JP3612268B2 - 高周波集積回路及び半導体装置 - Google Patents

高周波集積回路及び半導体装置 Download PDF

Info

Publication number
JP3612268B2
JP3612268B2 JP2000226690A JP2000226690A JP3612268B2 JP 3612268 B2 JP3612268 B2 JP 3612268B2 JP 2000226690 A JP2000226690 A JP 2000226690A JP 2000226690 A JP2000226690 A JP 2000226690A JP 3612268 B2 JP3612268 B2 JP 3612268B2
Authority
JP
Japan
Prior art keywords
circuit
ground
integrated circuit
frequency integrated
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000226690A
Other languages
English (en)
Other versions
JP2002043869A (ja
Inventor
俊之 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000226690A priority Critical patent/JP3612268B2/ja
Publication of JP2002043869A publication Critical patent/JP2002043869A/ja
Application granted granted Critical
Publication of JP3612268B2 publication Critical patent/JP3612268B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48092Helix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Amplifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は無線通信システム等の無線周波(高周波)帯域で使用する集積回路(Integrated Circuit ; IC)に関する。
【0002】
【従来の技術】
携帯電話の小型軽量化、高性能化、低価格化に伴い、装置内部の各部品は高効率、低価格がますます要求されてきている。特に信号を出力するパワーアンプ等の高周波部品は、部品価格を下げるため高性能を維持しつつ低価格なパッケージ部材等を用いる必要がある。
【0003】
通常GHz帯で使用するパワーアンプは高周波で特性の得られるGaAs系ショットキーゲート電界効果トランジスタ(metal semiconductor FET; MESFET)やGaAs 系ヘテロ接合バイポーラトランジスタ(heterojunction bipolar transistor; HBT)等を増幅素子としたICチップを使用する。この素子はウェハ価格や製造コストの高価なものであるため、パワーアンプの製品価格を低価格に抑えるためにはパッケージの実装コストを抑えることが一般的である。低価格なパッケージの一例としてはプラスチックパッケージがある。
【0004】
図13は従来のプラスチックパッケージの概略図を示す。リードフレーム100のベッド101上にICチップ102を搭載し、ICチップの外域をモールド樹脂(エポキシ樹脂)103で覆っている。このプラスチックパッケージはエポキシ樹脂など安い部材で構成できることと、量産ラインで大量に生産できるため、低価格化には最も適している。
【0005】
ICチップをプラスチックパッケージに実装する方法は、ベッド101へICチップを固定し、ワイヤ130によってIC電源リード線104、入力リード線105及び出力リード線106とICチップのパッド107との電気的接続をおこなう。また、ICチップの接地パッド108も同様にワイヤ130によってリードフレームの接地リード線109と電気的接続される。これらの電気的接続がされた後、型枠に固定されたモールド樹脂103を注入し、プラスチックパッケージが完成する。このようにプラスチックパッケージは簡便で量産に適し、部材費も廉価のため、携帯電話のような大量生産品には最適である。
【0006】
上述したように、プラスチックパッケージは実装費、部材費ともに非常に安くできるため、携帯電話等に用いるのに適している。しかし、高周波集積回路をプラスチックパッケージに実装する場合、特にパワーアンプなど高利得、高効率が要求される回路をプラスチックパッケージに実装した場合に、ICチップ単体での特性に比較してプラスチックパッケージ全体としての特性が劣化するという問題点がある。
【0007】
以下、図14を用いて上述した問題点を説明する。ICチップ102をワイヤによって接地リード線109に実装するために、ICチップ上の接地パッド108からモールド樹脂103外部への接地方向を見た場合、ワイヤ130の誘導性により周波数に比例して、接地インピーダンスZが増大して見えることになる。ここで、従来のICチップのブロック図を図15に示す。従来のICチップでは、信号増幅回路110の接地電極とICチップの接地端子113とは配線のみで接続されていた。
【0008】
また、プラスチックパッケージには必ず対地容量が存在するため、ICチップの接地パッド108からパッケージ外部の接地点(例えば、プラスチックパッケージが実装されているプリント基板の接地点)へは容量的に結合されている。このため、ICチップ102から見た場合ワイヤ130の誘導性と対地容量によって並列共振的に作用するため、ICチップ内の増幅素子の使用周波数帯が高周波化するのに応じて、接地インピーダンスが増大して見えることになる。接地インピーダンスが増大することによりICチップ内の増幅素子の利得が下がり、出力パワー((出力パワー)=(入力パワー)×(利得))の劣化及び効率の劣化が生じる。パワーアンプでは出力パワーの劣化は大きな問題であり、対策が必要である。
【0009】
【発明が解決しようとする課題】
本発明の目的は前述した出力パワーの劣化を低減した高周波集積回路を提供することである。
【0010】
【課題を解決するための手段】
第1の発明は、半導体基板上に設けられ、かつ、入力信号を増幅し、増幅した入力信号を出力する信号増幅回路と、前記半導体基板上に設けられ、かつ、前記信号増幅回路の接地電極と配線のみで接続された第1接地端子と、前記半導体基板上に設けられ、かつ、容量結合回路を介して前記信号増幅回路の接地電極と接続された第2接地端子を備える高周波集積回路である。
【0011】
第2の発明は、前記容量結合回路の容量値が可変であることを特徴とする第1の発明に記載の高周波集積回路である。
【0012】
第3の発明は、前記第1及び第2接地端子と前記半導体基板外部の回路とはワイヤを用いて接続されることを特徴とする第1の発明に記載の高周波集積回路である。
【0013】
第4の発明は、前記ワイヤの誘導値と、前記容量結合回路の容量値の積の平方根の逆数が前記信号増幅回路の使用角周波数帯に近い値であることを特徴とする第3の発明に記載の高周波集積回路である。
【0014】
第5の発明は、前記第2接地端子は、さらに負性抵抗回路を介して前記信号増幅回路の接地電極と接続されることを特徴とする第1の発明に記載の高周波集積回路である。
【0015】
第6の発明は、前記負性抵抗回路は前記信号増幅回路の接地電極側の寄生抵抗値と抵抗の絶対値が実質的に等しく、かつ、負の符号の抵抗値を持つことを特徴とする第5の発明に記載の高周波集積回路である。
【0016】
第7の発明は、半導体基板上に設けられ、かつ、入力信号を増幅し、増幅した入力信号を出力する信号増幅回路と;前記半導体基板上に設けられ、かつ、前記信号増幅回路の接地電極と配線のみで接続された第1接地端子と;前記半導体基板上に設けられ、かつ、容量結合回路を介して前記信号増幅回路の接地電極と接続された第2接地端子を有する高周波集積回路と、前記高周波集積回路を実装したリードフレームと、前記第1接地端子と前記リードフレームの第1接地リード線を接続する第1ワイヤと、前記第2接地端子と前記リードフレームの第2接地リード線を接続する第2ワイヤと、前記高周波集積回路を覆うモールド樹脂を備える半導体装置である。
【0017】
本発明によれば、信号増幅回路を構成する増幅用トランジスタの使用周波数帯で、第1接地端子へ接続する経路の接地インピーダンスが増大しても、第2接地端子へ接続する経路は実装時の寄生インダクタンス成分と容量結合回路との関係が直列共振的に作用するため、接地インピーダンスは最小の値を取ることができる。したがって、ICチップをプラスチックパッケージに実装した時の寄生分(対地容量)による利得劣化を低減でき、出力パワーの劣化も低減できる。
【0018】
特に、容量結合回路の容量値Cは信号増幅回路を構成する増幅用トランジスタの使用周波数fとICチップのパッドからプラスッチクパッケージ外部の接地電極までのインダクタ値Lとを用いて
【0019】
【数1】
Figure 0003612268
【0020】
の値に近い容量値に設定すると効果的である。
【0021】
また、容量結合回路として可変容量結合回路を用いた場合、可変容量結合回路の容量値が調整可能であるため、パッケージ外部の実装形態による誘導性が発生した場合(例えば、実装時の条件によってはプラスチックパッケージを搭載するマザーボード(プリント基板)の配線が誘導性を持つ場合)あるいは使用周波数帯の変更があった場合でも、式(1)を用いて可変容量結合回路の容量値を調整することにより、自由に直列共振周波数を設定できるため、実装条件及び使用条件によらず理想的な増幅素子の特性を得ることが可能である。ここで、理想的な増幅素子の特性とは、接地インピーダンスの値が、バイポーラトランジスタの場合はエミッタ抵抗のみ、電界効果トランジスタの場合はソース抵抗のみになることをいう。
【0022】
また、容量結合回路と負性抵抗発生回路を介して第2接地端子へ接続する経路を有する場合、当該負性抵抗の値を増幅用トランジスタ内部の接地端子電極部に寄生する抵抗値に対して概略等しい絶対値で、負の値に設定することができる。このため、バイポーラトランジスタ中に含まれるエミッタ抵抗、あるいは電界効果トランジスタ中に含まれるソース抵抗を相殺し、無抵抗に近づけることが可能となる。この結果、従来は増幅素子の利得特性のうち、エミッタ抵抗あるいはソース抵抗で減少していた減衰分を取り除くことができる。
【0023】
【発明の実施の形態】
図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0024】
(第1の実施形態)図1は本発明の第1実施形態に係る高周波集積回路のブロック図である。点線枠で囲んだ部分が半導体基板に形成された高周波集積回路(ICチップ)102である。ICチップ102の内部には信号増幅回路110がある。信号増幅回路110は、例えば、ICチップの半導体基板がGaAs基板の場合は、GaAs系ショットキーゲート電界効果トランジスタ(Metal−semiconductor FET; MESFET)やGaAs 系ヘテロ接合バイポーラトランジスタ(heterojunction bipolar transistor; HBT)等の増幅素子を含んでいる。信号入力端子111、信号出力端子112、第1接地端子113及び第2接地端子114はそれぞれICチップ102上のボンディングパッド(以下、単にパッドと記す)である。信号増幅回路の接地電極と第1接地端子113とは配線のみで接続され、かつ、信号増幅回路110の接地電極と第2接地端子114とは容量結合回路115を介して交流的に短絡されている。
【0025】
本実施形態によれば、増幅素子の使用周波数帯で第1接地端子113へ接続する経路の接地インピーダンスが増大しても、第2接地端子114へ接続する経路はICチップ102をプラスチックパッケージに実装する時の寄生インダクタンス成分と容量結合回路との関係が直列共振的に作用するため、接地インピーダンスは最小の値を取ることができる。従って、対地容量によるICチップ102内の増幅素子の利得劣化が生じにくくなり、出力パワーの劣化も低減できる。
【0026】
特にプラスチックパッケージのように実装時のボンディングワイヤの誘導値、リードフレームの誘導値など誘導性の大きなパッケージに本実施形態を使用するとプラスチックパッケージの影響を完全に除去できるため、増幅素子本来の利得特性および効率得ることができる。
【0027】
図2は図1の回路構成の具体的な回路図である。点線枠内はICチップ102を意味し、ICチップ102内部には第1及び第2の増幅用トランジスタ(バイポーラトランジスタ)Q1,Q2、交流結合用キャパシタCc1,Cc2,Cc3、信号遮断用インダクタLv1,Lv2,Lv3,Lv4、そして増幅用トランジスタQ1,Q2の接地電極(エミッタ電極)にそれぞれ直列接続された接地用キャパシタCg1,Cg2で構成されている。この接地用キャパシタCg1,Cg2が図1の容量結合回路115に相当する。図中正方形で示した部分はICチップのパッドである。各ボンディングパッドはRFinが信号入力用パッド、RFoutが信号出力パッド、Vb1,Vc1,Vb2,Vc2は各トランジスタのバイアス電源電圧用パッドである。点線枠外部にある接地ワイヤのインダクタLw1,Lw2、Lw3,Lw4はICチップをプラスチックパッケージに実装した時のボンディングワイヤを意味し、ICチップ内部の接地用パッド(118,119)とICチップ外部の接地電極とを接続されている。すなわちICチップ実装時はICチップ内部の接地用パッドは必ずICチップ外部の接地電極との間にインダクタが入ることになる。
【0028】
この接地ワイヤのインダクタの値は実装形態によって大きく変わるが、プラスチックパッケージを用いた場合、0.5nHから2nH程度のインダクタンスを一般的に持っている。
【0029】
本実施形態は図2の増幅用トランジスタQ1,Q2の接地電極(エミッタ電極)に直列接続されたキャパシタCg1,Cg2及び接地ワイヤのインダクタLw2,Lw4があるため、(1)式に基づきCg1とLw2そしてCg2とLw4でそれぞれ直列共振を使用周波数fで発生させることができる。したがってプラスチックパッケージに実装しても接地インピーダンス(図2のZ)はワイヤなどの配線抵抗だけとなり、理想的に0Ωまで下げることが可能である。すなわち、実装時でもトランジスタへ負帰還がかかることが無くトランジスタの利得特性を劣化させることが無い。また、効率も良好となる。
【0030】
図3は本実施形態に係る高周波集積回路(ICチップ)102をリードフレームを用いたプラスチックパッケージに実装した図である。接地用リード線としては第1接地リード線116と第2接地リード線117の2種類を用いている。第1接地リード線116は図2の接地ワイヤのインダクタLw1, Lw3に相当し、第2接地リード線117は図2の接地ワイヤのインダクタLw2, Lw4に相当する。
【0031】
従来はボンディングワイヤの影響をできる限り少なくするため、IC下部のベッドを接地用電極として用い、さらにベッドから裏面へ接地電極を取り出す必要があった。このためそのIC専用的なリードフレームが必要となり、また、モールドパッケージの工程が複雑となるため、コスト上昇の一因となっていた。
【0032】
本実施形態を用いることで、接地用リード線として通常のリード線(リードフレームのリード線)を使用することができ、一般的なリードフレームと実装工程を用いることができるため、簡便で低コストな製品となる。
【0033】
図4は本実施形態時のプラスチックパッケージ内部での実装による寄生成分の模式図である。ここではICチップ102の第2接地パッド119から第2接地リード線117までの成分を示している。容量結合回路115のキャパシタとボンディングワイヤ130のインダクタにより、キャパシタとインダクタの直列接続となっている。またICチップの対地容量200を容量結合回路115のキャパシタと並列接続で示している。
【0034】
図5は本実施形態(図4)と従来例(図14)との実装時の接地インピーダンスの特性を示す図である。実線が本実施形態の接地インピーダンスであり、破線が従来例の接地インピーダンスである。従来例(図14)は1mm程度のボンディングワイヤ130のインダクタンス(0.2〜0.3nH)の影響とチップから接地への寄生容量(対地容量)200(数10pF)の並列接続のため周波数と共に接地インピーダンスが増大し、ある周波数で並列共振が発生し、インピーダンスが無限大になる。例えば、使用周波数帯が2GHz帯、インダクタンスが0.2〜0.3nHの時、接地インピーダンスは3Ω前後と非常に高くなる。
【0035】
本実施形態(図4)はICチップ内部に形成したキャパシタ(容量結合回路)115とボンディングワイヤ130のインダクタンスとが使用周波数fで直列共振となるようにキャパシタの値を設定しているため、接地インピーダンスは実質的に0となる。例えば、使用周波数fが2.0GHz、インダクタンスが1nHの時は、キャパシタは6.3pFと設定した。尚、対地容量の値は、使用周波数fから見て、非常に大きいため、対地容量200側には電流が流れにくくなる。従って、本実施形態では、使用周波数帯f以外の周波数帯を使わないので、対地容量200は無視でき、容量結合回路115とワイヤ130の直列回路とみなすことができる。この容量結合回路115とワイヤ130の値を使用周波数帯fで直列共振を起こすように設定すれば、接地インピーダンスZは、次式より
【0036】
【数2】
Figure 0003612268
【0037】
極小点となり、回路は安定動作が可能となる。ここで、Rは容量結合回路115,ワイヤ130及び増幅素子のエミッタ抵抗の直列回路全体の抵抗を示す。また、図5に示すように使用周波数帯域Δfに対してバンドパス状に接地インピーダンスが得られるため、不要信号を除去することも可能である。
【0038】
図6は本実施形態(図4)と従来例(図14)との実装時の増幅素子の利得特性および効率特性を示す図である。実線は本実施形態、破線は従来例を示す。測定は同一入出力条件で、同一増幅器ICを用いて行った。測定周波数は使用周波数帯fである2.0GHzである。入力パワーに対する出力パワーの比,すなわち利得は、従来例に比べて本実施形態の方が12dB程度良好である。これは増幅素子の使用周波数帯fにおける本実施形態及び従来例のトランジスタ素子抵抗を含めた接地インピーダンスの比によって決まる値であり、トランジスタ素子の寄生エミッタ抵抗を1Ω、従来例の2.0GHzにおける接地インピーダンスを3Ωとしたとき、ワイヤインダクタンスによる接地インピーダンスの増加分は12dB程度であることから、本実施形態によって接地インピーダンスが素子寄生抵抗分のみの最小値で済んでいることがわかる。
【0039】
また、同一条件で出力パワーが増加するため、図6に示すように、効率に対しても本実施形態によって、ワイヤインダクタンスの影響を除去することができるため、高効率となっている。
【0040】
図7は、図1の容量結合回路115の概略断面図である。本実施形態では、容量結合回路115として、第1配線層304,第2絶縁層303及び第2配線層305で構成されたMIM(Metal−Insulator−Metal)キャパシタを用いた。例えば、半導体基板301はGaAs基板、第1絶縁層302はSiO層、第2絶縁層303はSiO層、第1配線層304はAu層、第2配線層305はAu層である。第1配線層304は図1の信号増幅回路110内の増幅素子の接地電極へ、第2配線層305は図1の第2接地端子114へ接続されている。
【0041】
(第2の実施形態)図8は本発明の第2実施形態に係る高周波集積回路の概略ブロック図である。図1と同じ構成要素については、図1の説明を参照していただき、ここでは省略する。図1と異なる点は、図1の容量結合回路115が可変容量結合回路120に置き換わっている点と、この可変容量結合回路の容量値を変更するための調整端子121が備わっている点である。この調整端子はICチップ上でのボンディングパッドであり、ICチップ外部と電気的に接続可能である。また、前記可変容量結合回路が可変ダイオードである場合、前記調整端子は電圧端子である。
【0042】
本実施形態でも、第1の実施形態で説明したように、対地容量によるICチップ内の増幅素子の利得劣化が生じにくくなり、出力パワーの劣化も低減できる。さらに、ICチップをプラスチックパッケージに実装後に可変容量回路の容量値を調整できるので、第1の実施形態に比べてより正確に出力パワーの劣化を低減できる。
【0043】
図9は図8の回路構成の具体的な回路図である。図8の可変容量結合回路120が接地用キャパシタCg3,Cg4に相当する。図2と同じ構成要素については、図2の説明を参照していただき、ここでは省略する。図2と異なる点は、接地用キャパシタCg3,Cg4の容量値が変化することである。このような構成にすることにより、実装形態によって接地インダクタンスLw1〜Lw4が変化してもそれに応じて容量値を変化させれば良く、最小の接地インピーダンス状態を実装形態に依らず実現できる。また、トランジスタQ1,Q2の使用周波数fが変更となった場合でも、それに応じて容量値を変化させれば良く、汎用性に優れている。
【0044】
図10は、図8の可変容量結合回路120の概略断面図である。本実施形態では、可変容量結合回路120として、P層406(不純物はボロン(B)、不純物濃度は1×1015cm−3),P層407(不純物はボロン(B)、不純物濃度は1×1017cm−3),N層408(不純物はヒ素(As)、不純物濃度は1×1018cm−3)及びN層409(不純物はヒ素(As)、不純物濃度は1×1016cm−3)で構成されたバラクタダイオードを用いた。例えば、半導体基板401はGaAs基板、絶縁層402はSiO層、第1配線層404はAu層、第2配線層405はAu層である。第1配線層404は図8の信号増幅回路110内の増幅素子の接地電極へ、第2配線層405は図8の第2接地端子114へ接続されている。図8の調整端子121は第2配線層405のどこかに接続されていればよい。
【0045】
(第3の実施形態)図11は本発明の第3実施形態に係る高周波集積回路のブロック図である。図1と同じ構成要素については、図1の説明を参照していただき、ここでは省略する。図1と異なる点は、容量結合回路115と第2接地端子114の間に負性抵抗回路122が設けられている点である。本実施形態でも、第1の実施形態で説明したように、対地容量によるICチップ内の増幅素子の利得劣化が生じにくくなり、出力パワーの劣化も低減できる。
【0046】
さらに、本実施形態はICチップ内の増幅素子(ここではバイポーラトランジスタとして説明する)の寄生抵抗分(エミッタ抵抗RE)に見合った絶対値で、負の符号となる負性抵抗回路122を備えており、使用周波数fで接地インピーダンスが−REになるように設定する。その場合、トランジスタQ1の真性トランジスタ領域から接地インピーダンスを見ると0Ωとなり、負帰還のかからない理想的な信号増幅回路とすることが可能である。すなわち負性抵抗回路122を備えることによって、真性トランジスタ領域本来の利得特性を得ることができる。
【0047】
図12は、図11の負性抵抗回路122の回路図である。端子501は図11の信号増幅回路110内の増幅素子の接地電極に容量結合回路115を介して接続されており、端子114は図11の第2接地端子である。502はバイポーラトランジスタ、503は容量素子、504はコイルである。
【0048】
端子501から第2接地端子114方向へ見た場合のインピーダンスZは次式で表される。
【0049】
【数3】
Figure 0003612268
【0050】
ここで、gmはバイポーラトランジスタ502のトランスコンダクタンス、Cは容量素子503のキャパシタンス、Lはコイル504のインダクタンスである。
【0051】
従って、[ωL−1/(ωC)]が負となる条件、すなわち、ωLCが1未満となるように設定すれば、負性抵抗回路122は負の抵抗を発生することができる。
【0052】
(他の実施形態)以上、本発明の第1乃至第3の実施形態について説明したが、本発明は上述した実施形態の限定されるものではない。本発明は、その趣旨を逸脱しない範囲で適宜上述した実施形態の変更が可能である。例えば、図11の容量結合回路115を図8の可変容量結合回路120で置き換えてもよい。
【0053】
【発明の効果】
本発明によれば、出力パワーの劣化を低減した高周波集積回路を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る高周波集積回路のブロック図。
【図2】図1の回路構成の具体的な回路図。
【図3】第1実施形態に係る高周波集積回路を実装したプラスチックパッケージ図。
【図4】第1実施形態時のプラスチックパッケージ内部での実装による寄生成分の模式図。
【図5】周波数とインピーダンスの関係図。
【図6】入力パワーと出力パワー及び効率の関係図。
【図7】図1の容量結合回路115の概略断面図。
【図8】本発明の第2実施形態に係る高周波集積回路のブロック図。
【図9】図8の回路構成の具体的な回路図。
【図10】図8の可変容量結合回路120の概略断面図。
【図11】本発明の第3実施形態に係る高周波集積回路のブロック図。
【図12】図11の負性抵抗回路122の回路図。
【図13】従来のプラスチックパッケージの概略図。
【図14】従来のプラスチックパッケージ内部での実装による寄生成分の模式図。
【図15】従来の高周波集積回路のブロック図。
【符号の説明】
Q1〜Q4 トランジスタ
Cc1〜Cc3 交流結合用キャパシタ
Cg1〜Cg4 キャパシタ
Lv1〜Lv4 信号遮断用インダクタ
Lw1〜Lw4 接地ワイヤのインダクタ
RFin 信号入力用パッド
Vb1,Vb2 ベース電源電圧用パッド
Vc1,Vc2 コレクタ電源電圧用パッド
100 リードフレーム
101 ベッド
102 ICチップ
103 モールド樹脂
104 IC電源リード線
105 入力リード線
106 出力リード線
107 パッド
108 接地パッド
109 接地リード線
110 信号増幅回路
111 信号入力端子
112 信号出力端子
113 第1接地端子
114 第2接地端子
115 容量結合回路
116 第1接地リード線
117 第2接地リード線
118 第1接地パッド
119 第2接地パッド
120 可変容量結合回路
121 調整端子
122 負性抵抗回路
130 ワイヤ
200 対地容量
301,401 半導体基板
302 第1絶縁層
303 第2絶縁層
304,404 第1配線層
305,405 第2配線層
402 絶縁層
406 P層
407 P
408 N
409 N層
501 端子
502 バイポーラトランジスタ
503 容量素子
504 コイル

Claims (7)

  1. 半導体基板上に設けられ、かつ、入力信号を増幅し、増幅した入力信号を出力する信号増幅回路と、
    前記半導体基板上に設けられ、かつ、前記信号増幅回路の接地電極と配線のみで接続された第1接地端子と、
    前記半導体基板上に設けられ、かつ、容量結合回路を介して前記信号増幅回路の接地電極と接続された第2接地端子を備える高周波集積回路。
  2. 前記容量結合回路の容量値が可変であることを特徴とする請求項1記載の高周波集積回路。
  3. 前記第1及び第2接地端子と前記半導体基板外部の回路とはワイヤを用いて接続されることを特徴とする請求項1記載の高周波集積回路。
  4. 前記ワイヤの誘導値と、前記容量結合回路の容量値の積の平方根の逆数が前記信号増幅回路の使用角周波数帯に近い値であることを特徴とする請求項3記載の高周波集積回路。
  5. 前記第2接地端子は、さらに負性抵抗回路を介して前記信号増幅回路の接地電極と接続されることを特徴とする請求項1記載の高周波集積回路。
  6. 前記負性抵抗回路は前記信号増幅回路の接地電極側の寄生抵抗値と抵抗の絶対値が実質的に等しく、かつ、負の符号の抵抗値を持つことを特徴とする請求項5記載の高周波集積回路。
  7. 半導体基板上に設けられ、かつ、入力信号を増幅し、増幅した入力信号を出力する信号増幅回路と、前記半導体基板上に設けられ、かつ、前記信号増幅回路の接地電極と配線のみで接続された第1接地端子と、前記半導体基板上に設けられ、かつ、容量結合回路を介して前記信号増幅回路の接地電極と接続された第2接地端子を有する高周波集積回路と、
    前記高周波集積回路を実装したリードフレームと、
    前記第1接地端子と前記リードフレームの第1接地リード線を接続する第1ワイヤと、
    前記第2接地端子と前記リードフレームの第2接地リード線を接続する第2ワイヤと、
    前記高周波集積回路を覆うモールド樹脂を備える半導体装置。
JP2000226690A 2000-07-27 2000-07-27 高周波集積回路及び半導体装置 Expired - Fee Related JP3612268B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226690A JP3612268B2 (ja) 2000-07-27 2000-07-27 高周波集積回路及び半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226690A JP3612268B2 (ja) 2000-07-27 2000-07-27 高周波集積回路及び半導体装置

Publications (2)

Publication Number Publication Date
JP2002043869A JP2002043869A (ja) 2002-02-08
JP3612268B2 true JP3612268B2 (ja) 2005-01-19

Family

ID=18720265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226690A Expired - Fee Related JP3612268B2 (ja) 2000-07-27 2000-07-27 高周波集積回路及び半導体装置

Country Status (1)

Country Link
JP (1) JP3612268B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4176606B2 (ja) 2003-09-29 2008-11-05 シャープ株式会社 エミッタ接地回路を用いた高周波受信機
TWI373925B (en) * 2004-02-10 2012-10-01 Tridev Res L L C Tunable resonant circuit, tunable voltage controlled oscillator circuit, tunable low noise amplifier circuit and method of tuning a resonant circuit
JP2008512926A (ja) * 2004-09-10 2008-04-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 広い周波数帯域にわたって平坦な利得応答で調節可能なカスコードlna
JP2006352811A (ja) * 2005-06-20 2006-12-28 Seiko Npc Corp 交流信号増幅装置
US7672657B2 (en) * 2006-06-28 2010-03-02 Intel Corporation Tunable filter apparatus, systems, and methods
US7863986B2 (en) * 2008-08-11 2011-01-04 Qualcomm Incorporation Techniques for improving balun loaded-Q
US8791767B2 (en) * 2010-10-29 2014-07-29 Qualcomm Incorporated Package inductance compensating tunable capacitor circuit
JP6194678B2 (ja) * 2013-07-31 2017-09-13 ぺんてる株式会社 静電容量結合型座標検出装置

Also Published As

Publication number Publication date
JP2002043869A (ja) 2002-02-08

Similar Documents

Publication Publication Date Title
US7119623B2 (en) Output circuit for a semiconductor amplifier element
US7061329B2 (en) Semiconductor device having balanced circuit for use in high frequency band
JP3663397B2 (ja) 高周波電力増幅器
US7511575B2 (en) High-frequency power amplifier
US20130076446A1 (en) Rf device with compensatory resonator matching topology
US10453810B2 (en) Integrated passive device for RF power amplifier package
US20080246547A1 (en) Method And System for Output Matching of Rf Transistors
US7084708B2 (en) High-frequency amplification device
US10637413B2 (en) Semiconductor device
US10003311B1 (en) Compact class-F chip and wire matching topology
WO2006016299A1 (en) Integrated f-class amplifier with output parasitic capacitance compensation
US10692982B2 (en) Semiconductor apparatus
US9979360B1 (en) Multi baseband termination components for RF power amplifier with enhanced video bandwidth
CN109889168B (zh) 具有谐波终止电路的放大器装置
US10236833B2 (en) RF amplifier with dual frequency response capacitor
EP0893878A2 (en) High frequency oscillating circuit
US7605450B2 (en) High frequency arrangement
JP3612268B2 (ja) 高周波集積回路及び半導体装置
US11302659B2 (en) Semiconductor device
KR102128404B1 (ko) 임피던스 조절이 가능한 mmic 증폭기의 바이어스 회로
US20220293550A1 (en) Semiconductor device
KR20220078688A (ko) 도허티 증폭기
JP3238560U (ja) 集積パッケージ電子デバイス構造
JP4031032B2 (ja) 不所望なキャパシタンスを補償する手段を有する電子集積回路装置
US11979117B2 (en) High frequency semiconductor amplifier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees