JP3624893B2 - 調湿装置 - Google Patents

調湿装置 Download PDF

Info

Publication number
JP3624893B2
JP3624893B2 JP2002031073A JP2002031073A JP3624893B2 JP 3624893 B2 JP3624893 B2 JP 3624893B2 JP 2002031073 A JP2002031073 A JP 2002031073A JP 2002031073 A JP2002031073 A JP 2002031073A JP 3624893 B2 JP3624893 B2 JP 3624893B2
Authority
JP
Japan
Prior art keywords
air
heat exchanger
refrigerant
adsorption element
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002031073A
Other languages
English (en)
Other versions
JP2003232539A (ja
Inventor
知宏 薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002031073A priority Critical patent/JP3624893B2/ja
Publication of JP2003232539A publication Critical patent/JP2003232539A/ja
Application granted granted Critical
Publication of JP3624893B2 publication Critical patent/JP3624893B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気の湿度調節を行う調湿装置に関するものである。
【0002】
【従来の技術】
従来より、吸着剤を用いて空気の湿度調節を行う調湿装置が知られている。例えば、特開平10−9633号公報には、吸着剤と空気を接触させるための吸着素子を2つ備えてバッチ式の動作を行う調湿装置が開示されている。また、この調湿装置には、冷凍サイクルを行う冷媒回路が設けられている。
【0003】
上記調湿装置は、第1の吸着素子で処理空気が減湿されて第2の吸着素子が再生される第1動作と、第1の吸着素子が再生されて第2の吸着素子で処理空気が減湿される第2動作とを交互に繰り返す。その際、処理空気は、吸着素子で減湿され、更に冷媒回路の蒸発器で冷却されてから室内へ供給される。また、再生空気は、冷媒回路の凝縮器で加熱されてから吸着素子へ供給される。そして、高温の再生空気が供給された吸着素子から水分が脱離し、その吸着素子が再生される。このように、上記調湿装置の冷媒回路では、その凝縮器において吸着素子へ送られる再生空気と冷媒が熱交換し、その蒸発器において吸着素子から出た処理空気と冷媒が熱交換する。
【0004】
【発明が解決しようとする課題】
しかしながら、上記調湿装置では、第1動作と第2動作を相互に切り換える際に処理空気の温度が急激に変化する。この点について、第1動作から第2動作へ切り換わる場合を例に説明する。
【0005】
この場合、切り換え直前における第1の吸着素子は、吸着能力の低い状態となっている。このため、第1の吸着素子では、発生する吸着熱は少なくなっている。その後、第1動作から第2動作へ切り換わると、第2の吸着素子に対して処理空気が送られる。この第2の吸着素子は、それまで再生空気により再生されており、吸着能力の高い状態となっている。従って、第2の吸着素子では多量の吸着熱が発生し、減湿後の処理空気の温度が急激に上昇する。
【0006】
このように、上記調湿装置では、第1動作と第2動作を相互に切り換えてからしばらくは、蒸発器における冷媒と処理空気の温度差が拡大し、冷媒が処理空気から吸収する熱量が増大する。そして、蒸発器における冷媒の吸熱量が増えると、それに伴って凝縮器における冷媒の放熱量が増大する。このことは、凝縮器での再生空気に対する加熱量が増大することを意味する。
【0007】
ところが、第1動作と第2動作を相互に切り換える以前においても、凝縮器での再生空気に対する加熱量は必要な分だけ確保されている。従って、凝縮器では再生空気に対して過剰に熱を与えていることとなり、その分だけ圧縮機では必要以上のエネルギが消費されることとなる。つまり、第1動作と第2動作の相互切り換え後しばらくは、圧縮機に対する入力が過剰な状態となり、その分だけ調湿装置の運転に要するエネルギが嵩むという問題があった。
【0008】
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、いわゆるバッチ動作を行う調湿装置において、調湿装置の運転に要するエネルギを削減することにある。
【0009】
【課題を解決するための手段】
本発明が講じた第1の解決手段は、吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置を対象としている。
【0010】
そして、上記冷媒回路(100)には、圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、膨張機構(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、第1動作と第2動作が相互に切り換わる際に上記蒸発用熱交換器(103,104)での冷媒の吸熱量の増加を抑制するための動作を行う制御手段(200)を備えるものである。
【0011】
本発明が講じた第2の解決手段は、吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置を対象としている。
【0012】
そして、上記冷媒回路(100)には、容量可変の圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、膨張機構(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、第1動作と第2動作が相互に切り換わる際に上記圧縮機(101)の容量を強制的に引き下げる制御手段(200)を備えるものである。
【0013】
本発明が講じた第3の解決手段は、吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置を対象としている。
【0014】
そして、上記冷媒回路(100)には、圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、開度可変の膨張弁(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、第1動作と第2動作が相互に切り換わる際に上記膨張弁(110,…)の開度を強制的に拡大する制御手段(200)を備えるものである。
【0015】
本発明が講じた第4の解決手段は、吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置を対象としている。
【0016】
そして、上記冷媒回路(100)には、圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、膨張機構(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、第1動作と第2動作が相互に切り換わる際に第1空気の流量を一時的に削減する制御手段(200)を備えるものである。
【0017】
本発明が講じた第5の解決手段は、吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置を対象としている。
【0018】
そして、上記冷媒回路(100)には、容量可変の圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、膨張機構(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、上記圧縮機(101)の容量を強制的に引き下げてから第1動作と第2動作を相互に切り換える制御手段(200)を備えるものである。
【0019】
本発明が講じた第6の解決手段は、吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置を対象としている。
【0020】
そして、上記冷媒回路(100)には、圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、開度可変の膨張弁(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、上記膨張弁(110,…)の開度を強制的に拡大してから第1動作と第2動作を相互に切り換える制御手段(200)を備えるものである。
【0021】
−作用−
上記第1から第6までの各解決手段では、調湿装置において、第1動作と第2動作とが交互に繰り返される。この調湿装置は、吸着素子(81,82)で減湿された第1空気を室内へ供給する運転、又は吸着素子(81,82)で加湿された第2空気を室内へ供給する運転を行う。尚、これら解決手段の調湿装置は、減湿された第1空気を室内へ供給する運転と、加湿された第2空気を室内へ供給する運転とのうち何れか一方のみを行うものであってもよいし、これら2つの運転を切り換えて行うものであってもよい。
【0022】
これらの各解決手段において、調湿装置の冷媒回路(100)では、冷媒を循環させて冷凍サイクルが行われる。その際、凝縮用熱交換器(102)は、凝縮器として機能し、吸着素子(81,82)へ送られる第2空気を冷媒と熱交換させる。一方、蒸発用熱交換器(103,104)は、蒸発器として機能し、吸着素子(81,82)から出た第1空気を冷媒と熱交換させる。
【0023】
尚、これら各解決手段において、冷媒回路(100)に設けられる蒸発用熱交換器(103,104)は、1つでもよいし複数でもよい。また、冷媒回路(100)に複数の蒸発用熱交換器(103,104)を設ける場合には、冷媒回路(100)の運転中に全ての蒸発用熱交換器(103,104)が同時に蒸発器となる必要はなく、蒸発器となる蒸発用熱交換器(103,104)が適宜切り換えられるものであってもよい。
【0024】
これら各解決手段の調湿装置において、第1動作時には、第1の吸着素子(81)へ第1空気が送られる。第1の吸着素子(81)では、第1空気中の水分が吸着剤に吸着され、第1空気が減湿される。第1の吸着素子(81)で減湿された第1空気は、蒸発用熱交換器(103,104)へ送られて冷媒と熱交換する。また、第2の吸着素子(82)へは、凝縮用熱交換器(102)で加熱された第2空気が供給される。第2の吸着素子(82)では、第2空気によって吸着剤が加熱され、吸着剤から水分が脱離する。つまり、第2の吸着素子(82)が再生される。
【0025】
一方、第2動作時には、第2の吸着素子(82)へ第1空気が送られる。第2の吸着素子(82)では、第1空気中の水分が吸着剤に吸着され、第1空気が減湿される。第2の吸着素子(82)で減湿された第1空気は、蒸発用熱交換器(103,104)へ送られて冷媒と熱交換する。また、第1の吸着素子(81)へは、凝縮用熱交換器(102)で加熱された第2空気が供給される。第1の吸着素子(81)では、第2空気によって吸着剤が加熱され、吸着剤から水分が脱離する。つまり、第1の吸着素子(81)が再生される。
【0026】
このように、第1動作から第2動作へ、あるいは第2動作から第1動作へ切り換わる直前には、既に多量の水分を吸着して吸着能力が低下した状態の吸着素子(81,82)へ第1空気が送られる。一方、第1動作から第2動作へ、あるいは第2動作から第1動作へ切り換わった直後には、再生の終了直後で吸着能力が高い状態の吸着素子(81,82)へ第1空気が送られる。従って、第1動作と第2動作を相互に切り換えたときには、吸着素子(81,82)で発生する吸着熱が急増し、蒸発用熱交換器(103,104)へ送られる第1空気の温度が急激に上昇する。
【0027】
上記第1の解決手段では、第1動作から第2動作へ切り換わるとき、あるいは第2動作から第1動作へ切り換わるときに、制御手段(200)が所定の制御動作を行う。この制御手段(200)の動作により、蒸発用熱交換器(103,104)へ送られる第1空気の温度が急激に上昇しても、蒸発用熱交換器(103,104)で冷媒が第1空気から吸収する熱量の増大は抑制される。
【0028】
上記第2の解決手段では、容量を変更可能な圧縮機(101)が冷媒回路(100)に設けられる。そして、第1動作から第2動作へ切り換わるとき、あるいは第2動作から第1動作へ切り換わるときに、制御手段(200)が圧縮機(101)の容量を強制的に引き下げる制御動作を行う。圧縮機(101)の容量を引き下げると、蒸発用熱交換器(103,104)に対する冷媒の供給量が減少する。蒸発用熱交換器(103,104)での冷媒流量が減少すると、蒸発用熱交換器(103,104)へ送られる第1空気の温度が急激に上昇しても、蒸発用熱交換器(103,104)で冷媒が第1空気から吸収する熱量の増大は抑制される。
【0029】
上記第3の解決手段では、開度を変更可能な膨張弁(110,…)が冷媒回路(100)に設けられる。そして、第1動作から第2動作へ切り換わるとき、あるいは第2動作から第1動作へ切り換わるときに、制御手段(200)が膨張弁(110,…)の開度を強制的に拡大する制御動作を行う。膨張弁(110,…)の開度を拡大すると、減圧後の低圧冷媒の圧力が上昇し、蒸発用熱交換器(103,104)における冷媒の蒸発温度が上昇する。蒸発用熱交換器(103,104)での冷媒蒸発温度が上昇すると、蒸発用熱交換器(103,104)へ送られる第1空気の温度が急激に上昇しても、蒸発用熱交換器(103,104)で冷媒が第1空気から吸収する熱量の増大は抑制される。
【0030】
上記第4の解決手段では、第1動作から第2動作へ切り換わるとき、あるいは第2動作から第1動作へ切り換わるときに、制御手段(200)が第1空気の流量を一時的に削減する制御動作を行う。つまり、制御手段(200)の制御動作により、蒸発用熱交換器(103,104)で冷媒と熱交換する第1空気の流量が減少する。蒸発用熱交換器(103,104)に対する第1空気の供給量が減少すると、その第1空気の温度が急激に上昇しても、蒸発用熱交換器(103,104)で冷媒が第1空気から吸収する熱量の増大は抑制される。
【0031】
上記第5の解決手段では、容量を変更可能な圧縮機(101)が冷媒回路(100)に設けられる。そして、第1動作から第2動作への切り換え、あるいは第2動作から第1動作への切り換えが行われる前に、制御手段(200)は、圧縮機(101)の容量を強制的に引き下げる制御動作を行う。圧縮機(101)の容量を予め引き下げておくと、第1動作と第2動作の相互切り換えが完了したときには、既に蒸発用熱交換器(103,104)への冷媒供給量が充分に減少している。そして、蒸発用熱交換器(103,104)での冷媒流量が充分に削減されているため、蒸発用熱交換器(103,104)へ送られる第1空気の温度が急激に上昇しても、蒸発用熱交換器(103,104)で冷媒が第1空気から吸収する熱量の増大は抑制される。
【0032】
上記第6の解決手段では、開度を変更可能な膨張弁(110,…)が冷媒回路(100)に設けられる。そして、第1動作から第2動作への切り換え、あるいは第2動作から第1動作への切り換えが行われる前に、制御手段(200)は、膨張弁(110,…)の開度を強制的に拡大する制御動作を行う。膨張弁(110,…)の開度を予め拡大しておくと、第1動作と第2動作の相互切り換えが完了したときには、既に減圧後の低圧冷媒の圧力が上昇し、蒸発用熱交換器(103,104)での冷媒蒸発温度も充分に上昇している。そして、蒸発用熱交換器(103,104)での冷媒蒸発温度が充分に高くなっているため、蒸発用熱交換器(103,104)へ送られる第1空気の温度が急激に上昇しても、蒸発用熱交換器(103,104)で冷媒が第1空気から吸収する熱量の増大は抑制される。
【0033】
【発明の効果】
本発明によれば、第1動作と第2動作の相互切り換えによって第1空気の温度が急激に上昇した場合であっても、蒸発用熱交換器(103,104)で冷媒が第1空気から吸収する熱量の増大を抑制し、凝縮用熱交換器(102)で第2空気へ付与される熱量が過剰となるのを回避できる。このため、第1動作と第2動作を相互に切り換えた後においても、圧縮機(101)への入力については、凝縮用熱交換器(102)で第2空気へ付与すべき熱量を確保するのに必要な分だけに留めることができる。従って、本発明によれば、圧縮機(101)に対する入力を必要最小限に留めることができ、その結果、調湿装置の運転に要するエネルギを削減することができる。
【0034】
上記第2,第5の解決手段によれば、第1動作と第2動作を相互に切り換えた後において、圧縮機(101)を容量の小さい状態で運転することができる。つまり、蒸発用熱交換器(103,104)へ送られる第1空気の温度が上昇することによって凝縮用熱交換器(102)での第2空気に対する加熱量が稼げる運転状態では、圧縮機(101)を容量の小さい状態で運転できる。従って、これら各解決手段によれば、圧縮機(101)に対する入力を削減することができる。
【0035】
特に、上記第5の解決手段では、第1動作と第2動作を相互に切り換える前に、圧縮機(101)の容量調節を行っている。このため、第1動作と第2動作の相互切り換えが完了した時点において、圧縮機(101)を容量を充分に小さい状態とすることができる。従って、この解決手段によれば、圧縮機(101)に対する入力を確実に削減できる。
【0036】
上記第3,第6の解決手段によれば、第1動作と第2動作を相互に切り換えた後において、膨張弁(110,…)の開度を大きく設定できる。つまり、蒸発用熱交換器(103,104)へ送られる第1空気の温度が上昇した運転状態では、この第1空気の温度上昇に合わせて蒸発用熱交換器(103,104)での冷媒蒸発温度を引き上げることができる。このため、蒸発用熱交換器(103,104)の出口における冷媒の過熱度、即ち圧縮機(101)へ吸入される冷媒の過熱度が大きくなり過ぎるのを回避できる。従って、これらの解決手段によれば、第1空気の温度が上昇した場合にも圧縮機(101)が吸入する冷媒の過熱度を小さく保つことができ、圧縮機(101)に対する入力を削減することができる。
【0037】
特に、上記第6の解決手段では、第1動作と第2動作を相互に切り換える前に、膨張弁(110,…)の開度調節を行っている。このため、第1動作と第2動作の相互切り換えが完了した時点において、蒸発用熱交換器(103,104)での冷媒蒸発温度を充分に高い状態とすることができる。従って、この解決手段によれば、圧縮機(101)が吸入する冷媒の過熱度を小さく保ち、圧縮機(101)に対する入力を確実に削減できる。
【0038】
上記第4の解決手段によれば、第1動作と第2動作を相互に切り換えた後において、第1空気の流量を一時的に低く設定できる。つまり、蒸発用熱交換器(103,104)へ送られる第1空気の温度が上昇した運転状態では、温度上昇した第1空気の流量を削減することができる。このため、蒸発用熱交換器(103,104)の出口における冷媒の過熱度、即ち圧縮機(101)へ吸入される冷媒の過熱度が大きくなり過ぎるのを回避できる。従って、この解決手段によれば、第1空気の温度が上昇した場合にも圧縮機(101)が吸入する冷媒の過熱度を小さく保つことができ、圧縮機(101)に対する入力を確実に削減することができる。
【0039】
【発明の実施の形態1】
以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の説明において、「上」 「下」 「左」 「右」 「前」 「後」 「手前」 「奥」 は、何れも参照する図面におけるものを意味している。
【0040】
本実施形態に係る調湿装置は、減湿された空気が室内へ供給される除湿運転と、加湿された空気が室内へ供給される加湿運転とを切り換えて行うように構成されている。また、この調湿装置は、冷媒回路(100)と2つの吸着素子(81,82)とを備え、いわゆるバッチ式の動作を行うように構成されている。つまり、この調湿装置は、除湿運転中や加湿運転中において、第1動作と第2動作を交互に繰り返すように構成されている。ここでは、本実施形態に係る調湿装置の構成について、図1,図5,図6,図7を参照しながら説明する。
【0041】
《調湿装置の全体構成》
図1,図5に示すように、上記調湿装置は、やや扁平な直方体状のケーシング(10)を備えている。このケーシング(10)には、2つの吸着素子(81,82)と、冷媒回路(100)とが収納されている。冷媒回路(100)には、再生熱交換器(102)、第1熱交換器(103)、及び第2熱交換器(104)が設けられている。尚、冷媒回路(100)の詳細については後述する。
【0042】
図6に示すように、上記吸着素子(81,82)は、平板状の平板部材(83)と波形状の波板部材(84)とを交互に積層して構成されている。平板部材(83)は、その長辺の長さLがその短辺の長さLの2.5倍となる長方形状に形成されている。つまり、この平板部材(83)では、L/L=2.5となっている。尚、ここに示した数値は単なる例示である。波板部材(84)は、隣接する波板部材(84)の稜線方向が互いに90°ずれる姿勢で積層されている。そして、吸着素子(81,82)は、全体として直方体状ないし四角柱状に形成されている。
【0043】
上記吸着素子(81,82)には、平板部材(83)及び波板部材(84)の積層方向において、調湿側通路(85)と冷却側通路(86)とが平板部材(83)を挟んで交互に区画形成されている。この吸着素子(81,82)において、平板部材(83)の長辺側の側面に調湿側通路(85)が開口し、平板部材(83)の短辺側の側面に冷却側通路(86)が開口している。また、この吸着素子(81,82)において、同図の手前側と奥側の端面は、調湿側通路(85)と冷却側通路(86)の何れも開口しない閉塞面を構成している。
【0044】
上記吸着素子(81,82)において、調湿側通路(85)に臨む平板部材(83)の表面や、調湿側通路(85)に設けられた波板部材(84)の表面には、水蒸気を吸着するための吸着剤が塗布されている。この種の吸着剤としては、例えばシリカゲル、ゼオライト、イオン交換樹脂等が挙げられる。
【0045】
図1に示すように、上記ケーシング(10)において、最も手前側には室外側パネル(11)が設けられ、最も奥側には室内側パネル(12)が設けられている。室外側パネル(11)には、その左端寄りに室外側吸込口(13)が形成され、その右端寄りに室外側吹出口(16)が形成されている。一方、室内側パネル(12)には、その左端寄りに室内側吹出口(14)が形成され、その右端寄りに室内側吸込口(15)が形成されている。
【0046】
ケーシング(10)の内部には、手前側から奥側へ向かって順に、第1仕切板(20)と、第2仕切板(30)とが設けられている。ケーシング(10)の内部空間は、これら第1,第2仕切板(20,30)によって、前後に仕切られている。
【0047】
室外側パネル(11)と第1仕切板(20)の間の空間は、上側の室外側上部流路(41)と下側の室外側下部流路(42)とに区画されている。室外側上部流路(41)は、室外側吹出口(16)によって室外空間と連通されている。室外側下部流路(42)は、室外側吸込口(13)によって室外空間と連通されている。
【0048】
室外側パネル(11)と第1仕切板(20)の間の空間には、その右端寄りに排気ファン(96)が設置されている。また、室外側上部流路(41)には、第2熱交換器(104)が設置されている。この第2熱交換器(104)は、蒸発用熱交換器を構成している。具体的に、第2熱交換器(104)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器であって、排気ファン(96)へ向けて室外側上部流路(41)を流れる空気と冷媒回路(100)の冷媒とを熱交換させるように構成されている。つまり、第2熱交換器(104)は、室外へ排出される空気と冷媒とを熱交換させるためのものである。
【0049】
第1仕切板(20)には、第1右側開口(21)、第1左側開口(22)、第1右上開口(23)、第1右下開口(24)、第1左上開口(25)、及び第1左下開口(26)が形成されている。これらの開口(21,22,…)は、それぞれが開閉シャッタを備えて開閉自在に構成されている。
【0050】
第1右側開口(21)及び第1左側開口(22)は、縦長の長方形状の開口である。第1右側開口(21)は、第1仕切板(20)の右端近傍に設けられている。第1左側開口(22)は、第1仕切板(20)の左端近傍に設けられている。第1右上開口(23)、第1右下開口(24)、第1左上開口(25)、及び第1左下開口(26)は、横長の長方形状の開口である。第1右上開口(23)は、第1仕切板(20)の上部における第1右側開口(21)の左隣に設けられている。第1右下開口(24)は、第1仕切板(20)の下部における第1右側開口(21)の左隣に設けられている。第1左上開口(25)は、第1仕切板(20)の上部における第1左側開口(22)の右隣に設けられている。第1左下開口(26)は、第1仕切板(20)の下部における第1左側開口(22)の右隣に設けられている。
【0051】
第1仕切板(20)と第2仕切板(30)の間には、2つの吸着素子(81,82)が設置されている。これら吸着素子(81,82)は、所定の間隔をおいて左右に並んだ状態に配置されている。具体的には、右寄りに第1吸着素子(81)が設けられ、左寄りに第2吸着素子(82)が設けられている。
【0052】
第1,第2吸着素子(81,82)は、それぞれにおける平板部材(83)及び波板部材(84)の積層方向がケーシング(10)の長手方向(図1における手前から奥へ向かう方向)と一致すると共に、それぞれにおける平板部材(83)等の積層方向が互いに平行となる姿勢で設置されている。更に、各吸着素子(81,82)は、左右の側面がケーシング(10)の側板と、上下面がケーシング(10)の天板や底板と、前後の端面が室外側パネル(11)や室内側パネル(12)とそれぞれ略平行になる姿勢で配置されている。
【0053】
また、ケーシング(10)内に設置された各吸着素子(81,82)では、その左右の側面に冷却側通路(86)が開口している。つまり、第1吸着素子(81)において冷却側通路(86)の開口する1つの側面と、第2吸着素子(82)において冷却側通路(86)の開口する1つの側面とは、互いに向かい合っている。
【0054】
第1仕切板(20)と第2仕切板(30)の間の空間は、右側流路(51)、左側流路(52)、右上流路(53)、右下流路(54)、左上流路(55)、左下流路(56)、及び中央流路(57)に区画されている。
【0055】
右側流路(51)は、第1吸着素子(81)の右側に形成され、第1吸着素子(81)の冷却側通路(86)に連通している。左側流路(52)は、第2吸着素子(82)の左側に形成され、第2吸着素子(82)の冷却側通路(86)に連通している。
【0056】
右上流路(53)は、第1吸着素子(81)の上側に形成され、第1吸着素子(81)の調湿側通路(85)に連通している。右下流路(54)は、第1吸着素子(81)の下側に形成され、第1吸着素子(81)の調湿側通路(85)に連通している。左上流路(55)は、第2吸着素子(82)の上側に形成され、第2吸着素子(82)の調湿側通路(85)に連通している。左下流路(56)は、第2吸着素子(82)の下側に形成され、第2吸着素子(82)の調湿側通路(85)に連通している。
【0057】
中央流路(57)は、第1吸着素子(81)と第2吸着素子(82)の間に形成され、両吸着素子(81,82)の冷却側通路(86)に連通している。この中央流路(57)は、図1,図5に現れる流路断面の形状が八角形状となっている。
【0058】
再生熱交換器(102)は、中央流路(57)に配置されている。つまり、再生熱交換器(102)は、左右に並んだ第1吸着素子(81)と第2吸着素子(82)の間に設置されている。更に、再生熱交換器(102)は、ほぼ垂直に立てられた状態で、中央流路(57)を左右に仕切るように設けられている。
【0059】
この再生熱交換器(102)は、凝縮用熱交換器を構成している。具体的に、再生熱交換器(102)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器であって、中央流路(57)を流れる空気と冷媒回路(100)の冷媒とを熱交換させるように構成されている。
【0060】
第1吸着素子(81)と再生熱交換器(102)の間には、右側シャッタ(61)が設けられている。この右側シャッタ(61)は、中央流路(57)における再生熱交換器(102)の右側部分と右下流路(54)との間を仕切るものであって、開閉自在に構成されている。一方、第2吸着素子(82)と再生熱交換器(102)の間には、左側シャッタ(62)が設けられている。この左側シャッタ(62)は、中央流路(57)における再生熱交換器(102)の左側部分と左下流路(56)との間を仕切るものであって、開閉自在に構成されている。
【0061】
室外側パネル(11)と第1仕切板(20)の間の流路(41,42)と、第1仕切板(20)と第2仕切板(30)の間の流路(51,52,…)とは、第1仕切板(20)の開口(21,22,…)に設けられた開閉シャッタによって、連通状態と遮断状態に切り換えられる。具体的に、第1右側開口(21)を開口状態とすると、右側流路(51)と室外側下部流路(42)が連通する。第1左側開口(22)を開口状態とすると、左側流路(52)と室外側下部流路(42)が連通する。第1右上開口(23)を開口状態とすると、右上流路(53)と室外側上部流路(41)が連通する。第1右下開口(24)を開口状態とすると、右下流路(54)と室外側下部流路(42)が連通する。第1左上開口(25)を開口状態とすると、左上流路(55)と室外側上部流路(41)が連通する。第1左下開口(26)を開口状態とすると、左下流路(56)と室外側下部流路(42)が連通する。
【0062】
第2仕切板(30)には、第2右側開口(31)、第2左側開口(32)、第2右上開口(33)、第2右下開口(34)、第2左上開口(35)、及び第2左下開口(36)が形成されている。これらの開口(31,32,…)は、それぞれが開閉シャッタを備えて開閉自在に構成されている。
【0063】
第2右側開口(31)及び第2左側開口(32)は、縦長の長方形状の開口である。第2右側開口(31)は、第2仕切板(30)の右端近傍に設けられている。第2左側開口(32)は、第2仕切板(30)の左端近傍に設けられている。第2右上開口(33)、第2右下開口(34)、第2左上開口(35)、及び第2左下開口(36)は、横長の長方形状の開口である。第2右上開口(33)は、第2仕切板(30)の上部における第2右側開口(31)の左隣に設けられている。第2右下開口(34)は、第2仕切板(30)の下部における第2右側開口(31)の左隣に設けられている。第2左上開口(35)は、第2仕切板(30)の上部における第2左側開口(32)の右隣に設けられている。第2左下開口(36)は、第2仕切板(30)の下部における第2左側開口(32)の右隣に設けられている。
【0064】
室内側パネル(12)と第2仕切板(30)の間の空間は、上側の室内側上部流路(46)と下側の室内側下部流路(47)とに区画されている。室内側上部流路(46)は、室内側吹出口(14)によって室内空間と連通されている。室内側下部流路(47)は、室内側吸込口(15)によって室内空間と連通されている。
【0065】
室内側パネル(12)と第2仕切板(30)の間の空間には、その左端寄りに給気ファン(95)が設置されている。また、室内側上部流路(46)には、第1熱交換器(103)が設置されている。この第1熱交換器(103)は、蒸発用熱交換器を構成している。具体的に、第1熱交換器(103)は、いわゆるクロスフィン型のフィン・アンド・チューブ熱交換器であって、給気ファン(95)へ向けて室内側上部流路(46)を流れる空気と冷媒回路(100)の冷媒とを熱交換させるように構成されている。つまり、第1熱交換器(103)は、室内へ供給される空気と冷媒とを熱交換させるためのものである。
【0066】
第1仕切板(20)と第2仕切板(30)の間の流路と、第2仕切板(30)と室外側パネル(11)の間の流路とは、第2仕切板(30)の開口に設けられた開閉シャッタによって、連通状態と遮断状態に切り換えられる。具体的に、第2右側開口(31)を開口状態とすると、右側流路(51)と室内側下部流路(47)が連通する。第2左側開口(32)を開口状態とすると、左側流路(52)と室内側下部流路(47)が連通する。第2右上開口(33)を開口状態とすると、右上流路(53)と室内側上部流路(46)が連通する。第2右下開口(34)を開口状態とすると、右下流路(54)と室内側下部流路(47)が連通する。第2左上開口(35)を開口状態とすると、左上流路(55)と室内側上部流路(46)が連通する。第2左下開口(36)を開口状態とすると、左下流路(56)と室内側下部流路(47)が連通する。
【0067】
《冷媒回路の構成》
図7に示すように、上記冷媒回路(100)は、冷媒の充填された閉回路である。冷媒回路(100)には、圧縮機(101)、再生熱交換器(102)、第1熱交換器(103)、第2熱交換器(104)、レシーバ(105)、四方切換弁(120)、及び電動膨張弁(110)が設けられている。この冷媒回路(100)では、冷媒を循環させることで蒸気圧縮式の冷凍サイクルが行われる。
【0068】
冷媒回路(100)において、圧縮機(101)の吐出側は、再生熱交換器(102)の一端に接続されている。再生熱交換器(102)の他端は、レシーバ(105)を介して電動膨張弁(110)の一端に接続されている。電動膨張弁(110)の他端は、四方切換弁(120)の第1ポート(121)に接続されている。この四方切換弁(120)は、その第2ポート(122)が第2熱交換器(104)の一端に接続され、その第4ポート(124)が第1熱交換器(103)の一端に接続されている。また、四方切換弁(120)の第3ポート(123)は、封止されている。第1熱交換器(103)の他端と第2熱交換器(104)の他端とは、それぞれが圧縮機(101)の吸入側に接続されている。
【0069】
四方切換弁(120)は、第1ポート(121)と第2ポート(122)が互いに連通して第3ポート(123)と第4ポート(124)が互いに連通する状態と、第1ポート(121)と第4ポート(124)が互いに連通して第2ポート(122)と第3ポート(123)が互いに連通する状態とに切り換わる。尚、上述のように、四方切換弁(120)の第3ポート(123)は、閉塞されている。つまり、本実施形態の冷媒回路(100)では、四方切換弁(120)が三方弁として用いられている。
【0070】
上記圧縮機(101)の圧縮機モータには、インバータを介して交流が供給される。この交流の周波数を変更して圧縮機モータの回転数を変化させれば、圧縮機(101)の容量が変化する。つまり、上記圧縮機(101)は、その容量が可変となっている。また、上記電動膨張弁(110)は、弁体を駆動するためのパルスモータを備え、その開度が可変となっている。
【0071】
《コントローラの構成》
上記調湿装置には、コントローラ(200)が設けられている。図8に示すように、コントローラ(200)には、運転動作切換部(201)と、通常制御部(202)と、切換用制御部(203)とが設けられている。このコントローラ(200)は、制御手段を構成している。つまり、コントローラ(200)は、所定の制御パラメータが目標値となるように上記圧縮機(101)の容量を調節する一方で、第1動作と第2動作を相互に切り換える際には上記圧縮機(101)の容量を強制的に引き下げるように構成されている。
【0072】
運転動作切換部(201)は、除湿運転と加湿運転の切り換えや、第1動作と第2動作の切り換えを行うように構成されている。具体的に、この運転動作切換部(201)は、第1及び第2仕切板(20,30)の開口(21,…,31,…)に設けられた開閉シャッタや右側及び左側シャッタ(61,62)の操作の他、四方切換弁(120)の操作を行うように構成されている。
【0073】
通常制御部(202)は、第1動作中及び第2動作中に圧縮機(101)の容量や電動膨張弁(110)の開度を調節する通常の制御動作を行うように構成されている。この通常制御部(202)は、制御パラメータが所定の目標値となるように圧縮機(101)の容量を調節する。具体的には、再生熱交換器(102)から吸着素子(81,82)へ送られる第2空気の温度が所定の設定値となるように、圧縮機モータの回転数を増減させる。また、この通常制御部(202)は、制御パラメータが所定の目標値となるように電動膨張弁(110)の開度を調節する。具体的には、第1又は第2熱交換器(103,104)の出口における冷媒の過熱度が所定の設定値となるように、電動膨張弁(110)の開度を増減させる。
【0074】
切換用制御部(203)は、第1動作と第2動作を相互に切り換える際に圧縮機(101)の容量を強制的に引き下げる制御動作を行うように構成されている。つまり、第1動作と第2動作が相互に切り換えられるときに、切換用制御部(203)は、圧縮機モータの回転数を強制的に引き下げ、通常制御部(202)によって設定された容量よりも小さい容量で圧縮機(101)を運転させる。この切換用制御部(203)の制御動作は、第1動作と第2動作の相互切り換え時に蒸発器となっている第1又は第2熱交換器(103,104)で冷媒が吸収する熱量の増大を抑制するために行われる。
【0075】
−運転動作−
上記調湿装置の運転動作について説明する。この調湿装置は、除湿運転と加湿運転とを切り換えて行う。また、この調湿装置は、第1動作と第2動作とを交互に繰り返すことによって除湿運転や加湿運転を行う。
【0076】
《除湿運転》
図1,図2に示すように、除湿運転時において、給気ファン(95)を駆動すると、室外空気が室外側吸込口(13)を通じてケーシング(10)内に取り込まれる。この室外空気は、第1空気として室外側下部流路(42)へ流入する。一方、排気ファン(96)を駆動すると、室内空気が室内側吸込口(15)を通じてケーシング(10)内に取り込まれる。この室内空気は、第2空気として室内側下部流路(47)へ流入する。
【0077】
また、除湿運転時において、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第1熱交換器(103)が蒸発器となる一方、第2熱交換器(104)が休止している。この冷媒回路(100)の動作については後述する。
【0078】
除湿運転の第1動作について、図1,図5を参照しながら説明する。この第1動作では、第1吸着素子(81)についての吸着動作と、第2吸着素子(82)についての再生動作とが行われる。つまり、第1動作では、第1吸着素子(81)で空気が減湿されると同時に、第2吸着素子(82)の吸着剤が再生される。
【0079】
図1に示すように、第1仕切板(20)では、第1右下開口(24)と第1左上開口(25)とが連通状態となり、残りの開口(21,22,23,26)が遮断状態となっている。この状態では、第1右下開口(24)によって室外側下部流路(42)と右下流路(54)とが連通され、第1左上開口(25)によって左上流路(55)と室外側上部流路(41)とが連通される。
【0080】
第2仕切板(30)では、第2右側開口(31)と第2右上開口(33)とが連通状態となり、残りの開口(32,34,35,36)が遮断状態となっている。この状態では、第2右側開口(31)によって室内側下部流路(47)と右側流路(51)とが連通され、第2右上開口(33)によって右上流路(53)と室内側上部流路(46)とが連通される。
【0081】
右側シャッタ(61)は閉鎖状態となり、左側シャッタ(62)は開口状態となっている。この状態では、中央流路(57)における再生熱交換器(102)の左側部分と左下流路(56)とが、左側シャッタ(62)を介して連通される。
【0082】
ケーシング(10)に取り込まれた第1空気は、室外側下部流路(42)から第1右下開口(24)を通って右下流路(54)へ流入する。一方、ケーシング(10)に取り込まれた第2空気は、室内側下部流路(47)から第2右側開口(31)を通って右側流路(51)へ流入する。
【0083】
図5(a)にも示すように、右下流路(54)の第1空気は、第1吸着素子(81)の調湿側通路(85)へ流入する。この調湿側通路(85)を流れる間に、第1空気に含まれる水蒸気が吸着剤に吸着される。第1吸着素子(81)で減湿された第1空気は、右上流路(53)へ流入する。
【0084】
一方、右側流路(51)の第2空気は、第1吸着素子(81)の冷却側通路(86)へ流入する。この冷却側通路(86)を流れる間に、第2空気は、調湿側通路(85)で水蒸気が吸着剤に吸着される際に生じた吸着熱を吸熱する。つまり、第2空気は、冷却用流体として冷却側通路(86)を流れる。吸着熱を奪った第2空気は、中央流路(57)へ流入して再生熱交換器(102)を通過する。その際、再生熱交換器(102)では、第2空気が冷媒との熱交換によって加熱される。その後、第2空気は、中央流路(57)から左下流路(56)へ流入する。
【0085】
第1吸着素子(81)及び再生熱交換器(102)で加熱された第2空気は、第2吸着素子(82)の調湿側通路(85)へ導入される。この調湿側通路(85)では、第2空気によって吸着剤が加熱され、吸着剤から水蒸気が脱離する。つまり、第2吸着素子(82)の再生が行われる。吸着剤から脱離した水蒸気は、第2空気と共に左上流路(55)へ流入する。
【0086】
図1に示すように、右上流路(53)へ流入した減湿後の第1空気は、第2右上開口(33)を通って室内側上部流路(46)へ送り込まれる。この第1空気は、室内側上部流路(46)を流れる間に第1熱交換器(103)を通過し、冷媒との熱交換によって冷却される。その後、減湿されて冷却された第1空気は、室内側吹出口(14)を通って室内へ供給される。
【0087】
一方、左上流路(55)へ流入した第2空気は、第1左上開口(25)を通って室外側上部流路(41)へ流入する。この第2空気は、室外側上部流路(41)を流れる間に第2熱交換器(104)を通過する。その際、第2熱交換器(104)は休止しており、第2空気は加熱も冷却もされない。そして、第1吸着素子(81)の冷却と第2吸着素子(82)の再生に利用された第2空気は、室外側吹出口(16)を通って室外へ排出される。
【0088】
除湿運転の第2動作について、図2,図5を参照しながら説明する。この第2動作では、第1動作時とは逆に、第2吸着素子(82)についての吸着動作と、第1吸着素子(81)についての再生動作とが行われる。つまり、第2動作では、第2吸着素子(82)で空気が減湿されると同時に、第1吸着素子(81)の吸着剤が再生される。
【0089】
図2に示すように、第1仕切板(20)では、第1右上開口(23)と第1左下開口(26)とが連通状態となり、残りの開口(21,22,24,25)が遮断状態となっている。この状態では、第1右上開口(23)によって右上流路(53)と室外側上部流路(41)とが連通され、第1左下開口(26)によって室外側下部流路(42)と左下流路(56)とが連通される。
【0090】
第2仕切板(30)では、第2左側開口(32)と第2左上開口(35)とが連通状態となり、残りの開口(31,33,34,36)が遮断状態となっている。この状態では、第2左側開口(32)によって室内側下部流路(47)と左側流路(52)とが連通され、第2左上開口(35)によって左上流路(55)と室内側上部流路(46)とが連通される。
【0091】
左側シャッタ(62)は閉鎖状態となり、右側シャッタ(61)は開口状態となっている。この状態では、中央流路(57)における再生熱交換器(102)の右側部分と右下流路(54)とが、右側シャッタ(61)を介して連通される。
【0092】
ケーシング(10)に取り込まれた第1空気は、室外側下部流路(42)から第1左下開口(26)を通って左下流路(56)へ流入する。一方、ケーシング(10)に取り込まれた第2空気は、室内側下部流路(47)から第2左側開口(32)を通って左側流路(52)へ流入する。
【0093】
図5(b)にも示すように、左下流路(56)の第1空気は、第2吸着素子(82)の調湿側通路(85)へ流入する。この調湿側通路(85)を流れる間に、第1空気に含まれる水蒸気が吸着剤に吸着される。第2吸着素子(82)で減湿された第1空気は、左上流路(55)へ流入する。
【0094】
一方、左側流路(52)の第2空気は、第2吸着素子(82)の冷却側通路(86)へ流入する。この冷却側通路(86)を流れる間に、第2空気は、調湿側通路(85)で水蒸気が吸着剤に吸着される際に生じた吸着熱を吸熱する。つまり、第2空気は、冷却用流体として冷却側通路(86)を流れる。吸着熱を奪った第2空気は、中央流路(57)へ流入して再生熱交換器(102)を通過する。その際、再生熱交換器(102)では、第2空気が冷媒との熱交換によって加熱される。その後、第2空気は、中央流路(57)から右下流路(54)へ流入する。
【0095】
第2吸着素子(82)及び再生熱交換器(102)で加熱された第2空気は、第1吸着素子(81)の調湿側通路(85)へ導入される。この調湿側通路(85)では、第2空気によって吸着剤が加熱され、吸着剤から水蒸気が脱離する。つまり、第1吸着素子(81)の再生が行われる。吸着剤から脱離した水蒸気は、第2空気と共に右上流路(53)へ流入する。
【0096】
図2に示すように、左上流路(55)へ流入した減湿後の第1空気は、第2左上開口(35)を通って室内側上部流路(46)へ送り込まれる。この第1空気は、室内側上部流路(46)を流れる間に第1熱交換器(103)を通過し、冷媒との熱交換によって冷却される。その後、減湿されて冷却された第1空気は、室内側吹出口(14)を通って室内へ供給される。
【0097】
一方、右上流路(53)へ流入した第2空気は、第1右上開口(23)を通って室外側上部流路(41)へ流入する。この第2空気は、室外側上部流路(41)を流れる間に第2熱交換器(104)を通過する。その際、第2熱交換器(104)は休止しており、第2空気は加熱も冷却もされない。そして、第2吸着素子(82)の冷却と第1吸着素子(81)の再生に利用された第2空気は、室外側吹出口(16)を通って室外へ排出される。
【0098】
《加湿運転》
図3,図4に示すように、加湿運転時において、給気ファン(95)を駆動すると、室外空気が室外側吸込口(13)を通じてケーシング(10)内に取り込まれる。この室外空気は、第2空気として室外側下部流路(42)へ流入する。一方、排気ファン(96)を駆動すると、室内空気が室内側吸込口(15)を通じてケーシング(10)内に取り込まれる。この室内空気は、第1空気として室内側下部流路(47)へ流入する。
【0099】
また、加湿運転時において、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第2熱交換器(104)が蒸発器となる一方、第1熱交換器(103)が休止している。この冷媒回路(100)の動作については後述する。
【0100】
加湿運転の第1動作について、図3,図5を参照しながら説明する。この第1動作では、第1吸着素子(81)についての吸着動作と、第2吸着素子(82)についての再生動作とが行われる。つまり、第1動作では、第2吸着素子(82)で空気が加湿され、第1吸着素子(81)の吸着剤が水蒸気を吸着する。
【0101】
図3に示すように、第1仕切板(20)では、第1右側開口(21)と第1右上開口(23)とが連通状態となり、残りの開口(22,24,25,26)が遮断状態となっている。この状態では、第1右側開口(21)によって室外側下部流路(42)と右側流路(51)とが連通され、第1右上開口(23)によって右上流路(53)と室外側上部流路(41)とが連通される。
【0102】
第2仕切板(30)では、第2右下開口(34)と第2左上開口(35)とが連通状態となり、残りの開口(31,32,33,36)が遮断状態となっている。この状態では、第2右下開口(34)によって室内側下部流路(47)と右下流路(54)とが連通され、第2左上開口(35)によって左上流路(55)と室内側上部流路(46)とが連通される。
【0103】
右側シャッタ(61)は閉鎖状態となり、左側シャッタ(62)は開口状態となっている。この状態では、中央流路(57)における再生熱交換器(102)の左側部分と左下流路(56)とが、左側シャッタ(62)を介して連通される。
【0104】
ケーシング(10)に取り込まれた第1空気は、室内側下部流路(47)から第2右下開口(34)を通って右下流路(54)へ流入する。一方、ケーシング(10)に取り込まれた第2空気は、室外側下部流路(42)から第1右側開口(21)を通って右側流路(51)へ流入する。
【0105】
図5(a)にも示すように、右下流路(54)の第1空気は、第1吸着素子(81)の調湿側通路(85)へ流入する。この調湿側通路(85)を流れる間に、第1空気に含まれる水蒸気が吸着剤に吸着される。第1吸着素子(81)で水分を奪われた第1空気は、右上流路(53)へ流入する。
【0106】
一方、右側流路(51)の第2空気は、第1吸着素子(81)の冷却側通路(86)へ流入する。この冷却側通路(86)を流れる間に、第2空気は、調湿側通路(85)で水蒸気が吸着剤に吸着される際に生じた吸着熱を吸熱する。つまり、第2空気は、冷却用流体として冷却側通路(86)を流れる。吸着熱を奪った第2空気は、中央流路(57)へ流入して再生熱交換器(102)を通過する。その際、再生熱交換器(102)では、第2空気が冷媒との熱交換によって加熱される。その後、第2空気は、中央流路(57)から左下流路(56)へ流入する。
【0107】
第1吸着素子(81)及び再生熱交換器(102)で加熱された第2空気は、第2吸着素子(82)の調湿側通路(85)へ導入される。この調湿側通路(85)では、第2空気によって吸着剤が加熱され、吸着剤から水蒸気が脱離する。つまり、第2吸着素子(82)の再生が行われる。そして、吸着剤から脱離した水蒸気が第2空気に付与され、第2空気が加湿される。第2吸着素子(82)で加湿された第2空気は、その後に左上流路(55)へ流入する。
【0108】
図3に示すように、左上流路(55)へ流入した第2空気は、第2左上開口(35)を通って室内側上部流路(46)へ流入する。この第2空気は、室内側上部流路(46)を流れる間に第1熱交換器(103)を通過する。その際、第1熱交換器(103)は休止しており、第2空気は加熱も冷却もされない。そして、加湿された第2空気は、室内側吹出口(14)を通って室内へ供給される。
【0109】
一方、右上流路(53)へ流入した第1空気は、第1右上開口(23)を通って室外側上部流路(41)へ送り込まれる。この第1空気は、室外側上部流路(41)を流れる間に第2熱交換器(104)を通過し、冷媒との熱交換によって冷却される。その後、水分と熱を奪われた第1空気は、室外側吹出口(16)を通って室外へ排出される。
【0110】
加湿運転の第2動作について、図4,図5を参照しながら説明する。この第2動作では、第1動作時とは逆に、第2吸着素子(82)についての吸着動作と、第1吸着素子(81)についての再生動作とが行われる。つまり、この第2動作では、第1吸着素子(81)で空気が加湿され、第2吸着素子(82)の吸着剤が水蒸気を吸着する。
【0111】
図4に示すように、第1仕切板(20)では、第1左側開口(22)と第1左上開口(25)とが連通状態となり、残りの開口(21,23,24,26)が遮断状態となっている。この状態では、第1左側開口(22)によって室外側下部流路(42)と左側流路(52)とが連通され、第1左上開口(25)によって左上流路(55)と室外側上部流路(41)とが連通される。
【0112】
第2仕切板(30)では、第2右上開口(33)と第2左下開口(36)とが連通状態となり、残りの開口(31,32,34,35)が遮断状態となっている。この状態では、第2右上開口(33)によって右上流路(53)と室内側上部流路(46)とが連通され、第2左下開口(36)によって室内側下部流路(47)と左下流路(56)とが連通される。
【0113】
左側シャッタ(62)は閉鎖状態となり、右側シャッタ(61)は開口状態となっている。この状態では、中央流路(57)における再生熱交換器(102)の右側部分と右下流路(54)とが、右側シャッタ(61)を介して連通される。
【0114】
ケーシング(10)に取り込まれた第1空気は、室内側下部流路(47)から第2左下開口(36)を通って左下流路(56)へ流入する。一方、ケーシング(10)に取り込まれた第2空気は、室外側下部流路(42)から第1左側開口(22)を通って左側流路(52)へ流入する。
【0115】
図5(b)にも示すように、左下流路(56)の第1空気は、第2吸着素子(82)の調湿側通路(85)へ流入する。この調湿側通路(85)を流れる間に、第1空気に含まれる水蒸気が吸着剤に吸着される。第2吸着素子(82)で水分を奪われた第1空気は、左上流路(55)へ流入する。
【0116】
一方、左側流路(52)の第2空気は、第2吸着素子(82)の冷却側通路(86)へ流入する。この冷却側通路(86)を流れる間に、第2空気は、調湿側通路(85)で水蒸気が吸着剤に吸着される際に生じた吸着熱を吸熱する。つまり、第2空気は、冷却用流体として冷却側通路(86)を流れる。吸着熱を奪った第2空気は、中央流路(57)へ流入して再生熱交換器(102)を通過する。その際、再生熱交換器(102)では、第2空気が冷媒との熱交換によって加熱される。その後、第2空気は、中央流路(57)から右下流路(54)へ流入する。
【0117】
第2吸着素子(82)及び再生熱交換器(102)で加熱された第2空気は、第1吸着素子(81)の調湿側通路(85)へ導入される。この調湿側通路(85)では、第2空気によって吸着剤が加熱され、吸着剤から水蒸気が脱離する。つまり、第1吸着素子(81)の再生が行われる。そして、吸着剤から脱離した水蒸気が第2空気に付与され、第2空気が加湿される。第1吸着素子(81)で加湿された第2空気は、その後に右上流路(53)へ流入する。
【0118】
図4に示すように、右上流路(53)へ流入した第2空気は、第2右上開口(33)を通って室内側上部流路(46)へ流入する。この第2空気は、室内側上部流路(46)を流れる間に第1熱交換器(103)を通過する。その際、第1熱交換器(103)は休止しており、第2空気は加熱も冷却もされない。そして、加湿された第2空気は、室内側吹出口(14)を通って室内へ供給される。
【0119】
一方、左上流路(55)へ流入した第1空気は、第1左上開口(25)を通って室外側上部流路(41)へ送り込まれる。この第1空気は、室外側上部流路(41)を流れる間に第2熱交換器(104)を通過し、冷媒との熱交換によって冷却される。その後、水分と熱を奪われた第1空気は、室外側吹出口(16)を通って室外へ排出される。
【0120】
《冷媒回路の動作》
冷媒回路(100)の動作について、図7,図9,図10を参照しながら説明する。
【0121】
除湿運転時の動作について説明する。除湿運転時において、四方切換弁(120)は、第1ポート(121)と第4ポート(124)が互いに連通して第2ポート(122)と第3ポート(123)が互いに連通する状態となる。また、電動膨張弁(110)は、その開度が運転条件に応じて適宜調節される。
【0122】
この状態で圧縮機(101)を運転すると、冷媒回路(100)で冷媒が循環して冷凍サイクルが行われる。その際、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第1熱交換器(103)が蒸発器となり、第2熱交換器(104)が休止状態となる(図9参照)。
【0123】
具体的に、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)へ送られる。再生熱交換器(102)へ流入した冷媒は、第2空気との熱交換を行い、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、レシーバ(105)を通って電動膨張弁(110)へ送られる。この冷媒は、電動膨張弁(110)を通過する際に減圧される。電動膨張弁(110)で減圧された冷媒は、四方切換弁(120)を通って第1熱交換器(103)へ送られる。第1熱交換器(103)へ流入した冷媒は、第1空気との熱交換を行い、第1空気から吸熱して蒸発する。第1熱交換器(103)で蒸発した冷媒は、圧縮機(101)へ吸入されて圧縮され、その後に圧縮機(101)から吐出される。
【0124】
加湿運転時の動作について説明する。加湿運転時において、四方切換弁(120)は、第1ポート(121)と第2ポート(122)が互いに連通して第3ポート(123)と第4ポート(124)が互いに連通する状態となる。また、電動膨張弁(110)は、その開度が運転条件に応じて適宜調節される。
【0125】
この状態で圧縮機(101)を運転すると、冷媒回路(100)で冷媒が循環して冷凍サイクルが行われる。その際、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第2熱交換器(104)が蒸発器となり、第1熱交換器(103)が休止状態となる(図10参照)。
【0126】
具体的に、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)へ送られる。再生熱交換器(102)へ流入した冷媒は、第2空気との熱交換を行い、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、レシーバ(105)を通って電動膨張弁(110)へ送られる。この冷媒は、電動膨張弁(110)を通過する際に減圧される。電動膨張弁(110)で減圧された冷媒は、四方切換弁(120)を通って第2熱交換器(104)へ送られる。第2熱交換器(104)へ流入した冷媒は、第1空気との熱交換を行い、第1空気から吸熱して蒸発する。第2熱交換器(104)で蒸発した冷媒は、圧縮機(101)へ吸入されて圧縮され、その後に圧縮機(101)から吐出される。
【0127】
《コントローラの動作》
コントローラ(200)の動作について説明する。運転動作切換部(201)は、リモコン等からの入力に応じて除湿運転と加湿運転を切り換える。また、運転動作切換部(201)は、除湿運転時や加湿運転時において、第1動作と第2動作を所定の時間毎に相互に切り換える。通常制御部(202)は、第1動作中及び第2動作中において、圧縮機(101)の容量や電動膨張弁(110)の開度を適宜調節する。
【0128】
切換用制御部(203)は、運転動作切換部(201)によって第1動作と第2動作が相互に切り換えられる際に、通常制御部(202)の制御動作に割り込むかたちで所定の制御動作を行う。ここでは、切換用制御部(203)の制御動作について、第1動作から第2動作へ切り換わる場合を例に説明する。
【0129】
図9(a)や図10(a)に示すように、第1動作時には、第1吸着素子(81)へ第1空気が送り込まれ、第2吸着素子(82)へ再生熱交換器(102)で加熱された第2空気が送り込まれる。そして、第1動作から第2動作へ切り換わる直前になると、第1吸着素子(81)は、多量の水分を吸着して吸着能力が低下した状態となる。従って、その時点において、第1吸着素子(81)で発生する吸着熱は、それ程多くない。
【0130】
この第1動作から第2動作に切り換わると、図9(b)や図10(b)に示すように、今度は第2吸着素子(82)へ第1空気が送り込まれる。この時点において、第2吸着素子(82)は、再生が終了したばかりであって、吸着能力が高い状態となっている。このため、第1動作から第2動作へ切り換わってしばらくは、第2吸着素子(82)で多量の吸着熱が発生する。つまり、第1動作から第2動作に切り換わると、それに伴って吸着素子(81,82)から第1又は第2熱交換器(103,104)へ送られる第1空気の温度が急上昇する。
【0131】
そこで、切換用制御部(203)は、第1動作から第2動作への切り換えとほぼ同時に、圧縮機(101)の容量を引き下げる。具体的には、圧縮機モータへ供給される交流の周波数を、通常制御部(202)の制御動作により設定されていた値から所定値だけ低くする。圧縮機モータへ供給される交流の周波数をどの程度下げるかは、その時の運転条件に基づいて、その度毎に切換用制御部(203)が算出する。
【0132】
圧縮機(101)の容量を引き下げると、蒸発器となっている第1又は第2熱交換器(103,104)への冷媒供給量が減少する。つまり、除湿運転時であれば第1熱交換器(103)に対する冷媒供給量が減少し、加湿運転時であれば第2熱交換器(104)に対する冷媒供給量が減少する。
【0133】
例えば、除湿運転中に第1動作から第2動作へ切り換わる際には、第1熱交換器(103)へ送られる第1空気の温度が急上昇するが、その一方で第1熱交換器(103)に対する冷媒供給量が削減される。このため、第1空気の温度が上昇しても、単位時間当たりに第1熱交換器(103)で冷媒が第1空気から吸収する熱量は概ね一定に保たれる。そして、圧縮機(101)の容量を引き下げたにも拘わらず、再生熱交換器(102)で第2空気に与えられる熱量は確保される。
【0134】
第1動作から第2動作への切り換え、あるいは第2動作から第1動作への切り換えが完了した後は、通常制御部(202)による圧縮機(101)の容量制御が再開される。尚、第1動作と第2動作の相互切り換えが完了した後も、所定の時間に亘って切換用制御部(203)の制御動作を継続し、圧縮機(101)の容量を低く保持し続けてもよい。
【0135】
−実施形態1の効果−
本実施形態1によれば、第1動作と第2動作の相互切り換えにより第1空気の温度が急上昇した状態において、圧縮機(101)を容量の小さい状態で運転することができる。つまり、蒸発器となっている第1又は第2熱交換器(103,104)へ送られる第1空気の温度が上昇することによって再生熱交換器(102)での第2空気に対する加熱量が稼げる運転状態では、圧縮機(101)を容量の小さい状態で運転できる。従って、本実施形態によれば、圧縮機(101)に対する入力を低減でき、その結果、調湿装置の消費電力を削減できる。
【0136】
−実施形態1の変形例−
上記実施形態1では、コントローラ(200)の切換用制御部(203)を次のように構成してもよい。つまり、本変形例の切換用制御部(203)は、運転動作切換部(201)が第1動作と第2動作の相互切り換えを行う際に、その切り換えが行われる前に予め圧縮機(101)の容量を引き下げておくように構成される。つまり、この切換用制御部(203)は、例えば、第1動作と第2動作の相互に切り換えられる3〜5秒前に、圧縮機(101)の容量を引き下げる。
【0137】
このように圧縮機(101)の容量を予め引き下げておくと、第1動作と第2動作の相互切り換えが完了したときには、蒸発器となっている第1又は第2熱交換器(103,104)への冷媒供給量が既に低下した状態となる。そして、第1又は第2熱交換器(103,104)での冷媒流量が充分に減少しているため、蒸発用熱交換器(103,104)へ送られる第1空気の温度が急激に上昇しても、蒸発用熱交換器(103,104)で冷媒が第1空気から吸収する熱量の増大は抑制される。
【0138】
従って、本変形例によれば、第1動作と第2動作の相互切り換えが完了した時点において、圧縮機(101)を必要最小限の容量で運転でき、圧縮機モータの消費電力を確実に削減できる。
【0139】
【発明の実施の形態2】
本発明の実施形態2は、上記実施形態1において、コントローラ(200)の切換用制御部(203)の構成を変更したものである。本実施形態の調湿装置について、この切換用制御部(203)以外の構成は上記実施形態1と同様である。
【0140】
本実施形態の切換用制御部(203)は、第1動作と第2動作を相互に切り換える際に電動膨張弁(110)の開度を強制的に拡大する制御動作を行うように構成されている。つまり、第1動作と第2動作が相互に切り換えられるときに、切換用制御部(203)は、電動膨張弁(110)の開度を、通常制御部(202)によって設定された開度よりも拡大する。この切換用制御部(203)の制御動作は、第1動作と第2動作の相互切り換え時に蒸発器となっている第1又は第2熱交換器(103,104)で冷媒が吸収する熱量の増大を抑制するために行われる。
【0141】
−運転動作−
本実施形態の切換用制御部(203)が行う制御動作について、第1動作から第2動作へ切り換わる場合を例に説明する。
【0142】
切換用制御部(203)は、第1動作から第2動作への切り換えとほぼ同時に、電動膨張弁(110)の開度を拡大する。具体的には、電動膨張弁(110)の開度を、通常制御部(202)の制御動作により設定されていた開度から所定値だけ拡大する。電動膨張弁(110)の開度をどの程度拡大するかは、その時の運転条件に基づいて、その度毎に切換用制御部(203)が算出する。
【0143】
電動膨張弁(110)の開度を拡大すると、蒸発器となっている第1又は第2熱交換器(103,104)へ電動膨張弁(110)から送られる低圧冷媒の圧力が上昇する。そして、除湿運転時であれば第1熱交換器(103)における冷媒蒸発温度が上昇し、加湿運転時であれば第2熱交換器(104)における冷媒蒸発温度が上昇する。
【0144】
例えば、除湿運転中に第1動作から第2動作へ切り換わる際には、第1熱交換器(103)へ送られる第1空気の温度が急上昇するが、その一方で第1熱交換器(103)における冷媒蒸発温度も上昇する。このため、第1空気の温度が上昇しても、単位時間当たりに第1熱交換器(103)で冷媒が第1空気から吸収する熱量は概ね一定に保たれる。そして、第1熱交換器(103)から圧縮機(101)へ送られる冷媒の過熱度も、概ね一定に保たれる。
【0145】
第1動作から第2動作への切り換え、あるいは第2動作から第1動作への切り換えが完了した後は、通常制御部(202)による電動膨張弁(110)の開度制御が再開される。尚、第1動作と第2動作の相互切り換えが完了した後も、所定の時間に亘って切換用制御部(203)の制御動作を継続し、電動膨張弁(110)の開度を大きく保持し続けてもよい。
【0146】
−実施形態2の効果−
本実施形態2によれば、第1動作と第2動作を相互に切り換えた後において、電動膨張弁(110)の開度を大きく設定できる。つまり、第1又は第2熱交換器(103,104)へ送られる第1空気の温度が上昇した運転状態では、この第1空気の温度上昇に合わせて第1又は第2熱交換器(103,104)での冷媒蒸発温度を引き上げることができる。このため、第1又は第2熱交換器(103,104)の出口における冷媒の過熱度、即ち圧縮機(101)へ吸入される冷媒の過熱度が大きくなり過ぎるのを回避できる。従って、本実施形態によれば、第1空気の温度が上昇した場合にも圧縮機(101)が吸入する冷媒の過熱度を小さく保つことができ、第1動作と第2動作の相互切換時に電動膨張弁(110)を操作しない場合に比べ、圧縮機モータの消費電力を削減することができる。
【0147】
−実施形態2の変形例−
上記実施形態1では、コントローラ(200)の切換用制御部(203)を次のように構成してもよい。つまり、本変形例の切換用制御部(203)は、運転動作切換部(201)が第1動作と第2動作の相互切り換えを行う際に、その切り換えが行われる前に予め電動膨張弁(110)の開度を拡大しておくように構成される。つまり、この切換用制御部(203)は、例えば、第1動作と第2動作の相互に切り換えられる3〜5秒前に、電動膨張弁(110)の開度を拡大する。
【0148】
このように電動膨張弁(110)の開度を予め拡大しておくと、第1動作と第2動作の相互切り換えが完了したときには、既に減圧後の低圧冷媒の圧力が上昇しており、第1又は第2熱交換器(103,104)での冷媒蒸発温度も充分に上昇している。そして、第1又は第2熱交換器(103,104)での冷媒蒸発温度が充分に高くなっているため、第1又は第2熱交換器(103,104)へ送られる第1空気の温度が急激に上昇しても、第1又は第2熱交換器(103,104)で冷媒が第1空気から吸収する熱量の増大は抑制される。
【0149】
本変形例によれば、第1動作と第2動作の相互切り換えが完了した時点において、第1又は第2熱交換器(103,104)での冷媒蒸発温度を確実に引き上げておくことができる。従って、圧縮機(101)が吸入する冷媒の過熱度を小さく保つことができ、圧縮機モータの消費電力を一層確実に削減できる。
【0150】
【発明の実施の形態3】
本発明の実施形態3は、上記実施形態1において、冷媒回路(100)及びコントローラ(200)の構成を変更したものである。本実施形態の調湿装置において、冷媒回路(100)及びコントローラ(200)以外の構成は、上記実施形態1と同様である。
【0151】
《冷媒回路の構成》
図11に示すように、本実施形態の冷媒回路(100)は、冷媒の充填された閉回路である。この冷媒回路(100)には、圧縮機(101)、再生熱交換器(102)、第1熱交換器(103)、第2熱交換器(104)、レシーバ(105)、及び四方切換弁(120)が設けられている。また、冷媒回路(100)には、電動膨張弁(111,112)と逆止弁(151,152)とが2つずつ設けられている。この冷媒回路(100)では、冷媒を循環させることで蒸気圧縮式の冷凍サイクルが行われる。
【0152】
冷媒回路(100)において、圧縮機(101)の吐出側は、再生熱交換器(102)の一端と、四方切換弁(120)の第1ポート(121)とに接続されている。再生熱交換器(102)の他端は、レシーバ(105)を介して第1電動膨張弁(111)の一端と第2電動膨張弁(112)の一端とに接続されている。
【0153】
第1電動膨張弁(111)の他端は、第1逆止弁(151)を介して第1熱交換器(103)の一端に接続されている。第1熱交換器(103)の他端は、四方切換弁(120)の第4ポート(124)に接続されている。また、第2逆止弁(152)は、第1逆止弁(151)と第1熱交換器(103)の間と、再生熱交換器(102)とレシーバ(105)の間を接続する配管に設けられている。第1逆止弁(151)は、第1電動膨張弁(111)から第1熱交換器(103)へ向かう冷媒の流通のみを許容するように設置されている。第2逆止弁(152)は、第1熱交換器(103)からレシーバ(105)へ向かう冷媒の流通のみを許容するように設置されている。
【0154】
一方、第2電動膨張弁(112)の他端は、第2熱交換器(104)の一端に接続されている。第2熱交換器(104)の他端と四方切換弁(120)の第3ポート(123)とは、それぞれが圧縮機(101)の吸入側に接続されている。また、四方切換弁(120)の第2ポート(122)は、キャピラリチューブ(CP)を介して圧縮機(101)の吸入側に接続されている。
【0155】
四方切換弁(120)は、第1ポート(121)と第2ポート(122)が互いに連通して第3ポート(123)と第4ポート(124)が互いに連通する状態と、第1ポート(121)と第4ポート(124)が互いに連通して第2ポート(122)と第3ポート(123)が互いに連通する状態とに切り換わる。
【0156】
尚、上記冷媒回路(100)では、キャピラリチューブ(CP)を介して四方切換弁(120)の第2ポート(122)を圧縮機(101)の吸入側に接続しているが、これは液封状態の回避を目的としたものである。つまり、実質的に四方切換弁(120)の第2ポート(122)は閉塞されており、上記冷媒回路(100)では四方切換弁(120)が三方弁として用いられている。
【0157】
上記圧縮機(101)の圧縮機モータには、インバータを介して交流が供給される。この交流の周波数を変更して圧縮機モータの回転数を変化させれば、圧縮機(101)の容量が変化する。つまり、上記圧縮機(101)は、その容量が可変となっている。また、上記第1及び第2電動膨張弁(111,112)は、弁体を駆動するためのパルスモータを備え、その開度が可変となっている。
【0158】
《コントローラの構成》
本実施形態のコントローラ(200)は、上記実施形態1のものと同様に、運転動作切換部(201)と、通常制御部(202)と、切換用制御部(203)とを備えている(図8参照)。運転動作切換部(201)は、除湿運転と加湿運転の切り換えや、第1動作と第2動作の切り換えを行うものであって、上記実施形態1と同様に構成されている。また、通常制御部(202)は、第1動作中及び第2動作中に圧縮機(101)の容量や第1,第2電動膨張弁(111,112)の開度を調節する通常の制御動作を行うものであって、上記実施形態1と同様に構成されている。
【0159】
本実施形態の切換用制御部(203)は、第1動作と第2動作を相互に切り換える際に第1,第2電動膨張弁(111,112)の開度を強制的に拡大する制御動作を行うように構成されている。つまり、第1動作と第2動作が相互に切り換えられるときに、切換用制御部(203)は、第1,第2電動膨張弁(111,112)の開度を、通常制御部(202)によって設定された開度よりも拡大する。この切換用制御部(203)の制御動作は、第1動作と第2動作の相互切り換え時に蒸発器となっている第1,第2熱交換器(103,104)で冷媒が吸収する熱量の増大を抑制するために行われる。ただし、切換用制御部(203)は、通常制御部(202)による開度調節の対象となっている電動膨張弁(111,112)の開度だけを変更するように構成されている。この点については後述する。
【0160】
−運転動作−
本実施形態の調湿装置は、除湿運転と加湿運転とを切り換えて行う。また、この調湿装置は、第1動作と第2動作とを交互に繰り返すことによって除湿運転や加湿運転を行う。
【0161】
上記調湿装置の運転動作は、冷媒回路(100)の動作を除いて、上記実施形態1と同様である。ここでは、本実施形態の冷媒回路(100)における動作について、図9〜図13を参照しながら説明する。尚、図12,図13に示す第1空気及び第2空気の流れは、第2動作時のものである。
【0162】
《除湿運転》
除湿運転時において、本実施形態の冷媒回路(100)では、2種類の運転動作が可能である。そして、除湿運転時には、2つの運転動作が適宜選択して行われる。
【0163】
除湿運転時の第1運転動作について説明する。この第1運転動作において、四方切換弁(120)は、第1ポート(121)と第2ポート(122)が互いに連通して第3ポート(123)と第4ポート(124)が互いに連通する状態となる。また、第1電動膨張弁(111)は開度が運転条件に応じて適宜調節され、第2電動膨張弁(112)は全閉状態とされる。
【0164】
この状態で圧縮機(101)を運転すると、冷媒回路(100)で冷媒が循環して冷凍サイクルが行われる。その際、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第1熱交換器(103)が蒸発器となり、第2熱交換器(104)が休止状態となる(図9参照)。つまり、この第1運転動作時の冷媒回路(100)では、上記実施形態1の除湿運転時と同様の動作が行われる。
【0165】
具体的に、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)へ送られる。再生熱交換器(102)へ流入した冷媒は、第2空気との熱交換を行い、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、レシーバ(105)を通って第1電動膨張弁(111)へ送られる。この冷媒は、第1電動膨張弁(111)を通過する際に減圧され、その後に第1逆止弁(151)を通って第1熱交換器(103)へ送られる。第1熱交換器(103)へ流入した冷媒は、第1空気との熱交換を行い、第1空気から吸熱して蒸発する。第1熱交換器(103)で蒸発した冷媒は、四方切換弁(120)を通って圧縮機(101)へ吸入される。圧縮機(101)へ吸入された冷媒は、圧縮された後に吐出される。
【0166】
除湿運転時の第2運転動作について説明する。この第2運転動作において、第1ポート(121)と第2ポート(122)が互いに連通して第3ポート(123)と第4ポート(124)が互いに連通する状態となる。また、第1電動膨張弁(111)と第2電動膨張弁(112)は、それぞれの開度が運転条件に応じて適宜調節される。
【0167】
この状態で圧縮機(101)を運転すると、冷媒回路(100)で冷媒が循環して冷凍サイクルが行われる。その際、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第1熱交換器(103)と第2熱交換器(104)の両方が蒸発器となる(図12(a)参照)。また、第1熱交換器(103)と第2熱交換器(104)は、冷媒の循環方向において互いに並列となっている。つまり、この第2運転動作時の冷媒回路(100)では、上記実施形態1の除湿運転時とは異なり、第2熱交換器(104)において冷媒と第2空気の熱交換が行われる。
【0168】
具体的に、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)へ送られる。再生熱交換器(102)へ流入した冷媒は、第2空気との熱交換を行い、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、レシーバ(105)を通過した後に二手に分流される。分流された冷媒は、その一方が第1電動膨張弁(111)へ送られ、他方が第2電動膨張弁(112)へ送られる。
【0169】
第1電動膨張弁(111)へ送られた冷媒は、第1電動膨張弁(111)を通過する際に減圧され、その後に第1逆止弁(151)を通って第1熱交換器(103)へ送られる。第1熱交換器(103)へ流入した冷媒は、第1空気との熱交換を行い、第1空気から吸熱して蒸発する。第1熱交換器(103)で蒸発した冷媒は、四方切換弁(120)を通って圧縮機(101)へ吸入される。
【0170】
一方、第2電動膨張弁(112)へ送られた冷媒は、第2電動膨張弁(112)を通過する際に減圧され、その後に第2熱交換器(104)へ送られる。第2熱交換器(104)へ流入した冷媒は、第2空気との熱交換を行い、第2空気から吸熱して蒸発する。第2熱交換器(104)で蒸発した冷媒は、第1熱交換器(103)で蒸発した冷媒と合流した後に圧縮機(101)へ吸入される。圧縮機(101)へ吸入された冷媒は、圧縮された後に吐出される。
【0171】
この第2運転動作時の冷媒回路(100)で循環する冷媒は、第2熱交換器(104)で第2空気から吸熱し、再生熱交換器(102)で第2空気へ放熱する。つまり、第2熱交換器(104)では室外へ排気される第2空気からの熱回収が行われ、第2熱交換器(104)で回収された熱が再生熱交換器(102)における第2空気の加熱に再利用される。
【0172】
《加湿運転》
加湿運転時において、本実施形態の冷媒回路(100)では、3種類の運転動作が可能である。そして、加湿運転時には、3つの運転動作が適宜選択して行われる。
【0173】
加湿運転時の第1運転動作について説明する。この第1運転動作において、四方切換弁(120)は、第1ポート(121)と第2ポート(122)が互いに連通して第3ポート(123)と第4ポート(124)が互いに連通する状態となる。また、第1電動膨張弁(111)は全閉状態とされ、第2電動膨張弁(112)は開度が運転条件に応じて適宜調節される。
【0174】
この状態で圧縮機(101)を運転すると、冷媒回路(100)で冷媒が循環して冷凍サイクルが行われる。その際、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第2熱交換器(104)が蒸発器となり、第1熱交換器(103)が休止状態となる(図10参照)。つまり、この第1運転動作時の冷媒回路(100)では、上記実施形態1の加湿運転時と同様の動作が行われる。
【0175】
具体的に、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)へ送られる。再生熱交換器(102)へ流入した冷媒は、第2空気との熱交換を行い、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、レシーバ(105)を通って第2電動膨張弁(112)へ送られる。この冷媒は、第2電動膨張弁(112)を通過する際に減圧され、その後に第2熱交換器(104)へ送られる。第2熱交換器(104)へ流入した冷媒は、第1空気との熱交換を行い、第1空気から吸熱して蒸発する。第2熱交換器(104)で蒸発した冷媒は、圧縮機(101)へ吸入されて圧縮され、その後に圧縮機(101)から吐出される。
【0176】
加湿運転時の第2運転動作について説明する。この第2運転動作において、第1ポート(121)と第2ポート(122)が互いに連通して第3ポート(123)と第4ポート(124)が互いに連通する状態となる。また、第1電動膨張弁(111)と第2電動膨張弁(112)は、それぞれの開度が運転条件に応じて適宜調節される。
【0177】
この状態で圧縮機(101)を運転すると、冷媒回路(100)で冷媒が循環して冷凍サイクルが行われる。その際、冷媒回路(100)では、再生熱交換器(102)が凝縮器となり、第1熱交換器(103)と第2熱交換器(104)の両方が蒸発器となる(図12(b)参照)。また、第1熱交換器(103)と第2熱交換器(104)は、冷媒の循環方向において互いに並列となっている。つまり、この第2運転動作時の冷媒回路(100)では、上記実施形態1の加湿運転時とは異なり、第1熱交換器(103)において冷媒と第2空気の熱交換が行われる。
【0178】
具体的に、圧縮機(101)から吐出された冷媒は、再生熱交換器(102)へ送られる。再生熱交換器(102)へ流入した冷媒は、第2空気との熱交換を行い、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、レシーバ(105)を通過した後に二手に分流される。分流された冷媒は、その一方が第1電動膨張弁(111)へ送られ、他方が第2電動膨張弁(112)へ送られる。
【0179】
第1電動膨張弁(111)へ送られた冷媒は、第1電動膨張弁(111)を通過する際に減圧され、その後に第1逆止弁(151)を通って第1熱交換器(103)へ送られる。第1熱交換器(103)へ流入した冷媒は、第2空気との熱交換を行い、第2空気から吸熱して蒸発する。第1熱交換器(103)で蒸発した冷媒は、四方切換弁(120)を通って圧縮機(101)へ吸入される。
【0180】
一方、第2電動膨張弁(112)へ送られた冷媒は、第2電動膨張弁(112)を通過する際に減圧され、その後に第2熱交換器(104)へ送られる。第2熱交換器(104)へ流入した冷媒は、第1空気との熱交換を行い、第1空気から吸熱して蒸発する。第2熱交換器(104)で蒸発した冷媒は、第1熱交換器(103)で蒸発した冷媒と合流した後に圧縮機(101)へ吸入される。圧縮機(101)へ吸入された冷媒は、圧縮された後に吐出される。
【0181】
この第2運転動作を行う場合、加湿された第2空気は、第1熱交換器(103)で冷却された後に室内へ供給される。その際、第1熱交換器(103)で第2空気中の水分が結露するのを防止し、加湿量の減少を回避するのが望ましい。従って、この第2運転動作時には、第1熱交換器(103)での冷媒流量を第2熱交換器(104)での冷媒流量よりも少なく設定し、第1熱交換器(103)における冷媒の吸熱量を低く抑えるのが望ましい。
【0182】
加湿運転時の第3運転動作について説明する。この第3運転動作において、四方切換弁(120)は、第1ポート(121)と第4ポート(124)が互いに連通して第2ポート(122)と第3ポート(123)が互いに連通する状態となる。また、第1電動膨張弁(111)は全閉状態とされ、第2電動膨張弁(112)は開度が運転条件に応じて適宜調節される。
【0183】
この状態で圧縮機(101)を運転すると、冷媒回路(100)で冷媒が循環して冷凍サイクルが行われる。その際、冷媒回路(100)では、再生熱交換器(102)と第1熱交換器(103)の両方が凝縮器となり、第2熱交換器(104)が蒸発器となる(図13参照)。また、再生熱交換器(102)と第1熱交換器(103)は、冷媒の循環方向において互いに並列となっている。つまり、この第2運転動作時の冷媒回路(100)では、上記実施形態1の加湿運転時とは異なり、第1熱交換器(103)において冷媒と第2空気の熱交換が行われる。
【0184】
具体的に、圧縮機(101)から吐出された冷媒は、二手に分流される。分流された冷媒は、その一方が再生熱交換器(102)へ送られ、他方が四方切換弁(120)を通って第1熱交換器(103)へ送られる。
【0185】
再生熱交換器(102)へ流入した冷媒は、第2空気との熱交換を行い、第2空気に放熱して凝縮する。再生熱交換器(102)で凝縮した冷媒は、レシーバ(105)へ流入する。一方、第1熱交換器(103)へ流入した冷媒は、第2空気との熱交換を行い、第2空気に放熱して凝縮する。第1熱交換器(103)で凝縮した冷媒は、第2逆止弁(152)を通り、再生熱交換器(102)で凝縮した冷媒と共にレシーバ(105)へ流入する。
【0186】
レシーバ(105)から流出した冷媒は、第2電動膨張弁(112)へ送られる。この冷媒は、第2電動膨張弁(112)を通過する際に減圧され、その後に第2熱交換器(104)へ送られる。第2熱交換器(104)へ流入した冷媒は、第1空気との熱交換を行い、第1空気から吸熱して蒸発する。第2熱交換器(104)で蒸発した冷媒は、圧縮機(101)へ吸入されて圧縮され、その後に圧縮機(101)から吐出される。
【0187】
この第3運転動作時において、第1熱交換器(103)では、吸着素子(81,82)を通過後の第2空気に対して冷媒が放熱する。つまり、第2空気は、吸着素子(81,82)で加湿され、更に第1熱交換器(103)で加熱されてから室内へ供給される。
【0188】
加湿運転の第1,第2及び第3運転動作時において、冷媒回路(100)で循環する冷媒は、第2熱交換器(104)で第1空気から吸熱し、再生熱交換器(102)で第2空気へ放熱する。つまり、第2熱交換器(104)では室外へ排気される第1空気からの熱回収が行われ、第2熱交換器(104)で回収された熱が再生熱交換器(102)における第2空気の加熱に利用される。
【0189】
《コントローラの動作》
コントローラ(200)の動作について説明する。
【0190】
運転動作切換部(201)は、リモコン等からの入力に応じて除湿運転時の各運転動作や加湿運転の各運転動作を切り換える。また、運転動作切換部(201)は、除湿運転時や加湿運転時において、第1動作と第2動作を所定の時間毎に相互に切り換える。
【0191】
通常制御部(202)は、第1動作中及び第2動作中において、圧縮機(101)の容量や電動膨張弁(111,112)の開度を適宜調節する。具体的に、通常制御部(202)は、再生熱交換器(102)から吸着素子(81,82)へ送られる第2空気の温度が所定の設定値となるように、圧縮機モータの回転数を増減させる。また、通常制御部(202)は、蒸発器として機能している第1,第2熱交換器(103,104)出口での冷媒過熱度が所定の設定値となるように、第1,第2電動膨張弁(111,112)の開度を増減させる。
【0192】
つまり、除湿運転時において、通常制御部(202)は、第1運転動作中であれば第1電動膨張弁(111)の開度だけを調節し、第2運転動作中であれば第1及び第2電動膨張弁(111,112)の開度を調節する。一方、加湿運転時において、通常制御部(202)は、第1,第3運転動作中であれば第2電動膨張弁(112)の開度だけを調節し、第2運転動作中であれば第1及び第2電動膨張弁(111,112)の開度を調節する。
【0193】
本実施形態の切換用制御部(203)が行う制御動作について、除湿運転の第1運転動作中に第1動作から第2動作へ切り換わる場合を例に説明する。この場合には、第1電動膨張弁(111)が通常制御部(202)による開度制御の対象となっている。そして、切換用制御部(203)は、この第1電動膨張弁(111)だけを操作する。
【0194】
尚、切換用制御部(203)は、除湿運転時や加湿運転時の第2運転動作中であれば第1及び第2電動膨張弁(111,112)の操作を行い、加湿運転時の第1及び第3運転動作中であれば第2電動膨張弁(112)の操作だけを行う。
【0195】
切換用制御部(203)は、第1動作から第2動作への切り換えとほぼ同時に、第1電動膨張弁(111)の開度を拡大する。具体的には、第1電動膨張弁(111)の開度を、通常制御部(202)の制御動作により設定されていた開度から所定値だけ拡大する。第1電動膨張弁(111)の開度を拡大すると、蒸発器となっている第1熱交換器(103)へ第1電動膨張弁(111)から送られる低圧冷媒の圧力が上昇し、第1熱交換器(103)における冷媒蒸発温度が上昇する。尚、第1電動膨張弁(111)の開度をどの程度拡大するかは、その時の運転条件に基づいて、その度毎に切換用制御部(203)が算出する。
【0196】
このように、第1動作から第2動作へ切り換わる際には、第1熱交換器(103)へ送られる第1空気の温度が急上昇するが、その一方で第1熱交換器(103)における冷媒蒸発温度も上昇する。そのため、第1空気の温度が上昇しても、単位時間当たりに第1熱交換器(103)で冷媒が第1空気から吸収する熱量は概ね一定に保たれる。そして、第1熱交換器(103)から圧縮機(101)へ送られる冷媒の過熱度も、概ね一定に保たれる。
【0197】
第1動作から第2動作への切り換え、あるいは第2動作から第1動作への切り換えが完了した後は、通常制御部(202)による第1電動膨張弁(111)の開度制御が再開される。尚、第1動作と第2動作の相互切り換えが完了した後も、所定の時間に亘って切換用制御部(203)の制御動作を継続し、第1電動膨張弁(111)の開度を大きく保持し続けてもよい。
【0198】
−実施形態3の効果−
本実施形態3によれば、第1動作と第2動作を相互に切り換えた後において、第1,第2電動膨張弁(111,112)の開度を拡大し、第1,第2熱交換器(103,104)での冷媒蒸発温度を上昇させることができる。つまり、第1,第2熱交換器(103,104)へ送られる第1空気の温度が上昇した運転状態では、この第1空気の温度上昇に合わせて第1,第2熱交換器(103,104)での冷媒蒸発温度を引き上げることができる。
【0199】
このため、第1,第2熱交換器(103,104)の出口における冷媒の過熱度、即ち圧縮機(101)へ吸入される冷媒の過熱度が大きくなり過ぎるのを回避できる。従って、本実施形態によれば、第1空気の温度が上昇した場合にも圧縮機(101)が吸入する冷媒の過熱度を小さく保つことができ、第1動作と第2動作の相互切換時に第1,第2電動膨張弁(111,112)を操作しない場合に比べ、圧縮機モータの消費電力を削減することができる。
【0200】
−実施形態3の変形例−
本実施形態の切換用制御部(203)においては、上記実施形態2の変形例と同様に、第1動作と第2動作が相互に切り換えられる前に、予め第1,第2電動膨張弁(111,112)の開度を拡大するようにしてもよい。また、本実施形態の切換用制御部(203)においては、上記実施形態1と同様に、第1動作と第2動作が相互に切り換えられる際に圧縮機(101)の容量を強制的に引き下げるようにしてもよい。
【0201】
【発明の実施の形態4】
本発明の実施形態4は、上記実施形態1において、コントローラ(200)の切換用制御部(203)の構成を変更したものである。本実施形態の調湿装置について、この切換用制御部(203)以外の構成は上記実施形態1と同様である。
【0202】
本実施形態の切換用制御部(203)は、第1動作と第2動作を相互に切り換える際に第1空気の流量を一時的に削減する制御動作を行うように構成されている。つまり、第1動作と第2動作が相互に切り換えられるときに、切換用制御部(203)は、給気ファン(95)又は排気ファン(96)の回転数を一時的に低下させ、吸着素子(81,82)から第1又は第2熱交換器(103,104)へ送られる第1空気の流量を減少させる。この切換用制御部(203)の制御動作は、第1動作と第2動作が相互に切り換わる際に蒸発器となっている第1又は第2熱交換器(103,104)で冷媒が吸収する熱量の増大を抑制するために行われる。
【0203】
−運転動作−
本実施形態の切換用制御部(203)が行う制御動作について、除湿運転中に第1動作から第2動作へ切り換わる場合を例に説明する。この場合、調湿装置では、給気ファン(95)によって吸引された室外空気が、第1空気として流通している。そこで、切換用制御部(203)は、給気ファン(95)の回転数を変更する。
【0204】
尚、加湿運転中においては、排気ファン(96)によって吸引された室内空気が第1空気となるため、切換用制御部(203)が排気ファン(96)の回転数を変更する。
【0205】
切換用制御部(203)は、第1動作から第2動作への切り換えとほぼ同時に、給気ファン(95)の回転数を低下させる。具体的には、給気ファン(95)の回転数を、通常時の値から所定値だけ低くする。給気ファン(95)の回転数をどの程度下げるかは、その時の運転条件に基づいて、その度毎に切換用制御部(203)が算出する。
【0206】
給気ファン(95)の回転数を下げると、蒸発器となっている第1熱交換器(103)へ送られる第1空気の流量が減少する。つまり、第1熱交換器(103)で冷媒と熱交換する第1空気の流量が減少する。第1熱交換器(103)に対する第1空気の供給量が減少すると、その第1空気の温度が急激に上昇しても、単位時間当たりに第1熱交換器(103)で冷媒が第1空気から吸収する熱量は、概ね一定に保たれる。そして、第1熱交換器(103)から圧縮機(101)へ送られる冷媒の過熱度も、概ね一定に保たれる。
【0207】
−実施形態4の効果−
本実施形態4によれば、第1動作と第2動作を相互に切り換えた後において、第1空気の流量を一時的に低く設定できる。つまり、第1又は第2熱交換器(103,104)へ送られる第1空気の温度が上昇した運転状態では、温度上昇した第1空気の流量を削減することができる。このため、第1又は第2熱交換器(103,104)の出口における冷媒の過熱度、即ち圧縮機(101)へ吸入される冷媒の過熱度が大きくなり過ぎるのを回避できる。従って、本実施形態によれば、第1空気の温度が上昇した場合にも圧縮機(101)が吸入する冷媒の過熱度を小さく保つことができ、圧縮機(101)に対する入力を小さく保つことができる。
【図面の簡単な説明】
【図1】実施形態1に係る調湿装置の構成および除湿運転中の第1動作を示す分解斜視図である。
【図2】実施形態1に係る調湿装置での除湿運転中の第2動作を示す分解斜視図である。
【図3】実施形態1に係る調湿装置での加湿運転中の第1動作を示す分解斜視図である。
【図4】実施形態1に係る調湿装置での加湿運転中の第2動作を示す分解斜視図である。
【図5】実施形態1に係る調湿装置の要部を示す概略構成図である。
【図6】実施形態1に係る調湿装置の吸着素子を示す概略斜視図である。
【図7】実施形態1に係る冷媒回路の構成を示す配管系統図である。
【図8】実施形態1に係るコントローラの構成を示すブロック図である。
【図9】実施形態1に係る調湿装置の除湿運転時の動作を概念的に示す説明図である。
【図10】実施形態1に係る調湿装置の加湿運転時の動作を概念的に示す説明図である。
【図11】実施形態3に係る冷媒回路の構成を示す配管系統図である。
【図12】実施形態3に係る調湿装置の運転動作を概念的に示す説明図である。
【図13】実施形態3に係る調湿装置の運転動作を概念的に示す説明図である。
【符号の説明】
(81) 第1吸着素子
(82) 第2吸着素子
(100) 冷媒回路
(101) 圧縮機
(102) 再生熱交換器(凝縮用熱交換器)
(103) 第1熱交換器(蒸発用熱交換器)
(104) 第2熱交換器(蒸発用熱交換器)
(110) 電動膨張弁(膨張機構)
(111) 第1電動膨張弁(膨張機構)
(112) 第2電動膨張弁(膨張機構)
(200) コントローラ(制御手段)

Claims (6)

  1. 吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、
    第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、
    上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置であって、
    上記冷媒回路(100)には、圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、膨張機構(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、
    第1動作と第2動作が相互に切り換わる際に上記蒸発用熱交換器(103,104)での冷媒の吸熱量の増加を抑制するための動作を行う制御手段(200)を備えている調湿装置。
  2. 吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、
    第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、
    上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置であって、
    上記冷媒回路(100)には、容量可変の圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、膨張機構(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、
    第1動作と第2動作が相互に切り換わる際に上記圧縮機(101)の容量を強制的に引き下げる制御手段(200)を備えている調湿装置。
  3. 吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、
    第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、
    上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置であって、
    上記冷媒回路(100)には、圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、開度可変の膨張弁(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、
    第1動作と第2動作が相互に切り換わる際に上記膨張弁(110,…)の開度を強制的に拡大する制御手段(200)を備えている調湿装置。
  4. 吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、
    第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、
    上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置であって、
    上記冷媒回路(100)には、圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、膨張機構(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、
    第1動作と第2動作が相互に切り換わる際に第1空気の流量を一時的に削減する制御手段(200)を備えている調湿装置。
  5. 吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、
    第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、
    上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置であって、
    上記冷媒回路(100)には、容量可変の圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、膨張機構(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、
    上記圧縮機(101)の容量を強制的に引き下げてから第1動作と第2動作を相互に切り換える制御手段(200)を備えている調湿装置。
  6. 吸着剤を空気と接触させるための複数の吸着素子(81,82)と、冷媒を循環させて冷凍サイクルを行う冷媒回路(100)と備え、
    第1の吸着素子(81)で第1空気を減湿すると同時に第2の吸着素子(82)を第2空気で再生する第1動作と、第1の吸着素子(81)を第2空気で再生すると同時に第2の吸着素子(82)で第1空気を減湿する第2動作とを交互に行い、
    上記吸着素子(81,82)で減湿された第1空気又は上記吸着素子(81,82)で加湿された第2空気を室内へ供給する調湿装置であって、
    上記冷媒回路(100)には、圧縮機(101)と、上記吸着素子(81,82)へ供給される第2空気を冷媒と熱交換させて凝縮器になる凝縮用熱交換器(102)と、開度可変の膨張弁(110,…)と、上記吸着素子(81,82)で減湿された第1空気を冷媒と熱交換させて蒸発器になる蒸発用熱交換器(103,104)とが設けられる一方、
    上記膨張弁(110,…)の開度を強制的に拡大してから第1動作と第2動作を相互に切り換える制御手段(200)を備えている調湿装置。
JP2002031073A 2002-02-07 2002-02-07 調湿装置 Expired - Fee Related JP3624893B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031073A JP3624893B2 (ja) 2002-02-07 2002-02-07 調湿装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002031073A JP3624893B2 (ja) 2002-02-07 2002-02-07 調湿装置

Publications (2)

Publication Number Publication Date
JP2003232539A JP2003232539A (ja) 2003-08-22
JP3624893B2 true JP3624893B2 (ja) 2005-03-02

Family

ID=27774582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031073A Expired - Fee Related JP3624893B2 (ja) 2002-02-07 2002-02-07 調湿装置

Country Status (1)

Country Link
JP (1) JP3624893B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742074B1 (ko) * 2004-03-31 2007-07-23 다이킨 고교 가부시키가이샤 조습장치

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3624910B2 (ja) * 2003-05-27 2005-03-02 ダイキン工業株式会社 調湿装置
CN100414188C (zh) * 2003-07-22 2008-08-27 大金工业株式会社 湿度控制装置
JP4341358B2 (ja) * 2003-09-30 2009-10-07 ダイキン工業株式会社 空気調和装置
JP4496821B2 (ja) * 2003-12-03 2010-07-07 ダイキン工業株式会社 調湿装置
NL1028830C2 (nl) * 2005-04-21 2006-10-24 Level Holding Bv Recuperatief klimaatbeheerssysteem.
JP3852015B1 (ja) 2005-05-30 2006-11-29 ダイキン工業株式会社 調湿装置
JP2006329579A (ja) * 2005-05-30 2006-12-07 Daikin Ind Ltd 調湿装置
JP2008101885A (ja) * 2006-10-20 2008-05-01 Yurikai Co Ltd 同時加熱、冷却ヒートポンプ回路
JP4978303B2 (ja) 2007-05-15 2012-07-18 パナソニック株式会社 熱交換形換気装置
JP5109594B2 (ja) * 2007-10-31 2012-12-26 ダイキン工業株式会社 調湿装置
CN107883480B (zh) * 2017-10-19 2020-07-21 广东芬尼克兹节能设备有限公司 一种热泵机组除湿控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742074B1 (ko) * 2004-03-31 2007-07-23 다이킨 고교 가부시키가이샤 조습장치

Also Published As

Publication number Publication date
JP2003232539A (ja) 2003-08-22

Similar Documents

Publication Publication Date Title
JP3624910B2 (ja) 調湿装置
JP2010065927A (ja) 調湿装置
JP2003314856A (ja) 調湿装置
WO2005095868A1 (ja) 調湿装置
JP3624893B2 (ja) 調湿装置
WO2013046609A1 (ja) 調湿装置
JP5218135B2 (ja) 調湿装置
JP3695417B2 (ja) 調湿装置
JP2005291569A (ja) 空気調和機およびその制御方法
WO2005103577A1 (ja) 調湿装置
JP3807319B2 (ja) 調湿装置
JP4341358B2 (ja) 空気調和装置
JP3807320B2 (ja) 調湿装置
JP2004060954A (ja) 調湿装置
JP2010078245A (ja) 調湿システム
WO2006103968A1 (ja) 調湿装置
WO2005008140A1 (ja) 調湿装置
JP3649196B2 (ja) 調湿装置
JP2005291535A (ja) 調湿装置
JP4179051B2 (ja) 調湿装置
JP4179052B2 (ja) 調湿装置
JP2010281502A (ja) 調湿装置
JP2003232538A (ja) 調湿装置
JP3668764B2 (ja) 調湿装置
JP3712001B2 (ja) 空気調和機および空気調和機の制御方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees