熱暴走を起こす確率が高くなると、電装用バッテリーはコントロールユニットに電力を供給して、駆動用バッテリーの熱暴走を防止するように制御する。
【0057】
本発明のバッテリーの制御装置は、このようにして、コントロールユニットに電装用バッテリーから電力を供給するので、電装用バッテリーの放電を少なくして、このバッテリーの過放電を防止しながら、長期間にわたってイグニッションスイッチをオフにする状態においても、駆動用バッテリーの高温障害を有効に防止できる特長が実現できる。
【図面の簡単な説明】
【図1】本発明の実施例の電気自動車のバッテリー制御装置の回路図
【図2】検出温度が設定温度よりも低い状態で駆動用バッテリーを充放電させる状態を示すグラフ
【図3】検出温度が設定温度よりも高い状態で上限容量を低くして駆動用バッテリーを充放電させる状態を示すグラフ
【図4】検出温度が設定温度よりも高い状態で上限容量と下限容量を低くして駆動用バッテリーを充放電させる状態を示すグラフ
【図5】記憶回路が記憶する温度が変化する状態を示すグラフ
【符号の説明】
1…駆動用バッテリー
2…電装用バッテリー
3…コントロールユニット
4…イグニッションスイッチ
5…電源スイッチ
6…温度検出回路
7…温度センサー
8…冷却ファン
9…記憶回路
10…容量表示装置
Claims (7)
- 電気自動車を走行させるモータを駆動する駆動用バッテリー(1)と、自動車に搭載される電装用バッテリー(2)から電源が供給されて駆動用バッテリー(1)の充放電を制御するコントロールユニット(3)と、イグニッションスイッチ(4)がオンの状態で、電装用バッテリー(2)からコントロールユニット(3)に電力を供給する電源スイッチ(5)とを備える電気自動車のバッテリー制御装置において、コントロールユニット(3)の電源スイッチ(5)に、温度を検出する温度検出回路(6)を接続しており、イグニッションスイッチ(4)がオフの状態で、温度が設定温度よりも高くなると温度検出回路(6)がこのことを検出して電源スイッチ(5)がオンに切り換えられて、コントロールユニット(3)に電源が供給されるようにしてなり、温度検出回路(6)が、電源スイッチ(5)をオフとする状態で、駆動用バッテリー(1)の温度を所定の周期で記憶する記憶回路(9)を備えており、記憶回路(9)に記憶される温度データ−を、電源スイッチ(5)がオンになったコントロールユニット(3)に供給することを特徴とする電気自動車のバッテリー制御装置。
- 温度検出回路(6)が、駆動用バッテリー(1)の温度、駆動用バッテリー(1)を搭載している収納室の温度、電気自動車の室内温度または車外温度のいずれかの温度を検出する温度センサー(7)を有する請求項1に記載される電気自動車のバッテリー制御装置。
- 電装用バッテリー(2)が温度検出回路(6)に電力を供給している請求項1に記載される電気自動車のバッテリー制御装置。
- 温度検出回路(6)が、温度が設定温度よりも高くなるとオンになるバイメタルである請求項1に記載される電気自動車のバッテリー制御装置。
- 駆動用バッテリー(1)を冷却する冷却ファン(8)を備え、イグニッションスイッチ(4)がオフの状態で、温度が設定温度よりも高くなると、温度検出回路(6)がこのことを検出して電源スイッチ(5)をオンに切り換えると共に、冷却ファン(8)を運転して駆動用バッテリー(1)を冷却する請求項1に記載される電気自動車のバッテリー制御装置。
- 駆動用バッテリー(1)を冷却する冷却ファン(8)を備え、冷却ファン(8)がコントロールユニット(3)に制御されて駆動用バッテリー(1)を冷却する請求項1に記載される電気自動車のバッテリー制御装置。
- 記憶回路(9)が半導体メモリである請求項1に記載される電気自動車のバッテリー制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37512599A JP3625721B2 (ja) | 1999-12-28 | 1999-12-28 | 電気自動車のバッテリー制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37512599A JP3625721B2 (ja) | 1999-12-28 | 1999-12-28 | 電気自動車のバッテリー制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001190001A JP2001190001A (ja) | 2001-07-10 |
JP3625721B2 true JP3625721B2 (ja) | 2005-03-02 |
Family
ID=18505014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37512599A Expired - Fee Related JP3625721B2 (ja) | 1999-12-28 | 1999-12-28 | 電気自動車のバッテリー制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3625721B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022198851A1 (zh) * | 2021-03-26 | 2022-09-29 | 三一汽车制造有限公司 | 热失控处理方法、装置和可读存储介质 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7301308B2 (en) | 2001-11-02 | 2007-11-27 | Aker Wade Power Technologies, Llc | Fast charger for high capacity batteries |
JP3738233B2 (ja) * | 2002-04-26 | 2006-01-25 | 三洋電機株式会社 | 車両用の電源装置 |
JP4967382B2 (ja) * | 2006-03-08 | 2012-07-04 | 日産自動車株式会社 | 組電池 |
JP5492055B2 (ja) * | 2010-11-16 | 2014-05-14 | 本田技研工業株式会社 | 電池保護装置および電池保護方法 |
JP2012138362A (ja) * | 2012-02-20 | 2012-07-19 | Nissan Motor Co Ltd | 組電池 |
WO2014104280A1 (ja) * | 2012-12-27 | 2014-07-03 | 株式会社 豊田自動織機 | 二次電池の制御方法及び制御装置 |
JP2018061372A (ja) * | 2016-10-06 | 2018-04-12 | トヨタ自動車株式会社 | 車両 |
JP2018113773A (ja) * | 2017-01-11 | 2018-07-19 | トヨタ自動車株式会社 | 太陽光発電システム |
CN110058163A (zh) * | 2019-03-19 | 2019-07-26 | 天长市龙亨电子有限公司 | 一种用于电动车控制器的检测分析系统 |
CN112117503B (zh) * | 2019-07-17 | 2023-03-14 | 上汽通用五菱汽车股份有限公司 | 电池加热功能检测方法、检测设备及可读存储介质 |
JP7492218B1 (ja) | 2023-08-28 | 2024-05-29 | 株式会社フィールドロジック | エネルギーマネージメントシステム |
-
1999
- 1999-12-28 JP JP37512599A patent/JP3625721B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022198851A1 (zh) * | 2021-03-26 | 2022-09-29 | 三一汽车制造有限公司 | 热失控处理方法、装置和可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JP2001190001A (ja) | 2001-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090253028A1 (en) | Temperature adjustment mechanism and vehicle | |
KR100758868B1 (ko) | 하이브리드 카의 전원장치 | |
JP4049959B2 (ja) | バッテリ充電方法 | |
US7771864B2 (en) | Method of detecting and responding to a cooling system failure in a power supply device | |
US7492129B2 (en) | Temperature abnormality detecting apparatus and method for secondary battery | |
JP3625721B2 (ja) | 電気自動車のバッテリー制御装置 | |
JP3931446B2 (ja) | 組電池の充電状態調整装置 | |
US20100072954A1 (en) | Battery charging time optimization system | |
JP4843921B2 (ja) | 組電池の容量調整装置及び組電池の容量調整方法 | |
JP2010200605A (ja) | バッテリパック寿命を延長させるためのインテリジェント温度制御システム | |
US20180083460A1 (en) | System and method of managing battery by using balancing battery | |
JP3345318B2 (ja) | コンデンサ蓄電装置 | |
JP2003259508A (ja) | 電気自動車用の電源装置 | |
JP2002325373A (ja) | バッテリ容量制御装置 | |
JP2001314046A (ja) | 組電池の充電装置、充電方法、および電動車両 | |
JP2018026300A (ja) | 充電システム | |
JP2003203679A (ja) | 自動車用の電源装置 | |
JP3157687B2 (ja) | 蓄電池の充電制御装置 | |
JPH0883630A (ja) | 組電池の異常検出装置 | |
JP2004080914A (ja) | 電気自動車 | |
JP3518198B2 (ja) | 組電池の充電制御システム | |
JP2001043902A (ja) | 自動車用バッテリーパックの制御方法 | |
JP2004281077A (ja) | 組電池の冷却制御装置 | |
CN210296574U (zh) | 用于动力电池组的温度控制系统、电池箱及电动汽车 | |
JP2006318704A (ja) | 電池モジュールおよびその温度制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040902 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041130 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |