JP3623317B2 - パイロット排気集中化構造 - Google Patents
パイロット排気集中化構造 Download PDFInfo
- Publication number
- JP3623317B2 JP3623317B2 JP17800696A JP17800696A JP3623317B2 JP 3623317 B2 JP3623317 B2 JP 3623317B2 JP 17800696 A JP17800696 A JP 17800696A JP 17800696 A JP17800696 A JP 17800696A JP 3623317 B2 JP3623317 B2 JP 3623317B2
- Authority
- JP
- Japan
- Prior art keywords
- pilot
- valve
- exhaust
- air
- port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Fluid-Driven Valves (AREA)
Description
【発明の属する技術分野】
本発明は、空気圧機器においての空気圧切換弁に関するものであり、さらに詳細には、パイロット式切換弁におけるパイロット排気集中化構造に関するものである。
【0002】
【従来の技術】
従来より、空気圧機器はローコストで、省力化、自動化が可能となるために、多方面の産業において使用されている。また、空気圧は環境に対して清潔に保てるために、最近半導体の製造ラインにおいても使用されている。また、省配管、小型化を図るために、給排気及び出力ポートを集結するマニホールドベースに、多連数の切換え弁を搭載して一体化する、マニホールド化が行なわれている。そして、メイン排気及び主弁を駆動させるパイロットエアの排気も集中処理化が行なわれている。
さらに近年、切換え弁の応答性の向上が要求されており、パイロットエアを制御するオペレータ弁はおよそ5msec以下の応答時間で高速応答することが可能である。そのため、パイロット式切換弁が20msec以下の応答に追従できるように、このオペレータ弁の応答性によりパイロットエアを、オペレータ弁から主弁のピストン室へ高速に供給するとともに、主弁のピストン室からスムーズに排出することも非常に重要になっている。
【0003】
ここで、従来のパイロット排気集中化構造の第1の実施例を図7に示す。パイロット式電磁弁100はパイロットエアを制御するオペレータ弁102a、102bを主弁本体104の両側に配置した両側ソレノイドタイプで、給気ポート108、2つの排気ポート106a、106b、及び2つの出力ポート109a、109bを持つ5ポート弁である。オペレータ弁102a、102bを主弁本体104の両側に配置することにより、主弁本体104のピストン室103a、103bとの距離を短くでき、パイロットエアをオペレータ弁102a、102bからピストン室102a、102bへ供給する時間、すなわち主弁の切換え応答性に関しては有利である。
【0004】
このパイロット式電磁弁100はマニホールドベース101に、他のパイロット式電磁弁とともに多連数で搭載し、マニホールド化され使用されている。そして、マニホールドベース101に搭載されたパイロット式電磁弁100においては、スプール110の駆動源であるパイロットエアが給気ポート108から供給される。すなわち、パイロット式電磁弁100はいわゆる内部パイロット式である。給気ポート108から供給されたパイロットエアはオペレータ弁102a、102bに供給され、オペレータ弁102aあるいは102bのソレノイドが励磁することにより、オペレータ弁102aあるいは102bが作動してパイロットエアを出力し、そのパイロットエアが主弁本体104のピストン室103aあるいは103bに供給されて、スプール110が動くことにより流路が切り替わる。
【0005】
また、ピストン室103aあるいは103bに供給されたパイロットエアは、マニホールドベース101の排気流路107a及び107bを使用して集中処理されている。すなわち、ピストン室103aあるいは103bから排出されるパイロットエアは、主弁本体104内に形成されているパイロット排気流路105a及び105bを、排気ポート106a及び106bに連通させて、メインの排気とともにマニホールドベース101内の排気流路107a及び107bから外部に排出されている。
【0006】
しかし、パイロット排気をメインの排気ポート106a、106bに流して処理するため、多連数のパイロット式切換弁をマニホールド化して使用しているとき、メイン側のエア圧が高いとメイン排気がピストン室103a、103bに回り込んでしまう。従って、スムーズにパイロットエアをピストン室103aあるいは103bから排出できないため、主弁の切換え応答性の悪化を招いてしまう、若しくは主弁が誤作動を起こしたりする問題があった。
【0007】
そこで、上記問題を解決した第2の従来例を図8に示す。パイロット式電磁弁120は、第1の従来例と同様、パイロットエアを制御するオペレータ弁102a、102bを主弁本体124の両側に配置した両側ソレノイドタイプで、給気ポート108、2つの排気ポート106a、106b、及び2つの出力ポート109a、109b、さらに2つのパイロット排気ポート128a、128bを持つ5ポート弁である。
【0008】
パイロット式電磁弁120はマニホールドベース121に、他のパイロット式電磁弁とともに多連数で搭載し、マニホールド化され使用されている。そして、マニホールドベース121に搭載されたパイロット式電磁弁120においては、スプール110の駆動源であるパイロットエアが給気ポート108から供給される。そして、給気ポート108から供給されたパイロットエアはオペレータ弁102a、102bに供給され、オペレータ弁102aあるいは102bのソレノイドが励磁することにより、オペレータ弁102aあるいは102bが作動してパイロットエアを出力し、そのパイロットエアが主弁本体124のピストン室103aあるいは103bに供給されて、スプール110が動くことにより流路が切り替わる。
また、ピストン室103aあるいは103bに供給されたパイロットエアは、マニホールドベース121のパイロット排気流路129a及び129bを使用して処理されている。よって、メイン排気とパイロット排気が独立して処理されるため、パイロット排気へのメイン排気による干渉がなく、スムーズにパイロットエアをピストン室103aあるいは103bから排出できる。従って、主弁の切換え応答性の悪化を招いてしまう、若しくは主弁が誤作動を起こしたりする、第1の従来例の問題点を解決している。
【0009】
【発明が解決しようとする課題】
しかしながら、第2の従来例のパイロット排気構造には次のような問題があった。すなわち、パイロット排気の流路129a、129bをマニホールドベース121内に2箇所設ける必要がある。よって、マニホールドベース101の寸法増大、コストアップを招くという問題がある。
さらに、排気ポート107a、107bや出力ポート109a、109bを加圧するユニバーサル加圧、あるいはスプール110の駆動圧力より低い低圧や低真空で使用するためには、外部から給気とは独立してパイロットエアを供給する必要がある。よって、外部パイロット用の流路をマニホールドベース121内に設けなければならない。従って、既存のパイロットエア用の流路が排気用として129aと129bに加えて、給気用にさらに1本必要になり、マニホールドベース121の寸法増大、コストアップを招くという問題がある。
【0010】
そこで本発明は、上記問題点を解決するためになされたものであり、スムーズにパイロットエアを排出することができ、マニホールドベース寸法大きくすることなく、外部パイロットも可能であるパイロット排気集中化構造を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記した問題点を解決するために第1の発明によれば、パイロットエアを制御するためのオペレータ弁と、前記パイロットエアにより駆動されるポペット弁またはスプール弁を備える主弁本体との組合せで構成され、前記ポペット弁またはスプール弁の摺動する軸上で、前記主弁本体の両側に第1オペレータ弁と第2オペレータ弁が配置され、前記第1オペレータ弁及び第2オペレータ弁と連通する第1ピストン室及び第2ピストン室を備えるパイロット式切換弁におけるパイロット排気集中化構造において、前記主弁本体内に前記第1ピストン室と前記第2ピストン室とを連通するパイロットエア排気貫通路を有する。
【0012】
また、第2の発明によれば、上記した問題点を解決するために第1の発明において、前記主弁本体内に外部から前記パイロットエアを供給するためのパイロット給気ポートを有する。
【0013】
上記構成を有するパイロット排気集中化構造は次のように作用する。すなわち、主弁本体内に備わる2つのピストン室を連通させるパイロット排気貫通路を設けているため、パイロット排気を1箇所に集中化でき、1つのポートからマニホールドベースに流し処理することができる。よって、パイロット排気を集中処理するためには、マニホールドベース内にパイロット排気ポートが1つあればよい。従って、内部パイロット式の場合には、マニホールドベースの小型化ができ、しかも加工箇所が減るのでコストダウンすることができる。また、外部パイロット式の場合には、従来のマニホールドベースを使用して、パイロット給気も集中処理することができる。
【0014】
【発明の実施の形態】
以下、本発明に係るパイロット排気集中化構造について、具体化した実施の形態を挙げ、図面に基づいて詳細に説明する。
図1に本発明に係る第1の実施の形態である内部パイロット式電磁弁を断面図で示す。内部パイロット式とは、パイロットエアをメイン給気から供給する方法である。電磁弁1は、図1に示すように、主弁本体5の両側にパイロットエアを制御するオペレータ弁2a及び2bが配置された両側ソレノイドタイプの電磁弁である。そして、給気ポートPと2つの排気ポートRA、RB、及び2つの出力ポートA、Bを備える5ポート弁であり、パイロット排気ポートPRを1つ備えている。
【0015】
主弁本体5には流路切換えを行なうスプール4が、ほぼ中央に内蔵され、スプール4の両端部には、スプール4の駆動源であるパイロットエアが供給されるピストン室6a及び6bが形成されている。このピストン室6aまたは6bにパイロットエアが充填され、エア圧によりスプール4が作動する。また、主弁本体5内には、スプール4の上方にパイロットエア用の流路として、パイロット給気流路7とパイロット排気貫通路8が形成されている。パイロット給気流路7は給気ポートPと連通していて、パイロットエアをオペレータ弁2a及び2bに供給するための流路である。パイロット排気貫通路8はピストン室6aと6bとを連通させるための流路である。このパイロット排気貫通路8により、パイロットエアの排気処理を1つのポートでできるようになっている。
【0016】
一方、マニホールドベース3は、直方体形状をなし、長手方向に給気ポートpと排気ポートra、rb、及びパイロット排気ポートprがマニホールドベース3内を貫通して形成されている。また、長手方向と直行する方向に出力ポートa、bが、給気ポートpと排気ポートra、rbの間をそれぞれの流路と交わることなく、マニホールドベース3内に形成されている。そして、マニホールドベース3に形成されているそれぞれのポートと、マニホールドベース3に搭載される電磁弁に形成されているそれぞれのポートとが、連通するようにマニホールドベース3に連絡流路が垂直方向に形成されている。よって、マニホールドベース3により給排気を集中化でき、省配管化を可能にしている。
【0017】
上記のように構成された電磁弁1は次のように作用する。まず、オペレータ弁2a及び2bの作動について説明する。オペレータ弁2a及び2bはそれぞれが備えるコイルへの通電により作動するが、この作動パターンが3種類ある。すなわち、、(1)オペレータ弁2aのみ作動、(2)オペレータ弁2bのみ作動、(3)オペレータ弁2a、2bともに作動せずの3パターンである。この3パターンによってメインの流路を切り換えている。
【0018】
それでは、上記3パターンにおける電磁弁1の作動について説明する。まず、(1)のパターンであるオペレータ弁2aのみ作動された場合について説明する。マニホールドベース3の給気ポートpに供給された給気が、パイロットエアとして電磁弁1の給気ポートPを介して、パイロット給気流路7を通り、オペレータ弁2aと2bのパイロット給気ポート10aと10bに供給されている。ここで、オペレータ弁2aを作動させると、オペレータ弁2aよりパイロットエアがパイロット出力ポート12aより出力され、ピストン室6aに供給される。するとピストン室6aにパイロットエアが充填され、エア圧によりスプール4がオペレータ弁2b側へ動く。従って、メイン流路として給気ポートPと出力ポートA、出力ポートBと排気ポートRBが連通する。そして、ピストン室6bに残留しているパイロットエアは、オペレータ弁2bのパイロット出力ポート12b、パイロット排気ポート11bを介して、パイロット排気貫通路8を通り、パイロット排気ポートPRからマニホールドベース3のパイロット排気ポートprに流れて排出される。
また、オペレータ弁2aへの通電を止めてもスプール4は動かず上記位置のままである。これは、停電等によりスプール4が動き、電磁弁に接続しているシリンダ等が作動することを防止するためである。すなわち、オペレータ弁2aへの通電を止めて、次にオペレータ弁2bに通電しないとスプール4は動かない。
【0019】
次に、(2)のパターンであるオペレータ弁2bのみ作動された場合について説明する。マニホールドベース3の給気ポートpに供給された給気が、パイロットエアとして電磁弁1の給気ポートPを介して、パイロット給気流路7を通り、オペレータ弁2aと2bのパイロット給気ポート10aと10bに供給されている。ここで、オペレータ弁2bを作動させると、オペレータ弁2bよりパイロットエアがパイロット出力ポート12bより出力され、ピストン室6bに供給される。するとピストン室6bにパイロットエアが充填され、エア圧によりスプール4がオペレータ弁2a側へ動く。従って、メイン流路として給気ポートPと出力ポートB、出力ポートAと排気ポートRAが連通する。そして、ピストン室6aに残留しているパイロットエアは、オペレータ弁2aのパイロット出力ポート12a、パイロット排気ポート11aを介して、パイロット排気ポートPRからマニホールドベース3のパイロット排気ポートprに流れて排出される。
また、オペレータ弁2bへの通電を止めてもスプール4は動かず上記位置のままである。これも、停電等によりシリンダ等が作動することを防止するためである。すなわち、オペレータ弁2bへの通電を止めて、次にオペレータ弁2aに通電しないとスプール4は動かない。
【0020】
最後に(3)のパターンであるオペレータ弁2a、2bともに作動させない場合について説明する。マニホールドベース3の給気ポートpに供給された給気が、パイロットエアとして電磁弁1の給気ポートPを介して、パイロット給気流路7を通り、オペレータ弁2aと2bのパイロット給気ポート10aと10bに供給されている。オペレータ弁2aと2bはともに作動していないので、パイロットエアはオペレータ弁2a及び2bから出力されず、パイロット給気ポート10a及び10bで留まっている。よって、パイロットエアはピストン室6a及び6bには供給されないから、スプール4は動かないのでメイン流路は切り替わらない。
【0021】
以上説明した通り第1の実施の形態のパイロット排気集中化構造によれば、主弁本体内に備わる2つのピストン室を連通させるパイロット排気貫通路を設けているため、パイロット排気を1箇所に集中化でき、1つのポートからマニホールドベースに流し処理することができる。よって、パイロット排気を集中処理するためには、マニホールドベース内にパイロット排気ポートが1つあればよいから、マニホールドベースの小型化ができ、しかも加工箇所が減るのでコストダウンすることができる。さらに、パイロット排気は単独で処理されるので、ピストン室からスムーズに排出でき、主弁の切換え応答性は悪化しない。
【0022】
図2に本発明に係る第2の実施の形態である外部パイロット式電磁弁を断面図で示す。外部パイロット式とは、パイロットエアをメイン給気とは別に単独で供給する方法である。電磁弁21は、図2に示すように、主弁本体25の両側にパイロットエアを制御するオペレータ弁2a及び2bが配置された両側ソレノイドタイプの電磁弁である。そして、給気ポートPと2つの排気ポートRA、RB、及び2つの出力ポートA、Bを備える5ポート弁であり、パイロット排気ポートPRと外部パイロットポートPPを備えている。第1の実施の形態との相違点は、外部パイロット用のポート(外部パイロットポートPP)が追加され、パイロット給気ポート7が給気ポートPと連通していない点である。
【0023】
主弁本体25には、第1の実施の形態と同様に、流路切換えを行なうスプール4が、ほぼ中央に内蔵され、スプール4の両端部には、スプール4の駆動源であるパイロットエアが供給されるピストン室6a及び6bが形成されている。このピストン室6aまたは6bにパイロットエアが充填され、エア圧によりスプール4が作動する。また、主弁本体25内には、スプール4の上方にパイロットエア用の流路として、パイロット給気流路7とパイロット排気貫通路8が形成されている。
そして、パイロットエアは外部パイロットポートPPより供給され、オペレータ弁2bへ、さらに、パイロット給気流路7によりオペレータ弁2aへ供給される。パイロット排気貫通路8はピストン室6aと6bとを連通させるための流路である。
【0024】
一方、マニホールドベース23は、直方体形状をなし、長手方向に給気ポートpと排気ポートra、rb、及びパイロット排気ポートprと外部パイロットポートppがマニホールドベース23内を貫通して形成されている。また、長手方向と直行する方向に出力ポートa、bが、給気ポートpと排気ポートra、rbの間をそれぞれの流路と交わることなく、マニホールドベース23内に形成されている。そして、マニホールドベース23に形成されているそれぞれのポートと、マニホールドベース23に搭載される電磁弁に形成されているそれぞれのポートとが、連通するようにマニホールドベース23に連絡流路が垂直方向に形成されている。第1の実施の形態との相違点は、外部パイロットポートppが設けられている点であるが、第2の従来例のマニホールドベースと同形状である。
マニホールドベース23により外部パイロット式においても、給排気を集中化でき、省配管化を可能にしている。
【0025】
上記のように構成された電磁弁21は次のように作用する。第1の実施の形態と同様に、まず、(1)のパターンであるオペレータ弁2aのみ作動された場合について説明する。マニホールドベース23の外部パイロットポートppに供給されたパイロットエアは、パイロット給気ポートPPを通り、オペレータ弁2bのパイロット給気ポート10bへ、さらにパイロット給気流路7を通り、オペレータ弁2aのパイロット給気ポート10aへ供給されている。ここで、オペレータ弁2aを作動させると、オペレータ弁2aよりパイロットエアがパイロット出力ポート12aより出力され、ピストン室6aに供給される。するとピストン室6aにパイロットエアが充填され、エア圧によりスプール4がオペレータ弁2b側へ動く。従って、メイン流路として給気ポートPと出力ポートA、出力ポートBと排気ポートRBが連通する。そして、ピストン室6bに残留しているパイロットエアは、オペレータ弁2bのパイロット出力ポート12b、パイロット排気ポート11bを介して、パイロット排気貫通路8を通り、パイロット排気ポートPRからマニホールドベース23のパイロット排気ポートprに流れて排出される。
また、オペレータ弁2aへの通電を止めてもスプール4は動かず上記位置のままである。これは、停電等によりスプール4が動き、電磁弁に接続しているシリンダ等が作動することを防止するためである。すなわち、オペレータ弁2aへの通電を止めて、次にオペレータ弁2bに通電しないとスプール4は動かない。
【0026】
次に、(2)のパターンであるオペレータ弁2bのみ作動された場合について説明する。マニホールドベース23の外部パイロットポートppに供給されたパイロットエアは、パイロット給気ポートPPを通り、オペレータ弁2bのパイロット給気ポート10bへ、さらにパイロット給気流路7を通り、オペレータ弁2aのパイロット給気ポート10aへ供給されている。ここで、オペレータ弁2bを作動させると、オペレータ弁2bよりパイロットエアがパイロット出力ポート12bより出力され、ピストン室6bに供給される。するとピストン室6bにパイロットエアが充填され、エア圧によりスプール4がオペレータ弁2a側へ動く。従って、メイン流路として給気ポートPと出力ポートB、出力ポートAと排気ポートRAが連通する。そして、ピストン室6aに残留しているパイロットエアは、オペレータ弁2aのパイロット出力ポート12a、パイロット排気ポート11aを介して、パイロット排気ポートPRからマニホールドベース23のパイロット排気ポートprに流れて排出される。
また、オペレータ弁2bへの通電を止めてもスプール4は動かず上記位置のままである。これも、停電等によりシリンダ等が作動することを防止するためである。すなわち、オペレータ弁2bへの通電を止めて、次にオペレータ弁2aに通電しないとスプール4は動かない。
【0027】
最後に、(3)のパターンであるオペレータ弁2a、2bともに作動させない場合について説明する。マニホールドベース23の外部パイロットポートppに供給されたパイロットエアは、パイロット給気ポートPPを通り、オペレータ弁2bのパイロット給気ポート10bへ、さらにパイロット給気流路7を通り、オペレータ弁2aのパイロット給気ポート10aへ供給されている。オペレータ弁2aと2bはともに作動していないので、パイロットエアはオペレータ弁2a及び2bから出力されず、パイロット給気ポート10a及び10bで留まっている。よって、パイロットエアはピストン室6a及び6bには供給されないから、スプール4は動かないのでメイン流路は切り替わらない。
【0028】
さらに、電磁弁21は外部パイロット式なので、第1の実施の形態の電磁弁1ではできない以下の使用方法を使用することができる。(1)低圧で使用する場合、(2)排気ポートに加圧して使用する場合、(3)出力ポートに加圧して使用する場合、(4)低真空で使用する場合がある。この4パターンの使用方法について説明する。
【0029】
(1)のパターンである低圧で使用する場合について説明する。低圧とは、スプール4を作動させるために必要な圧力以下の正圧のことである。この低圧のエアを給気ポートPに供給して使用する。すなわち、第1の実施の形態の内部パイロット式では、低圧エアがパイロットエアになるので、スプール4を作動させることができず、流路が切り替わらない。しかし、メイン給気とは別にスプール4を作動させることができる圧力以上のパイロットエアを供給することにより、メイン給気が低圧の場合でも、スプール4を作動させることができ、流路を切り換えることが可能となる。実際の使用例としては、例えば図3に示すように、復動シリンダを接続して、このシリンダの駆動圧力がスプールの駆動圧力より低い場合に使用する。
【0030】
(2)のパターンである排気ポートに加圧して使用する場合について説明する。排気ポートRAとRBに加圧していて、給気ポートPは加圧していないので、第1の実施の形態の内部パイロット式では、パイロットエアが供給されないため、スプール4が作動せず流路が切り替わらない。しかし、メイン給気とは別にパイロットエアを供給することにより、スプール4を作動させることができ、排気ポート加圧の場合でも、流路を切り換えることが可能となる。実際の使用例として、例えば図4に示すように、複動シリンダを接続し、排気ポートRAとRBに異圧をかけて、シリンダの往復時における作動速度を変える場合に使用する。
【0031】
(3)のパターンである出力ポートに加圧して使用する場合について説明する。この場合も(2)のパターンと同様に、給気ポートPは加圧していないが、メイン給気とは別にパイロットエアを供給することにより、スプール4を作動させることができ、出力ポート加圧の場合でも、流路を切り換えることが可能となる。また、出力ポートA及びBが入力側で、給排気ポートP、RA、RBが出力側になる。図5に示すように、出力ポートA、Bに異圧をかけて 、給排気ポートP、RA、RBの圧力切換えをする場合に使用する。例えば、塗装ラインで塗料の吹き付け圧力を変えたり、出力される圧力の違いを制御信号として使用している。
【0032】
(4)のパターンである低真空で使用する場合について説明する。この場合は給気ポートPが真空、あるいは加圧されていないが、メイン給気とは別にパイロットエアを供給することにより、スプール4を作動させることができ、流路を切り換えることが可能となる。また、真空引きするポートは、給気ポートP、排気ポートRA、RB、及び出力ポートA、Bどれでも良い。実際の使用例として、例えば図6に示すように、給気ポートPを真空引きして、出力ポートA及びBに吸着パッドを接続して、鉄板等の運搬機器に使用している。
上記したように外部パイロット式にすることにより、電磁弁の使用方法が多様になり、利用分野が非常に広がる。
【0033】
以上説明した通り第2の実施の形態のパイロット排気集中化構造によれば、主弁本体内に備わる2つのピストン室を連通させるパイロット排気貫通路を設けているため、パイロット排気を1箇所に集中化でき、1つのポートからマニホールドベースに流し処理することができるので、第2の従来例と同様のマニホールドベースを使用して、外部パイロットが可能になる。すなわち、既存の内部パイロット用のマニホールドベースを使用して、外部パイロット給気が可能となる。さらに、パイロット排気は単独で処理されるので、ピストン室からスムーズに排出でき、主弁の切換え応答性は悪化しない。
【0034】
以上本発明の実施の形態について説明したが、本発明は上記実施の形態に限ることなく、色々な応用が可能である。
すなわち、例えば本実施の形態では、主弁がスプール弁であるが、もちろんポペット弁に対しても本発明は適応可能である。また、パイロットエアを制御するために電磁弁を使用しているが、エアによる制御弁にも適応可能である。
【0035】
【発明の効果】
本発明によれば、パイロットエアを制御するためのオペレータ弁と、前記パイロットエアにより駆動されるポペット弁またはスプール弁を備える主弁本体との組合せで構成され、前記ポペット弁またはスプール弁の摺動する軸上で、前記主弁本体の両側に第1オペレータ弁と第2オペレータ弁が配置され、前記第1オペレータ弁及び第2オペレータ弁と連通する第1ピストン室及び第2ピストン室を備えるパイロット式切換弁におけるパイロット排気集中化構造において、前記主弁本体内に前記第1ピストン室と前記第2ピストン室とを連通するパイロットエア排気貫通路を有するので、パイロット排気を1箇所に集中化でき、1つのポートからマニホールドベースに流し処理することができる。よって、パイロット排気を集中処理するためには、マニホールドベース内にパイロット排気ポートが1つあればよいから、マニホールドベースの小型化ができ、しかも加工箇所が減るのでコストダウンすることができる。
【0036】
また、パイロット排気は単独で処理されるので、ピストン室からスムーズに排出でき、主弁の切換え応答性は悪化しない。
さらに、マニホールドベースの寸法増大を招くことなく、外部パイロット式においても、パイロット給気を集中処理することができる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施の形態のパイロット排気集中化構造を有する電磁弁の断面図である。
【図2】本発明に係る第2の実施の形態のパイロット排気集中化構造を有する電磁弁の断面図である。
【図3】本発明に係る第2の実施の形態のパイロット排気集中化構造を有する電磁弁の低圧での使用例を表わした図記号である。
【図4】本発明に係る第2の実施の形態のパイロット排気集中化構造を有する電磁弁の排気ポート加圧での使用例を表わした図記号である。
【図5】本発明に係る第2の実施の形態のパイロット排気集中化構造を有する電磁弁の出力ポート加圧での使用例を表わした図記号である。
【図6】本発明に係る第2の実施の形態のパイロット排気集中化構造を有する電磁弁の低真空での使用例を表わした図記号である。
【図7】第1の従来例に係るパイロット排気集中化構造を有する電磁弁の断面図である。
【図8】第2の従来例に係るパイロット排気構造を有する電磁弁の断面図である。
【符号の説明】
1 電磁弁
2a、2b オペレータ弁
3 マニホールドベース
4 スプール
5 主弁本体
6a、6b ピストン室
7 パイロット給気流路
8 パイロット排気貫通路
pr パイロット排気ポート
Claims (2)
- パイロットエアにより駆動されるポペット弁またはスプール弁を備え、給気ポートと排気ポートと出力ポートとを備える主弁本体と、
前記ポペット弁またはスプール弁の摺動する軸上で、前記主弁本体の片側に配置される、パイロットエアを制御するための第1オペレータ弁と、
前記ポペット弁またはスプール弁の摺動する軸上で、前記主弁本体の他方の片側に配置される、パイロットエアを制御するための第2オペレータ弁と、
前記第1オペレータ弁と連通する第1ピストン室、及び前記第2オペレータ弁と連通する第2ピストン室とを備える、パイロット式切換弁におけるパイロット排気集中化構造において、
前記主弁本体内に、前記第1ピストン室と前記第2ピストン室とを連通するパイロットエア排気貫通路と、前記パイロット排気貫通路を通るパイロットエアを排出するためのパイロット排気ポートと、を有することを特徴とするパイロット排気集中化構造。 - 請求項1に記載するパイロット排気集中化構造において、
前記主弁本体内に外部から前記パイロットエアを供給するためのパイロット給気ポートを有することを特徴とするパイロット排気集中化構造。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17800696A JP3623317B2 (ja) | 1996-07-08 | 1996-07-08 | パイロット排気集中化構造 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17800696A JP3623317B2 (ja) | 1996-07-08 | 1996-07-08 | パイロット排気集中化構造 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1026254A JPH1026254A (ja) | 1998-01-27 |
JP3623317B2 true JP3623317B2 (ja) | 2005-02-23 |
Family
ID=16040917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17800696A Expired - Lifetime JP3623317B2 (ja) | 1996-07-08 | 1996-07-08 | パイロット排気集中化構造 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3623317B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19913689A1 (de) * | 1999-03-25 | 2000-09-28 | Focke & Co | Vorrichtung zur Steuerung strömender Medien |
JP2015094711A (ja) * | 2013-11-13 | 2015-05-18 | 東洋ガラス機械株式会社 | 識別装置 |
CN106763831B (zh) * | 2016-12-26 | 2019-06-21 | 金洪水 | 先导式自锁截止阀 |
CN115218032A (zh) * | 2022-08-30 | 2022-10-21 | 靖江佳佳精密机械科技有限公司 | 一种半导体真空阀门和电磁阀连通结构及半导体真空阀门 |
-
1996
- 1996-07-08 JP JP17800696A patent/JP3623317B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1026254A (ja) | 1998-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3267965A (en) | Pilot operated spool valve | |
EP1330608B1 (en) | Fluid flow control valves | |
JP3623317B2 (ja) | パイロット排気集中化構造 | |
JPH0942525A (ja) | パイロット形切換弁 | |
JPH02248702A (ja) | 圧力補償付液圧弁 | |
CN110578728A (zh) | 自动换向阀 | |
JP3514474B2 (ja) | 真空制御装置付シリンダ | |
JPH07198054A (ja) | 電磁弁 | |
CN210599636U (zh) | 自动换向阀 | |
JP2679934B2 (ja) | 電磁弁マニホールド | |
JP2667780B2 (ja) | パイロット式電磁弁 | |
JPH061950U (ja) | 電磁弁マニホールド | |
JP2586737Y2 (ja) | 電磁切換え弁 | |
WO2019007208A1 (zh) | 一种提升器控制装置 | |
KR200143023Y1 (ko) | 듀얼 척킹 유압회로 | |
CN219888801U (zh) | 一种具有组合控制功能的气动换向阀 | |
US20240295228A1 (en) | Valve Manifold, Valve and Actuator Assembly | |
JPH1054473A (ja) | マニホールド | |
JPH038851Y2 (ja) | ||
JPS58180877A (ja) | 方向制御弁装置 | |
JPH0642666A (ja) | 電磁弁マニホールド | |
JP2528135Y2 (ja) | ダブルパイロット形切換弁 | |
JP2551148Y2 (ja) | 治具パレットのワーク保持制御装置 | |
JPS6136575A (ja) | 手動―電磁操作機構を備えた方向切換弁を複数個用いた油圧回路 | |
JP2000120913A (ja) | 圧力補償弁付き比例電磁方向流量制御弁 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071203 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |