JP3617569B2 - 多ビット一致回路 - Google Patents
多ビット一致回路 Download PDFInfo
- Publication number
- JP3617569B2 JP3617569B2 JP10212996A JP10212996A JP3617569B2 JP 3617569 B2 JP3617569 B2 JP 3617569B2 JP 10212996 A JP10212996 A JP 10212996A JP 10212996 A JP10212996 A JP 10212996A JP 3617569 B2 JP3617569 B2 JP 3617569B2
- Authority
- JP
- Japan
- Prior art keywords
- bit
- circuit
- output
- coincidence
- pull
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/02—Comparing digital values
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/02—Indexing scheme relating to groups G06F7/02 - G06F7/026
- G06F2207/025—String search, i.e. pattern matching, e.g. find identical word or best match in a string
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Logic Circuits (AREA)
- Dram (AREA)
- Analogue/Digital Conversion (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、半導体集積回路におけるキャッシュメモリ等に使用される多ビット一致回路に係り、詳細には、nビットの入力信号の全ビットについて一致比較を行う多ビット一致回路に関する。
【0002】
【従来の技術】
1ビットの2進数x,yが一致しているか否かを調べる回路を一致回路あるいは不一致回路と呼び、その1ビットの2進数x,yを何ビットか集め、多ビット一致回路や多ビット不一致回路を構成する。1ビット一致回路は別名、排他的論理和(exclusive NOR)ゲート、1ビット不一致回路は別名、否定排他的論理和(exclusive OR)ゲートとも呼ばれる。
【0003】
従来のこの種の多ビット一致回路としては、例えば「CMOS回路の使い方(I)」(工業調査会 1988年1月20日発行 105〜109頁)に記載されたものがあった。
【0004】
図24は、一般的な4ビット一致回路を示す回路図である。図24において、この4ビット一致回路は被一致比較対象の4ビットの入力信号DATA[0:3]と一致比較対象の4ビットの入力信号ADDR[0:3]をそれぞれ入力する4個の2入力排他的論理和回路1〜4と、それらの2入力排他的論理和回路1〜4による各ビットの比較出力を入力し、一致比較の出力信号OUTの論理を確定する4入力NOR回路5から構成されている。
【0005】
上記4ビット一致回路回路は、被一致比較対象の4ビットの入力信号DATA[0:3]と一致比較対象の4ビットの入力信号ADDR[0:3]の各ビットの論理がすべて同じであった場合に出力信号OUTに一致していたことを示すハイレベル信号「H」を出力するものである。
【0006】
一方、上記被一致比較対象の4ビットの入力信号DATA[0:3]と一致比較対象の4ビットの入力信号ADDR[0:3]のうち、1ビットでも論理が異なる場合、出力信号OUTには不一致ビットがあったことを示すローレベル信号「L」を出力する。
【0007】
【発明が解決しようとする課題】
しかしながら、このような従来の多ビット一致回路では、以下(1)〜(4)のような間題点があった。
【0008】
すなわち、(1)一致比較の入力信号数の増加に伴い、出力確定のNOR回路の入力数が増加し、多段接続あるいは論理分割の必要性があるので、出力の論理確定までの遅延時間が増大する。
【0009】
(2)被一致比較対象の入力信号の論理確定と一致比較対象の入力信号の論理確定に遅延差がある場合、出力信号にヒゲ状の細いパルス(ハザード)が出力されてしまう。
【0010】
(3)一致比較の入力信号数の増加に伴い、出力確定のNOR回路の入力数が増加し、多段接続あるいは論理分割の必要性があるので、レイアウト面積が増大する。
【0011】
(4)一致比較の入力信号数の増加に伴い、出力確定のNOR回路の入力数が増加し、多段接続あるいは論理分割の必要性があるので、消費電力が増加する。
【0012】
本発明は、入力信号の論理に拘らず出力信号の遅延時間を一定に保つことによりタイミング設計を容易にすることができ、高速動作を可能にするとともに、レイアウト面積を小さくでき、さらには消費電力を小さくできる多ビット一致回路を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明に係る多ビット一致回路は、nビットの被一致比較対象の入力信号と、nビットの一致比較対象の入力信号の全ビットについて一致比較を行う多ビット一致回路において、同期信号によって活性化される被一致比較対象のnビットの入力信号対と一致比較対象の入力信号を入力して各ビットの比較結果を出力する一致比較部と、被一致比較対象のnビットの入力信号対のうち、1ビット分の信号対を入力し、該入力信号対の遷移を検出して入力遷移検出信号を出力する出力制御部と、nビット分の比較結果を、入力遷移検出信号によって活性化させる出力部とを備え、nビットの一致比較部の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うように構成している。
【0014】
本発明に係る多ビット一致回路は、一致比較部が、2入力排他的論理和回路とその出力を制御信号とするプルダウン素子にオープンドレインNMOSを用いて一致比較結果を出力する構成とし、出力制御部は、2入力NAND回路とその出力を制御信号とするプルダウン素子であるオープンドレインNMOSにより入力遷移検出結果を出力する構成とし、nビットの一致比較部の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うように構成する。
【0015】
また、本発明に係る多ビット一致回路は、一致比較部内のプルダウン素子にバイポーラトランジスタを付加して一致比較結果を出力する構成とし、出力制御部のプルダウン素子にバイポーラトランジスタを付加して入力遷移検出信号を出力する構成としてもよい。
【0016】
また、本発明に係る多ビット一致回路は、出力制御部内の2入力NAND回路を、一致比較部内の2入力排他的論理和回路に使用された回路構成と同じレイアウトを用いて、論理回路を構成するものであってもよい。
【0017】
また、本発明に係る多ビット一致回路は、出力制御部内で用いるプルダウン素子の駆動能力に対応して、出力制御部の出力にタイミング調整用の負荷回路を付加する構成であってもよい。
【0018】
また、本発明に係る多ビット一致回路は、一致比較部内で用いるプルダウン素子と出力制御部内で用いるプルダウン素子を統一し、出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子をダミー素子として(n−1)個付加する構成であってもよい。
【0019】
また、本発明に係る多ビット一致回路は、出力部からレイアウト的に最も離れている一致比較部に対して出力制御部を隣接して配置し、一致比較部に入力される被一致比較信号対を、出力制御部に入力するようにレイアウトしてもよい。
【0020】
また、本発明に係る多ビット一致回路は、nビットの一致比較部内で用いるプルダウン素子と、出力制御部内で用いるプルダウン素子の駆動能力を統一し、出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子を使いダミー素子としてn個、又はそれ以上、付加する構成であってもよい。
【0021】
さらに、多ビット一致回路が、nビットの被一致比較対象の入力信号と、nビットの一致比較対象の入力信号の全ビットについて一致比較を行い、不一致比較結果を出力する多ビット不一致回路であってもよい。
【0022】
【発明の実施の形態】
本発明に係る多ビット一致回路は、半導体集積回路におけるキャッシュメモリ等に用いられる多ビット一致回路に適用することができる。
【0023】
図1は本発明の第1の実施形態に係る多ビット一致回路の構成を示すブロック図である。図1に示す多ビット一致回路は、n入力ビットの一致回路を用いたヒットコンパレータ回路に適用した例である。
【0024】
図1において、nビット一致回路10(多ビット一致回路)は、n個の一致比較部100、出力制御部110、出力部120及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ130,131から構成されるダイナミック型論理回路である。
【0025】
上記nビット一致回路10は、被一致比較対象のnビットの入力信号対DATA[1:n],DATA_N[1:n]と一致比較対象のnビットの入力信号ADDR[1:n]を入力し、nビットの一致比較結果である出力信号HITを出力するものである。
【0026】
上記n個の一致比較部100には、被一致比較対象のnビットの入力信号対DATA[1:n],DATA N[1:n]と一致比較対象のnビットの入力信号ADDR[1:n]とがそれぞれに入力される。なお、詳細な内部構成については図2及び図3で後述する。このn個の一致比較部100の出力は、すべてワイヤードオア接続され、ワイヤードオア接続された出力はCOMP信号として同期信号CLKによって制御されるプリチャージ素子であるPMOSトランジスタ130と出力部120の1入力に接続される。
【0027】
上記出力制御部110には、被一致比較対象のnビットの入力信号対DATA[1:n],DATA N[1:n]のうち、1ビットの信号対が入力される。なお、詳細な内部構成については図4及び図5で後述する。この出力制御部110の出力は、READY信号として同期信号CLΚによって制御されるプリチャージ素子であるPMOSトランジスタ131と出力部120の1入力に接続される。
【0028】
出力部120は、ワイヤードオア接続されたn個の一致比較部100の出力COMPと出力制御部110の出力READYを入力し、nビットの一致比較結果を出力信号HITとして出力する。
【0029】
ここで、被一致比較対象のnビットの入力信号対DATA[1:n]とDATA N[1:n]は相補的な論理信号であり、同期信号CLΚに同期して活性化されるものとし、それ以外のときは両信号とも初期値に固定されているものとする。本nビット一致回路10の場合、同期信号CLKがローレベルの時(プリチャージ時)、前記入力信号対DATA[1:n]とDATA N[1:n]は両信号ともハイレベルにプルアップされていることとする。
【0030】
また、一致比較対象のnビットの入力信号ADDR[1:n]は同期信号CLKがハイレベルになる以前(すなわち、サンプリング時以前)には、すでに論理は確定しているものとする。
【0031】
図2及び図3は上記n個の一致比較部100の構成を説明するための図であり、図2はその論理回路図、図3はその具体的な回路構成図である。
【0032】
図2において、一致比較部100は、被一致比較対象の入力信号対DATA,DATA Nと一致比較対象の入力信号ADDRとが入力される3入力端子と、一致比較結果である1出力端子OUTを持つ。前記被一致比較対象の入力信号対DATA,DATA Nと一致比較対象の入力信号ADDRは、2入力排他的論理和回路101に入力され、その出力は次段のプルダウン素子102の制御信号となる。上記プルダウン素子102の一方の端子は出力端子OUTに接続され、他方の端子は接地端子GNDに接続される。
【0033】
よって、この一致比較部100の出力端子OUTには、被一致比較対象の入力信号対DATA,DATA Nと一致比較対象の入力信号ADDRとの否定排他的論理和(OUT=DATA・ADDR+DATA N・ADDR N)が出力されることになる。
【0034】
図3は一致比較部100の具体的な回路構成例を示した図であり、この図において、前記入力信号ADDRは、インバータ素子103に接続されADDR Nを生成する。また、前記入力信号対DATA,DATA Nと入力信号ADDR,ADDR Nはそれぞれ、PMOSトランジスタ105とNMOSトランジスタ108のゲート電極、PMOSトランジスタ107とNMOSトランジスタ10Aのゲート電極、PMOSトランジスタ106とNMOSトランジスタ109のゲート電極、PMOSトランジスタ104とNMOSトランジスタ10Bのゲート電極にそれぞれ接続される。また、PMOSトランジスタ104,106のソース電極は電源端子VDDに接続され、それらの各ドレイン電極はPMOSトランジスタ105,107のソース電極にそれぞれ接続されている。
【0035】
上記NMOSトランジスタ109,10Bのソース電極は、接地端子GNDに接続され、それらの各ドレイン電極はNMOSトランジスタ108,10Aのソース電極にそれぞれ接続されている。また、PΜOSトランジスタ105,107とNΜOSトランジスタ108,10Aのドレイン電極は、プルダウン素子102であるNΜOSトランジスタ10Cのゲート電極に接続され、そのソース電極は接地端子GNDに、ドレイン電極は出力端子OUTに接続され、オープンドレイン構造になっている。
【0036】
図4及び図5は上記出力制御部110の構成を説明するための図であり、図4はその論理回路図、図5はその具体的な回路構成図である。
【0037】
図4において、出力制御部110は、被一致比較対象の入力信号対DATA,DATA Nの2入力端子と出力制御信号である1出力端子OUTを持つ。前記被一致比較対象の入力信号対DATA,DATA Nは2入力NAND回路111に入力され、その出力は次段のプルダウン素子112の制御信号となる。前記、プルダウン素子112の一方の端子は出力端子OUTに接続され、他方の端子は接地端子GNDに接続される。
【0038】
よって、この出力端子OUTには、被一致比較対象の入力信号対DATA,DATA Nの論理和(OUT=DATA・DATA N)が出力されることになる。
【0039】
図5は上記出力制御部110の具体的な回路構成例を示した図であり、この図において、前記入力信号対DATA,DATA Nはそれぞれ、PMOSトランジスタ113とNMOSトランジスタ115のゲート電極、PMOSトランジスタ114とNMOSトランジスタ116のゲート電極にそれぞれ接続される。また、PMOSトランジスタ113,114のソース電極は電源端子VDDに接続される。また、NMOSトランジスタ116のソース電極は接地端子GNDに接続され、そのドレイン電極はNMOSトランジスタ115のソース電極に接続される。
【0040】
また、PMOSトランジスタ113,114とNΜOSトランジスタ115のドレイン電極は、プルダウン素子112であるNMOSトランジスタ117のゲート電極に接続され、そのソース電極は接地端子GNDに、ドレイン電極は出力端子OUT接続され、オープンドレイン構造になっている。
【0041】
一方、上記出力部120は、前記図1に示すように、n個の一致比較部100のワイヤード接続部である内部ノードCOMPがインバータ回路121に接続される。そのインバータ回路121の出力と出力制御部110の出力である内部ノードREADYが2NOR回路122に接続され、nビットの一致比較結果を出力信号HITとして出力する。
【0042】
このように、第1の実施形態に係るnビット一致回路10は、同期信号によって活性化される被一致比較対象のnビットの入力信号対と一致比較対象の入力信号を入力して各ビットの比較結果を出力する一致比較部100と、被一致比較対象のnビットの入力信号対のうち、1ビット分の信号対を入力し、該入力信号対の遷移を検出して入力遷移検出信号を出力する出力制御部110と、nビット分の比較結果を、入力遷移検出信号によって活性化させる出力部120とを備え、一致比較部100は、2入力排他的論理和回路101とその出力を制御信号とするプルダウン素子102にオープンドレインNMOS10Cを用いて一致比較結果を出力する構成とし、出力制御部110は、2入力NAND回路111とその出力を制御信号とするプルダウン素子112であるオープンドレインNMOS117により入力遷移検出結果を出力する構成とし、nビットの一致比較部100の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うように構成されている。
【0043】
以下、上述のように構成されたnビット一致回路10の動作を説明する。
【0044】
図6は、第1の実施形態に係るnビット一致回路10を採用した具体的な回路適用例を示す図であり、例えば、この回路は、キャッシュメモリ内で使われるnビットのヒットコンパレータ回路200である。図1〜図5と同一構成部分には同一番号を付している。この図6を用いて具体的な回路動作を説明する。
【0045】
図6において、ヒットコンパレータ回路200は、同期信号CLΚに同期して、メモリセル210のワード線WL、センスアンプ220の動作を活性化して読み出し動作を開始し、図6破線に示すnビット一致回路10によりnビットの読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対象の信号対)と一致比較対象のnビットの入力信号ADDR[1:n]の各ビットの一致比較を行い、一致結果HITを出力するものである。
【0046】
このヒットコンパレータ回路200が非活性化状態の時、すなわち同期信号CLΚがローレベルのときは、センスアンプ220の出力、すなわちnビットの読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対象の信号対)は、初期値に固定されており、本ヒットコンパレータ回路200ではハイレベルにプルアップされているものとする。
【0047】
また、一致比較対象の入力信号ADDR[1:n]は、ヒットコンパレータ回路200が活性化状態になる以前にすでに論理は確定されているものとする。
【0048】
図7及び図8は、前記図6に示したnビット一致回路10を採用した回路適用例の各ノードの電位の関係を表したタイミングチャートであり、図7はnビットの読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対象の信号対)と一致比較対象のnビット入力信号ADDR[1:n]の各ビットがすべて一致していた場合の波形(ヒット時の波形)を示す波形図、図8は1ビットでも一致しないものがあった場合の波形(ミス時の波形)を示す波形図である。
【0049】
まず、図7に示すヒット時の波形を参照して第1の実施形態に係るnビット一致回路10の動作を説明する。
【0050】
同期信号CLΚがローレベルの時、プルアップ素子であるPMOSトランジスタ130,131が導通状態であり、内部ノードCOΜP,READYはハイレベルにプリチャージされている。このとき、センスアンプ220は非活性化状態であるので、nビットの読み出しデータ対DATA[1:n],DATA N[1:n]はともにプルアップされており、ハイレベルに初期化されている。
【0051】
また、同期信号CLKがハイレベルになる前に、一致比較対象の入力信号ADDR[1:n]は、すでに論理が確定されている。このとき、一致比較部100の状態は、前記図3に示すように、DATA,DATA Nはともにハイレベルにプルアップ、ADDR,ADDR Nはどちらかがハイレベルとなっているので、NΜOSトランジスタ108,109のパス、又はNΜOSトランジスタ10A,10Bのパスはどちらかが導通状態になっており、次段のプルダウン素子102であるNMOSトランジスタ10Cのゲート電極には、ローレベルの信号が入力され非導通状態となっている。これは、全ビットの一致比較部100に対して、同様のことがいえるので、図6の内部ノードCOMPはプリチャージ状態が保たれていることになる。
【0052】
また、出力制御部110についても同様であり、前記図5に示すように、DATA,DATA Nがともにハイレベルにプルアップされているので、2NAND回路111出力はローレベルとなり、次段のプルダウン素子112であるNMOSトランジスタ117は非導通状態となっているので、図5の内部ノードREADYはプリチャージ状態が保たれていることになる。
【0053】
以上のことから、同期信号CLΚがローレベルの時、内部ノードCOMP、READYがともにハイレベルにプルアップされているので、出力信号HITにはローレベルの信号が出力されることになる。
【0054】
次に、同期信号CLKがハイレベルになると、プリチャージ素子のPMOSトランジスタ130,131は非導通状態になる。また、この同期信号CLKに同期してメモリセル210のワード線WL、センスアンプ220の動作が活性化され、読み出し動作が開始される。このとき、nビットの読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対対象の信号対)はまだハイレベルのままであるが、読み出し動作が完了すると、メモリ保持内容が読み出しデータ対DATA[1:n],DATA N[1:n]に出力され、一方がハイレベル、他方がローレベルの相補的な信号対となる。
【0055】
このとき、読み出し完了後の相補的な読み出しデータ対DATA[1:n],DATA N[1:n]と一致比較対象の信号ADDR[1:n]の論理が一致している場合、一致比較部100の状態は前記図3に示すように、ADDRとDATAがともにハイレベル、又はADDRとDATAがともにローレベル(ADDR NとDATA Nがともにハイレベル)の論理状態であるので、NMOSトランジスタ108,109のパス又はNMOSトランジスタ10A,10Bのパスのどちらかが導通状態である。
【0056】
よって、次段のプルダウン素子102のNMOSトランジスタ10Cは非導通状態のままである。この動作が、nビット分のすべての一致比較部100で起こった場合、すなわち、nビットがすべて一致していた場合、内部ノードCOMPはハイレベルのまま電位が保たれていることになる。
【0057】
また、上記出力制御部110では、図5に示すように、読み出し動作開始時は、DATA,DATA Nがともにハイレベルのままであったのが、読み出し動作が完了すると同時に、2NAND回路111がハイレベルの信号を出力し、次段のプルダウン素子112であるNMOSトランジスタ117が導通状態となる。これは、図6において、内部ノードREADYのプリチャージ電荷を放電することになり、内部ノードREADYはローレベルにプルダウンされる。このとき、すでにnビットのすべての一致比較部100の一致比較動作が完了して、内部ノードCOMPは全ビットが一致していたことを示すハイレベルの状態で論理が確定されおり、また、内部ノードREADYがハイレベルからローレベルにプルダウンされたこと、すなわち、メモリの読み出し動作が完了したことによって、上記出力部120が活性化され、出力端子HITはローレベルからハイレベルにプルアップされ、nビットがすべて一致していたことを示すハイレベルの出力信号HITを出力する。
【0058】
次に、図8に示すミス時の波形を参照して第1の実施形態に係るnビット一致回路10の動作を説明する。
【0059】
読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対対象の信号対)と一致比較対象の信号ADDR[1:n]の論理に1ビットでも不一致があった場合、一致比較部100の状態は、前記図3の一致比較部100に照らし合わせると、ADDRとDATA N、又はADDR NとDATAが、ともにローレベルの状態であるので、PMOSトランジスタ104,105のパス又はPΜOSトランジスタ106,107のパスのどちらかが導通状態になる。よって、次段のプルダウン素子102のNMOSトランジスタ10Cが導通状態となる。
【0060】
これは、前記図6の内部ノードCOMPのプリチャージ電荷が放電されることになり、内部ノードCOMPはローレベルにプルダウンされる。この動作がnビットの一致比較部100において、不一致のビットに対してすべて行われる。
【0061】
出力制御部110は、ヒット時と同様にメモリの読み出し動作が完了したのと同時に、図6の内部ノードREADYをプルダウンする。
【0062】
このとき、nビットのすべての一致比較部100の一致比較動作が完了して、内部ノードCOMPには1ビット以上の不一致があったことを示すローレベルの状態で論理が確定されおり、また、内部ノードREADYがハイレベルからローレベルにプルダウンされたこと、つまり、メモリの読み出し動作が完了したことによって出力部120が活性化され、出力端子HITには内部ノードCOMPのローレベルの信号を出力し、不一致ビット(ミス)があったことを示す。
【0063】
以上説明したように、第1の実施形態に係るnビット一致回路10は、被一致比較対象の入力信号対DATA[1:n],DATΑ N[1:n]と一致比較対象の入力信号ADDR[1:n]を入力し、オープンドレイン電極NMOSで比較結果を出力する各nビット分の一致比較部100と、前記入力信号対DATA[1:n],DATA N[1:n]のうち、1ビット分の信号対で入力信号対の遷移を検出しオープンドレイン電極NMOSで入力遷移検出信号を出力する出力制御部110と、前記nビット分の比較結果と、前記入力遷移検出信号を入力し、入力遷移検出信号によって活性化される出力部120とを備え、前記nビットの一致比較部100をワイヤードオア接続したダイナミック回路構成にしているので、従来例のような多段接続あるいは論理分割の必要性がなくなるため、高速動作が可能になり、レイアウト面積を小さくでき、コストを削減することができるとともに、消費電力を小さくすることができる。また、被一致比較対象の入力信号対DATA[1:n],DATA N[1:n]の遷移を検出し、その信号によって出力部120を活性化させているので、n入力ビットの入力信号の論理がどのような場合でも、出力信号HITの遅延時間を一定に保つことができ、タイミング設計を容易にすることができる。
【0064】
図9は本発明の第2の実施形態に係る多ビット一致回路の構成を示すブロック図である。図9に示す多ビット一致回路も、n入力ビットのヒットコンパレータ回路に適用することができる。なお、本実施形態に係るnビット一致回路10の説明にあたり図1に示すnビット一致回路10と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0065】
図9において、nビット一致回路20(多ビット一致回路)は、n個の一致比較部300、出力制御部310、出力部320及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ330,331から構成されるダイナミック型論理回路である。
【0066】
本実施形態に係るnビット一致回路20は、前記第1の実施形態に係るnビット一致回路10に対して、一致比較部300と出力制御部310の中でそれぞれ使われているプルダウン素子302,312に、Bipoarトランジスタを付加してプルダウン駆動能力を向上させた点のみが異なっている。
【0067】
図10及び図11は上記n個の一致比較部300の構成を説明するための図であり、図10はその論理回路図、図11はその具体的な回路構成図である。
図10に示すように、一致比較部300の論理回路は前記図2に示す一致比較部100と同様である。
【0068】
図11において、入力信号対DATA,DATA Nと入力信号ADDRを入力する2入力排他的論理和回路301の出力は、NMOSトランジスタ303のゲート電極に接続される。そのNMOSトランジスタ303のドレイン電極はBipolarトランジスタ304のコレクタ電極と出力端子OUTに接続され、ソース電極はBipoarトランジスタ304のベース電極とベース電荷引き抜き素子305に接続される。ベース電荷引き抜き素子305の他方端子とBipoarトランジスタ304のエミッタ電極は接地端子GNDに接続される。
【0069】
図12及び図13は上記出力制御部310の構成を説明するための図であり、図12はその論理回路図、図13はその具体的な回路構成図である。
【0070】
図12に示すように、出力制御部310の論理回路は前記図4に示す出力制御部110と同様である。
【0071】
図13は出力制御部310のうちプルダウン素子312を詳細に示した回路図である。
【0072】
図13において、上記出力制御部310は、2入力NAND回路311及びプルダウン素子312から構成され、プルダウン素子312はNMOSトランジスタ313、Bipoarトランジスタ314及び電荷引き抜き素子315から構成される。
【0073】
入力信号対DATA,DATA Nを入力する2入力NAND回路311の出力は、NMOSトランジスタ313のゲート電極に接続される。そのNMOSトランジスタ313のドレイン電極は、Bipoarトランジスタ314のコレクタ電極と出力端子OUTに接続され、ソース電極はBipoarトランジスタ314のベース電極とベース電荷引き抜き素子315とに接続される。ベース電荷引き抜き素子315の他方の端子とBipoarトランジスタ314のエミッタ電極は接地端子GNDに接続される。
【0074】
このように、第2の実施形態に係るnビット一致回路20は、一致比較部300内のプルダウン素子302にBipoarトランジスタ304を付加して一致比較結果を出力する構成とし、出力制御部310のプルダウン素子312にBipoarトランジスタ314を付加して入力遷移検出信号を出力する構成としている。
【0075】
以下、上述のように構成されたnビット一致回路20の動作を説明する。
【0076】
上記nビット一致回路20の全体の回路動作はヒット時もミス時も、第1の実施形態で説明したnビット一致回路10と同様である。
【0077】
同期信号CLΚがローレベルのとき、図9に示すように内部ノードCOMP,READYはPMOSトランジスタ330,331によりプリチャージされる。このとき、図11に示す一致比較部300うちの2入力排他的論理和回路301と図13に示す出力制御部310うちの2入力NAND回路311はともにローレベルの電位を出力しているので、次段のNΜOSトランジスタ303,313はともに非導通状態である。
【0078】
このとき、前記NΜOSトランジスタ303,313のソース電極、すなわち、Bipoarトランジスタ304,314のベース電位はベース電荷引き抜き素子305,315によってローレベルにプルダウンされており、Bipoarトランジスタ304,314は非導通状態となっている。よって、同期信号CLKがローレベルの時、プリチャージ状態が保たれている。
【0079】
次に、同期信号CLKがハイレベルになり、図11に示す被一致比較対象の入力信号対DATA,DATA Nと一致対象の入力信号ADDRが不一致のとき、2入力排他的論理和回路301はハイレベルの信号を出力し、次段のNMOS卜ランジスタ303が導通状態となる。これにより、図9に示す内部ノードCOMPに蓄えられていたプリチャージ電荷がNΜOSトランジスタ303を介してBipoarトランジスタ304のベース電極に流れ込み、Bipoarトランジスタ304が導通状態になり、内部ノードCOMPは一気にローレベルにプルダウンされる。
【0080】
同様に、同期信号CLΚがハイレベルになり、図13に示す被一致比較対象の入力信号対DATA,DATA Nが相補的な信号状態に遷移したとき、2入力NAND回路311はハイレベルの信号を出力し、次段のNMOSトランジスタ313が導通状態となる。これにより、図9に示す内部ノードREADYに蓄えられていたプリチャージ電荷がNΜOS卜ランジスタ313を介してBipoarトランジスタ314のベースに流れ込み、Bipoarトランジスタ314が導通状態になり、内部ノードREADYは一気にローレベルにプルダウンされる。
【0081】
以上のように、第2の実施形態によれば、n入力の一致比較部300及び出力制御部310のプルダウン素子302,312にBipoarトランジスタ304,314を付加しているので、Bipoarトランジスタの高駆動能力により、さらなる高速動作が可能になる。また、一致比較の入力信号数の増加による、ワイヤードオア接続部(一致比較部出力)の寄生容量の増加に対し、遅延時間の負荷依存性を小さくすることができる。
【0082】
図14は本発明の第3の実施形態に係る多ビット一致回路の構成を示すブロック図である。図14に示す多ビット一致回路も、n入力ビットのヒットコンパレータ回路に適用することができる。なお、前記図1に示すnビット一致回路10と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0083】
図14において、nビット一致回路30(多ビット一致回路)は、n個の一致比較部400、出力制御部410、出力部420及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ430,431から構成されるダイナミック型論理回路である。
【0084】
本実施形態に係るnビット一致回路30は、前記第1の実施形態に係るnビット一致回路10に対して、出力制御部410の中で使用されている2入力NAND回路411のトランジスタレベルでの回路を、一致比較部400の中で使われている2入力排他的論理和回路401の回路構成回路ディメンジョン(レイアウト)を使い、論理(2NAND)を実現させたものである。
【0085】
図15及び図16は上記n個の一致比較部400の構成を説明するための図であり、図15はその論理回路図、図16はその具体的な回路構成図である。
図15及び図16に示すように、一致比較部400の論理回路は前記図2及び図3に示す一致比較部100と全く同じ回路構成であり、この部分の説明を省略する。
【0086】
図17及び図18は上記出力制御部410の構成を説明するための図であり、図17はその論理回路図、図18はその具体的な回路構成図である。
【0087】
図17に示すように、出力制御部410の論理回路は前記図4に示す出力制御部110と同様である。
【0088】
図18は出力制御部410の2入力NAND回路411を詳細に示した回路図である。
【0089】
図18において、出力制御部410は、被一致比較対象の入力信号対DATA,DATA Nの2入力端子と出力制御信号である1出力端子OUTを持つ。前記被一致比較対象の入力信号対DATA,DATA Nは2入力NAND回路411に入力され、その出力は次段のプルダウン素子412の制御信号となる。前記、プルダウン素子412の一端子は出力端子OUTに接続され、他方の端子は接地端子GNDに接続される。
【0090】
上記2入力NAND回路411は、図16に示す一致比較部400の2入力排他的論理和回路401のトランジスタレベルでの回路構成、回路ディメンジョンをそのまま使い、2NANDの論理を実現している。
【0091】
入力信号対DATA,DATA Nは、2入力NAND回路411内のPMOSトランジスタ413,414とNMOSトランジスタ417,419、PMOSトランジスタ415,416とNMOSトランジスタ418,41A、の各ゲート電極にそれぞれ入力される。PΜOSトランジスタ413,415のソース電極は電源端子VDDに接続され、ドレイン電極はPΜOSトランジスタ414,416のソース電極にそれぞれ接続される。また、NMOSトランジスタ418,41Aのソース電極は接地端子GNDに接続され、それらのドレイン電極はNMOSトランジスタ417,419のソース電極に接続される。PMOSトランジスタ414,416のドレイン電極とNMOSトランジスタ417,419のドレイン電極は次段のプルダウン素子412の制御信号として使用される。
【0092】
このように、第3の実施形態に係るnビット一致回路30は、出力制御部410内の2入力NAND回路411を、一致比較部400内の2入力排他的論理和回路401に使用された回路構成と同じレイアウトを用いて、2NAND論理回路を構成している。
【0093】
以下、上述のように構成されたnビット一致回路30の動作を説明する。
【0094】
上記nビット一致回路30の全体の回路動作はヒット時もミス時も、第1の実施形態で説明したnビット一致回路10と同様である。
【0095】
同期信号CLΚがハイレベルになり、図18に示す被一致比較対象の入力信号対DATA,DATA Nが相補的な信号状態に遷移したとき、出力制御部410の2入力NAND回路411は、PΜOSトランジスタ413,414のパス又はPMOS卜ランジスタ415,416のパスが導通状態になることにより、ハイレベルの信号を出力する。この入力信号対DATA,DATA Nの信号遷移から2入力NAND回路411出力までの遅延時間は、一致比較部400での2入力排他的論理和回路401の遅延時間とほぼ等しい。これは、一致比較部400と出力制御部410内のプルダウン素子402,412の活性化のタイミングが等しくなることを示す。
【0096】
以上のように、第3の実施形態によれば、出力制御部410内の2入力NAND回路411を一致比較部400内の2入力排他的論理和回路401の回路構成(レイアウト)を使い、論理(2NAND)を実現しているので、一致比較部400内のプルダウン素子402と、出力制御部410内のプルダウン素子412の活性化タイミング差をなくすことにより、ミス時の内部ノードCOMP,READYのプルダウンタイミングが等しくなり、出力端子にヒゲ(ハザート)が出力されなくなる効果がある。
【0097】
また、レイアウト差による寄生素子(容量、抵抗)の影響を考慮する必要がないのでタイミング設計を容易化することができ、レイアウト設計を容易化することができ開発期間を短縮することができる。
【0098】
図19は本発明の第4の実施形態に係る多ビット一致回路の構成を示すブロック図である。図19に示す多ビット一致回路も、n入力ビットのヒットコンパレータ回路に適用することができる。なお、前記図1に示すnビット一致回路10と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0099】
図19において、nビット一致回路40(多ビット一致回路)は、n個の一致比較部500、出力制御部510、出力部520及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ530,531、及び負荷回路540から構成されるダイナミック型論理回路である。
【0100】
本実施形態に係るnビット一致回路40は、前記第1の実施形態に係るnビット一致回路10に対して、タイミング調整用の負荷回路540を内部ノードREADYに付加したものである。
【0101】
上記負荷回路540は、出力制御部510内のプルダウン素子512で内部ノードREADYをディスチャージする遅延時間を、1ビット分の一致比較部500内のプルダウン素子502で内部ノードCOMPをディスチャージ(nビット中、1ビットのみが不一致するワーストケース)する遅延時間と、等しくする、又はそれより大きくするために付加したものであり、例えば、ゲート電極ソース電極を接地端子に接続し、ドレイン電極を内部ノードREADYに接続したダミーのNMOSトランジスタ541により構成する。
【0102】
この負荷回路540は、内部ノードREADYの出力制御部510内のプルダウン素子512のプルダウン駆動能力から決定される遅延時間を負荷回路540によりタイミング調整し、内部ノードCOMPに寄生する全寄生容量(ワイヤードオア接続による一致比較部500うちのn個のプダウン素子502の接合容量とその配線容量の総和)に対し1ビット分のプルダウン素子502のプルダウン駆動能力により決定される遅延時間と等しく、又はそれより大きくするのものである。
【0103】
この負荷回路540は、例えば、ゲート電極ソース電極を接地端子に接続し、ドレイン電極を内部ノードREADYに接続したダミーのNMOSトランジスタ541を使い、そのディメンジョンを調整したものである。
【0104】
このように、第4の実施形態に係るnビット一致回路40は、出力制御部510内で用いるプルダウン素子512の駆動能力に対応して、出力制御部510の出力にタイミング調整用の負荷回路540を付加するように構成している。
【0105】
以下、上述のように構成されたnビット一致回路40の動作を説明する。
【0106】
上記nビット一致回路40の全体の回路動作はヒット時もミス時も、第1の実施形態で説明したnビット一致回路10と同様であるが、第4の実施形態はミス時に出力端子HITにハザードが出力されないようにしたものである。
【0107】
図20は、ミス時の出力端子HITにヒゲ(ハザード)が出力されてしまう場合を示した波形図である。
【0108】
図20に示すように、同期信号CLΚがハイレベルになり、一致比較動作が開始され、例えばn入力ビットのうち1ビットのみが不一致であった場合、その不一致ビットの一致比較部500内のプルダウン素子502一つで、内部ノードCOMPに接続される全寄生容量(nビット分のプルダウン素子502の接合容量及び配線容量)をディスチャージしなければならない。
【0109】
これに対し、出力制御部510のプルダウン素子512は、それ自身の接合容量と配線容量のみのディスチャージでよく、内部ノードCOΜPとREADYはその寄生容量差あるいはプルダウン素子502,512の駆動能力差によってプルダウンのタイミング差が生じてしまう。
【0110】
これらのことを考慮に入れて図20を参照すると、被一致比較対象の入力信号対DATA[1:n],DATA N[1:n]が相補的な信号対に遷移してから、出力制御部510の出力である内部ノードREADYは、直ちにローレベルにプルダウンするが、一致比較部500の出力であるワイヤードオア接続された内部ノードCOMPは前述したように、n個分のプルダウン素子502の全接合容量及びその配線容量をディスチャージしなければならず、プルダウン動作に時間がかかり、内部ノードCOMPの立ち下がりとREADYの立ち下がりとでは遅延差が生じてしまう。
【0111】
これは、内部ノードREADYはローレベルに論理が確定し出力部520を活性化させても、内部ノードCOΜPはまだプリチャージされたままの状態(ヒット時の状態)でまだ論理が確定されておらず、その遅延差分だけ、出力端子HITには、ミスにもかかわらずハイレベルの信号(ヒットの信号)を出力してしまうことになる。
【0112】
第4の実施形態では、その内部ノードREADYに負荷回路540を付加して、READYの寄生容量を調整したことでその立ち下がりの遅延時間が増加し、内部ノードCOMPの立ち下がりの遅延時間と等しく、又はそれより大きくしたことにより、ミス時の出力端子HITにヒゲ(ハザード)が出力されないようにしたものである。
【0113】
以上のように、第4の実施形態によれば、出力制御部510うちのプルダウン素子512の駆動能力に対応させて、内部ノードREADYにタイミング調整用の負荷回路540を付加したことにより、内部ノードREADYの立ち下がり遅延時間が内部ノードCOMPの立ち下がり遅延時間と等しく、又はそれより大きくなるので、不一致ビット数とは無関係に、出力端子HITにハザードが出力されなくなり信頼性のある出力信号を獲得することができる。また、ミス時に出力端子HITにハザードが出力されないことにより、次段の回路が誤動作しないようになるとともに、次段の回路の消費電力を削減することができる。
【0114】
図21は本発明の第5の実施形態に係る多ビット一致回路の構成を示すブロック図である。なお、前記図19に示すnビット一致回路40と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0115】
図21において、nビット一致回路50(多ビット一致回路)は、n個の一致比較部600、出力制御部610、出力部620及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ630,631、及び負荷回路640から構成されるダイナミック型論理回路である。
【0116】
本実施形態に係るnビット一致回路50は、前記第4の実施形態に係るnビット一致回路40に対して、一致比較部600、出力制御部610の中で使用されているプルダウン素子641をすべて同一のプルダウン素子に統一してプルダウン駆動能力を等しくし、また、負荷回路640はそのプルダウン素子641をダミー素子として(n−1)個接続し、内部ノードCOMPとREADYの寄生接合容量を全く等しくしたものである。
【0117】
上記一致比較部600、出力制御部610の中で使われているプルダウン素子641は、例えば、前記第1の実施形態又は第2の実施形態で示したもので全て統一してある。
【0118】
上記負荷回路640は、前述した一致比較部600、出力制御部610の中で使われているプルダウン素子641を用いて、制御信号をローレベルに固定したプルダウン素子641をタイミング調整用のダミー素子として使用する。この負荷回路640内のダミー素子641は、内部ノードREADYの接合容量が内部ノードCOMPと等しくなるように(n−1)個接続する。
【0119】
このように、第5の実施形態に係るnビット一致回路50は、一致比較部600内で用いるプルダウン素子と出力制御部610内で用いるプルダウン素子をプルダウン素子641に統一し、出力制御部610の出力に、タイミング調整用の負荷回路640として、統一されたプルダウン素子641をダミー素子として(n−1)個付加するように構成している。
【0120】
以下、上述のように構成されたnビット一致回路50の動作を説明する。
【0121】
上記nビット一致回路50の全体の回路動作はヒット時もミス時も、前記第4の実施形態で説明したnビット一致回路40と同様であり、第5の実施形態もミス時に出力端子HITにハザードが出力されないようにしたものである。
【0122】
第5の実施形態では、一致比較部600と出力制御部610内のプルダウン素子641を同一なものに統一したことにより、プルダウン駆動能力が統一され、なおかつ、内部ノードREADYには内部ノードCOMPの寄生接合容量と等価になるダミー素子641が(n−1)個接続されたことにより、両内部ノードの寄生接合容量が等しくなり、両ノードの遅延時間差が無くなる。
【0123】
同期信号CLKがハイレベルになり、一致比較動作が開始され、例えばn入力ビットのうち1ビットのみが不一致であった場合、その不一致ビットの一致比較部600内のプルダウン素子641一つで、内部ノードCOMPに接続される全接合容量(nビット分のプルダウン素子641の接合容量)をディスチャージする。同様に、出力制御部610のプルダウン素子641は、負荷回路640内の(n−1)個のダミー素子641が接続されたことにより、内部ノードCOMPと等価の寄生容量(nビット分のプルダウン素子641の接合容量)をディスチャージすることになる。
【0124】
一致比較部600と出力制御部610内のプルダウン素子641は同じものに統一されたので、その駆動能力が統一され、なおかつ、内部ノードCOMP,READYの寄生接合容量が統一されたことにより、全く同タイミングで両ノードはディスチャージされることになる。これにより、ミス時の場合、出力端子HITにはハザードが出力されない。
【0125】
以上のように、第5の実施形態によれば、一致比較部600、出力制御部610内で使われるプルダウン素子641を統一して駆動能力を等しくし、なおかつ、内部ノードREADYに負荷回路640を接続し、その負荷回路640もその前述したプルダウン素子641を使いダミー素子として(n−1)個接続しているので、内部ノードCOΜPとREADYの寄生接合容量が全く等しくすることができ、これにより、プルダウン素子のブロセス変動に左右されないタイミング設計が可能となる。
【0126】
図22は本発明の第6の実施形態に係る多ビット一致回路の構成を示すブロック図である。なお、前記図19に示すnビット一致回路40と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0127】
図22において、nビット一致回路60(多ビット一致回路)は、n個の一致比較部700、出力制御部710、出力部720及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ730,731、及び負荷回路740から構成されるダイナミック型論理回路である。
【0128】
上記nビット一致回路60は、前記第4の実施形態に係るnビット一致回路40に対して、出力制御部710を出力部720からレイアウト的に一番離れている一致比較部700に隣接させ配置し、その一致比較部700に入力される入力信号対(DATA[1:n],DATA N[1:n]の中の1ビットの信号対)を出力制御部710に入力するようにしたものである。
【0129】
図22の場合、DATA[1],DATA N[1]を入力する一致比較部700がレイアウト的に出力部720から一番離れているものとし、この一致比較部700に隣接して出力制御部710を配置し、前記DATA[1],DATAN[1]を出力制御部710に入力しするように構成する。これにより、出力制御部710から出力部720までの内部ノードREADYのレイアウト配線長が、一致比較部700から出力部720までの内部ノードCOΜPの最長の配線長と等しくなる。
【0130】
このように、第6の実施形態に係るnビット一致回路60は、出力部720からレイアウト的に最も離れている一致比較部700に対して出力制御部710を隣接して配置し、一致比較部700に入力される被一致比較信号対を、出力制御部710に入力するようにレイアウトしている。 以下、上述のように構成されたnビット一致回路60の動作を説明する。
【0131】
上記nビット一致回路60の全体の回路動作は、ヒット時もミス時も、前記第4の実施形態で説明したnビット一致回路40と同様であり、ミス時に出力端子HITにハザードが出力されないようにしたものである。
【0132】
特に、この第6の実施形態に係るnビット一致回路60は、出力制御部710から出力部720までの内部ノードREADYのレイアウト配線長を、一致比較部700から出力部720までの内部ノードCOMPの最も長いの配線長と等しくしたので、両ノードの寄生の配線容量及び配線抵抗を等しくすることができ、両ノードの遅延時間差がなくなる。
【0133】
以上のように、第6の実施形態によれば、出力制御部710を出力部720からレイアウト的に一番離れている一致比較部700に隣接させ配置し、その一致比較部700に入力される入力信号対(DATA[1:n],DATA N[1:n]の中の1ビットの信号対)を出力制御部710に入力するように構成しているので、内部ノードCOMPと内部ノードREADYの寄生の配線容量及び配線抵抗が等しくなり、一致比較の入力数増加に対し、一致比較部700のワイヤードオア接続部の配線が長くなって寄生の配線容量及び配線抵抗が増加しても、それとは無関係に出力端子HITにハザードが出力されないタイミング設計を行うことができる。
【0134】
図23は本発明の第7の実施形態に係る多ビット一致回路の構成を示すブロック図である。なお、前記図19に示すnビット一致回路40と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0135】
図23において、nビット一致回路70(多ビット一致回路)は、n個の一致比較部800、出力制御部810、出力部820及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ830,831、及び負荷回路840から構成されるダイナミック型論理回路である。
【0136】
上記nビット一致回路70は、前記第5の実施形態に係るnビット一致回路50に対して、一致比較部800、出力制御部810の中で使われているプルダウン素子841をすべて同一のプルダウン素子に統一し、また、負荷回路840はそのプルダウン素子841をダミー素子としてn個、又はそれ以上接続し、内部ノードREADYの寄生接合容量を内部ノードCOMPのそれより大きくしたものである。
【0137】
このように、第7の実施形態に係るnビット一致回路70は、nビットの一致比較部800内で用いるプルダウン素子841と、出力制御部810内で用いるプルダウン素子841の駆動能力を統一し、出力制御部810の出力に、タイミング調整用の負荷回路840として、統一されたプルダウン素子841を使いダミー素子としてn個、又はそれ以上、付加するように構成している。
【0138】
以下、上述のように構成されたnビット一致回路70の動作を説明する。
【0139】
上記nビット一致回路70の全体の回路動作は、ヒット時もミス時も、前記第5の実施形態で説明したことと同様であり、ミス時に出力端子HITにハザードが出力されないようにしたものである。
【0140】
この第7の実施形態に係るnビット一致回路70は、第5の実施形態に係るnビット一致回路50に対し、内部ノードREADYの寄生接合容量を内部ノードCOΜPに対して大きくすることにより、内部ノードREADYの立ち下がり遅延時間が内部ノードCOΜPのそれより、大きく設定することができる。これは、出力部820の活性化タイミングが、負荷回路840でさらに追加したダミー素子841の寄生接合容量のディスチャージ分だけ遅れ、ミス時のときの出力端子HITに確実にハザードが出力されないことになる。
【0141】
以上のように、第7の実施形態によれば、一致比較部800、出力制御部810内で使われるプルダウン素子841を統一し、なおかつ、内部ノードREADYに負荷回路840を接続し、さらにその負荷回路840もその前述したプルグウン素子841を使いダミー素子としてn個、又はそれ以上接続するようにしているので、内部ノードREADYの寄生接合容量を内部ノードCOMPに対して大きく設定することができ、ミス時のときの出力端子HITに確実にハザードを出力させないようにすることができ、タイミング設計のマージンを向上させることができる。
【0142】
なお、上記各実施形態に係るnビット一致回路では、半導体集積回路におけるキャッシュメモリ等に用いられるnビット一致回路に適用することができるが、nビットの入力信号の全ビットについて一致比較を行う多ビット一致回路であれば、どのような集積回路装置(例えば、ヒットコンパレータ回路)に用いてもよく、あるいは集積回路装置内部に組み込まれて使用される回路にも適用できることは言うまでもない。
【0143】
また、上記各実施形態に係るnビット一致回路は、nビットの被一致比較対象の入力信号と、nビットの一致比較対象の入力信号の全ビットについて一致比較を行うものであれば、そのビット数は何ビットでもよく、また、不一致比較結果を出力する多ビット不一致回路であってもよいことは勿論である。
【0144】
さらに、上記各実施形態に係るnビット一致回路、一致比較部、出力制御部、出力部等を構成する回路、それら回路内のMOSトランジスタ、バイポーラトランジスタ、ゲート回路、プルダウン素子などの個数、種類、接続状態等は上記各実施形態に限定されない。
【0145】
【発明の効果】
本発明に係る多ビット一致回路では、同期信号によって活性化される被一致比較対象のnビットの入力信号対と一致比較対象の入力信号を入力して各ビットの比較結果を出力する一致比較部と、被一致比較対象のnビットの入力信号対のうち、1ビット分の信号対を入力し、該入力信号対の遷移を検出して入力遷移検出信号を出力する出力制御部と、nビット分の比較結果を、入力遷移検出信号によって活性化させる出力部とを備え、一致比較部が、2入力排他的論理和回路とその出力を制御信号とするプルダウン素子にオープンドレインNMOSを用いて一致比較結果を出力する構成とし、出力制御部は、2入力NAND回路とその出力を制御信号とするプルダウン素子であるオープンドレインNMOSにより入力遷移検出結果を出力する構成とし、nビットの一致比較部の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うように構成しているので、高速動作が可能になり、レイアウト面積を小さくでき、コストを削減することができるとともに、消費電力を小さくすることができる。さらに、n入力ビットの入力信号の論理がどのような場合でも、出力信号HITの遅延時間を一定に保つことができ、タイミング設計を容易にすることができる。
【0146】
また、本発明に係る多ビット一致回路では、一致比較部内のプルダウン素子にバイポーラトランジスタを付加して一致比較結果を出力する構成とし、出力制御部のプルダウン素子にバイポーラトランジスタを付加して入力遷移検出信号を出力するように構成しているので、駆動能力を高めて、さらなる高速動作が可能になる。また、一致比較の入力信号数の増加による、ワイヤードオア接続部(一致比較部出力)の寄生容量の増加に対し、遅延時間の負荷依存性を小さくすることができる。
【0147】
また、本発明に係る多ビット一致回路では、出力制御部内の2入力NAND回路を、一致比較部内の2入力排他的論理和回路に使用された回路構成と同じレイアウトを用いて、論理回路を構成しているので、一致比較部内のプルダウン素子と、出力制御部内のプルダウン素子の活性化タイミング差をなくすことができ、ミス時の内部ノードCOMP,READYのプルダウンタイミングが等しくなり、出力端子にヒゲ(ハザート)が出力されなくなる効果がある。
【0148】
また、本発明に係る多ビット一致回路では、出力制御部内で用いるプルダウン素子の駆動能力に対応して、出力制御部の出力にタイミング調整用の負荷回路を付加するように構成しているので、不一致ビット数とは無関係に、出力端子HITにハザードが出力されなくなり信頼性のある出力信号を獲得することができる。また、ミス時に出力端子HITにハザードが出力されないことにより、次段の回路が誤動作しないようになるとともに、次段の回路の消費電力を削減することができる。
【0149】
また、本発明に係る多ビット一致回路では、一致比較部内で用いるプルダウン素子と出力制御部内で用いるプルダウン素子を統一し、出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子をダミー素子として(n−1)個付加するように構成しているので、内部ノードCOΜPとREADYの寄生接合容量が全く等しくすることができ、これにより、プルダウン素子のブロセス変動に左右されないタイミング設計が可能となる。
【0150】
また、本発明に係る多ビット一致回路では、出力部からレイアウト的に最も離れている一致比較部に対して出力制御部を隣接して配置し、該一致比較部に入力される被一致比較信号対を、出力制御部に入力するようにレイアウトしているので、内部ノードCOMPと内部ノードREADYの寄生の配線容量及び配線抵抗が等しくすることができ、一致比較の入力数増加に対し、一致比較部のワイヤードオア接続部の配線が長くなって寄生の配線容量及び配線抵抗が増加しても、それとは無関係に出力端子HITにハザードが出力されないタイミング設計を行うことができる。
【0151】
また、本発明に係る多ビット一致回路では、nビットの一致比較部内で用いるプルダウン素子と、出力制御部内で用いるプルダウン素子の駆動能力を統一し、出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子を使いダミー素子としてn個、又はそれ以上、付加するように構成しているので、内部ノードREADYの寄生接合容量を内部ノードCOMPに対して大きく設定することができ、ミス時のときの出力端子HITに確実にハザードを出力させないようにすることができ、タイミング設計のマージンを向上させることができる。
【図面の簡単な説明】
【図1】本発明を適用した第1の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図2】上記多ビット一致回路の一致比較部の論理回路図である。
【図3】上記多ビット一致回路の一致比較部の構成を示す回路図である。
【図4】上記多ビット一致回路の出力制御部の論理回路図である。
【図5】上記多ビット一致回路の出力制御部の構成を示す回路図である。
【図6】上記多ビット一致回路の動作を具体的に説明するためのブロック図である。
【図7】上記多ビット一致回路のヒット時の各ノード電位を示す波形図である。
【図8】上記多ビット一致回路のミス時の各ノード電位を示す波形図である。
【図9】本発明を適用した第2の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図10】上記多ビット一致回路の一致比較部の論理回路図である。
【図11】上記多ビット一致回路の一致比較部の構成を示す回路図である。
【図12】上記多ビット一致回路の出力制御部の論理回路図である。
【図13】上記多ビット一致回路の出力制御部の構成を示す回路図である。
【図14】本発明を適用した第3の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図15】上記多ビット一致回路の一致比較部の論理回路図である。
【図16】上記多ビット一致回路の一致比較部の構成を示す回路図である。
【図17】上記多ビット一致回路の出力制御部の論理回路図である。
【図18】上記多ビット一致回路の出力制御部の構成を示す回路図である。
【図19】本発明を適用した第4の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図20】上記多ビット一致回路のミス時のHIT信号のヒゲを示す波形図である。
【図21】本発明を適用した第5の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図22】本発明を適用した第6の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図23】本発明を適用した第7の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図24】従来の多ビット一致回路の構成を示すブロック図である。
【符号の説明】
10,20,30,40,50,60,70 nビット一致回路(多ビット一致回路)、100,300,400,500,600,700,800 n個の一致比較部、101,301,401,501,601,701,801 2入力排他的論理和回路、102,112,312,412 プルダウン素子、103 インバータ素子、110,310,410,510,610,710,810 出力制御部、111,311,411,511,611,711,811 2入力NAND回路、120,320,420,520,620,720,820 出力部、121,321,421,521,621,721,821 インバータ回路、122,322,422,522,622,722,822 2NOR回路、130,131,330,331,430,431,530,531,630,631,730,731,830,831 プリチャージ素子であるPMOSトランジスタ、540,640,740,840 負荷回路
【発明の属する技術分野】
本発明は、半導体集積回路におけるキャッシュメモリ等に使用される多ビット一致回路に係り、詳細には、nビットの入力信号の全ビットについて一致比較を行う多ビット一致回路に関する。
【0002】
【従来の技術】
1ビットの2進数x,yが一致しているか否かを調べる回路を一致回路あるいは不一致回路と呼び、その1ビットの2進数x,yを何ビットか集め、多ビット一致回路や多ビット不一致回路を構成する。1ビット一致回路は別名、排他的論理和(exclusive NOR)ゲート、1ビット不一致回路は別名、否定排他的論理和(exclusive OR)ゲートとも呼ばれる。
【0003】
従来のこの種の多ビット一致回路としては、例えば「CMOS回路の使い方(I)」(工業調査会 1988年1月20日発行 105〜109頁)に記載されたものがあった。
【0004】
図24は、一般的な4ビット一致回路を示す回路図である。図24において、この4ビット一致回路は被一致比較対象の4ビットの入力信号DATA[0:3]と一致比較対象の4ビットの入力信号ADDR[0:3]をそれぞれ入力する4個の2入力排他的論理和回路1〜4と、それらの2入力排他的論理和回路1〜4による各ビットの比較出力を入力し、一致比較の出力信号OUTの論理を確定する4入力NOR回路5から構成されている。
【0005】
上記4ビット一致回路回路は、被一致比較対象の4ビットの入力信号DATA[0:3]と一致比較対象の4ビットの入力信号ADDR[0:3]の各ビットの論理がすべて同じであった場合に出力信号OUTに一致していたことを示すハイレベル信号「H」を出力するものである。
【0006】
一方、上記被一致比較対象の4ビットの入力信号DATA[0:3]と一致比較対象の4ビットの入力信号ADDR[0:3]のうち、1ビットでも論理が異なる場合、出力信号OUTには不一致ビットがあったことを示すローレベル信号「L」を出力する。
【0007】
【発明が解決しようとする課題】
しかしながら、このような従来の多ビット一致回路では、以下(1)〜(4)のような間題点があった。
【0008】
すなわち、(1)一致比較の入力信号数の増加に伴い、出力確定のNOR回路の入力数が増加し、多段接続あるいは論理分割の必要性があるので、出力の論理確定までの遅延時間が増大する。
【0009】
(2)被一致比較対象の入力信号の論理確定と一致比較対象の入力信号の論理確定に遅延差がある場合、出力信号にヒゲ状の細いパルス(ハザード)が出力されてしまう。
【0010】
(3)一致比較の入力信号数の増加に伴い、出力確定のNOR回路の入力数が増加し、多段接続あるいは論理分割の必要性があるので、レイアウト面積が増大する。
【0011】
(4)一致比較の入力信号数の増加に伴い、出力確定のNOR回路の入力数が増加し、多段接続あるいは論理分割の必要性があるので、消費電力が増加する。
【0012】
本発明は、入力信号の論理に拘らず出力信号の遅延時間を一定に保つことによりタイミング設計を容易にすることができ、高速動作を可能にするとともに、レイアウト面積を小さくでき、さらには消費電力を小さくできる多ビット一致回路を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明に係る多ビット一致回路は、nビットの被一致比較対象の入力信号と、nビットの一致比較対象の入力信号の全ビットについて一致比較を行う多ビット一致回路において、同期信号によって活性化される被一致比較対象のnビットの入力信号対と一致比較対象の入力信号を入力して各ビットの比較結果を出力する一致比較部と、被一致比較対象のnビットの入力信号対のうち、1ビット分の信号対を入力し、該入力信号対の遷移を検出して入力遷移検出信号を出力する出力制御部と、nビット分の比較結果を、入力遷移検出信号によって活性化させる出力部とを備え、nビットの一致比較部の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うように構成している。
【0014】
本発明に係る多ビット一致回路は、一致比較部が、2入力排他的論理和回路とその出力を制御信号とするプルダウン素子にオープンドレインNMOSを用いて一致比較結果を出力する構成とし、出力制御部は、2入力NAND回路とその出力を制御信号とするプルダウン素子であるオープンドレインNMOSにより入力遷移検出結果を出力する構成とし、nビットの一致比較部の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うように構成する。
【0015】
また、本発明に係る多ビット一致回路は、一致比較部内のプルダウン素子にバイポーラトランジスタを付加して一致比較結果を出力する構成とし、出力制御部のプルダウン素子にバイポーラトランジスタを付加して入力遷移検出信号を出力する構成としてもよい。
【0016】
また、本発明に係る多ビット一致回路は、出力制御部内の2入力NAND回路を、一致比較部内の2入力排他的論理和回路に使用された回路構成と同じレイアウトを用いて、論理回路を構成するものであってもよい。
【0017】
また、本発明に係る多ビット一致回路は、出力制御部内で用いるプルダウン素子の駆動能力に対応して、出力制御部の出力にタイミング調整用の負荷回路を付加する構成であってもよい。
【0018】
また、本発明に係る多ビット一致回路は、一致比較部内で用いるプルダウン素子と出力制御部内で用いるプルダウン素子を統一し、出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子をダミー素子として(n−1)個付加する構成であってもよい。
【0019】
また、本発明に係る多ビット一致回路は、出力部からレイアウト的に最も離れている一致比較部に対して出力制御部を隣接して配置し、一致比較部に入力される被一致比較信号対を、出力制御部に入力するようにレイアウトしてもよい。
【0020】
また、本発明に係る多ビット一致回路は、nビットの一致比較部内で用いるプルダウン素子と、出力制御部内で用いるプルダウン素子の駆動能力を統一し、出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子を使いダミー素子としてn個、又はそれ以上、付加する構成であってもよい。
【0021】
さらに、多ビット一致回路が、nビットの被一致比較対象の入力信号と、nビットの一致比較対象の入力信号の全ビットについて一致比較を行い、不一致比較結果を出力する多ビット不一致回路であってもよい。
【0022】
【発明の実施の形態】
本発明に係る多ビット一致回路は、半導体集積回路におけるキャッシュメモリ等に用いられる多ビット一致回路に適用することができる。
【0023】
図1は本発明の第1の実施形態に係る多ビット一致回路の構成を示すブロック図である。図1に示す多ビット一致回路は、n入力ビットの一致回路を用いたヒットコンパレータ回路に適用した例である。
【0024】
図1において、nビット一致回路10(多ビット一致回路)は、n個の一致比較部100、出力制御部110、出力部120及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ130,131から構成されるダイナミック型論理回路である。
【0025】
上記nビット一致回路10は、被一致比較対象のnビットの入力信号対DATA[1:n],DATA_N[1:n]と一致比較対象のnビットの入力信号ADDR[1:n]を入力し、nビットの一致比較結果である出力信号HITを出力するものである。
【0026】
上記n個の一致比較部100には、被一致比較対象のnビットの入力信号対DATA[1:n],DATA N[1:n]と一致比較対象のnビットの入力信号ADDR[1:n]とがそれぞれに入力される。なお、詳細な内部構成については図2及び図3で後述する。このn個の一致比較部100の出力は、すべてワイヤードオア接続され、ワイヤードオア接続された出力はCOMP信号として同期信号CLKによって制御されるプリチャージ素子であるPMOSトランジスタ130と出力部120の1入力に接続される。
【0027】
上記出力制御部110には、被一致比較対象のnビットの入力信号対DATA[1:n],DATA N[1:n]のうち、1ビットの信号対が入力される。なお、詳細な内部構成については図4及び図5で後述する。この出力制御部110の出力は、READY信号として同期信号CLΚによって制御されるプリチャージ素子であるPMOSトランジスタ131と出力部120の1入力に接続される。
【0028】
出力部120は、ワイヤードオア接続されたn個の一致比較部100の出力COMPと出力制御部110の出力READYを入力し、nビットの一致比較結果を出力信号HITとして出力する。
【0029】
ここで、被一致比較対象のnビットの入力信号対DATA[1:n]とDATA N[1:n]は相補的な論理信号であり、同期信号CLΚに同期して活性化されるものとし、それ以外のときは両信号とも初期値に固定されているものとする。本nビット一致回路10の場合、同期信号CLKがローレベルの時(プリチャージ時)、前記入力信号対DATA[1:n]とDATA N[1:n]は両信号ともハイレベルにプルアップされていることとする。
【0030】
また、一致比較対象のnビットの入力信号ADDR[1:n]は同期信号CLKがハイレベルになる以前(すなわち、サンプリング時以前)には、すでに論理は確定しているものとする。
【0031】
図2及び図3は上記n個の一致比較部100の構成を説明するための図であり、図2はその論理回路図、図3はその具体的な回路構成図である。
【0032】
図2において、一致比較部100は、被一致比較対象の入力信号対DATA,DATA Nと一致比較対象の入力信号ADDRとが入力される3入力端子と、一致比較結果である1出力端子OUTを持つ。前記被一致比較対象の入力信号対DATA,DATA Nと一致比較対象の入力信号ADDRは、2入力排他的論理和回路101に入力され、その出力は次段のプルダウン素子102の制御信号となる。上記プルダウン素子102の一方の端子は出力端子OUTに接続され、他方の端子は接地端子GNDに接続される。
【0033】
よって、この一致比較部100の出力端子OUTには、被一致比較対象の入力信号対DATA,DATA Nと一致比較対象の入力信号ADDRとの否定排他的論理和(OUT=DATA・ADDR+DATA N・ADDR N)が出力されることになる。
【0034】
図3は一致比較部100の具体的な回路構成例を示した図であり、この図において、前記入力信号ADDRは、インバータ素子103に接続されADDR Nを生成する。また、前記入力信号対DATA,DATA Nと入力信号ADDR,ADDR Nはそれぞれ、PMOSトランジスタ105とNMOSトランジスタ108のゲート電極、PMOSトランジスタ107とNMOSトランジスタ10Aのゲート電極、PMOSトランジスタ106とNMOSトランジスタ109のゲート電極、PMOSトランジスタ104とNMOSトランジスタ10Bのゲート電極にそれぞれ接続される。また、PMOSトランジスタ104,106のソース電極は電源端子VDDに接続され、それらの各ドレイン電極はPMOSトランジスタ105,107のソース電極にそれぞれ接続されている。
【0035】
上記NMOSトランジスタ109,10Bのソース電極は、接地端子GNDに接続され、それらの各ドレイン電極はNMOSトランジスタ108,10Aのソース電極にそれぞれ接続されている。また、PΜOSトランジスタ105,107とNΜOSトランジスタ108,10Aのドレイン電極は、プルダウン素子102であるNΜOSトランジスタ10Cのゲート電極に接続され、そのソース電極は接地端子GNDに、ドレイン電極は出力端子OUTに接続され、オープンドレイン構造になっている。
【0036】
図4及び図5は上記出力制御部110の構成を説明するための図であり、図4はその論理回路図、図5はその具体的な回路構成図である。
【0037】
図4において、出力制御部110は、被一致比較対象の入力信号対DATA,DATA Nの2入力端子と出力制御信号である1出力端子OUTを持つ。前記被一致比較対象の入力信号対DATA,DATA Nは2入力NAND回路111に入力され、その出力は次段のプルダウン素子112の制御信号となる。前記、プルダウン素子112の一方の端子は出力端子OUTに接続され、他方の端子は接地端子GNDに接続される。
【0038】
よって、この出力端子OUTには、被一致比較対象の入力信号対DATA,DATA Nの論理和(OUT=DATA・DATA N)が出力されることになる。
【0039】
図5は上記出力制御部110の具体的な回路構成例を示した図であり、この図において、前記入力信号対DATA,DATA Nはそれぞれ、PMOSトランジスタ113とNMOSトランジスタ115のゲート電極、PMOSトランジスタ114とNMOSトランジスタ116のゲート電極にそれぞれ接続される。また、PMOSトランジスタ113,114のソース電極は電源端子VDDに接続される。また、NMOSトランジスタ116のソース電極は接地端子GNDに接続され、そのドレイン電極はNMOSトランジスタ115のソース電極に接続される。
【0040】
また、PMOSトランジスタ113,114とNΜOSトランジスタ115のドレイン電極は、プルダウン素子112であるNMOSトランジスタ117のゲート電極に接続され、そのソース電極は接地端子GNDに、ドレイン電極は出力端子OUT接続され、オープンドレイン構造になっている。
【0041】
一方、上記出力部120は、前記図1に示すように、n個の一致比較部100のワイヤード接続部である内部ノードCOMPがインバータ回路121に接続される。そのインバータ回路121の出力と出力制御部110の出力である内部ノードREADYが2NOR回路122に接続され、nビットの一致比較結果を出力信号HITとして出力する。
【0042】
このように、第1の実施形態に係るnビット一致回路10は、同期信号によって活性化される被一致比較対象のnビットの入力信号対と一致比較対象の入力信号を入力して各ビットの比較結果を出力する一致比較部100と、被一致比較対象のnビットの入力信号対のうち、1ビット分の信号対を入力し、該入力信号対の遷移を検出して入力遷移検出信号を出力する出力制御部110と、nビット分の比較結果を、入力遷移検出信号によって活性化させる出力部120とを備え、一致比較部100は、2入力排他的論理和回路101とその出力を制御信号とするプルダウン素子102にオープンドレインNMOS10Cを用いて一致比較結果を出力する構成とし、出力制御部110は、2入力NAND回路111とその出力を制御信号とするプルダウン素子112であるオープンドレインNMOS117により入力遷移検出結果を出力する構成とし、nビットの一致比較部100の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うように構成されている。
【0043】
以下、上述のように構成されたnビット一致回路10の動作を説明する。
【0044】
図6は、第1の実施形態に係るnビット一致回路10を採用した具体的な回路適用例を示す図であり、例えば、この回路は、キャッシュメモリ内で使われるnビットのヒットコンパレータ回路200である。図1〜図5と同一構成部分には同一番号を付している。この図6を用いて具体的な回路動作を説明する。
【0045】
図6において、ヒットコンパレータ回路200は、同期信号CLΚに同期して、メモリセル210のワード線WL、センスアンプ220の動作を活性化して読み出し動作を開始し、図6破線に示すnビット一致回路10によりnビットの読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対象の信号対)と一致比較対象のnビットの入力信号ADDR[1:n]の各ビットの一致比較を行い、一致結果HITを出力するものである。
【0046】
このヒットコンパレータ回路200が非活性化状態の時、すなわち同期信号CLΚがローレベルのときは、センスアンプ220の出力、すなわちnビットの読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対象の信号対)は、初期値に固定されており、本ヒットコンパレータ回路200ではハイレベルにプルアップされているものとする。
【0047】
また、一致比較対象の入力信号ADDR[1:n]は、ヒットコンパレータ回路200が活性化状態になる以前にすでに論理は確定されているものとする。
【0048】
図7及び図8は、前記図6に示したnビット一致回路10を採用した回路適用例の各ノードの電位の関係を表したタイミングチャートであり、図7はnビットの読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対象の信号対)と一致比較対象のnビット入力信号ADDR[1:n]の各ビットがすべて一致していた場合の波形(ヒット時の波形)を示す波形図、図8は1ビットでも一致しないものがあった場合の波形(ミス時の波形)を示す波形図である。
【0049】
まず、図7に示すヒット時の波形を参照して第1の実施形態に係るnビット一致回路10の動作を説明する。
【0050】
同期信号CLΚがローレベルの時、プルアップ素子であるPMOSトランジスタ130,131が導通状態であり、内部ノードCOΜP,READYはハイレベルにプリチャージされている。このとき、センスアンプ220は非活性化状態であるので、nビットの読み出しデータ対DATA[1:n],DATA N[1:n]はともにプルアップされており、ハイレベルに初期化されている。
【0051】
また、同期信号CLKがハイレベルになる前に、一致比較対象の入力信号ADDR[1:n]は、すでに論理が確定されている。このとき、一致比較部100の状態は、前記図3に示すように、DATA,DATA Nはともにハイレベルにプルアップ、ADDR,ADDR Nはどちらかがハイレベルとなっているので、NΜOSトランジスタ108,109のパス、又はNΜOSトランジスタ10A,10Bのパスはどちらかが導通状態になっており、次段のプルダウン素子102であるNMOSトランジスタ10Cのゲート電極には、ローレベルの信号が入力され非導通状態となっている。これは、全ビットの一致比較部100に対して、同様のことがいえるので、図6の内部ノードCOMPはプリチャージ状態が保たれていることになる。
【0052】
また、出力制御部110についても同様であり、前記図5に示すように、DATA,DATA Nがともにハイレベルにプルアップされているので、2NAND回路111出力はローレベルとなり、次段のプルダウン素子112であるNMOSトランジスタ117は非導通状態となっているので、図5の内部ノードREADYはプリチャージ状態が保たれていることになる。
【0053】
以上のことから、同期信号CLΚがローレベルの時、内部ノードCOMP、READYがともにハイレベルにプルアップされているので、出力信号HITにはローレベルの信号が出力されることになる。
【0054】
次に、同期信号CLKがハイレベルになると、プリチャージ素子のPMOSトランジスタ130,131は非導通状態になる。また、この同期信号CLKに同期してメモリセル210のワード線WL、センスアンプ220の動作が活性化され、読み出し動作が開始される。このとき、nビットの読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対対象の信号対)はまだハイレベルのままであるが、読み出し動作が完了すると、メモリ保持内容が読み出しデータ対DATA[1:n],DATA N[1:n]に出力され、一方がハイレベル、他方がローレベルの相補的な信号対となる。
【0055】
このとき、読み出し完了後の相補的な読み出しデータ対DATA[1:n],DATA N[1:n]と一致比較対象の信号ADDR[1:n]の論理が一致している場合、一致比較部100の状態は前記図3に示すように、ADDRとDATAがともにハイレベル、又はADDRとDATAがともにローレベル(ADDR NとDATA Nがともにハイレベル)の論理状態であるので、NMOSトランジスタ108,109のパス又はNMOSトランジスタ10A,10Bのパスのどちらかが導通状態である。
【0056】
よって、次段のプルダウン素子102のNMOSトランジスタ10Cは非導通状態のままである。この動作が、nビット分のすべての一致比較部100で起こった場合、すなわち、nビットがすべて一致していた場合、内部ノードCOMPはハイレベルのまま電位が保たれていることになる。
【0057】
また、上記出力制御部110では、図5に示すように、読み出し動作開始時は、DATA,DATA Nがともにハイレベルのままであったのが、読み出し動作が完了すると同時に、2NAND回路111がハイレベルの信号を出力し、次段のプルダウン素子112であるNMOSトランジスタ117が導通状態となる。これは、図6において、内部ノードREADYのプリチャージ電荷を放電することになり、内部ノードREADYはローレベルにプルダウンされる。このとき、すでにnビットのすべての一致比較部100の一致比較動作が完了して、内部ノードCOMPは全ビットが一致していたことを示すハイレベルの状態で論理が確定されおり、また、内部ノードREADYがハイレベルからローレベルにプルダウンされたこと、すなわち、メモリの読み出し動作が完了したことによって、上記出力部120が活性化され、出力端子HITはローレベルからハイレベルにプルアップされ、nビットがすべて一致していたことを示すハイレベルの出力信号HITを出力する。
【0058】
次に、図8に示すミス時の波形を参照して第1の実施形態に係るnビット一致回路10の動作を説明する。
【0059】
読み出しデータ対DATA[1:n],DATA N[1:n](被一致比較対対象の信号対)と一致比較対象の信号ADDR[1:n]の論理に1ビットでも不一致があった場合、一致比較部100の状態は、前記図3の一致比較部100に照らし合わせると、ADDRとDATA N、又はADDR NとDATAが、ともにローレベルの状態であるので、PMOSトランジスタ104,105のパス又はPΜOSトランジスタ106,107のパスのどちらかが導通状態になる。よって、次段のプルダウン素子102のNMOSトランジスタ10Cが導通状態となる。
【0060】
これは、前記図6の内部ノードCOMPのプリチャージ電荷が放電されることになり、内部ノードCOMPはローレベルにプルダウンされる。この動作がnビットの一致比較部100において、不一致のビットに対してすべて行われる。
【0061】
出力制御部110は、ヒット時と同様にメモリの読み出し動作が完了したのと同時に、図6の内部ノードREADYをプルダウンする。
【0062】
このとき、nビットのすべての一致比較部100の一致比較動作が完了して、内部ノードCOMPには1ビット以上の不一致があったことを示すローレベルの状態で論理が確定されおり、また、内部ノードREADYがハイレベルからローレベルにプルダウンされたこと、つまり、メモリの読み出し動作が完了したことによって出力部120が活性化され、出力端子HITには内部ノードCOMPのローレベルの信号を出力し、不一致ビット(ミス)があったことを示す。
【0063】
以上説明したように、第1の実施形態に係るnビット一致回路10は、被一致比較対象の入力信号対DATA[1:n],DATΑ N[1:n]と一致比較対象の入力信号ADDR[1:n]を入力し、オープンドレイン電極NMOSで比較結果を出力する各nビット分の一致比較部100と、前記入力信号対DATA[1:n],DATA N[1:n]のうち、1ビット分の信号対で入力信号対の遷移を検出しオープンドレイン電極NMOSで入力遷移検出信号を出力する出力制御部110と、前記nビット分の比較結果と、前記入力遷移検出信号を入力し、入力遷移検出信号によって活性化される出力部120とを備え、前記nビットの一致比較部100をワイヤードオア接続したダイナミック回路構成にしているので、従来例のような多段接続あるいは論理分割の必要性がなくなるため、高速動作が可能になり、レイアウト面積を小さくでき、コストを削減することができるとともに、消費電力を小さくすることができる。また、被一致比較対象の入力信号対DATA[1:n],DATA N[1:n]の遷移を検出し、その信号によって出力部120を活性化させているので、n入力ビットの入力信号の論理がどのような場合でも、出力信号HITの遅延時間を一定に保つことができ、タイミング設計を容易にすることができる。
【0064】
図9は本発明の第2の実施形態に係る多ビット一致回路の構成を示すブロック図である。図9に示す多ビット一致回路も、n入力ビットのヒットコンパレータ回路に適用することができる。なお、本実施形態に係るnビット一致回路10の説明にあたり図1に示すnビット一致回路10と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0065】
図9において、nビット一致回路20(多ビット一致回路)は、n個の一致比較部300、出力制御部310、出力部320及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ330,331から構成されるダイナミック型論理回路である。
【0066】
本実施形態に係るnビット一致回路20は、前記第1の実施形態に係るnビット一致回路10に対して、一致比較部300と出力制御部310の中でそれぞれ使われているプルダウン素子302,312に、Bipoarトランジスタを付加してプルダウン駆動能力を向上させた点のみが異なっている。
【0067】
図10及び図11は上記n個の一致比較部300の構成を説明するための図であり、図10はその論理回路図、図11はその具体的な回路構成図である。
図10に示すように、一致比較部300の論理回路は前記図2に示す一致比較部100と同様である。
【0068】
図11において、入力信号対DATA,DATA Nと入力信号ADDRを入力する2入力排他的論理和回路301の出力は、NMOSトランジスタ303のゲート電極に接続される。そのNMOSトランジスタ303のドレイン電極はBipolarトランジスタ304のコレクタ電極と出力端子OUTに接続され、ソース電極はBipoarトランジスタ304のベース電極とベース電荷引き抜き素子305に接続される。ベース電荷引き抜き素子305の他方端子とBipoarトランジスタ304のエミッタ電極は接地端子GNDに接続される。
【0069】
図12及び図13は上記出力制御部310の構成を説明するための図であり、図12はその論理回路図、図13はその具体的な回路構成図である。
【0070】
図12に示すように、出力制御部310の論理回路は前記図4に示す出力制御部110と同様である。
【0071】
図13は出力制御部310のうちプルダウン素子312を詳細に示した回路図である。
【0072】
図13において、上記出力制御部310は、2入力NAND回路311及びプルダウン素子312から構成され、プルダウン素子312はNMOSトランジスタ313、Bipoarトランジスタ314及び電荷引き抜き素子315から構成される。
【0073】
入力信号対DATA,DATA Nを入力する2入力NAND回路311の出力は、NMOSトランジスタ313のゲート電極に接続される。そのNMOSトランジスタ313のドレイン電極は、Bipoarトランジスタ314のコレクタ電極と出力端子OUTに接続され、ソース電極はBipoarトランジスタ314のベース電極とベース電荷引き抜き素子315とに接続される。ベース電荷引き抜き素子315の他方の端子とBipoarトランジスタ314のエミッタ電極は接地端子GNDに接続される。
【0074】
このように、第2の実施形態に係るnビット一致回路20は、一致比較部300内のプルダウン素子302にBipoarトランジスタ304を付加して一致比較結果を出力する構成とし、出力制御部310のプルダウン素子312にBipoarトランジスタ314を付加して入力遷移検出信号を出力する構成としている。
【0075】
以下、上述のように構成されたnビット一致回路20の動作を説明する。
【0076】
上記nビット一致回路20の全体の回路動作はヒット時もミス時も、第1の実施形態で説明したnビット一致回路10と同様である。
【0077】
同期信号CLΚがローレベルのとき、図9に示すように内部ノードCOMP,READYはPMOSトランジスタ330,331によりプリチャージされる。このとき、図11に示す一致比較部300うちの2入力排他的論理和回路301と図13に示す出力制御部310うちの2入力NAND回路311はともにローレベルの電位を出力しているので、次段のNΜOSトランジスタ303,313はともに非導通状態である。
【0078】
このとき、前記NΜOSトランジスタ303,313のソース電極、すなわち、Bipoarトランジスタ304,314のベース電位はベース電荷引き抜き素子305,315によってローレベルにプルダウンされており、Bipoarトランジスタ304,314は非導通状態となっている。よって、同期信号CLKがローレベルの時、プリチャージ状態が保たれている。
【0079】
次に、同期信号CLKがハイレベルになり、図11に示す被一致比較対象の入力信号対DATA,DATA Nと一致対象の入力信号ADDRが不一致のとき、2入力排他的論理和回路301はハイレベルの信号を出力し、次段のNMOS卜ランジスタ303が導通状態となる。これにより、図9に示す内部ノードCOMPに蓄えられていたプリチャージ電荷がNΜOSトランジスタ303を介してBipoarトランジスタ304のベース電極に流れ込み、Bipoarトランジスタ304が導通状態になり、内部ノードCOMPは一気にローレベルにプルダウンされる。
【0080】
同様に、同期信号CLΚがハイレベルになり、図13に示す被一致比較対象の入力信号対DATA,DATA Nが相補的な信号状態に遷移したとき、2入力NAND回路311はハイレベルの信号を出力し、次段のNMOSトランジスタ313が導通状態となる。これにより、図9に示す内部ノードREADYに蓄えられていたプリチャージ電荷がNΜOS卜ランジスタ313を介してBipoarトランジスタ314のベースに流れ込み、Bipoarトランジスタ314が導通状態になり、内部ノードREADYは一気にローレベルにプルダウンされる。
【0081】
以上のように、第2の実施形態によれば、n入力の一致比較部300及び出力制御部310のプルダウン素子302,312にBipoarトランジスタ304,314を付加しているので、Bipoarトランジスタの高駆動能力により、さらなる高速動作が可能になる。また、一致比較の入力信号数の増加による、ワイヤードオア接続部(一致比較部出力)の寄生容量の増加に対し、遅延時間の負荷依存性を小さくすることができる。
【0082】
図14は本発明の第3の実施形態に係る多ビット一致回路の構成を示すブロック図である。図14に示す多ビット一致回路も、n入力ビットのヒットコンパレータ回路に適用することができる。なお、前記図1に示すnビット一致回路10と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0083】
図14において、nビット一致回路30(多ビット一致回路)は、n個の一致比較部400、出力制御部410、出力部420及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ430,431から構成されるダイナミック型論理回路である。
【0084】
本実施形態に係るnビット一致回路30は、前記第1の実施形態に係るnビット一致回路10に対して、出力制御部410の中で使用されている2入力NAND回路411のトランジスタレベルでの回路を、一致比較部400の中で使われている2入力排他的論理和回路401の回路構成回路ディメンジョン(レイアウト)を使い、論理(2NAND)を実現させたものである。
【0085】
図15及び図16は上記n個の一致比較部400の構成を説明するための図であり、図15はその論理回路図、図16はその具体的な回路構成図である。
図15及び図16に示すように、一致比較部400の論理回路は前記図2及び図3に示す一致比較部100と全く同じ回路構成であり、この部分の説明を省略する。
【0086】
図17及び図18は上記出力制御部410の構成を説明するための図であり、図17はその論理回路図、図18はその具体的な回路構成図である。
【0087】
図17に示すように、出力制御部410の論理回路は前記図4に示す出力制御部110と同様である。
【0088】
図18は出力制御部410の2入力NAND回路411を詳細に示した回路図である。
【0089】
図18において、出力制御部410は、被一致比較対象の入力信号対DATA,DATA Nの2入力端子と出力制御信号である1出力端子OUTを持つ。前記被一致比較対象の入力信号対DATA,DATA Nは2入力NAND回路411に入力され、その出力は次段のプルダウン素子412の制御信号となる。前記、プルダウン素子412の一端子は出力端子OUTに接続され、他方の端子は接地端子GNDに接続される。
【0090】
上記2入力NAND回路411は、図16に示す一致比較部400の2入力排他的論理和回路401のトランジスタレベルでの回路構成、回路ディメンジョンをそのまま使い、2NANDの論理を実現している。
【0091】
入力信号対DATA,DATA Nは、2入力NAND回路411内のPMOSトランジスタ413,414とNMOSトランジスタ417,419、PMOSトランジスタ415,416とNMOSトランジスタ418,41A、の各ゲート電極にそれぞれ入力される。PΜOSトランジスタ413,415のソース電極は電源端子VDDに接続され、ドレイン電極はPΜOSトランジスタ414,416のソース電極にそれぞれ接続される。また、NMOSトランジスタ418,41Aのソース電極は接地端子GNDに接続され、それらのドレイン電極はNMOSトランジスタ417,419のソース電極に接続される。PMOSトランジスタ414,416のドレイン電極とNMOSトランジスタ417,419のドレイン電極は次段のプルダウン素子412の制御信号として使用される。
【0092】
このように、第3の実施形態に係るnビット一致回路30は、出力制御部410内の2入力NAND回路411を、一致比較部400内の2入力排他的論理和回路401に使用された回路構成と同じレイアウトを用いて、2NAND論理回路を構成している。
【0093】
以下、上述のように構成されたnビット一致回路30の動作を説明する。
【0094】
上記nビット一致回路30の全体の回路動作はヒット時もミス時も、第1の実施形態で説明したnビット一致回路10と同様である。
【0095】
同期信号CLΚがハイレベルになり、図18に示す被一致比較対象の入力信号対DATA,DATA Nが相補的な信号状態に遷移したとき、出力制御部410の2入力NAND回路411は、PΜOSトランジスタ413,414のパス又はPMOS卜ランジスタ415,416のパスが導通状態になることにより、ハイレベルの信号を出力する。この入力信号対DATA,DATA Nの信号遷移から2入力NAND回路411出力までの遅延時間は、一致比較部400での2入力排他的論理和回路401の遅延時間とほぼ等しい。これは、一致比較部400と出力制御部410内のプルダウン素子402,412の活性化のタイミングが等しくなることを示す。
【0096】
以上のように、第3の実施形態によれば、出力制御部410内の2入力NAND回路411を一致比較部400内の2入力排他的論理和回路401の回路構成(レイアウト)を使い、論理(2NAND)を実現しているので、一致比較部400内のプルダウン素子402と、出力制御部410内のプルダウン素子412の活性化タイミング差をなくすことにより、ミス時の内部ノードCOMP,READYのプルダウンタイミングが等しくなり、出力端子にヒゲ(ハザート)が出力されなくなる効果がある。
【0097】
また、レイアウト差による寄生素子(容量、抵抗)の影響を考慮する必要がないのでタイミング設計を容易化することができ、レイアウト設計を容易化することができ開発期間を短縮することができる。
【0098】
図19は本発明の第4の実施形態に係る多ビット一致回路の構成を示すブロック図である。図19に示す多ビット一致回路も、n入力ビットのヒットコンパレータ回路に適用することができる。なお、前記図1に示すnビット一致回路10と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0099】
図19において、nビット一致回路40(多ビット一致回路)は、n個の一致比較部500、出力制御部510、出力部520及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ530,531、及び負荷回路540から構成されるダイナミック型論理回路である。
【0100】
本実施形態に係るnビット一致回路40は、前記第1の実施形態に係るnビット一致回路10に対して、タイミング調整用の負荷回路540を内部ノードREADYに付加したものである。
【0101】
上記負荷回路540は、出力制御部510内のプルダウン素子512で内部ノードREADYをディスチャージする遅延時間を、1ビット分の一致比較部500内のプルダウン素子502で内部ノードCOMPをディスチャージ(nビット中、1ビットのみが不一致するワーストケース)する遅延時間と、等しくする、又はそれより大きくするために付加したものであり、例えば、ゲート電極ソース電極を接地端子に接続し、ドレイン電極を内部ノードREADYに接続したダミーのNMOSトランジスタ541により構成する。
【0102】
この負荷回路540は、内部ノードREADYの出力制御部510内のプルダウン素子512のプルダウン駆動能力から決定される遅延時間を負荷回路540によりタイミング調整し、内部ノードCOMPに寄生する全寄生容量(ワイヤードオア接続による一致比較部500うちのn個のプダウン素子502の接合容量とその配線容量の総和)に対し1ビット分のプルダウン素子502のプルダウン駆動能力により決定される遅延時間と等しく、又はそれより大きくするのものである。
【0103】
この負荷回路540は、例えば、ゲート電極ソース電極を接地端子に接続し、ドレイン電極を内部ノードREADYに接続したダミーのNMOSトランジスタ541を使い、そのディメンジョンを調整したものである。
【0104】
このように、第4の実施形態に係るnビット一致回路40は、出力制御部510内で用いるプルダウン素子512の駆動能力に対応して、出力制御部510の出力にタイミング調整用の負荷回路540を付加するように構成している。
【0105】
以下、上述のように構成されたnビット一致回路40の動作を説明する。
【0106】
上記nビット一致回路40の全体の回路動作はヒット時もミス時も、第1の実施形態で説明したnビット一致回路10と同様であるが、第4の実施形態はミス時に出力端子HITにハザードが出力されないようにしたものである。
【0107】
図20は、ミス時の出力端子HITにヒゲ(ハザード)が出力されてしまう場合を示した波形図である。
【0108】
図20に示すように、同期信号CLΚがハイレベルになり、一致比較動作が開始され、例えばn入力ビットのうち1ビットのみが不一致であった場合、その不一致ビットの一致比較部500内のプルダウン素子502一つで、内部ノードCOMPに接続される全寄生容量(nビット分のプルダウン素子502の接合容量及び配線容量)をディスチャージしなければならない。
【0109】
これに対し、出力制御部510のプルダウン素子512は、それ自身の接合容量と配線容量のみのディスチャージでよく、内部ノードCOΜPとREADYはその寄生容量差あるいはプルダウン素子502,512の駆動能力差によってプルダウンのタイミング差が生じてしまう。
【0110】
これらのことを考慮に入れて図20を参照すると、被一致比較対象の入力信号対DATA[1:n],DATA N[1:n]が相補的な信号対に遷移してから、出力制御部510の出力である内部ノードREADYは、直ちにローレベルにプルダウンするが、一致比較部500の出力であるワイヤードオア接続された内部ノードCOMPは前述したように、n個分のプルダウン素子502の全接合容量及びその配線容量をディスチャージしなければならず、プルダウン動作に時間がかかり、内部ノードCOMPの立ち下がりとREADYの立ち下がりとでは遅延差が生じてしまう。
【0111】
これは、内部ノードREADYはローレベルに論理が確定し出力部520を活性化させても、内部ノードCOΜPはまだプリチャージされたままの状態(ヒット時の状態)でまだ論理が確定されておらず、その遅延差分だけ、出力端子HITには、ミスにもかかわらずハイレベルの信号(ヒットの信号)を出力してしまうことになる。
【0112】
第4の実施形態では、その内部ノードREADYに負荷回路540を付加して、READYの寄生容量を調整したことでその立ち下がりの遅延時間が増加し、内部ノードCOMPの立ち下がりの遅延時間と等しく、又はそれより大きくしたことにより、ミス時の出力端子HITにヒゲ(ハザード)が出力されないようにしたものである。
【0113】
以上のように、第4の実施形態によれば、出力制御部510うちのプルダウン素子512の駆動能力に対応させて、内部ノードREADYにタイミング調整用の負荷回路540を付加したことにより、内部ノードREADYの立ち下がり遅延時間が内部ノードCOMPの立ち下がり遅延時間と等しく、又はそれより大きくなるので、不一致ビット数とは無関係に、出力端子HITにハザードが出力されなくなり信頼性のある出力信号を獲得することができる。また、ミス時に出力端子HITにハザードが出力されないことにより、次段の回路が誤動作しないようになるとともに、次段の回路の消費電力を削減することができる。
【0114】
図21は本発明の第5の実施形態に係る多ビット一致回路の構成を示すブロック図である。なお、前記図19に示すnビット一致回路40と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0115】
図21において、nビット一致回路50(多ビット一致回路)は、n個の一致比較部600、出力制御部610、出力部620及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ630,631、及び負荷回路640から構成されるダイナミック型論理回路である。
【0116】
本実施形態に係るnビット一致回路50は、前記第4の実施形態に係るnビット一致回路40に対して、一致比較部600、出力制御部610の中で使用されているプルダウン素子641をすべて同一のプルダウン素子に統一してプルダウン駆動能力を等しくし、また、負荷回路640はそのプルダウン素子641をダミー素子として(n−1)個接続し、内部ノードCOMPとREADYの寄生接合容量を全く等しくしたものである。
【0117】
上記一致比較部600、出力制御部610の中で使われているプルダウン素子641は、例えば、前記第1の実施形態又は第2の実施形態で示したもので全て統一してある。
【0118】
上記負荷回路640は、前述した一致比較部600、出力制御部610の中で使われているプルダウン素子641を用いて、制御信号をローレベルに固定したプルダウン素子641をタイミング調整用のダミー素子として使用する。この負荷回路640内のダミー素子641は、内部ノードREADYの接合容量が内部ノードCOMPと等しくなるように(n−1)個接続する。
【0119】
このように、第5の実施形態に係るnビット一致回路50は、一致比較部600内で用いるプルダウン素子と出力制御部610内で用いるプルダウン素子をプルダウン素子641に統一し、出力制御部610の出力に、タイミング調整用の負荷回路640として、統一されたプルダウン素子641をダミー素子として(n−1)個付加するように構成している。
【0120】
以下、上述のように構成されたnビット一致回路50の動作を説明する。
【0121】
上記nビット一致回路50の全体の回路動作はヒット時もミス時も、前記第4の実施形態で説明したnビット一致回路40と同様であり、第5の実施形態もミス時に出力端子HITにハザードが出力されないようにしたものである。
【0122】
第5の実施形態では、一致比較部600と出力制御部610内のプルダウン素子641を同一なものに統一したことにより、プルダウン駆動能力が統一され、なおかつ、内部ノードREADYには内部ノードCOMPの寄生接合容量と等価になるダミー素子641が(n−1)個接続されたことにより、両内部ノードの寄生接合容量が等しくなり、両ノードの遅延時間差が無くなる。
【0123】
同期信号CLKがハイレベルになり、一致比較動作が開始され、例えばn入力ビットのうち1ビットのみが不一致であった場合、その不一致ビットの一致比較部600内のプルダウン素子641一つで、内部ノードCOMPに接続される全接合容量(nビット分のプルダウン素子641の接合容量)をディスチャージする。同様に、出力制御部610のプルダウン素子641は、負荷回路640内の(n−1)個のダミー素子641が接続されたことにより、内部ノードCOMPと等価の寄生容量(nビット分のプルダウン素子641の接合容量)をディスチャージすることになる。
【0124】
一致比較部600と出力制御部610内のプルダウン素子641は同じものに統一されたので、その駆動能力が統一され、なおかつ、内部ノードCOMP,READYの寄生接合容量が統一されたことにより、全く同タイミングで両ノードはディスチャージされることになる。これにより、ミス時の場合、出力端子HITにはハザードが出力されない。
【0125】
以上のように、第5の実施形態によれば、一致比較部600、出力制御部610内で使われるプルダウン素子641を統一して駆動能力を等しくし、なおかつ、内部ノードREADYに負荷回路640を接続し、その負荷回路640もその前述したプルダウン素子641を使いダミー素子として(n−1)個接続しているので、内部ノードCOΜPとREADYの寄生接合容量が全く等しくすることができ、これにより、プルダウン素子のブロセス変動に左右されないタイミング設計が可能となる。
【0126】
図22は本発明の第6の実施形態に係る多ビット一致回路の構成を示すブロック図である。なお、前記図19に示すnビット一致回路40と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0127】
図22において、nビット一致回路60(多ビット一致回路)は、n個の一致比較部700、出力制御部710、出力部720及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ730,731、及び負荷回路740から構成されるダイナミック型論理回路である。
【0128】
上記nビット一致回路60は、前記第4の実施形態に係るnビット一致回路40に対して、出力制御部710を出力部720からレイアウト的に一番離れている一致比較部700に隣接させ配置し、その一致比較部700に入力される入力信号対(DATA[1:n],DATA N[1:n]の中の1ビットの信号対)を出力制御部710に入力するようにしたものである。
【0129】
図22の場合、DATA[1],DATA N[1]を入力する一致比較部700がレイアウト的に出力部720から一番離れているものとし、この一致比較部700に隣接して出力制御部710を配置し、前記DATA[1],DATAN[1]を出力制御部710に入力しするように構成する。これにより、出力制御部710から出力部720までの内部ノードREADYのレイアウト配線長が、一致比較部700から出力部720までの内部ノードCOΜPの最長の配線長と等しくなる。
【0130】
このように、第6の実施形態に係るnビット一致回路60は、出力部720からレイアウト的に最も離れている一致比較部700に対して出力制御部710を隣接して配置し、一致比較部700に入力される被一致比較信号対を、出力制御部710に入力するようにレイアウトしている。 以下、上述のように構成されたnビット一致回路60の動作を説明する。
【0131】
上記nビット一致回路60の全体の回路動作は、ヒット時もミス時も、前記第4の実施形態で説明したnビット一致回路40と同様であり、ミス時に出力端子HITにハザードが出力されないようにしたものである。
【0132】
特に、この第6の実施形態に係るnビット一致回路60は、出力制御部710から出力部720までの内部ノードREADYのレイアウト配線長を、一致比較部700から出力部720までの内部ノードCOMPの最も長いの配線長と等しくしたので、両ノードの寄生の配線容量及び配線抵抗を等しくすることができ、両ノードの遅延時間差がなくなる。
【0133】
以上のように、第6の実施形態によれば、出力制御部710を出力部720からレイアウト的に一番離れている一致比較部700に隣接させ配置し、その一致比較部700に入力される入力信号対(DATA[1:n],DATA N[1:n]の中の1ビットの信号対)を出力制御部710に入力するように構成しているので、内部ノードCOMPと内部ノードREADYの寄生の配線容量及び配線抵抗が等しくなり、一致比較の入力数増加に対し、一致比較部700のワイヤードオア接続部の配線が長くなって寄生の配線容量及び配線抵抗が増加しても、それとは無関係に出力端子HITにハザードが出力されないタイミング設計を行うことができる。
【0134】
図23は本発明の第7の実施形態に係る多ビット一致回路の構成を示すブロック図である。なお、前記図19に示すnビット一致回路40と同一構成部分には同一符号を付して重複部分の説明を省略する。
【0135】
図23において、nビット一致回路70(多ビット一致回路)は、n個の一致比較部800、出力制御部810、出力部820及び同期信号CLKにて制御されるプリチャージ素子であるPMOSトランジスタ830,831、及び負荷回路840から構成されるダイナミック型論理回路である。
【0136】
上記nビット一致回路70は、前記第5の実施形態に係るnビット一致回路50に対して、一致比較部800、出力制御部810の中で使われているプルダウン素子841をすべて同一のプルダウン素子に統一し、また、負荷回路840はそのプルダウン素子841をダミー素子としてn個、又はそれ以上接続し、内部ノードREADYの寄生接合容量を内部ノードCOMPのそれより大きくしたものである。
【0137】
このように、第7の実施形態に係るnビット一致回路70は、nビットの一致比較部800内で用いるプルダウン素子841と、出力制御部810内で用いるプルダウン素子841の駆動能力を統一し、出力制御部810の出力に、タイミング調整用の負荷回路840として、統一されたプルダウン素子841を使いダミー素子としてn個、又はそれ以上、付加するように構成している。
【0138】
以下、上述のように構成されたnビット一致回路70の動作を説明する。
【0139】
上記nビット一致回路70の全体の回路動作は、ヒット時もミス時も、前記第5の実施形態で説明したことと同様であり、ミス時に出力端子HITにハザードが出力されないようにしたものである。
【0140】
この第7の実施形態に係るnビット一致回路70は、第5の実施形態に係るnビット一致回路50に対し、内部ノードREADYの寄生接合容量を内部ノードCOΜPに対して大きくすることにより、内部ノードREADYの立ち下がり遅延時間が内部ノードCOΜPのそれより、大きく設定することができる。これは、出力部820の活性化タイミングが、負荷回路840でさらに追加したダミー素子841の寄生接合容量のディスチャージ分だけ遅れ、ミス時のときの出力端子HITに確実にハザードが出力されないことになる。
【0141】
以上のように、第7の実施形態によれば、一致比較部800、出力制御部810内で使われるプルダウン素子841を統一し、なおかつ、内部ノードREADYに負荷回路840を接続し、さらにその負荷回路840もその前述したプルグウン素子841を使いダミー素子としてn個、又はそれ以上接続するようにしているので、内部ノードREADYの寄生接合容量を内部ノードCOMPに対して大きく設定することができ、ミス時のときの出力端子HITに確実にハザードを出力させないようにすることができ、タイミング設計のマージンを向上させることができる。
【0142】
なお、上記各実施形態に係るnビット一致回路では、半導体集積回路におけるキャッシュメモリ等に用いられるnビット一致回路に適用することができるが、nビットの入力信号の全ビットについて一致比較を行う多ビット一致回路であれば、どのような集積回路装置(例えば、ヒットコンパレータ回路)に用いてもよく、あるいは集積回路装置内部に組み込まれて使用される回路にも適用できることは言うまでもない。
【0143】
また、上記各実施形態に係るnビット一致回路は、nビットの被一致比較対象の入力信号と、nビットの一致比較対象の入力信号の全ビットについて一致比較を行うものであれば、そのビット数は何ビットでもよく、また、不一致比較結果を出力する多ビット不一致回路であってもよいことは勿論である。
【0144】
さらに、上記各実施形態に係るnビット一致回路、一致比較部、出力制御部、出力部等を構成する回路、それら回路内のMOSトランジスタ、バイポーラトランジスタ、ゲート回路、プルダウン素子などの個数、種類、接続状態等は上記各実施形態に限定されない。
【0145】
【発明の効果】
本発明に係る多ビット一致回路では、同期信号によって活性化される被一致比較対象のnビットの入力信号対と一致比較対象の入力信号を入力して各ビットの比較結果を出力する一致比較部と、被一致比較対象のnビットの入力信号対のうち、1ビット分の信号対を入力し、該入力信号対の遷移を検出して入力遷移検出信号を出力する出力制御部と、nビット分の比較結果を、入力遷移検出信号によって活性化させる出力部とを備え、一致比較部が、2入力排他的論理和回路とその出力を制御信号とするプルダウン素子にオープンドレインNMOSを用いて一致比較結果を出力する構成とし、出力制御部は、2入力NAND回路とその出力を制御信号とするプルダウン素子であるオープンドレインNMOSにより入力遷移検出結果を出力する構成とし、nビットの一致比較部の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うように構成しているので、高速動作が可能になり、レイアウト面積を小さくでき、コストを削減することができるとともに、消費電力を小さくすることができる。さらに、n入力ビットの入力信号の論理がどのような場合でも、出力信号HITの遅延時間を一定に保つことができ、タイミング設計を容易にすることができる。
【0146】
また、本発明に係る多ビット一致回路では、一致比較部内のプルダウン素子にバイポーラトランジスタを付加して一致比較結果を出力する構成とし、出力制御部のプルダウン素子にバイポーラトランジスタを付加して入力遷移検出信号を出力するように構成しているので、駆動能力を高めて、さらなる高速動作が可能になる。また、一致比較の入力信号数の増加による、ワイヤードオア接続部(一致比較部出力)の寄生容量の増加に対し、遅延時間の負荷依存性を小さくすることができる。
【0147】
また、本発明に係る多ビット一致回路では、出力制御部内の2入力NAND回路を、一致比較部内の2入力排他的論理和回路に使用された回路構成と同じレイアウトを用いて、論理回路を構成しているので、一致比較部内のプルダウン素子と、出力制御部内のプルダウン素子の活性化タイミング差をなくすことができ、ミス時の内部ノードCOMP,READYのプルダウンタイミングが等しくなり、出力端子にヒゲ(ハザート)が出力されなくなる効果がある。
【0148】
また、本発明に係る多ビット一致回路では、出力制御部内で用いるプルダウン素子の駆動能力に対応して、出力制御部の出力にタイミング調整用の負荷回路を付加するように構成しているので、不一致ビット数とは無関係に、出力端子HITにハザードが出力されなくなり信頼性のある出力信号を獲得することができる。また、ミス時に出力端子HITにハザードが出力されないことにより、次段の回路が誤動作しないようになるとともに、次段の回路の消費電力を削減することができる。
【0149】
また、本発明に係る多ビット一致回路では、一致比較部内で用いるプルダウン素子と出力制御部内で用いるプルダウン素子を統一し、出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子をダミー素子として(n−1)個付加するように構成しているので、内部ノードCOΜPとREADYの寄生接合容量が全く等しくすることができ、これにより、プルダウン素子のブロセス変動に左右されないタイミング設計が可能となる。
【0150】
また、本発明に係る多ビット一致回路では、出力部からレイアウト的に最も離れている一致比較部に対して出力制御部を隣接して配置し、該一致比較部に入力される被一致比較信号対を、出力制御部に入力するようにレイアウトしているので、内部ノードCOMPと内部ノードREADYの寄生の配線容量及び配線抵抗が等しくすることができ、一致比較の入力数増加に対し、一致比較部のワイヤードオア接続部の配線が長くなって寄生の配線容量及び配線抵抗が増加しても、それとは無関係に出力端子HITにハザードが出力されないタイミング設計を行うことができる。
【0151】
また、本発明に係る多ビット一致回路では、nビットの一致比較部内で用いるプルダウン素子と、出力制御部内で用いるプルダウン素子の駆動能力を統一し、出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子を使いダミー素子としてn個、又はそれ以上、付加するように構成しているので、内部ノードREADYの寄生接合容量を内部ノードCOMPに対して大きく設定することができ、ミス時のときの出力端子HITに確実にハザードを出力させないようにすることができ、タイミング設計のマージンを向上させることができる。
【図面の簡単な説明】
【図1】本発明を適用した第1の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図2】上記多ビット一致回路の一致比較部の論理回路図である。
【図3】上記多ビット一致回路の一致比較部の構成を示す回路図である。
【図4】上記多ビット一致回路の出力制御部の論理回路図である。
【図5】上記多ビット一致回路の出力制御部の構成を示す回路図である。
【図6】上記多ビット一致回路の動作を具体的に説明するためのブロック図である。
【図7】上記多ビット一致回路のヒット時の各ノード電位を示す波形図である。
【図8】上記多ビット一致回路のミス時の各ノード電位を示す波形図である。
【図9】本発明を適用した第2の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図10】上記多ビット一致回路の一致比較部の論理回路図である。
【図11】上記多ビット一致回路の一致比較部の構成を示す回路図である。
【図12】上記多ビット一致回路の出力制御部の論理回路図である。
【図13】上記多ビット一致回路の出力制御部の構成を示す回路図である。
【図14】本発明を適用した第3の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図15】上記多ビット一致回路の一致比較部の論理回路図である。
【図16】上記多ビット一致回路の一致比較部の構成を示す回路図である。
【図17】上記多ビット一致回路の出力制御部の論理回路図である。
【図18】上記多ビット一致回路の出力制御部の構成を示す回路図である。
【図19】本発明を適用した第4の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図20】上記多ビット一致回路のミス時のHIT信号のヒゲを示す波形図である。
【図21】本発明を適用した第5の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図22】本発明を適用した第6の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図23】本発明を適用した第7の実施形態に係る多ビット一致回路の構成を示すブロック図である。
【図24】従来の多ビット一致回路の構成を示すブロック図である。
【符号の説明】
10,20,30,40,50,60,70 nビット一致回路(多ビット一致回路)、100,300,400,500,600,700,800 n個の一致比較部、101,301,401,501,601,701,801 2入力排他的論理和回路、102,112,312,412 プルダウン素子、103 インバータ素子、110,310,410,510,610,710,810 出力制御部、111,311,411,511,611,711,811 2入力NAND回路、120,320,420,520,620,720,820 出力部、121,321,421,521,621,721,821 インバータ回路、122,322,422,522,622,722,822 2NOR回路、130,131,330,331,430,431,530,531,630,631,730,731,830,831 プリチャージ素子であるPMOSトランジスタ、540,640,740,840 負荷回路
Claims (9)
- nビット(nは任意の整数)の被一致比較対象の入力信号と、nビットの一致比較対象の入力信号の全ビットについて一致比較を行う多ビット一致回路において、
同期信号によって活性化される被一致比較対象のnビットの入力信号対と一致比較対象の入力信号を入力して各ビットの比較結果を出力する一致比較部と、
前記被一致比較対象のnビットの入力信号対のうち、1ビット分の信号対を入力し、該入力信号対の遷移を検出して入力遷移検出信号を出力する出力制御部と、
前記nビット分の比較結果を、前記入力遷移検出信号によって活性化させる出力部とを備え、
前記nビットの一致比較部の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うように構成したことを特徴とする多ビット一致回路。 - 上記請求項1記載の多ビット一致回路において、
前記一致比較部は、2入力排他的論理和回路とその出力を制御信号とするプルダウン素子にオープンドレインNMOSを用いて一致比較結果を出力する構成とし、
前記出力制御部は、2入力NAND回路とその出力を制御信号とするプルダウン素子であるオープンドレインNMOSにより入力遷移検出結果を出力する構成とし、
前記nビットの一致比較部の出力をワイヤードオア接続させ、同期信号に同期してダイナミック動作を行うことを特徴とする多ビット一致回路。 - 前記一致比較部内のプルダウン素子にバイポーラトランジスタを付加して一致比較結果を出力する構成とし、
前記出力制御部のプルダウン素子にバイポーラトランジスタを付加して入力遷移検出信号を出力する構成としたことを特徴とする請求項1又は2の何れかに記載の多ビット一致回路。 - 前記出力制御部内の2入力NAND回路を、前記一致比較部内の2入力排他的論理和回路に使用された回路構成と同じレイアウトを用いて、論理回路を構成したことを特徴とする請求項1又は2の何れかに記載の多ビット一致回路。
- 前記出力制御部内で用いるプルダウン素子の駆動能力に対応して、前記出力制御部の出力にタイミング調整用の負荷回路を付加したことを特徴とする請求項1、2又は3の何れかに記載の多ビット一致回路。
- 前記一致比較部内で用いるプルダウン素子と前記出力制御部内で用いるプルダウン素子を統一し、前記出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子をダミー素子として(n−1)個付加したことを特徴とする請求項1、2又は3の何れかに記載の多ビット一致回路。
- 前記出力制御部を前記出力部からレイアウト的に一番離れている前記一致比較部に隣接して配置し、前記一致比較部に入力される被一致比較信号対を、前記出力制御部に入力するようにレイアウトしたことを特徴とする請求項1、2、3、4、5又は6の何れかに記載の多ビット一致回路。
- 前記nビットの一致比較部内で用いるプルダウン素子と、前記出力制御部内で用いるプルダウン素子の駆動能力を統一し、前記出力制御部の出力に、タイミング調整用の負荷回路として、該統一されたプルダウン素子を使いダミー素子としてn個、又はそれ以上、付加したことを特徴とする請求項1、2、3、4、5、6又は7の何れかに記載の多ビット一致回路。
- 上記請求項1又は2の何れかに記載の多ビット一致回路において、
nビットの被一致比較対象の入力信号と、nビットの一致比較対象の入力信号の全ビットについて一致比較を行い、不一致比較結果を出力する多ビット不一致回路であることを特徴とする多ビット一致回路。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10212996A JP3617569B2 (ja) | 1996-04-24 | 1996-04-24 | 多ビット一致回路 |
DE69715088T DE69715088T2 (de) | 1996-04-24 | 1997-03-11 | Multibit-Vergleicher welcher feststellt, wann das Ausgangssignal sicher ist und ein verringertes Fehlerrisiko hat |
EP97104090A EP0809178B1 (en) | 1996-04-24 | 1997-03-11 | Multiple-bit comparator with reliable output timing and reduced hazards |
US08/822,340 US5910762A (en) | 1996-04-24 | 1997-03-20 | Multiple-bit comparator with reliable output timing and reduced hazards |
TW086103720A TW413765B (en) | 1996-04-24 | 1997-03-24 | Multi-bit comparator with reliable output time-sequence and reducing error rate |
CN97110393A CN1096635C (zh) | 1996-04-24 | 1997-04-24 | 具有可靠输出定时并减少故障的多位比较器 |
KR1019970015420A KR100364311B1 (ko) | 1996-04-24 | 1997-04-24 | 신뢰성있는출력타이밍과감소된해저드를갖는다수비트비교기 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10212996A JP3617569B2 (ja) | 1996-04-24 | 1996-04-24 | 多ビット一致回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09288562A JPH09288562A (ja) | 1997-11-04 |
JP3617569B2 true JP3617569B2 (ja) | 2005-02-09 |
Family
ID=14319175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10212996A Expired - Fee Related JP3617569B2 (ja) | 1996-04-24 | 1996-04-24 | 多ビット一致回路 |
Country Status (7)
Country | Link |
---|---|
US (1) | US5910762A (ja) |
EP (1) | EP0809178B1 (ja) |
JP (1) | JP3617569B2 (ja) |
KR (1) | KR100364311B1 (ja) |
CN (1) | CN1096635C (ja) |
DE (1) | DE69715088T2 (ja) |
TW (1) | TW413765B (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3490885B2 (ja) * | 1998-02-24 | 2004-01-26 | 三洋電機株式会社 | コンパレータ |
US6456116B1 (en) * | 2001-04-11 | 2002-09-24 | Hewlett-Packard Company | Dynamic comparator circuit |
US6765410B2 (en) | 2001-12-20 | 2004-07-20 | Sun Microsystems, Inc. | Method and apparatus for performing a hazard-free multi-bit comparison |
KR100723484B1 (ko) * | 2005-02-07 | 2007-05-30 | 삼성전자주식회사 | 적은 면적과 향상된 동작속도를 갖는 비교기 |
WO2020139451A1 (en) * | 2018-12-28 | 2020-07-02 | Microchip Technology Incorporated | Classifying comparators based on comparator offsets |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61252706A (ja) * | 1985-05-02 | 1986-11-10 | Hitachi Ltd | コンパレ−タ |
NL8900549A (nl) * | 1989-03-07 | 1990-10-01 | Philips Nv | Vergelijkschakeling bevattende een maskeermechanisme voor transiente verschillen, vergelijkschakelingssysteem, en verwerkingsinrichting bevattende zulke vergelijkschakelingen. |
US5218246A (en) * | 1990-09-14 | 1993-06-08 | Acer, Incorporated | MOS analog XOR amplifier |
US5281946A (en) * | 1992-08-17 | 1994-01-25 | Motorola, Inc. | High-speed magnitude comparator circuit |
JPH0675748A (ja) * | 1992-08-27 | 1994-03-18 | Matsushita Electric Ind Co Ltd | 1ビット比較器とこれを用いた多ビット比較器 |
US5528181A (en) * | 1994-11-02 | 1996-06-18 | Advanced Micro Devices, Inc. | Hazard-free divider circuit |
-
1996
- 1996-04-24 JP JP10212996A patent/JP3617569B2/ja not_active Expired - Fee Related
-
1997
- 1997-03-11 EP EP97104090A patent/EP0809178B1/en not_active Expired - Lifetime
- 1997-03-11 DE DE69715088T patent/DE69715088T2/de not_active Expired - Lifetime
- 1997-03-20 US US08/822,340 patent/US5910762A/en not_active Expired - Fee Related
- 1997-03-24 TW TW086103720A patent/TW413765B/zh not_active IP Right Cessation
- 1997-04-24 KR KR1019970015420A patent/KR100364311B1/ko not_active IP Right Cessation
- 1997-04-24 CN CN97110393A patent/CN1096635C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100364311B1 (ko) | 2002-12-18 |
DE69715088T2 (de) | 2003-04-17 |
JPH09288562A (ja) | 1997-11-04 |
US5910762A (en) | 1999-06-08 |
KR970071244A (ko) | 1997-11-07 |
DE69715088D1 (de) | 2002-10-10 |
CN1169562A (zh) | 1998-01-07 |
CN1096635C (zh) | 2002-12-18 |
EP0809178A2 (en) | 1997-11-26 |
EP0809178B1 (en) | 2002-09-04 |
EP0809178A3 (en) | 1999-02-24 |
TW413765B (en) | 2000-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3851224B2 (ja) | 内容アドレス・メモリ装置 | |
US7151698B2 (en) | Integrated charge sensing scheme for resistive memories | |
JP3095064B2 (ja) | 連想記憶装置 | |
US6914829B2 (en) | Multi-stage output multiplexing circuits and methods for double data rate synchronous memory devices | |
US20130286705A1 (en) | Low power content addressable memory hitline precharge and sensing circuit | |
US5696722A (en) | Level-shifter, semiconductor integrated circuit, and control methods thereof | |
JPH09231743A (ja) | 同期型半導体記憶装置および試験方法 | |
JP3617569B2 (ja) | 多ビット一致回路 | |
US7433254B2 (en) | Accelerated single-ended sensing for a memory circuit | |
JPH10255486A (ja) | Cam、cam内で使用するためのダミー一致線チェーン、およびコアセル | |
US7391633B2 (en) | Accelerated searching for content-addressable memory | |
US7164293B2 (en) | Dynamic latch having integral logic function and method therefor | |
CN213583123U (zh) | 比较电路与存储芯片 | |
US6212106B1 (en) | Multi-bit match detection circuit | |
US6075750A (en) | Method and circuit for generating an ATD signal to regulate the access to a non-volatile memory | |
JPH07282587A (ja) | 半導体集積回路 | |
JPH08212056A (ja) | データワード高速比較方式 | |
JPH07221605A (ja) | ラッチ回路並びにそれを用いたレジスタ回路およびパイプライン処理回路 | |
US6448817B2 (en) | Output synchronization-free, high-fanin dynamic NOR gate | |
JP2002245783A (ja) | 半導体集積回路装置 | |
CN114639422A (zh) | 比较电路与存储芯片 | |
JP2003069399A (ja) | 半導体集積回路 | |
JPH0675748A (ja) | 1ビット比較器とこれを用いた多ビット比較器 | |
JPH08287682A (ja) | 半導体記憶装置 | |
Zhang et al. | A low-power adiabatic CAM based on dual transmission gate adiabatic logic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041027 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041102 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |