WO2022198851A1 - 热失控处理方法、装置和可读存储介质 - Google Patents

热失控处理方法、装置和可读存储介质 Download PDF

Info

Publication number
WO2022198851A1
WO2022198851A1 PCT/CN2021/106984 CN2021106984W WO2022198851A1 WO 2022198851 A1 WO2022198851 A1 WO 2022198851A1 CN 2021106984 W CN2021106984 W CN 2021106984W WO 2022198851 A1 WO2022198851 A1 WO 2022198851A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal runaway
branch
processing method
branches
power
Prior art date
Application number
PCT/CN2021/106984
Other languages
English (en)
French (fr)
Inventor
朱伟强
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2022198851A1 publication Critical patent/WO2022198851A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of vehicles, and in particular, to a thermal runaway processing method, device and readable storage medium.
  • the main method at present is to power down the vehicle at high voltage, and then fire the vehicle. If the vehicle is in a crowded place or the environment is crowded, the burning vehicle and its large amount of smoke are likely to have a serious impact on the surrounding vehicles, people and the environment.
  • the present application aims to solve at least one of the above technical problems.
  • the first object of the present application is to provide a thermal runaway treatment method.
  • the second object of the present application is to provide a thermal runaway treatment device.
  • a third object of the present application is to provide a readable storage medium.
  • the technical solution of the present application provides a thermal runaway processing method for a power supply system including a plurality of branches, the thermal runaway processing method includes: in the case of thermal runaway in any branch down, disconnect the branch.
  • the power supply system includes a plurality of branches.
  • the branch In the event of thermal runaway in any branch, the branch is directly disconnected, thereby stripping the branch out of the power supply system, and disconnecting the branch with thermal runaway. , it will not affect the high-voltage architecture for other branches, and other branches can still work normally.
  • the branch circuit is provided with a normally closed switch, and disconnecting the branch circuit includes: a normally closed switch for disconnecting the branch circuit.
  • the thermal runaway processing method further includes: calculating the maximum allowable output power of the power supply system after disconnecting the branch where thermal runaway occurs; and controlling the branch without thermal runaway to output according to the maximum allowable output power.
  • the branch that does not have thermal runaway is controlled to output, so as to ensure that other branches will not be overloaded and can work normally.
  • calculating the maximum allowable output power of the power supply system includes:
  • P 1 represents the maximum allowable power before thermal runaway occurs
  • P 2 represents the maximum allowable power after thermal runaway occurs
  • N represents the number of branches in the power system
  • N ⁇ 2 represents the thermal runaway branch in the power system The number of ways, n ⁇ 1.
  • the calculation formula of the maximum allowable output power of the power supply system is given, and the maximum allowable output power of the power supply system can be accurately obtained.
  • the vehicle includes a drive system
  • the thermal runaway processing method further includes: controlling the operation of the drive system to limit the speed of the vehicle.
  • the power supply system is further provided with a cooling system
  • the cooling system includes a plurality of water circuits
  • the plurality of water circuits are used to cool the corresponding plurality of branches
  • the thermal runaway processing method further includes: a thermal runaway occurs in any branch.
  • thermal runaway keep the circulation of the water circuit corresponding to the branch with thermal runaway, and disconnect the circulation of the water circuit corresponding to the branch without thermal runaway;
  • the flow rate of the water circuit reduce the flow rate of the water circuit corresponding to the branch without thermal runaway; or in the case of thermal runaway in any branch, keep the circulation of the branch corresponding to the thermal runaway, and reduce the branch without thermal runaway Corresponds to the number of waterways.
  • the cooling system can perform cooling treatment on the branch circuit where thermal runaway occurs, so as to achieve thermal suppression through the interior of the power supply system.
  • the thermal runaway processing method further includes: controlling the cooling system to work at full power, and cooling the branch where thermal runaway occurs through the water circuit.
  • the branch circuit with thermal runaway is cooled by the water circuit, so as to realize full power cooling of the branch circuit with thermal runaway, thereby realizing thermal suppression from the inside of the power supply system.
  • the cooling system further includes a solenoid valve
  • the thermal runaway processing method further includes: controlling the solenoid valve to realize water circuit control.
  • the cooling liquid of the cooling system is concentrated to cool the branch where thermal runaway occurs, so that other branches are not affected by the heat brought by the thermal runaway through the cooling liquid as much as possible.
  • the vehicle includes an air conditioning system
  • the thermal runaway processing method further includes: controlling the air conditioning system to turn on refrigeration, and cooling the branch where thermal runaway occurs.
  • the air-conditioning system is controlled to turn on refrigeration, and the thermal runaway branch is cooled to achieve thermal suppression.
  • the technical solution of the present application provides a thermal runaway processing device, including: a memory, storing programs or instructions; a processor, executing the programs or instructions; wherein, the processor is executing the programs or instructions.
  • a thermal runaway processing device including: a memory, storing programs or instructions; a processor, executing the programs or instructions; wherein, the processor is executing the programs or instructions.
  • the vehicle provided by the technical solution of the present application implements the steps of the thermal runaway processing method according to any technical solution of the present application, so it has all the beneficial effects of the thermal runaway processing method according to any technical solution of the present application, and will not be repeated here.
  • the technical solution of the present application provides a readable storage medium, the readable storage medium stores programs or instructions, and when the programs or instructions are executed, thermal runaway processing of any of the above-mentioned technical solutions is realized. steps of the method.
  • the readable storage medium provided by the technical solution of the present application realizes the steps of the thermal runaway treatment method according to any technical solution of the present application, so it has all the beneficial effects of the thermal runaway treatment method according to any technical solution of the present application, and will not be repeated here. Repeat.
  • FIG. 1 is one of the schematic flow charts of a thermal runaway processing method according to an embodiment of the present application
  • FIG. 2 is a second schematic flowchart of a thermal runaway processing method according to an embodiment of the present application
  • FIG. 3 is a third schematic flowchart of a thermal runaway processing method according to an embodiment of the present application.
  • FIG. 4 is a fourth schematic flowchart of a thermal runaway processing method according to an embodiment of the present application.
  • FIG. 5 is a fifth schematic flowchart of a thermal runaway processing method according to an embodiment of the present application.
  • FIG. 6 is a sixth schematic flowchart of a thermal runaway processing method according to an embodiment of the present application.
  • FIG. 7 is a seventh schematic flowchart of a thermal runaway processing method according to an embodiment of the present application.
  • FIG. 8 is an eighth schematic flowchart of a thermal runaway processing method according to an embodiment of the present application.
  • FIG. 9 is a ninth schematic flowchart of a thermal runaway processing method according to an embodiment of the present application.
  • FIG. 10 is a tenth schematic flow chart of a thermal runaway processing method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a system structure of a thermal runaway processing device according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a battery system according to one embodiment of the present application.
  • 110 The first branch circuit, 112: The A1 electric box, 114: The A2 electric box, 116: The A N electric box, 118: The first power-on normally closed switch, 120: The second branch circuit, 122: No. B 1 electrical box, 124: No. B 2 electrical box, 126: No. B N electrical box, 128: Second power-on normally closed switch, 130: Cooling system, 132: First water circuit, 134: Second water circuit, 136 : three-way valve, 140: drive system, 200: thermal runaway processing device, 210: memory, 220: processor.
  • thermal runaway suppression mainly includes the following aspects:
  • This method combines the algorithm control of thermal runaway by BMS (Battery Management System, battery management system). Once the BMS detects the occurrence of thermal runaway, it will start the relevant fire extinguishing device to start the fire. For example, a power battery box thermal runaway warning and automatic fire extinguishing control system in the related art.
  • a battery module thermal management device in which a heat pipe and a phase change material are coupled in the related art, and a battery module in the related art equipped with a super-insulation material, both use a new type of phase change material to absorb the Thermal principles carry out thermal runaway control.
  • an isolation material for suppressing the thermal runaway diffusion of a battery, and a battery module in the related art equipped with a super-insulation material are both thermally inhibited by a new type of heat-insulating material.
  • the main method is to power down the vehicle at high voltage, and then fire and extinguish the vehicle, which has the following problems:
  • the purpose of this embodiment is to solve at least one of the above problems.
  • this embodiment provides a thermal runaway processing method for a power supply system including multiple branches, and the thermal runaway processing method includes the following steps:
  • Step S102 in the case of thermal runaway in any branch, disconnect the branch.
  • a general commercial electric vehicle is equipped with a multi-branch power supply system.
  • the battery in the power supply system is generally placed in the electric box.
  • the vehicle is thermally out of control, the vehicle is powered off at high voltage, the vehicle cannot move, the vehicle burns and produces The smoke will seriously affect the safety of the people around the vehicle and the vehicle.
  • the power supply system includes a plurality of branches.
  • the branch In the event of thermal runaway in any branch, the branch is directly disconnected, so that the branch is separated from the power supply system, and the branch in which the thermal runaway occurs is disconnected , it will not affect the high-voltage architecture for other branches, and other branches can still work normally.
  • the vehicle with thermal runaway can be moved, and the vehicle can be moved away from crowded places and places with dense vehicles, so as to avoid affecting the safety of people around the vehicle and the vehicle.
  • the present embodiment further includes the following technical features:
  • the branch is provided with a normally closed switch, and the disconnected branch includes:
  • Step S202 disconnect the normally closed switch of the branch.
  • the power supply system includes a plurality of branches, and each branch is provided with a switch, and the switch can be a power-on normally closed switch. .
  • the normally closed switch of the branch is disconnected, and the branch is separated from the power supply system, so that the branch with thermal runaway will not affect other normal branches on the high-voltage structure, and no heat will occur.
  • the out-of-control branch can be powered on and off normally and work normally.
  • the present embodiment further includes the following technical features:
  • the thermal runaway treatment method further includes the following steps:
  • Step S302 after disconnecting the branch where thermal runaway occurs, calculate the maximum allowable output power of the power supply system
  • Step S304 according to the maximum allowable output power, control the branch without thermal runaway to output.
  • the normally closed switch corresponding to the branch is disconnected, and the branch is separated from the power supply system.
  • the branch still maintains normal high-voltage contact and output.
  • the capacity of the power system will be reduced due to the reduction of one branch.
  • the present embodiment further includes the following technical features:
  • Calculate the maximum allowable output power of the power system including:
  • P 1 represents the maximum allowable power before thermal runaway occurs
  • P 2 represents the maximum allowable power after thermal runaway occurs
  • N represents the number of branches in the power system
  • N ⁇ 2 represents the thermal runaway branch in the power system The number of ways, n ⁇ 1.
  • the maximum allowable output power of the power system after disconnecting the branch with thermal runaway can be calculated, that is, after disconnecting the branch with thermal runaway , the maximum allowable output power of the power system.
  • This embodiment provides a formula for calculating the maximum allowable output power of the power supply system, so that the maximum allowable output power of the power supply system can be accurately obtained.
  • the present embodiment further includes the following technical features:
  • the vehicle includes a drive system, and the thermal runaway processing method further includes:
  • step S402 the driving system is controlled to work, and the speed of the vehicle is limited.
  • the normally closed switch on the thermal runaway branch is controlled to be disconnected, the normally closed switches of other branches remain closed, and the vehicle controller continues to control the main drive motor of the drive system to perform Work to meet the vehicle's moving requirements, so that the vehicle cannot be moved when the surrounding environment is dense, which will further cause dangerous situations.
  • the maximum allowable output power of the power supply system is obtained after disconnecting the branch where thermal runaway occurs, and according to the maximum allowable output power, the branch without thermal runaway is controlled to output, in order to restrict the driver from using the vehicle with thermal runaway normally.
  • the speed of the vehicle is limited. When moving the car, it will not cause other safety hazards due to the excessive speed of the car. For example, the vehicle speed can be limited to ⁇ 5km/h, and only the emergency moving function of the vehicle can be realized.
  • the present embodiment further includes the following technical features:
  • the power supply system is further provided with a cooling system, the cooling system includes a plurality of water circuits, and the plurality of water circuits are used to cool the corresponding plurality of branches, and the thermal runaway processing method further includes:
  • Step S502 in the case that thermal runaway occurs in any branch, keep the circulation of the water circuit corresponding to the branch in which thermal runaway occurs, and disconnect the circulation of the water circuit corresponding to the branch without thermal runaway; or
  • Step S504 in the case that thermal runaway occurs in any branch, increase the flow rate of the water path corresponding to the branch in which thermal runaway occurs, and reduce the flow rate of the water path corresponding to the branch without thermal runaway; or
  • Step S506 in the case that thermal runaway occurs in any branch, the circulation of the water circuit corresponding to the branch with thermal runaway is retained, and the number of water circuits corresponding to the branch without thermal runaway is reduced.
  • each branch is provided with a water circuit, and the water circuit is connected to the cooling system.
  • the branch circuit can be cooled.
  • the branch corresponding to the circulation of the water circuit disconnect the circulation of the water circuit corresponding to the branch without thermal runaway; or in the case of thermal runaway in any branch, increase the flow rate of the branch corresponding to the thermal runaway, reduce the thermal runaway
  • the branch with thermal runaway corresponds to the flow of the water circuit; or in the case of thermal runaway in any branch, the circulation of the water circuit corresponding to the branch with thermal runaway is reserved, and the number of water circuits corresponding to the branch without thermal runaway is reduced, so that the The cooling system can cool down the branch where thermal runaway occurs, and realize thermal suppression through the interior of the power supply system (electric box).
  • the present embodiment further includes the following technical features:
  • Thermal runaway treatment methods also include:
  • Step S602 controlling the cooling system to work at full power, and cooling the branch where thermal runaway occurs through the water circuit.
  • the circulation of the water circuit corresponding to the branch with thermal runaway is reserved, the circulation of the water circuit corresponding to the branch without thermal runaway is disconnected, and the cooling system is controlled to work at full power.
  • the water circuit cools the branch with thermal runaway to achieve full power to cool the branch with thermal runaway, and then realize thermal suppression from the inside of the power supply system (electric box).
  • the present embodiment further includes the following technical features:
  • the cooling system further includes a solenoid valve
  • the thermal runaway treatment method further includes:
  • step S702 the water circuit control is realized by controlling the solenoid valve.
  • the power supply system includes a plurality of branches, each branch is provided with a switch, the switch can be a power-on normally closed switch, each branch is provided with a water circuit, and the water circuit is connected to the cooling system, and the cooling system and the The circulation of the water circuit can cool the branch circuit.
  • Each water circuit is provided with a solenoid valve. By controlling the opening and relationship of the solenoid valve, the communication between the cooling system and the water circuit is realized.
  • the temperature of the cooling liquid will increase. If the water circuit of the thermal runaway branch does not also participate in the circulation of the cooling system, the coolant with increased temperature in the cooling system will bring heat to the cooling system. In other waterways, the normal operation of the branch without thermal runaway is affected.
  • the circulation of the water circuit corresponding to the branch with thermal runaway is reserved, and the circulation of the water circuit corresponding to the branch without thermal runaway is disconnected;
  • the coolant of the cooling system is concentrated to cool the branch circuit with thermal runaway, which can make other branches as much as possible. Not affected by thermal runaway heat introduced through the coolant.
  • the cooling system works at full power to cool the water circuit where the thermal runaway branch occurs, and take away the heat of the thermal runaway electrical box as much as possible until the fire is suppressed or the power of the vehicle is insufficient.
  • an electromagnetic three-way valve can be set on the waterway, and the electromagnetic three-way valve is respectively connected to the two water circuits and the cooling system.
  • the control of the electromagnetic three-way valve can allow the coolant to centrally cool the thermally runaway branch, and also make other branches not affected by the heat brought by the thermal runaway through the coolant as much as possible.
  • the present embodiment further includes the following technical features:
  • the vehicle includes an air conditioning system, and the thermal runaway processing method further includes:
  • Step S802 the air-conditioning system is controlled to turn on refrigeration to cool the branch where thermal runaway occurs.
  • the vehicle is provided with an air-conditioning system, and when thermal runaway occurs in any branch, the air-conditioning system is controlled to turn on refrigeration to cool the branch that has thermal runaway to achieve thermal suppression.
  • thermal runaway occurs in any branch
  • the driver is allowed to move the car to avoid the influence of the thermal runaway vehicle on the surrounding area.
  • the branch circuit is cooled to take away the heat of the thermal runaway electric box as much as possible, so that the fire can be suppressed.
  • this embodiment provides a thermal runaway processing apparatus 200, including a memory 210 and a processor 220, the memory 210 stores programs or instructions; the processor 220 executes the programs or instructions; wherein, the processor 220 is executing When a program or instruction is used, the steps of the thermal runaway processing method according to any embodiment of the present application are implemented.
  • This embodiment provides a readable storage medium, where a program or an instruction is stored in the readable storage medium, and when the program or instruction is executed, the steps of the thermal runaway processing method of any of the foregoing embodiments are implemented.
  • This embodiment provides a thermal runaway processing method, which is based on the unique multi-branch electrical system of commercial vehicles, and utilizes the feature that the high-voltage system is still available when a branch (branch includes multiple electrical boxes) fails. Cooling inhibits the spread of thermal runaway.
  • the present embodiment also provides a strategy for vehicle action after thermal runaway.
  • the power supply system is a multi-branch circuit, that is, it includes a plurality of branch circuits, the branch circuits are connected in parallel with the branch circuit supports, each branch circuit includes a plurality of electrical boxes, and the electrical boxes are connected in series, and each branch has an upper Electrical normally closed switch.
  • the faulty branch can be stripped out of the power system by disconnecting the switch, so that other branches are not affected.
  • the cooling system and its control strategy include that the vehicle is provided with an air-conditioning system (including an air-conditioning compressor), a cooling system (including a cooling liquid, a water circuit, a water pump and a solenoid valve), and when a certain branch is thermally out of control,
  • an air-conditioning system including an air-conditioning compressor
  • a cooling system including a cooling liquid, a water circuit, a water pump and a solenoid valve
  • the cooling liquid of the cooling system can be concentrated to cool the thermally runaway branch, and other branches can also be protected from the influence of the heat brought by the thermal runaway through the cooling liquid as much as possible.
  • the compressor of the air-conditioning system works at full power
  • the water pump of the cooling system runs at full speed to cool the branch where thermal runaway occurs as much as possible.
  • the drive system control strategy after thermal runaway occurs, the vehicle controller continues to control the main drive motor to work, so as to meet the vehicle's manoeuvring requirements. Avoid vehicles that cannot be moved when the surrounding environment is dense, which will further cause dangerous situations.
  • a switch In terms of high-voltage architecture, a switch is set on each branch, and the switch is normally closed when powered on, which does not affect the normal power-on and power-off process.
  • the controller can disconnect the switch corresponding to the branch to strip out the power supply system without causing further impact on the high-voltage structure of other branches.
  • other branches still maintain normal high-voltage contact and output.
  • the system capacity will be reduced due to one less branch.
  • the controller recalculates the battery system capacity to ensure that other branches will not be overloaded.
  • an electromagnetic three-way valve is added at the branch of the water circuit to control the flow direction of the coolant.
  • the state of the three-way valve is controlled, and only the thermal runaway branch still has a water cooling cycle.
  • control strategy is used to identify which branch has thermal runaway.
  • the controller determines the thermal runaway position, on the one hand, it controls the switches on the thermal runaway branch to turn off, and the other branch switches remain closed, and the controller recalculates the maximum allowable output power:
  • the vehicle speed limit can be adopted, for example, the vehicle speed is limited to ⁇ 5km/h, and only the emergency vehicle movement function of the vehicle can be realized.
  • the controller controls the solenoid valve so that the water circuit that only retains the thermal runaway branch can still circulate.
  • the cooling system works at full power (such as the compressor works at full power, the circulating water pump runs at full speed, etc.), cools the water circuit of the thermal runaway branch, and takes away the heat of the thermal runaway electric box as much as possible until the fire is suppressed, or the whole The car's battery is low.
  • FIG. 12 it is a power system architecture of a vehicle.
  • the power system is provided with two branches, namely a first branch 110 and a second branch 120 , and a cooling system 130 and a drive system 140 .
  • the power system supplies power to the drive system 140 .
  • the first branch circuit 110 includes the A1th electric box 112, the A2th electric box 114, . 120 includes the B1th electrical box 122, the B2th electrical box 124, .
  • the branches 120 are connected in series, in the first branch 110, the A 1st electrical box 112, the A 2 electrical box 114, ... and the A N electrical box 116 are connected in series, in the second branch 120, the B 1 electrical box 122.
  • the B2th electrical box 124, . . . and the BNth electrical box 126 are connected in series.
  • the cooling system 130 is provided with a first water channel 132 , a second water channel 134 and a three-way valve 136 .
  • the three-way valve 136 controls the first water channel 132 and/or the second water channel 134 to be connected to the cooling system 130 .
  • the cooling system can continue to work, and the thermal runaway branch can be cooled with full power to suppress the heat from the inside (source) of the electrical box.
  • the main drive system is still allowed to work, allowing the vehicle to be moved, so as to avoid the vehicle being unable to move in the dense surrounding environment, which will further cause dangerous situations.
  • the power supply system includes a plurality of branches.
  • the branch In the event of thermal runaway in any branch, the branch is directly disconnected, thereby stripping the branch out of the power supply system and the thermal runaway branch occurs. If it is disconnected, it will not affect the high-voltage structure of other branches, and other branches can still work normally. Under the condition that other branch roads can still work normally, the vehicle with thermal runaway can be moved, and the vehicle can be moved away from crowded places and places with dense vehicles, so as to avoid affecting the safety of people around the vehicle and the vehicle.
  • each branch is provided with a water circuit, and the water circuit is connected to the cooling system.
  • the branch circuit can be cooled.
  • the branch circuit with thermal runaway corresponds to the circulation of the water circuit
  • the branch circuit without thermal runaway corresponds to the circulation of the water circuit, so that the cooling system can cool the branch circuit with thermal runaway, and realize the cooling process through the power system (electric box).
  • Thermal inhibition At the same time of thermal suppression inside the power supply system, fire-fighting measures are adopted externally. The combination of the two can better control thermal runaway, reduce the impact of thermal runaway branches on other normal working branches, and further improve It is good to realize functions such as moving cars.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Public Health (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种热失控处理方法,用于包括多个支路的电源系统,该热失控处理方法包括:在任一支路发生热失控的情况下,断开支路。该电源系统包括多个支路,在任一支路发生热失控的情况下,直接断开该条支路,从而把该支路剥离出电源系统,发生热失控的支路断开,对于其它支路不会造成高压架构上的影响,其它支路还可以正常工作。还公开了一种热失控处理装置和一种可读存储介质。

Description

热失控处理方法、装置和可读存储介质
本申请要求于2021年03月26日在中国国家知识产权局提交的申请号为“202110327854.0”、发明名称为“热失控处理方法、装置和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆的技术领域,具体而言,涉及一种热失控处理方法、装置和可读存储介质。
背景技术
相关技术中,热失控发生后,目前的主要方式就是对车辆进行高压下电处理,继而对车辆进行消防灭火。如果车辆在人流或环境拥挤的地方,燃烧的车辆及其大量的烟气容易对周边的车辆、人群及环境造成严重影响。
发明内容
本申请旨在解决上述技术问题的至少之一。
为此,本申请的第一目的在于提供一种热失控处理方法。
本申请的第二目的在于提供一种热失控处理装置。
本申请的第三目的在于提供一种可读存储介质。
为实现本申请的第一目的,本申请的技术方案提供了一种热失控处理方法,用于包括多个支路的电源系统,该热失控处理方法包括:在任一支路发生热失控的情况下,断开支路。
本技术方案中,电源系统包括多个支路,在任一支路发生热失控的情况下,直接断开该条支路,从而把该支路剥离出电源系统,发生热失控的支路断开,对于其它支路不会造成高压架构上的影响,其它支路还可以正常工作。
另外,本申请上述技术方案提供的技术方案还可以具有如下附加技术 特征:
上述技术方案中,支路设有常闭开关,断开支路包括:断开支路的常闭开关。
本技术方案中,通过设置一个常闭开关,实现发生热失控时,断开相应的支路,进而使得只将发生热失控的支路断开,其余支路正常工作,常闭开关结构简单,成本低。
上述技术方案中,热失控处理方法还包括:断开发生热失控的支路后,计算电源系统的最大允许输出功率;根据最大允许输出功率,控制未发生热失控的支路进行输出。
本技术方案中,根据最大允许输出功率,控制未发生热失控的支路进行输出,从而保证其它支路不会过载输出,能够正常工作。
上述技术方案中,计算电源系统的最大允许输出功率,包括:
Figure PCTCN2021106984-appb-000001
其中,P 1表示发生热失控前的最大允许功率,P 2表示发生热失控后的最大允许功率,N表示电源系统的支路的数量,N≥2,n表示电源系统中发生热失控的支路的数量,n≥1。
本技术方案中,给出电源系统的最大允许输出功率计算公式,可以准确的得到电源系统的最大允许输出功率。
上述技术方案中,车辆包括驱动系统,热失控处理方法还包括:控制驱动系统工作,对车辆的速度进行限制。
本技术方案中,通过限速,可以保证满足车辆电源系统的最大允许输出功率,实现挪车。
上述技术方案中,电源系统还设有冷却系统,冷却系统包括多个水路,多个水路用于给对应的多个支路进行冷却,热失控处理方法还包括:在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,断开未发生热失控的支路对应水路的循环;或在任一支路发生热失控的情况下,增大发生热失控的支路对应水路的流量,减小未发生热失控的支路对应水路的流量;或在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,减少未发生热失控的支路对应水路的数量。
本技术方案中,冷却系统可以对发生热失控的支路进行降温处理,实现通过电源系统内部进行热抑制。
上述技术方案中,热失控处理方法还包括:控制冷却系统全功率工作,通过水路对发生热失控的支路,进行冷却。
本技术方案中,通过水路对发生热失控的支路进行冷却,实现全功率对发生热失控的支路进行降温,进而从电源系统内部实现热抑制。
上述技术方案中,冷却系统还包括电磁阀,热失控处理方法还包括:通过控制电磁阀,实现水路控制。
本技术方案中,通过电磁阀的控制,使冷却系统的冷却液集中对发生热失控的支路进行冷却,可以使其它支路尽可能不受热失控通过冷却液带来热量的影响。
上述技术方案中,用于车辆的电源系统,车辆包括空调系统,热失控处理方法还包括:控制空调系统开启制冷,对发生热失控的支路进行降温。
本技术方案中,当任一支路发生热失控时,控制空调系统开启制冷,对发生热失控的支路进行降温,实现热抑制。
为实现本申请的第二目的,本申请的技术方案提供了一种热失控处理装置,包括:存储器,存储有程序或指令;处理器,执行程序或指令;其中,处理器在执行程序或指令时,实现如本申请任一技术方案的热失控处理方法的步骤。
本申请技术方案提供的车辆实现如本申请任一技术方案的热失控处理方法的步骤,因而其具有如本申请任一技术方案的热失控处理方法的全部有益效果,在此不再赘述。
为实现本申请的第三目的,本申请的技术方案提供了一种可读存储介质,可读存储介质存储有程序或指令,程序或指令被执行时,实现上述任一技术方案的热失控处理方法的步骤。
本申请技术方案提供的可读存储介质实现如本申请任一技术方案的热失控处理方法的步骤,因而其具有如本申请任一技术方案的热失控处理方法的全部有益效果,在此不再赘述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本 申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请的一个实施例的热失控处理方法的流程示意图之一;
图2为根据本申请的一个实施例的热失控处理方法的流程示意图之二;
图3为根据本申请的一个实施例的热失控处理方法的流程示意图之三;
图4为根据本申请的一个实施例的热失控处理方法的流程示意图之四;
图5为根据本申请的一个实施例的热失控处理方法的流程示意图之五;
图6为根据本申请的一个实施例的热失控处理方法的流程示意图之六;
图7为根据本申请的一个实施例的热失控处理方法的流程示意图之七;
图8为根据本申请的一个实施例的热失控处理方法的流程示意图之八;
图9为根据本申请的一个实施例的热失控处理方法的流程示意图之九;
图10为根据本申请的一个实施例的热失控处理方法的流程示意图之十;
图11为根据本申请的一个实施例的热失控处理装置的系统结构示意图;
图12为根据本申请的一个实施例的电池系统的示意图。
其中,图11和图12中附图标记与部件名称之间的对应关系为:
110:第一支路,112:第A 1电箱,114:第A 2电箱,116:第A N电箱,118:第一上电常闭开关,120:第二支路,122:第B 1电箱,124:第B 2电箱,126:第B N电箱,128:第二上电常闭开关,130:冷却系统,132:第一水路,134:第二水路,136:三通阀,140:驱动系统,200:热失控处理装置,210:存储器,220:处理器。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申 请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图12描述本申请一些实施例的一种热失控处理方法、装置和可读存储介质。
相关技术中,热失控抑制主要包括以下方面:
(1)BMS启动灭火剂的方式
该种方式结合BMS(Battery Management System,电池管理系统)对热失控的算法控制,一旦BMS检测到热失控发生,便启动相关的灭火装置启动,进行灭火。例如相关技术的一种动力电池箱热失控预警与自动灭火控制系统。
(2)通过新型的材料
相关技术的一种热管和相变材料耦合的电池模组热管理装置,以及相关技术的一种配置超隔热材料的电池模组,均为通过利用新型的相变材料,利用相变材料吸热的原理进行热失控的控制。
相关技术的一种用于抑制电池热失控扩散的隔离材料,以及相关技术的一种配置超隔热材料的电池模组,均为通过新型的隔热材料进行热抑制。
(3)通过新的结构设计
相关技术的一种基于热管的电池模组热失控扩展抑制装置,以及相关技术的锂离子电池组散热系统,均为通过在散热通道上的改变来抑制热失控。
相关技术中,车辆热失控发生后,主要方式就是对车辆进行高压下电处理,继而对车辆进行消防灭火,存在以下问题:
(1)车辆热失控时高压下电,车辆不能挪动,在人流或环境拥挤的地方,燃烧的车辆及其大量的烟气容易对周边的车辆、人群及环境造成严重影响。
(2)热失控后的消防灭火,目前主要通过电箱外部大量冲水降温,效率低下,需要耗费大量的人力物力。
综上所述,本实施例的目的在于解决以上问题的至少之一。
实施例1:
如图1所示,本实施例提供了一种热失控处理方法,用于包括多个支路的电源系统,该热失控处理方法包括以下步骤:
步骤S102,在任一支路发生热失控的情况下,断开支路。
目前,一般商用的电动汽车上,设有多支路的电源系统,电源系统中的电池一般放置于电箱之中,车辆发生热失控时,车辆高压下电,车辆无法移动,车辆燃烧以及产生的烟气,会严重影响车辆周围的人员以及车辆的安全。
本实施例中,电源系统包括多个支路,在任一支路发生热失控的情况下,直接断开该条支路,从而把该支路剥离出电源系统,发生热失控的支路断开,对于其它支路不会造成高压架构上的影响,其它支路还可以正常工作。
在其它支路还可以正常工作的情况下,可以对发生热失控的车辆进行挪车,将车辆从人员密集以及车辆密集的地点挪走,避免影响车辆周围的人员以及车辆的安全。
实施例2:
如图2所示,本实施例的一种热失控处理方法,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征:
支路设有常闭开关,断开支路包括:
步骤S202,断开支路的常闭开关。
本实施例中,电源系统包括多个支路,在每条支路上设置一个开关,开关可以为上电常闭开关,具体而言,该开关上电常闭,不影响车辆正常的上下电流程。当支路出现热失控时,断开支路的常闭开关,将该支路剥离出电源系统,使得发生热失控的支路,不会对其他正常支路造成高压架构上的影响,未发生热失控的支路可以正常进行上下电,正常工作。
本实施例中,通过设置一个常闭开关,实现发生热失控时,断开相应的支路,进而使得只将发生热失控的支路断开,其余支路正常工作,常闭开关结构简单,成本低,当发生热失控时,还可以对发生热失控的车辆进行挪车,将车辆从人员密集以及车辆密集的地点挪走,避免影响车辆周围的人员以及车辆的安全。
实施例3:
如图3所示,本实施例的一种热失控处理方法,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征:
热失控处理方法还包括以下步骤:
步骤S302,断开发生热失控的支路后,计算电源系统的最大允许输出功 率;
步骤S304,根据最大允许输出功率,控制未发生热失控的支路进行输出。
本实施例中,在支路发生热失控的情况下,将该支路对应的常闭开关断开,进而将该支路剥离出电源系统,同时,断开发生热失控的支路后,其它支路仍保持正常的高压接触和输出,相应的,电源系统的能力会因为减少一条支路而降低,此时,首先,重新计算电源系统的能力,获取电源系统的最大允许输出功率,然后,根据最大允许输出功率,控制未发生热失控的支路进行输出,从而保证其它支路不会过载输出,能够正常工作。
实施例4:
本实施例的一种热失控处理方法,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征:
计算电源系统的最大允许输出功率,包括:
Figure PCTCN2021106984-appb-000002
其中,P 1表示发生热失控前的最大允许功率,P 2表示发生热失控后的最大允许功率,N表示电源系统的支路的数量,N≥2,n表示电源系统中发生热失控的支路的数量,n≥1。
具体而言,根据热失控前的最大允许功率和电源系统的支路数量,可以计算出断开发生热失控的支路后电源系统的最大允许输出功率,即断开发生热失控的支路后,电源系统的最大允许输出功率。
本实施例给出电源系统的最大允许输出功率计算公式,可以准确的得到电源系统的最大允许输出功率。
实施例5:
如图4所示,本实施例的一种热失控处理方法,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征:
车辆包括驱动系统,热失控处理方法还包括:
步骤S402,控制驱动系统工作,对车辆的速度进行限制。
本实施例中,当支路发生热失控的情况下,控制热失控支路上的常闭开关断开,其它支路常闭开关保持闭合状态,车辆的控制器继续控制驱动系统的主驱电机进行工作,满足车辆的挪车要求,免车辆在周边环境密集情况下不能挪 车,进一步造成危险的情况。
本实施例中,获取断开发生热失控的支路后,电源系统的最大允许输出功率,根据最大允许输出功率,控制未发生热失控的支路进行输出,为了限制司机正常使用热失控的车辆,采取整车限速等方式,控制驱动系统工作,对车辆的速度进行限制,通过限速,可以保证满足车辆电源系统的最大允许输出功率,实现挪车,另外,对车速进行限制,在进行挪车时,不会因为车速过快,导致其他安全隐患。举例而言,可以限制车速≤5km/h,仅能实现车辆的应急挪车功能。
实施例6:
如图5、图6和图7所示,本实施例的一种热失控处理方法,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征:
电源系统还设有冷却系统,冷却系统包括多个水路,多个水路用于给对应的多个支路进行冷却,热失控处理方法还包括:
步骤S502,在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,断开未发生热失控的支路对应水路的循环;或
步骤S504,在任一支路发生热失控的情况下,增大发生热失控的支路对应水路的流量,减小未发生热失控的支路对应水路的流量;或
步骤S506,在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,减少未发生热失控的支路对应水路的数量。
热失控发生时,整车高压下电,只能等消防救援力量,通过外部大量喷水降温的方式。但通常这种喷水很难进入到电箱内部,降温效果不明显,耗费大量的水。
本实施例中,每个支路均设有一个水路,水路连通冷却系统,通过冷却系统和水路的循环,可以对支路进行冷却,在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,断开未发生热失控的支路对应水路的循环;或在任一支路发生热失控的情况下,增大发生热失控的支路对应水路的流量,减小未发生热失控的支路对应水路的流量;或在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,减少未发生热失控的支路对应水路的数量,从而使得冷却系统可以对发生热失控的支 路进行降温处理,实现通过电源系统(电箱)内部进行热抑制。
在电源系统内部进行热抑制的同时,再通过外部采用消防灭火措施,两者结合,可以更好的对热失控进行控制,降低发生热失控支路对其余正常工作支路产生的影响,进而更好的实现挪车等功能。
实施例7:
如图8所示,本实施例的一种热失控处理方法,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征:
热失控处理方法还包括:
步骤S602,控制冷却系统全功率工作,通过水路对发生热失控的支路,进行冷却。
本实施例中,在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,断开未发生热失控的支路对应水路的循环,控制冷却系统全功率工作,通过水路对发生热失控的支路进行冷却,实现全功率对发生热失控的支路进行降温,进而从电源系统(电箱)内部实现热抑制。
在电源系统内部进行热抑制的同时,再通过外部采用消防灭火措施,两者结合,可以更好的对热失控进行控制,降低发生热失控支路对其余正常工作支路产生的影响,进而更好的实现挪车等功能。
实施例8:
如图9所示,本实施例的一种热失控处理方法,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征:
冷却系统还包括电磁阀,热失控处理方法还包括:
步骤S702,通过控制电磁阀,实现水路控制。
本实施例中,电源系统包括多个支路,在每条支路上设置一个开关,开关可以为上电常闭开关,每个支路均设有一个水路,水路连通冷却系统,通过冷却系统和水路的循环,可以对支路进行冷却,每个水路设有一个电磁阀,通过控制电磁阀的开启与关系,实现冷却系统与水路的连通。
当冷却液对发生热失控支路进行冷却时,冷却液的温度会增高,如果未发生热失控支路的水路也参与冷却系统的循环,会导致冷却系统中温度增加的冷却液将热量带到其他水路中,进而影响未发生热失控支路的正常工作。所以, 本实施例中,在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,断开未发生热失控的支路对应水路的循环;或在任一支路发生热失控的情况下,增大发生热失控的支路对应水路的流量,减小未发生热失控的支路对应水路的流量;或在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,减少未发生热失控的支路对应水路的数量,通过电磁阀的控制,使冷却系统的冷却液集中对发生热失控的支路进行冷却,可以使其它支路尽可能不受热失控通过冷却液带来热量的影响。
本实施例中,冷却系统全功率工作,对发生热失控支路的水路进行冷却,尽可能的带走热失控电箱的热量,直到火情得到抑制,或者整车电量不足。
具体而言,当支路为两个时,对应的水路也为两路,则可以在水路上设置电磁三通阀,电磁三通阀分别连通两条水路和冷却系统,当某一支路发生热失控时,可通过电磁三通阀的控制,使冷却液集中冷却热失控的支路,也能使其它支路尽可能不受热失控通过冷却液带来热量的影响。
实施例9:
如图10所示,本实施例的一种热失控处理方法,除上述实施例的技术特征以外,本实施例进一步地包括了以下技术特征:
车辆包括空调系统,热失控处理方法还包括:
步骤S802,控制空调系统开启制冷,对发生热失控的支路进行降温。
本实施例中,车辆设有空调系统,当任一支路发生热失控时,控制空调系统开启制冷,对发生热失控的支路进行降温,实现热抑制。
本实施例在任一支路发生热失控的情况下,一方面允许司机挪车,避免热失控车辆对周边造成影响,另一方面通过冷却系统和水路循环,以及空调系统制冷,对发生热失控的支路进行降温,尽可能的带走热失控电箱的热量,使火情得到抑制。
实施例10:
如图11所示,本实施例提供了一种热失控处理装置200,包括存储器210和处理器220,存储器210存储有程序或指令;处理器220执行程序或指令;其中,处理器220在执行程序或指令时,实现如本申请任一实施例的热失控处理方法的步骤。
实施例11:
本实施例提供了一种可读存储介质,可读存储介质存储有程序或指令,程序或指令被执行时,实现上述任一实施例的热失控处理方法的步骤。
实施例12:
本实施例提供了一种热失控处理方法,基于商用车比较特有的多支路电气系统,利用当一个支路(支路包括多个电箱)出问题时,高压系统还可用的特点,强力冷却抑制热失控的蔓延。此外,本实施例还给出了热失控后整车动作的策略。
本实施例中,电源系统为多支路,即包括多个支路,支路与支路支架并联,每个支路包括多个电箱,电箱之间串联,每条支路上具备一个上电常闭开关。当某一支路发生热失控时,可通过断开开关,将该故障支路剥离出电源系统,使其它支路不受影响。
本实施例中,冷却系统及其控制策略包括,车辆设有空调系统(包括空调压缩机),冷却系统(包括冷却液、水路、水泵和电磁阀),当某一支路发生热失控时,可通过电磁阀的控制,使冷却系统的冷却液集中冷却热失控的支路,也能使其它支路尽可能不受热失控通过冷却液带来热量的影响。其中,空调系统的压缩机全功率工作,冷却系统的水泵全速运行,尽最大可能对发生热失控的支路进行冷却。
本实施例中,驱动系统控制策略:热失控发生后,车辆控制器继续控制主驱电机能够工作,满足车辆的挪车要求。避免车辆在周边环境密集情况下不能挪车,进一步造成危险的情况。
本实施例的一种热失控处理方法,包括以下几个方面:
第一,系统方案组成
高压架构方面,在每条支路上设置一个开关,该开关上电常闭,不影响正常的上下电流程。当支路出现热失控严重故障时,控制器可将该支路对应的开关断开,剥离出电源系统,不会对其它支路造成高压架构上的进一步影响。同时,其它支路仍保持正常的高压接触和输出。相应的,系统能力会因少一条支路而降低,此时控制器重新计算电池系统能力,保证其它支路不会过载输出。
冷却系统方面,在水路分支的地方增加一个电磁三通阀,可控制冷却液的 流向。当某一支路发生热失控时,则控制三通阀状态,仅保留热失控的支路仍然有水冷循环。
第二,控制策略
当热失控发生后,通过控制策略明确出哪一支路发生了热失控。
热失控状态下,车辆仍允许正常的高压上下电,并遵守以下策略要求:
控制器明确热失控位置后,一方面控制热失控支路上的开关断开,其它支路开关保持闭合状态,同时控制器重新计算最大允许输出功率:
Figure PCTCN2021106984-appb-000003
其中:P 1表示发生热失控前的最大允许功率,P 2表示发生热失控后的最大允许功率,N表示电源系统的支路的数量,N≥2。同时为了限制司机正常使用热失控的车辆,可采取整车限速等方式,例如限制车速≤5km/h,仅能实现车辆的应急挪车功能。
另一方面,即冷却系统方面,当热失控发生后,控制器控制电磁阀,使仅保留热失控支路的水路仍可循环。冷却系统全功率工作(如压缩机全功率工作,循环水泵全速运行等),对热失控支路的水路进行冷却,尽可能的带走热失控电箱的热量,直到火情得到抑制,或者整车电量不足。
如图12所示,为某个车辆的电源系统构架,电源系统设有两个支路,分别为第一支路110和第二支路120,还设有冷却系统130和驱动系统140。电源系统给驱动系统140供电。
第一支路110包括第A 1电箱112、第A 2电箱114、…和第A N电箱116,第一支路110还设有第一上电常闭开关118,第二支路120包括第B 1电箱122、第B 2电箱124、…和第B N电箱126,第二支路120还设有第二上电常闭开关128,第一支路110与第二支路120串联,第一支路110内,第A 1电箱112、第A 2电箱114、…和第A N电箱116之间串联,第二支路120内,第B 1电箱122、第B 2电箱124、…和第B N电箱126串联。
冷却系统130内设有第一水路132、第二水路134和三通阀136,通过三通阀136控制第一水路132和/或第二水路134接入冷却系统130。
针对上述电源系统,本实施例的一种热失控处理方法,一方面,在任一支路发生热失控的情况下,断开支路的上电常闭开关。获取断开发生热失 控的支路后,电源系统的最大允许输出功率,根据最大允许输出功率,控制未发生热失控的支路进行输出。控制驱动系统工作,对车辆的速度进行限制。
另一方面,在任一支路发生热失控的情况下,通过控制电磁阀,保留发生热失控的支路对应水路的循环,断开未发生热失控的支路对应水路的循环。控制冷却系统全功率工作,通过水路对发生热失控的支路,进行冷却。控制空调系统开启制冷,对发生热失控的支路进行降温。
本实施例在热失控发生后,冷却系统可继续工作,全功率对热失控的支路进行降温处理,从电箱的内部(源头)进行热抑制。并且,热失控发生后,仍允许主驱动系统进行工作,允许挪车,避免车辆在周边环境密集情况下不能挪车,进一步造成危险的情况。
综上,本申请实施例的有益效果为:
1.本实施例中,电源系统包括多个支路,在任一支路发生热失控的情况下,直接断开该条支路,从而把该支路剥离出电源系统,发生热失控的支路断开,对于其它支路不会造成高压架构上的影响,其它支路还可以正常工作。在其它支路还可以正常工作的情况下,可以对发生热失控的车辆进行挪车,将车辆从人员密集以及车辆密集的地点挪走,避免影响车辆周围的人员以及车辆的安全。
2.本实施例中,每个支路均设有一个水路,水路连通冷却系统,通过冷却系统和水路的循环,可以对支路进行冷却,在任一支路发生热失控的情况下,保留发生热失控的支路对应水路的循环,断开未发生热失控的支路对应水路的循环,从而使得冷却系统可以对发生热失控的支路进行降温处理,实现通过电源系统(电箱)内部进行热抑制。在电源系统内部进行热抑制的同时,再通过外部采用消防灭火措施,两者结合,可以更好的对热失控进行控制,降低发生热失控支路对其余正常工作支路产生的影响,进而更好的实现挪车等功能。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是 直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种热失控处理方法,用于电源系统,其中,所述电源系统包括多个支路,所述热失控处理方法包括:
    在任一所述支路发生热失控的情况下,断开所述支路。
  2. 根据权利要求1所述的热失控处理方法,其中,所述支路设有常闭开关,所述断开所述支路包括:
    断开所述支路的所述常闭开关。
  3. 根据权利要求1所述的热失控处理方法,其中,还包括:
    断开发生热失控的所述支路后,计算所述电源系统的最大允许输出功率;
    根据所述最大允许输出功率,控制未发生热失控的所述支路进行输出。
  4. 根据权利要求3所述的热失控处理方法,其中,所述计算所述电源系统的最大允许输出功率,包括:
    Figure PCTCN2021106984-appb-100001
    其中,P 1表示发生热失控前的最大允许功率,P 2表示发生热失控后的最大允许功率,N表示所述电源系统的所述支路的数量,N≥2,n表示所述电源系统中发生热失控的所述支路的数量,n≥1。
  5. 根据权利要求3所述的热失控处理方法,用于车辆的所述电源系统,其中,所述车辆包括驱动系统,所述热失控处理方法还包括:
    控制所述驱动系统工作,对所述车辆的速度进行限制。
  6. 根据权利要求1至3中任一项所述的热失控处理方法,其中,所述电源系统还设有冷却系统,所述冷却系统包括多个水路,多个所述水路用于给对应的多个所述支路进行冷却,所述热失控处理方法还包括:
    在任一所述支路发生热失控的情况下,保留发生热失控的所述支路对应所述水路的循环,断开未发生热失控的所述支路对应所述水路的循环;或
    在任一所述支路发生热失控的情况下,增大发生热失控的所述支路对应所述水路的流量,减小未发生热失控的所述支路对应所述水路的流量; 或
    在任一所述支路发生热失控的情况下,保留发生热失控的所述支路对应所述水路的循环,减少未发生热失控的所述支路对应所述水路的数量。
  7. 根据权利要求6所述的热失控处理方法,其中,还包括:
    控制所述冷却系统全功率工作,通过所述水路对发生热失控的所述支路,进行冷却。
  8. 根据权利要求6所述的热失控处理方法,所述冷却系统还包括电磁阀,其中,所述热失控处理方法还包括:
    通过控制所述电磁阀,实现水路控制。
  9. 根据权利要求1至3,7和8中任一项所述的热失控处理方法,用于车辆的所述电源系统,其中,所述车辆包括空调系统,所述热失控处理方法还包括:
    控制所述空调系统开启制冷,对发生热失控的所述支路进行降温。
  10. 一种热失控处理装置(200),其中,包括:
    存储器(210),存储有程序或指令;
    处理器(220),执行所述程序或指令;
    其中,所述处理器(220)在执行所述程序或指令时,实现如权利要求1至9中任一项所述的热失控处理方法的步骤。
  11. 一种可读存储介质,其中,所述可读存储介质上存储有程序或指令,所述程序或指令被处理器执行时,实现如权利要求1至9中任一项所述的热失控处理方法的步骤。
PCT/CN2021/106984 2021-03-26 2021-07-19 热失控处理方法、装置和可读存储介质 WO2022198851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110327854.0A CN113085559B (zh) 2021-03-26 2021-03-26 热失控处理方法、装置和可读存储介质
CN202110327854.0 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022198851A1 true WO2022198851A1 (zh) 2022-09-29

Family

ID=76670375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106984 WO2022198851A1 (zh) 2021-03-26 2021-07-19 热失控处理方法、装置和可读存储介质

Country Status (2)

Country Link
CN (1) CN113085559B (zh)
WO (1) WO2022198851A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113085559B (zh) * 2021-03-26 2023-01-24 三一汽车制造有限公司 热失控处理方法、装置和可读存储介质

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625721B2 (ja) * 1999-12-28 2005-03-02 三洋電機株式会社 電気自動車のバッテリー制御装置
WO2008095313A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery thermal management system
US20100136391A1 (en) * 2009-09-12 2010-06-03 Tesla Motors, Inc. Active Thermal Runaway Mitigation System for Use Within a Battery Pack
US20130049971A1 (en) * 2011-08-23 2013-02-28 Tesla Motors, Inc. Battery Thermal Event Detection System Utilizing Battery Pack Isolation Monitoring
CN103000957A (zh) * 2012-12-17 2013-03-27 杭州万好万家动力电池有限公司 一种可充电热失控保护的电动自行车锂电池模块
CN108172747A (zh) * 2018-01-08 2018-06-15 程志均 一种先串后并型动力锂电池组
CN108550950A (zh) * 2018-05-28 2018-09-18 吉林大学 一种电池包超冷热管理系统及方法
CN109901004A (zh) * 2019-02-20 2019-06-18 北京航空航天大学 一种车载动力电池内短路检测方法和系统
CN110556606A (zh) * 2019-09-05 2019-12-10 吉林大学 一种电池包内部喷射应急冷却控制结构及方法
CN111186302A (zh) * 2020-01-14 2020-05-22 中车资阳机车有限公司 一种纯电动轨道机车动力电池安全保障方法
CN113085559A (zh) * 2021-03-26 2021-07-09 三一汽车制造有限公司 热失控处理方法、装置和可读存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696729A (zh) * 2016-11-29 2017-05-24 北京长城华冠汽车科技股份有限公司 一种电动汽车电池脱箱续驶系统及电动汽车
CN107069140B (zh) * 2017-03-30 2019-05-14 天津市捷威动力工业有限公司 新能源汽车锂离子电池包热失控控制系统及电池包
CN111585337A (zh) * 2020-05-27 2020-08-25 三一专用汽车有限责任公司 供电系统和作业车辆

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625721B2 (ja) * 1999-12-28 2005-03-02 三洋電機株式会社 電気自動車のバッテリー制御装置
WO2008095313A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery thermal management system
US20100136391A1 (en) * 2009-09-12 2010-06-03 Tesla Motors, Inc. Active Thermal Runaway Mitigation System for Use Within a Battery Pack
US20130049971A1 (en) * 2011-08-23 2013-02-28 Tesla Motors, Inc. Battery Thermal Event Detection System Utilizing Battery Pack Isolation Monitoring
CN103000957A (zh) * 2012-12-17 2013-03-27 杭州万好万家动力电池有限公司 一种可充电热失控保护的电动自行车锂电池模块
CN108172747A (zh) * 2018-01-08 2018-06-15 程志均 一种先串后并型动力锂电池组
CN108550950A (zh) * 2018-05-28 2018-09-18 吉林大学 一种电池包超冷热管理系统及方法
CN109901004A (zh) * 2019-02-20 2019-06-18 北京航空航天大学 一种车载动力电池内短路检测方法和系统
CN110556606A (zh) * 2019-09-05 2019-12-10 吉林大学 一种电池包内部喷射应急冷却控制结构及方法
CN111186302A (zh) * 2020-01-14 2020-05-22 中车资阳机车有限公司 一种纯电动轨道机车动力电池安全保障方法
CN113085559A (zh) * 2021-03-26 2021-07-09 三一汽车制造有限公司 热失控处理方法、装置和可读存储介质

Also Published As

Publication number Publication date
CN113085559A (zh) 2021-07-09
CN113085559B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
JP5336467B2 (ja) 車両用バッテリ冷却装置
CN109466277B (zh) 纯电动汽车整车热管理系统
US9631872B2 (en) Multi-circuited vehicular thermal management system and method
US10069179B2 (en) Battery case and vehicle
CN105522931A (zh) 电动交通工具多模式热管理系统
WO2011077980A1 (ja) バッテリー温調システムの安全装置
WO2022198851A1 (zh) 热失控处理方法、装置和可读存储介质
EP3780316A1 (en) Battery temperature control device for battery charging and swapping station and electric-vehicle battery charging and swapping station
JP2015191703A (ja) 電池温度調節装置
EP3885199A1 (en) Energy management method for electric automobile, energy storage management controller and energy management unit
CN110192320A (zh) 电源装置和电源系统
CN109378536A (zh) 一种全工况电池热管理系统及热管理控制方法
CN113161647A (zh) 电池包、电池系统及电池包热失控的控制方法
JP4930270B2 (ja) 車両および熱交換システム
KR102644621B1 (ko) 친환경 차량의 수냉식 pe-배터리 냉각시스템 제어 방법
JP5427021B2 (ja) バッテリーの温度調整装置
JP2011116234A (ja) 移動体用空調システム
CN207938753U (zh) 一种电动汽车动力电池散热装置
KR102669104B1 (ko) 전기자동차 열관리 시스템, 배터리 열관리 방법 및 전기자동차
CN116262466A (zh) 一种多功能移动充电车
JP2011131858A (ja) 燃料電池を備える空調システムおよび燃料電池を用いた空調方法、並びに、空調システムを備える燃料電池車両
KR20220118823A (ko) 급속 충전 시스템에서 차량의 배터리 냉각 시스템
JP2004276870A (ja) 航空機用冷媒分散型空調装置と移動式空調装置
CN216468126U (zh) 一种ups电源车隔热保温车厢
CN114571947B (zh) 一种电池冷却和乘客制冷的集成空调系统及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932465

Country of ref document: EP

Kind code of ref document: A1