JP3606078B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP3606078B2
JP3606078B2 JP36707598A JP36707598A JP3606078B2 JP 3606078 B2 JP3606078 B2 JP 3606078B2 JP 36707598 A JP36707598 A JP 36707598A JP 36707598 A JP36707598 A JP 36707598A JP 3606078 B2 JP3606078 B2 JP 3606078B2
Authority
JP
Japan
Prior art keywords
die pad
semiconductor device
sealing resin
resin body
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36707598A
Other languages
Japanese (ja)
Other versions
JP2000196006A (en
JP2000196006A5 (en
Inventor
健一 伊東
秀一 尾方
敏行 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP36707598A priority Critical patent/JP3606078B2/en
Publication of JP2000196006A publication Critical patent/JP2000196006A/en
Publication of JP2000196006A5 publication Critical patent/JP2000196006A5/ja
Application granted granted Critical
Publication of JP3606078B2 publication Critical patent/JP3606078B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor device which has improved close contact between a die pad and a sealing resin material, and also moisture resistance thereof. SOLUTION: A plurality of projections 9 are provided at the side surface of a die pad 1 and a lead frame is processed to bend the projections 9 towards the loading surface of a semiconductor element 3. The semiconductor element 3 is loaded on the loading surface, the exposed surface of the die pad 1 is exposed, and the semiconductor element 3, projections 9, an inner lead, etc., are sealed with a sealing resin material 7. Thereby, the projections 9 and coupling portions thereof are engaged with the sealing resin material 7 to improve the close contact structure. Deformation of die pad 1 at loading is rather small, and good moisture resistance after loading can be maintained.

Description

【0001】
【発明の属する技術分野】
本発明は、モータドライバ用、音声増幅用などの発熱量の大きな半導体素子を搭載するのに適応した半導体装置に関するものである。
【0002】
【従来の技術】
近年の電子機器の多機能化、小型・薄型化に伴い、半導体装置においては、薄型で良好な放熱性が要望されてきている。そこで、このような薄型の半導体装置として、特開平9−199639号公報には、次のようなものが提案されている。
【0003】
以下、従来の半導体装置について説明する。図12は、従来の半導体装置を示す図であり、図12(a)は半導体装置の要部断面図であり、図12(b)はその背面図である。
【0004】
図12に示すように、従来の半導体装置は、ダイパッド1に接着剤2を塗布して、その上に半導体素子3を固着している。その半導体素子3には金属細線4が接続され、ダイパッド1周辺にある複数本のインナーリード5とそれぞれ電気的に接続されている。各インナーリード5と一体的に連結された各アウターリード6は封止樹脂体7から導出され、ダイパッド1,接着剤2,半導体素子3,金属細線4およびインナーリード5は封止樹脂体7で封止されている。また、封止樹脂体7は4辺形の平板状に成形されているとともに、アウターリード6は封止樹脂体7の4辺からそれぞれ引き出されている。そして、ダイパッド1の露出面(半導体素子3を搭載した面と反対側の面)は封止樹脂体7から露出している。
【0005】
この半導体装置は、通常は、封止樹脂体7から露出したダイパッド1の露出面はプリント基板(図示せず)に接するように実装される。発熱源である半導体素子3を搭載したダイパッド1が封止樹脂体7より露出されているため、外気に直接放熱することができ、高い放熱性を保つことができる。
【0006】
【発明が解決しようとする課題】
しかしながら、従来の半導体装置は、ダイパッド1と封止樹脂体7との密着力だけで耐湿性を確保しているので、プリント基板に半田付けする時、封止樹脂体7内に貯まった湿気が急激な熱膨張を起こし、ダイパッド1を変形させる。その為、ダイパッド1と封止樹脂体7との間に隙間が生じ易く、プリント基板に実装後の耐湿性を悪化しやすい。単に、プリント基板に接触させた状態よりも更に放熱性を高めるために、ダイパッド1の露出面をプリント基板に半田付けした場合、更に急激な湿気の熱膨張が起こり、ダイパッド1が封止樹脂体7から剥離して、耐湿性を損なうという問題があった。そのため、半導体装置単品での耐湿性だけでなく、プリント基板に実装後の耐湿性を確保する必要がある。
【0008】
本発明の目的は、従来の上記問題点を解決するもので、プリント基板に実装後の耐湿性を確保できる放熱効果の高い半導体装置およびその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の半導体装置は、半導体素子と、上記半導体素子を搭載するダイパッドと、上記半導体素子を封止する封止樹脂体とを備え、上記ダイパッドは、封止樹脂体内で上記半導体素子を搭載する搭載面と、上記封止樹脂体から外へ露出され、上記搭載面と反対側の露出面と、上記ダイパッドの搭載面側に屈曲されると共に上記封止樹脂体内に位置している周囲端部と、上記周囲端部と上記搭載面とに跨って位置し、上記搭載面と上記露出面および上記周囲端部の表面と裏面を連通する複数の孔とを有する半導体装置である。
また、半導体素子と、上記半導体素子を載置するダイパッドと、上記半導体素子を封止する封止樹脂体とを備え、上記ダイパッドは、上記封止樹脂体内で上記半導体素子を載置する第1の面と、上記封止樹脂体から外へ露出されて半導体装置の外形の一部を形成する第2の面と、上記第1の面側に屈曲されると共に上記封止樹脂体内に位置される周囲端部と、上記周囲端部の屈曲線上に位置し、上記第1の面と上記第2の面および上記周囲端部の表面と裏面を連通する複数の孔とを有する半導体装置である。
【0010】
この構成により、半導体素子を搭載したダイパッドの露出部から直接外部に放熱されるため、放熱効果が極めて良い。また、ダイパッドの側面に複数の突起部を設けているため、封止樹脂体との噛み合いが良く密着性が改善される。また、封止樹脂体内に蓄積された湿気が半田付け時に熱膨張する際には、ほど良い通気性があって蒸気を逃がすことから、ダイパッドの変形が少なくなり、ダイパッドが封止樹脂体から剥離することを防止できる。
【0011】
また、上記第2の面は上記第1の面の裏面である半導体装置である。
また、上記封止樹脂体の封止樹脂が上記複数の孔内に充填されている半導体装置である。
また、上記ダイパッドの複数の孔が上記ダイパッドの各辺に沿って所定間隔で位置する半導体装置である。
また、上記半導体素子に電気的に接続された複数本のインナーリードと、各上記インナーリードにそれぞれ一体的に連結されたアウターリードと、上記ダイパッドの四隅に支持リードとを備え、上記インナーリードの高さからダウンセットされ、上記支持リードは屈曲している半導体装置である。
また、上記支持リードは2箇所で屈曲している半導体装置である。
また、上記露出面にはリング状の溝が形成されている半導体装置である。
また、上記溝は上記半導体チップよりも外側に形成されている半導体装置である。
また、上記溝は二重に形成されている半導体装置である。
また、面実装型である半導体装置である
た、上記孔は、上記ダイパッドの端部には伸延しない半導体装置である。
【0017】
【発明の実施の形態】
以下、本発明による半導体装置の実施形態について説明する。図1は第1の実施形態の半導体装置に用いるリードフレームを示す平面図であり、封止樹脂体の形状を破線で示している。また、図2は第1の実施形態による半導体装置を説明するための図であり、図2(a)は半導体装置の要部断面構造を示す断面図、図2(b)は図1の対角線に沿う断面図であり、図2(c)は背面図である。
【0018】
図1および図2に示すように、第1の実施形態による半導体装置は、ダイパッド1に接着剤2を塗布して、その上に半導体素子3を固着している。その半導体素子3には金属細線4が接続され、ダイパッド1周辺にある複数本のインナーリード5とそれぞれ電気的に接続されている。各インナーリード5と一体的に連結された各アウターリード6は封止樹脂体7から導出され、ダイパッド1,接着剤2,半導体素子3,金属細線4およびインナーリード5は封止樹脂体7で封止されている。また、封止樹脂体7は4辺形の平板状に成形されているとともに、アウターリード6は封止樹脂体7の4辺からそれぞれ引き出されている。そして、ダイパッド1の露出面は封止樹脂体7から露出されている。
【0019】
ダイパッド1の四隅にはそれぞれ支持リード10が連結されており、支持リード10はリードフレームを一体成形した後に、リードフレーム単独でも一体化した状態を維持するために、ダイパッド1を支持するものであるが、その他の機能もある。
【0020】
支持リード10は、ダイパッド1から離れた箇所はインナーリード5の高さと同じ高さになっており、ダイパッド1に近い2カ所で屈曲させてあり、ダイパッド1をインナーリード5より低い位置に固定している。言い換えるとダウンセットしている。これは、封止樹脂体7の成形時に樹脂封止金型(図示せず)の底部にダイパッド1を押さえ付ける力をダイパッド1に与えるためにも使われる。
【0021】
ダイパッド1の各側面には、先端がT字型に形成された複数の突起部8を有し、かつ、突起部8は半導体素子3の搭載面側に屈曲されている。その突起部8は、封止樹脂体7に埋設されるので、封止樹脂体7との噛み合いが良く、ダイパッド1と封止樹脂体7との密着性を向上し、半導体装置の耐湿性を確保できる。その一方で、封止樹脂体7内に蓄積した湿気が半田付け時に熱膨張する際には、複数の突起部8同士の間にほど良い通気性があり、内部の蒸気を容易に逃がすことができ、ダイパッド1の変形を小さくして、実装後の耐湿性を改善できる。
【0022】
また、ダイパッド1の半導体素子3搭載面と反対側の露出面には、リング状の溝16を形成している。この溝16によって、樹脂封止時の樹脂注入圧力を逃がすと共に、樹脂の流れをせき止めることができ、薄バリを一定の範囲内に抑えることができる。従って、露出面の実効的な面積を確実に確保でき、露出面の半田付けを可能にして、さらに高い放熱効果を高めることができる。
【0023】
次に、第2の実施形態による半導体装置について、図3を用いて説明する。図3は第2の実施形態による半導体装置を説明するための図であり、図3(a)は第2の実施形態に用いるリードフレームの平面図であり、図中の破線は封止樹脂体の形状を示しており、図3(b)は半導体装置の要部断面図である。
【0024】
図3に示すように、第2の実施形態による半導体装置は、ダイパッド1に接着剤2を塗布して、その上に半導体素子3を固着している。その半導体素子3には金属細線4が接続され、ダイパッド1周辺にある複数本のインナーリード5とそれぞれ電気的に接続されている。各インナーリード5と一体的に連結された各アウターリード6は封止樹脂体7から導出され、ダイパッド1,接着剤2,半導体素子3,金属細線4およびインナーリード5は封止樹脂体7で封止されている。また、封止樹脂体7は4辺形の平板状に成形されているとともに、アウターリード6は封止樹脂体7の4辺からそれぞれ引き出されている。そして、ダイパッド1の露出面は封止樹脂体7から露出されている。
【0025】
ダイパッド1の四隅に連結された支持リード10は、リードフレームを一体成形した後でも一体化した状態を維持するために、ダイパッド1を支持するものであるが、ダイパッド1に近い2カ所を屈曲させて、ダイパッド1をインナーリード5より低い位置にダウンセットしている。このような構成のアウターリード6及び支持リード10を樹脂封止金型に型締めすると、支持リード10の剛性力によって、ダイパッド1は樹脂封止金型(図示せず)の底部に押し付けることができる。
【0026】
ダイパッド1の各側面には、複数の突起部8を有し、それら複数の突起部8の間には突起部8の先端を連結する部分(連結部分)を有しており、その突起部8は半導体素子3の搭載面側に屈曲されている。その複数の突起部8およびそれらの連結部分は、封止樹脂体7に埋設されるので、上記第1の実施形態よりも封止樹脂体7との噛み合いが良く、ダイパッド1と封止樹脂体7との密着性をより向上させ、より良い耐湿性を確保することができる。しかも、その連結部分とダイパッド1との間にダイパッド1の周縁に沿ったスリット状の穴が存在することになり、封止樹脂体7内に蓄積した湿気が半田付け時に熱膨張する際には、そのスリット状の穴がほど良い通気性を確保して、内部の蒸気を容易に逃がすことができ、ダイパッド1の変形を小さくして、実装後の耐湿性を改善できる。
【0027】
また、ダイパッド1の半導体素子3搭載面と反対側の露出面には、リング状の溝16を形成している。この溝16によって、樹脂封止時の樹脂注入圧力を逃がすと共に、樹脂の流れをせき止めることができ、薄バリを一定の範囲内に抑えることができる。従って、露出面の実効的な面積を確実に確保でき、露出面の半田付けを可能にして、さらに高い放熱効果を高めることができる。
【0028】
次に、第3の実施形態による半導体装置について図4を用いて説明する。図4は第3の実施形態による半導体装置を説明するための図であり、図4(a)は第3の実施形態に用いるリードフレームの平面図であり、図中の破線は封止樹脂体の形状を示しており、(b)は要部断面図である。
【0029】
図4に示す第3の実施形態は、前述の第2の実施形態と殆ど変わらないので、第2の実施形態との相違点を中心に説明する。
【0030】
ダイパッド1を支持する支持リード10は、第2の実施形態では標準的に採用される0.2〜0.25mm幅(インナーリード5の幅)であるのに対し、第3の実施形態では0.4〜0.8mm幅と太くしている。これによって、第3の実施形態の半導体装置は、大きな剛性力を確保し、樹脂封止時にアウターリード6および支持リード10を型締めしてダウンセットされたダイパッド1を封止金型に押し付ける力が強められ、ダイパッド1の露出面にできやすい封止樹脂の薄バリを抑制することができる。なお、標準的なリード幅(0.2〜0.25mm幅)の支持リードを各所に2本以上を設けることによっても、同様の効果を達成できる。
【0031】
次に、図3に図示した半導体装置を製造する方法を一例にして、第4の実施形態としての半導体装置の製造方法を、図5〜図10に基づいて説明する。
【0032】
図5は、半導体装置の製造に使用するリードフレームを示す構成図であり、図5(a)はリードフレームの平面図、(b)は要部断面図である。
【0033】
リードフレームの素材としては、熱伝導が良好で比較的機械強度の大きい鉄、鉄合金、銅または銅合金の薄板を使用する。そして、図5に示すように、その薄板をエッチング加工あるいはプレス加工により、ダイパッド1、インナーリード5、アウターリード6、ダイパッド1の4つの側面に先端を連結した複数の突起部9、支持リード10、ダムバー11、外枠12、内枠13及び、ガイド孔14を一体成形する。図5に示すリードフレーム15は、外枠によって多連に構成されているリードフレーム15の一単位を図示したものである。
【0034】
リードフレーム15の表面のワイヤーボンディング領域(図示せず)にAgめっき、あるいは全体にNi,Pd,Auの3層めっきを施す。この場合、最外層にAuフラッシュを施すことで、Agめっきを施したものより封止樹脂との密着性が向上し、良好な耐湿性を得ることができる。また、樹脂封止前に外装めっきが施されているので、樹脂封止時のダイパッド露出部に薄バリが発生しても、外装めっきの障害という問題が発生しないので、Ni,Pd,Auの3層めっきを施すことが望ましい。
【0035】
次に、樹脂封止時にダイパッド1の露出面に発生する樹脂の薄バリをせき止めるために、ダイパッド1の半導体素子3の搭載面と反対側になる露出面にリング状の溝16を形成する。
【0036】
この際、溝16の切削加工により、リードフレーム材料が伸びるため、ダイパッド1の溝16より外側の部分が半導体素子3搭載面側に数〜数十μm反り上がってしまうことがある。この場合は、ダイパッド1の半導体素子3の搭載面側にも溝16とほぼ同じ形の溝(図示せず)を施すことで、材料の伸びを相殺し、反り上がりを防止することができる。ダイパッド1の搭載面側に設ける溝(図示せず)は、溝16のように薄バリをせき止めるためのものではないので、リング状に閉じなくても良い。
【0037】
また、薄バリは樹脂が注入される部分に多く発生し易い。これは、ダイパッドを封止金型に押さえ付ける充填圧力が加わる前に、封止樹脂がダイパッド1と封止金型との間に回り込んでしまうためである。この場合、少なくとも封止樹脂が注入される方向に合致したダイパッド1の部分に溝を2重に形成することで、薄バリをせき止めることができる。
【0038】
次に、ダイパッド1に近い支持リード10の2箇所を折り曲げて、ダイパッド1をインナーリード5より低い位置にダウンセットさせるダウンセット加工と、ダイパッド1の4つの側面に設けられた互いの先端が連結された突起部9を半導体素子3の搭載面側に折り曲げる突起部折り曲げ加工とを行う。
【0039】
このとき、屈曲用金型を1回だけ用いて行うのではなく、2つの折り曲げ箇所のちょうど中間位置で第1段階の屈曲成形を行い、第2段階では、第1段階で折り曲げた箇所を直線状に戻す成形を行いながら、最終的な所定の折り曲げ箇所で折り曲げ加工を行う。これは、折り曲げ加工の箇所では金属を引き延ばす応力が加えられるため、1回の折り曲げ加工で一気にダウンセットすると、金属疲労が大きくなり、支持リード10の屈曲部に亀裂が生じることから、第1段階と第2段階とに分けて、異なる位置を折り曲げ成形することによって、支持リード10の金属疲労を低減している。
【0040】
一例として、樹脂1mm厚、14mm角の面実装パッケージを0.15mm厚の銅合金板で作製する事例を説明する。この場合、ダイパッド1のサイズは7mm角程度、複数の突起部9は長さ0.5mm程度で半導体素子3の搭載面側に45度程度の角度で折り曲げる。折り曲げた突起部9の先端は、金属細線に接触しないように、インナーリード5よりも下に位置するように成形される。支持リード10を折り曲げてダイパッド1をインナーリード5の位置より低く設定(ダウンセット)するが、そのダウンセット量(ダイパッド1とインナーリード5との段差)は0.47mm程度に設定する。結果として、封止金型による位置規制が無ければ封止金型の底部よりダイパッド1の位置が0.02〜0.2mmの範囲で下がるように、ダウンセット量を設定する。また、ダイパッド1の溝16の深さは0.01mm程度であれば、リードフレームを工程内で移動させる場合にひっかかりが生じるような問題は発生しない。
【0041】
このように構成されている多連リードフレーム15は、半導体素子3をダイパッド1に固着する半導体素子ボンディング工程および、半導体素子3とインナーリード5を電気的に接続するワイヤーボンディング工程が、各単位リードフレーム毎に実施される。これらのボンディング作業は横方向にピッチ送りされることにより、各単位当たりのリードフレーム毎に順次実施される。
【0042】
次に、ダイボンディング工程およびワイヤーボンディング工程について説明する。図6はダイボンディングの前工程を説明するための工程断面図、図7はダイボンディング工程を説明するための工程断面図であり、図8はワイヤーボンディング工程を説明するための工程断面図である。
【0043】
まず、図6に示すように、半導体素子ボンディング装置(図示せず)のステージ17上において、ダイパッド1上に半導体素子3を固着するための接着剤2を塗布する。接着剤の塗布はディスペンサ18を用いて、接着剤2を滴下することにより行う。接着剤2は、一例として熱硬化性のエポキシ樹脂にAg粉を混合させた銀ペーストからなる。
【0044】
次に、図7に示すように、接着剤2を塗布したダイパッド1上にコレット19を用いて半導体素子3を搭載した後、ヒートステージ(図示せず)上で加熱し、接着剤2を硬化させる。一例として、半導体素子3は、外形寸法が4mm角、厚さが0.3mm程度のシリコン単結晶である。また、加熱条件は200〜250℃、30秒から1分程度である。なお、接着剤2の硬化はオーブンを用いてもよい。
【0045】
次に、図8に示すように、ダイパッド1上に固着された半導体素子3のボンディングパッド21と、インナーリード5とを金属細線4を用いて電気的に接続する。ワイヤーボンド装置のヒートステージ20には、ダイパッド1と支持リード10の一部が入る逃がし部が形成されており、インナーリードのワイヤーボンド領域外周部を固定治具22によって固定しながら行う。一例として、金属細線は、直径20〜35μmのAuワイヤーを用いる。
【0046】
このようにして、各単位リードフレーム毎にダイボンディング、ワイヤーボンディングが施された後、単位リードフレーム群を一括して樹脂封止して封止樹脂体7群が同時成形される。
【0047】
次に、樹脂封止工程を説明するための工程断面図である図9を参照しながら、樹脂封止工程について説明する。
【0048】
図9は、トランスファ成形装置を示しており、シリンダ装置(図示せず)によって型締めされる一対の上型24と下型25とを備えており、上型24と下型25との合わせ面には上型キャビティー26aと下型キャビティー26bとで、キャビティー26を形成するように、それぞれ複数組み埋設されている。上型24の合わせ面にはポット27が開設されており、ポット27にはシリンダ装置(図示しない)により進退されるプランジャー28が成形材料としての樹脂を送給し得るように挿入されている。下型25の合わせ面にはカル29がポット27と対向位置に配されて埋設されているとともに、ランナー30がポット27とにそれぞれ接続されている。さらに各ランナー30の他端部は下型キャビティー26bにそれぞれ接続されており、その接続部にはゲート31が樹脂をキャビティー26内に注入し得るように形成されている。また、下型25の合わせ面には、逃がし部32がリードフレーム重合体23におけるリードフレーム15の厚み分を逃げ得るように、その外形よりも若干大きめの長方形で、その厚さよりも若干浅い深さに形成されている。このような構成のトランスファ成形装置を用いて、樹脂封止は以下の方法で行われる。
【0049】
180℃程度に加熱された上記トランスファ装置の封止金型の逃がし部32に、リードフレーム重合体23を装着し封止金型を型締めする。次に、円錐形に打錠された樹脂(図示せず)をポット27に挿入し、プランジャー28により樹脂がカル29、ランナー30、ゲート31を通じて各キャビティー26に圧入される。注入後、樹脂が熱硬化されて封止樹脂体7が形成されると、上型24および下型25は型開きされるとともに、エジェクタ・ピン(図示しない)により封止樹脂体7群が離型され、樹脂成形されたリードフレーム重合体23はトランスファ成形装置から脱装される。
【0050】
このようにして、樹脂成形された封止樹脂体の内部には、ダイパッド1、接着剤2、半導体素子3、金属細線4、およびインナーリード5が樹脂封止されることになる。この際、下型25による位置規制が無ければ、下型25の底部の深さより0.02〜0.2mm低い位置に固定されるようにダウンセットされたダイパッド1を有したリードフレームを封止金型で型締めした時、半導体素子3の搭載面と反対側の露出面が下型25に押し付けられ、ダイパッド1の下側(露出面側)に樹脂が回り込むのを防止するため、ダイパッド1の露出面を封止樹脂体7より露出させるように樹脂封止することができる。
【0051】
なお、通常に使用される封止金型のキャビティー部分は基板実装に認識し易いくするためにナシ地加工が施され表面が荒らされているが、少なくともダイパッドが当接する部分に鏡面加工を施す(図示せず)ことによって、ダイパッド1と封止金型との隙間を無くすことができるので、薄バリの発生をさらに抑制することができる。さらに、下型25のダイパッド1が当接する部分にダイパッド1を吸着する機構(図示せず)をもたせることによって、さらに薄バリの発生を抑制することができる。
【0052】
図10は樹脂封止後の半導体装置の背面図であり、ダイパッドの露出面に形成される薄バリを説明するための図である。
【0053】
図10に示すように、ダイパッド1の露出面は、ダイパッド1の外周部から樹脂注入圧力によって樹脂の薄バリ33が漏れだして付着するが、ダイパッド1に施されているリング状に形成された溝16で薄バリが止まり、溝16の内側に実効的な露出面を一定面積以上に確保することができ、ダイパッド1の露出面をプリント基板(図示せず)に半田付け実装することが可能になる。また、リング状の溝16は、図10に示すように一重で設けるより、二重に設ける方がより確実に薄バリの発生を防止できる。
【0054】
次に、樹脂成形されたリードフレーム重合体23の、リードフレーム15のボンディング領域にAgめっきが施されたものの場合は、リードフレーム重合体23の封止樹脂体7以外の部分に、半田外装めっきを施す(図示せず)。リードフレーム15の少なくとも半導体装置の完成品となる部分にPdめっきが施されているものの場合は、半田外装めっきは必要としない。
【0055】
次に、図11に示すように、半田外装めっきを経た後、あるいは半田外装めっきされる前の樹脂成形されたリードフレーム重合体23を、切断装置(図示せず)によって、各単位リードフレーム毎に順次、ダムバー11を切断する。
【0056】
次に、リード成形装置(図示せず)によって、アウターリード6の先端と内枠13の一部を切断した後、アウターリード6をガルウイング形状に屈曲成形し、内枠13の一部を切断し、半導体装置を外枠12から切り離す。
【0057】
以上のようにして、図3に示す半導体装置を完成することができる。
【0058】
【発明の効果】
以上、本発明の半導体装置は、ダイパッドの各側面に複数の突起部を有し、その突起部が半導体素子の搭載面側に折り曲げ成形されたリードフレームを用いて半導体素子をパッケージングするから、この突起部が封止樹脂体との密着性を良好にし、耐湿性を改善できる。また、半田ディップ時にパッケージ内に貯まった湿気が熱膨張する際に、その湿気が逃げ易く、ダイパッドの変形や捲れを防止することができ、プリント基板に実装後も耐湿性を維持することができる。しかも、ダイパッドの露出面からプリント基板に直接放熱することができ、放熱性が良好であり、品質の優れた半導体装置である。
【0059】
また、本発明の半導体装置の製造方法では、ダイパッドがインナーリードより低い位置にダウンセットされた構造のリードフレームを使用して樹脂封止するから、樹脂封止時にリードフレームを型締めすると、支持リードによってダイパッドの露出面が金型の底部に押し付けられ、ダイパッドの下に樹脂が回り込むことを防止し、樹脂の薄バリを防止することができる。
【0060】
更に、ダイパッドの周縁部に沿って溝を設けると、樹脂封止時の封止圧力が溝に沿って逃がされ、もしも樹脂が回り込んだ時には、その樹脂を溝で止めることができ、樹脂バリを最小限にすることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る半導体装置に用いるリードフレームの平面図
【図2】本発明の第1の実施形態に係る半導体装置を示す図であり、
(a)は半導体装置の要部断面図
(b)は図1の対角線に沿った断面図
(c)は半導体装置の背面図
【図3】第2の実施形態の半導体装置を示す図であり、
(a)は半導体装置に用いるリードフレームの平面図
(b)は半導体装置の要部断面図
【図4】第3の実施形態の半導体装置を示す図であり、
(a)は半導体装置に用いるリードフレームの平面図
(b)は半導体装置の要部断面図
【図5】第4の実施形態に用いるリードフレームを示す図
(a)はリードフレームの平面図
(b)はリードフレームの要部断面図
【図6】第4の実施形態のダイボンディング工程の前工程を説明するための工程断面図
【図7】第4の実施形態のダイボンディング工程を説明するための工程断面図
【図8】第4の実施形態のワイヤーボンディング工程を説明するための工程断面図
【図9】第4の実施形態の樹脂封止工程を説明するための工程断面図
【図10】樹脂封止後の半導体装置の背面図であり、ダイパッドの露出面に形成される薄バリを説明するための図
【図11】ダムバー切断後の半導体装置を示す図
【図12】従来の半導体装置を示す図であり、
(a)は半導体装置の要部断面図
(b)は半導体装置の背面図
【符号の説明】
1 ダイパッド
2 接着剤
3 半導体素子
4 金属細線
5 インナーリード
6 アウターリード
7 封止樹脂体
8 突起部
9 突起部
10 支持リード
11 ダムバー
12 外枠
13 内枠
14 ガイド孔
15 リードフレーム
16 溝
17 ステージ
18 ディスペンサ
19 コレット
20 ヒートステージ
21 ボンディングパッド
22 固定治具
23 リードフレーム重合体
24 上型
25 下型
26a キャビティー上
26b キャビティー下
27 ポット
28 プランジャー
29 カル
30 ランナー
31 ゲート
32 逃がし部
33 薄バリ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device adapted for mounting a semiconductor element having a large calorific value, such as a motor driver and a sound amplifier.
[0002]
[Prior art]
2. Description of the Related Art As electronic devices have become more multifunctional and smaller and thinner in recent years, semiconductor devices have been required to be thin and have good heat dissipation. Therefore, as such a thin semiconductor device, Japanese Patent Laid-Open No. 9-199639 proposes the following.
[0003]
A conventional semiconductor device will be described below. FIG. 12 is a view showing a conventional semiconductor device, FIG. 12 (a) is a cross-sectional view of an essential part of the semiconductor device, and FIG. 12 (b) is a rear view thereof.
[0004]
As shown in FIG. 12, in the conventional semiconductor device, an adhesive 2 is applied to a die pad 1 and a semiconductor element 3 is fixed thereon. The metal element 4 is connected to the semiconductor element 3 and is electrically connected to a plurality of inner leads 5 around the die pad 1. Each outer lead 6 integrally connected to each inner lead 5 is led out from the sealing resin body 7, and the die pad 1, adhesive 2, semiconductor element 3, metal wire 4 and inner lead 5 are formed from the sealing resin body 7. It is sealed. The sealing resin body 7 is formed into a quadrilateral flat plate shape, and the outer leads 6 are drawn from the four sides of the sealing resin body 7. The exposed surface of the die pad 1 (the surface opposite to the surface on which the semiconductor element 3 is mounted) is exposed from the sealing resin body 7.
[0005]
This semiconductor device is usually mounted such that the exposed surface of the die pad 1 exposed from the sealing resin body 7 is in contact with a printed circuit board (not shown). Since the die pad 1 on which the semiconductor element 3 as a heat source is mounted is exposed from the sealing resin body 7, heat can be directly radiated to the outside air, and high heat dissipation can be maintained.
[0006]
[Problems to be solved by the invention]
However, since the conventional semiconductor device ensures moisture resistance only by the adhesion between the die pad 1 and the sealing resin body 7, when the solder is soldered to the printed circuit board, moisture accumulated in the sealing resin body 7 is retained. The die pad 1 is deformed by causing rapid thermal expansion. Therefore, a gap is likely to be generated between the die pad 1 and the sealing resin body 7 and the moisture resistance after mounting on the printed board is likely to be deteriorated. If the exposed surface of the die pad 1 is soldered to the printed circuit board in order to further improve the heat dissipation compared with the state in which it is in contact with the printed circuit board, the thermal expansion of moisture further occurs and the die pad 1 is sealed with the sealing resin body. There was a problem that it peeled from 7 and impaired moisture resistance. Therefore, it is necessary to ensure not only the moisture resistance of a single semiconductor device but also the moisture resistance after mounting on a printed circuit board.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described conventional problems, and to provide a semiconductor device having a high heat dissipation effect that can secure moisture resistance after being mounted on a printed circuit board and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
A semiconductor device of the present invention includes a semiconductor element, a die pad for mounting the semiconductor element, a sealing resin body for sealing the semiconductor element,WithThe die pad isIn the sealing resinA mounting surface on which the semiconductor element is mounted, an exposed surface exposed from the sealing resin body, opposite to the mounting surface, and the die padA peripheral edge that is bent to the mounting surface side and located in the sealing resin body, and straddles the peripheral edge and the mounting surfacepositionAndThe mounting surface and the exposed surfaceAnd the front and back of the peripheral edgeA plurality of holes communicating withHaveIt is a semiconductor device.
Further, the semiconductor device includes a semiconductor element, a die pad for mounting the semiconductor element, and a sealing resin body for sealing the semiconductor element, and the die pad is a first for mounting the semiconductor element in the sealing resin body. A second surface that is exposed to the outside from the sealing resin body to form a part of the outer shape of the semiconductor device, is bent toward the first surface side, and is positioned in the sealing resin body. And a plurality of holes that are located on a bend line of the peripheral end portion and communicate with the first surface, the second surface, and the front and back surfaces of the peripheral end portion. .
[0010]
With this configuration, heat is radiated directly from the exposed portion of the die pad on which the semiconductor element is mounted, so that the heat radiation effect is extremely good. In addition, since the plurality of protrusions are provided on the side surface of the die pad, the engagement with the sealing resin body is good and the adhesion is improved. In addition, when the moisture accumulated in the sealing resin body thermally expands during soldering, it has adequate air permeability and escapes steam, so that the deformation of the die pad is reduced and the die pad is peeled off from the sealing resin body. Can be prevented.
[0011]
The second surface is a semiconductor device that is the back surface of the first surface.
Further, in the semiconductor device, the sealing resin of the sealing resin body is filled in the plurality of holes.
In the semiconductor device, the plurality of holes of the die pad are located at predetermined intervals along each side of the die pad.
A plurality of inner leads electrically connected to the semiconductor element; outer leads integrally connected to the inner leads; and support leads at four corners of the die pad; The support lead is a bent semiconductor device that is downset from a height.
The support lead is a semiconductor device bent at two locations.
In the semiconductor device, a ring-shaped groove is formed on the exposed surface.
The groove is a semiconductor device formed outside the semiconductor chip.
Further, the groove is a semiconductor device formed in double.
Further, it is a semiconductor device that is a surface mount type..
MaThe hole is a semiconductor device that does not extend to the end of the die pad.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a semiconductor device according to the present invention will be described below. FIG. 1 is a plan view showing a lead frame used in the semiconductor device of the first embodiment, and the shape of the sealing resin body is indicated by a broken line. 2 is a diagram for explaining the semiconductor device according to the first embodiment. FIG. 2A is a cross-sectional view showing a cross-sectional structure of a main part of the semiconductor device, and FIG. 2B is a diagonal line of FIG. FIG. 2C is a rear view.
[0018]
As shown in FIGS. 1 and 2, in the semiconductor device according to the first embodiment, an adhesive 2 is applied to a die pad 1 and a semiconductor element 3 is fixed thereon. The metal element 4 is connected to the semiconductor element 3 and is electrically connected to a plurality of inner leads 5 around the die pad 1. Each outer lead 6 integrally connected to each inner lead 5 is led out from the sealing resin body 7, and the die pad 1, adhesive 2, semiconductor element 3, metal wire 4 and inner lead 5 are formed from the sealing resin body 7. It is sealed. The sealing resin body 7 is formed into a quadrilateral flat plate shape, and the outer leads 6 are drawn from the four sides of the sealing resin body 7. The exposed surface of the die pad 1 is exposed from the sealing resin body 7.
[0019]
Support leads 10 are connected to the four corners of the die pad 1, and the support leads 10 support the die pad 1 in order to maintain the integrated state of the lead frame alone after the lead frame is integrally formed. But there are other features.
[0020]
The support lead 10 is located at a distance from the die pad 1 at the same height as the inner lead 5 and is bent at two locations close to the die pad 1 to fix the die pad 1 at a position lower than the inner lead 5. ing. In other words, it is downset. This is also used to give the die pad 1 a force for pressing the die pad 1 against the bottom of a resin sealing mold (not shown) when the sealing resin body 7 is molded.
[0021]
Each side surface of the die pad 1 has a plurality of protrusions 8 whose tips are formed in a T shape, and the protrusions 8 are bent toward the mounting surface side of the semiconductor element 3. Since the protrusion 8 is embedded in the sealing resin body 7, the protrusion 8 has good engagement with the sealing resin body 7, improves the adhesion between the die pad 1 and the sealing resin body 7, and improves the moisture resistance of the semiconductor device. It can be secured. On the other hand, when the moisture accumulated in the sealing resin body 7 thermally expands during soldering, there is a moderate air permeability between the plurality of protrusions 8, and the internal vapor can be easily released. In addition, the deformation of the die pad 1 can be reduced and the moisture resistance after mounting can be improved.
[0022]
A ring-shaped groove 16 is formed on the exposed surface of the die pad 1 opposite to the surface on which the semiconductor element 3 is mounted. The groove 16 can release the resin injection pressure at the time of resin sealing and can block the flow of the resin, and can suppress the thin burr within a certain range. Therefore, the effective area of the exposed surface can be ensured, the exposed surface can be soldered, and a higher heat dissipation effect can be enhanced.
[0023]
Next, the semiconductor device according to the second embodiment will be explained with reference to FIG. FIG. 3 is a diagram for explaining the semiconductor device according to the second embodiment. FIG. 3A is a plan view of a lead frame used in the second embodiment. A broken line in the figure indicates a sealing resin body. FIG. 3B is a cross-sectional view of a main part of the semiconductor device.
[0024]
As shown in FIG. 3, in the semiconductor device according to the second embodiment, an adhesive 2 is applied to a die pad 1 and a semiconductor element 3 is fixed thereon. The metal element 4 is connected to the semiconductor element 3 and is electrically connected to a plurality of inner leads 5 around the die pad 1. Each outer lead 6 integrally connected to each inner lead 5 is led out from the sealing resin body 7, and the die pad 1, adhesive 2, semiconductor element 3, metal wire 4 and inner lead 5 are formed from the sealing resin body 7. It is sealed. The sealing resin body 7 is formed into a quadrilateral flat plate shape, and the outer leads 6 are drawn from the four sides of the sealing resin body 7. The exposed surface of the die pad 1 is exposed from the sealing resin body 7.
[0025]
The support leads 10 connected to the four corners of the die pad 1 support the die pad 1 in order to maintain the integrated state even after the lead frame is integrally formed, but bend two places close to the die pad 1. Thus, the die pad 1 is down-set to a position lower than the inner lead 5. When the outer lead 6 and the support lead 10 having such a structure are clamped to the resin-sealed mold, the die pad 1 can be pressed against the bottom of the resin-sealed mold (not shown) by the rigidity of the support lead 10. it can.
[0026]
Each side surface of the die pad 1 has a plurality of protrusions 8, and between the plurality of protrusions 8, there is a portion (connection portion) that connects the tips of the protrusions 8. Is bent toward the mounting surface side of the semiconductor element 3. Since the plurality of protrusions 8 and their connecting portions are embedded in the sealing resin body 7, the engagement with the sealing resin body 7 is better than in the first embodiment, and the die pad 1 and the sealing resin body 7 can be further improved, and better moisture resistance can be ensured. In addition, a slit-like hole along the periphery of the die pad 1 exists between the connecting portion and the die pad 1, and when moisture accumulated in the sealing resin body 7 is thermally expanded during soldering. The slit-shaped hole can ensure a good air permeability, and the internal vapor can be easily released, the deformation of the die pad 1 can be reduced, and the moisture resistance after mounting can be improved.
[0027]
A ring-shaped groove 16 is formed on the exposed surface of the die pad 1 opposite to the surface on which the semiconductor element 3 is mounted. The groove 16 can release the resin injection pressure at the time of resin sealing and can block the flow of the resin, and can suppress the thin burr within a certain range. Therefore, the effective area of the exposed surface can be ensured, the exposed surface can be soldered, and a higher heat dissipation effect can be enhanced.
[0028]
Next, the semiconductor device according to the third embodiment will be explained with reference to FIG. FIG. 4 is a view for explaining the semiconductor device according to the third embodiment. FIG. 4A is a plan view of a lead frame used in the third embodiment. A broken line in the figure indicates a sealing resin body. (B) is principal part sectional drawing.
[0029]
Since the third embodiment shown in FIG. 4 is almost the same as the second embodiment described above, the description will focus on the differences from the second embodiment.
[0030]
The support lead 10 that supports the die pad 1 has a width of 0.2 to 0.25 mm (the width of the inner lead 5) that is typically employed in the second embodiment, whereas it is 0 in the third embodiment. .4 to 0.8mm wide and thick. As a result, the semiconductor device of the third embodiment secures a large rigidity, and is a force that presses the die pad 1 that has been downset by clamping the outer lead 6 and the support lead 10 during resin sealing. And the thin burr of the sealing resin that can be easily formed on the exposed surface of the die pad 1 can be suppressed. The same effect can also be achieved by providing two or more support leads having standard lead widths (0.2 to 0.25 mm width) at various locations.
[0031]
Next, a method for manufacturing the semiconductor device as the fourth embodiment will be described with reference to FIGS. 5 to 10 by taking the method for manufacturing the semiconductor device shown in FIG. 3 as an example.
[0032]
5A and 5B are configuration diagrams showing a lead frame used for manufacturing a semiconductor device. FIG. 5A is a plan view of the lead frame, and FIG.
[0033]
As the lead frame material, a thin plate of iron, iron alloy, copper or copper alloy having good heat conduction and relatively high mechanical strength is used. Then, as shown in FIG. 5, the thin plate is etched or pressed, and the die pad 1, the inner lead 5, the outer lead 6, the plurality of protrusions 9 having tips connected to the four side surfaces of the die pad 1, and the support lead 10. The dam bar 11, the outer frame 12, the inner frame 13, and the guide hole 14 are integrally formed. The lead frame 15 shown in FIG. 5 illustrates one unit of the lead frame 15 configured in multiples by an outer frame.
[0034]
Ag plating is performed on a wire bonding region (not shown) on the surface of the lead frame 15, or three layers of Ni, Pd, and Au are applied to the whole. In this case, by applying Au flash to the outermost layer, the adhesion with the sealing resin is improved as compared with the one subjected to Ag plating, and good moisture resistance can be obtained. Moreover, since exterior plating is performed before resin sealing, even if a thin burr is generated in the die pad exposed portion at the time of resin sealing, there is no problem of failure of exterior plating. Therefore, Ni, Pd, Au It is desirable to apply three-layer plating.
[0035]
Next, a ring-shaped groove 16 is formed on the exposed surface of the die pad 1 opposite to the mounting surface of the semiconductor element 3 in order to stop resin thin burrs generated on the exposed surface of the die pad 1 during resin sealing.
[0036]
At this time, since the lead frame material is stretched by cutting the groove 16, the portion outside the groove 16 of the die pad 1 may be warped several to several tens of μm toward the semiconductor element 3 mounting surface. In this case, by providing a groove (not shown) having substantially the same shape as the groove 16 on the mounting surface side of the semiconductor element 3 of the die pad 1, the elongation of the material can be offset and the warping can be prevented. Since the groove (not shown) provided on the mounting surface side of the die pad 1 is not intended to stop the thin burr unlike the groove 16, it does not have to be closed in a ring shape.
[0037]
Further, many thin burrs are likely to occur in the portion where the resin is injected. This is because the sealing resin wraps around between the die pad 1 and the sealing mold before the filling pressure for pressing the die pad against the sealing mold is applied. In this case, at least a portion of the die pad 1 that matches the direction in which the sealing resin is injected is formed with a double groove so that thin burr can be prevented.
[0038]
Next, two portions of the support lead 10 close to the die pad 1 are bent to downset the die pad 1 to a position lower than the inner lead 5, and the tips provided on the four side surfaces of the die pad 1 are connected. The protruding portion 9 is bent so that the protruding portion 9 is bent toward the mounting surface side of the semiconductor element 3.
[0039]
At this time, instead of using the bending die only once, the first stage of bending is performed at an intermediate position between the two bent portions, and in the second stage, the portion bent in the first step is straight. Bending is performed at the final predetermined folding position while performing the molding to return to the shape. This is because the stress that stretches the metal is applied at the location of the bending process, so that if the metal is downset at once, the metal fatigue increases and the bent portion of the support lead 10 is cracked. And the second stage, the metal fatigue of the support lead 10 is reduced by bending at different positions.
[0040]
As an example, a case will be described in which a 1 mm thick, 14 mm square surface-mount package is made of a 0.15 mm thick copper alloy plate. In this case, the size of the die pad 1 is about 7 mm square, and the plurality of protrusions 9 are about 0.5 mm long and are bent at an angle of about 45 degrees toward the mounting surface side of the semiconductor element 3. The tip of the bent projection 9 is shaped so as to be positioned below the inner lead 5 so as not to contact the fine metal wire. The support lead 10 is bent to set the die pad 1 lower than the position of the inner lead 5 (downset), and the downset amount (step difference between the die pad 1 and the inner lead 5) is set to about 0.47 mm. As a result, the amount of downset is set so that the position of the die pad 1 falls within the range of 0.02 to 0.2 mm from the bottom of the sealing mold if there is no position restriction by the sealing mold. Further, if the depth of the groove 16 of the die pad 1 is about 0.01 mm, there will be no problem that causes a catch when the lead frame is moved in the process.
[0041]
The multiple lead frame 15 configured as described above includes a semiconductor element bonding process for fixing the semiconductor element 3 to the die pad 1 and a wire bonding process for electrically connecting the semiconductor element 3 and the inner lead 5 to each unit lead. This is performed for each frame. These bonding operations are sequentially performed for each lead frame per unit by pitch-feeding in the horizontal direction.
[0042]
Next, the die bonding process and the wire bonding process will be described. 6 is a process cross-sectional view for explaining the pre-process of die bonding, FIG. 7 is a process cross-sectional view for explaining the die bonding process, and FIG. 8 is a process cross-sectional view for explaining the wire bonding process. .
[0043]
First, as shown in FIG. 6, an adhesive 2 for fixing the semiconductor element 3 on the die pad 1 is applied on a stage 17 of a semiconductor element bonding apparatus (not shown). Application of the adhesive is performed by dropping the adhesive 2 using the dispenser 18. For example, the adhesive 2 is made of a silver paste in which Ag powder is mixed with a thermosetting epoxy resin.
[0044]
Next, as shown in FIG. 7, the semiconductor element 3 is mounted on the die pad 1 coated with the adhesive 2 using the collet 19, and then heated on a heat stage (not shown) to cure the adhesive 2. Let As an example, the semiconductor element 3 is a silicon single crystal having an outer dimension of 4 mm square and a thickness of about 0.3 mm. The heating conditions are 200 to 250 ° C. and about 30 seconds to 1 minute. The adhesive 2 may be cured using an oven.
[0045]
Next, as shown in FIG. 8, the bonding pads 21 of the semiconductor element 3 fixed on the die pad 1 and the inner leads 5 are electrically connected using the metal thin wires 4. The heat stage 20 of the wire bond apparatus is formed with a relief part into which a part of the die pad 1 and the support lead 10 enters, and is performed while fixing the outer periphery of the wire bond region of the inner lead by the fixing jig 22. As an example, an Au wire having a diameter of 20 to 35 μm is used as the metal thin wire.
[0046]
Thus, after die bonding and wire bonding are performed for each unit lead frame, the unit lead frame group is collectively resin-sealed, and the sealing resin body 7 group is simultaneously formed.
[0047]
Next, the resin sealing step will be described with reference to FIG. 9 which is a process cross-sectional view for explaining the resin sealing step.
[0048]
FIG. 9 shows a transfer molding apparatus, which includes a pair of an upper mold 24 and a lower mold 25 that are clamped by a cylinder device (not shown), and a mating surface between the upper mold 24 and the lower mold 25. Each of the upper mold cavity 26a and the lower mold cavity 26b is embedded in a plurality so as to form the cavity 26. A pot 27 is opened on the mating surface of the upper mold 24, and a plunger 28 that is advanced and retracted by a cylinder device (not shown) is inserted into the pot 27 so that resin as a molding material can be fed. . On the mating surface of the lower mold 25, a cull 29 is arranged and buried at a position facing the pot 27, and a runner 30 is connected to the pot 27. Further, the other end portion of each runner 30 is connected to the lower mold cavity 26 b, and a gate 31 is formed at the connecting portion so that resin can be injected into the cavity 26. Further, the mating surface of the lower mold 25 is a rectangle slightly larger than its outer shape and a depth slightly shallower than its thickness so that the escape portion 32 can escape the thickness of the lead frame 15 in the lead frame polymer 23. Is formed. Using the transfer molding apparatus having such a configuration, resin sealing is performed by the following method.
[0049]
The lead frame polymer 23 is attached to the relief portion 32 of the sealing mold of the transfer device heated to about 180 ° C., and the sealing mold is clamped. Next, a resin (not shown) compressed in a conical shape is inserted into the pot 27, and the resin is press-fitted into the cavities 26 through the cull 29, the runner 30, and the gate 31 by the plunger 28. After the injection, when the resin is thermally cured to form the sealing resin body 7, the upper mold 24 and the lower mold 25 are opened, and the sealing resin body 7 group is separated by an ejector pin (not shown). The molded and resin-molded lead frame polymer 23 is detached from the transfer molding apparatus.
[0050]
In this way, the die pad 1, the adhesive 2, the semiconductor element 3, the fine metal wires 4, and the inner leads 5 are resin-sealed inside the resin-molded sealing resin body. At this time, if there is no position restriction by the lower mold 25, the lead frame having the die pad 1 downset so as to be fixed at a position 0.02 to 0.2 mm lower than the depth of the bottom of the lower mold 25 is sealed. When the mold is clamped, the exposed surface opposite to the mounting surface of the semiconductor element 3 is pressed against the lower mold 25 to prevent the resin from flowing around to the lower side (exposed surface side) of the die pad 1. Can be resin-sealed so as to expose the exposed surface from the sealing resin body 7.
[0051]
Note that the cavity part of the normally used sealing mold is pear-finished and roughened to make it easier to recognize for board mounting, but at least the part where the die pad contacts is mirror-finished. By applying (not shown), the gap between the die pad 1 and the sealing mold can be eliminated, and the generation of thin burrs can be further suppressed. Furthermore, by providing a mechanism (not shown) for adsorbing the die pad 1 to the portion of the lower mold 25 where the die pad 1 abuts, the occurrence of thin burrs can be further suppressed.
[0052]
FIG. 10 is a rear view of the semiconductor device after resin sealing, and is a view for explaining a thin burr formed on the exposed surface of the die pad.
[0053]
As shown in FIG. 10, the exposed surface of the die pad 1 is formed in a ring shape applied to the die pad 1, although the resin thin burr 33 leaks from the outer peripheral portion of the die pad 1 due to the resin injection pressure and adheres. Thin burrs stop at the groove 16, an effective exposed surface inside the groove 16 can be secured over a certain area, and the exposed surface of the die pad 1 can be soldered and mounted on a printed circuit board (not shown). become. Further, the ring-shaped groove 16 can more reliably prevent the occurrence of thin burrs by providing double the ring-like groove 16 as shown in FIG.
[0054]
Next, in the case where the resin-molded lead frame polymer 23 is subjected to Ag plating in the bonding region of the lead frame 15, solder exterior plating is applied to a portion other than the sealing resin body 7 of the lead frame polymer 23. (Not shown). In the case where Pd plating is applied to at least a portion of the lead frame 15 which is a finished product of the semiconductor device, solder exterior plating is not required.
[0055]
Next, as shown in FIG. 11, the resin-molded lead frame polymer 23 after the solder exterior plating or before the solder exterior plating is applied to each unit lead frame by a cutting device (not shown). The dam bar 11 is cut sequentially.
[0056]
Next, the tip of the outer lead 6 and a part of the inner frame 13 are cut by a lead forming device (not shown), and then the outer lead 6 is bent into a gull wing shape, and a part of the inner frame 13 is cut. Then, the semiconductor device is separated from the outer frame 12.
[0057]
As described above, the semiconductor device illustrated in FIG. 3 can be completed.
[0058]
【The invention's effect】
As described above, the semiconductor device of the present invention has a plurality of protrusions on each side surface of the die pad, and the protrusions package the semiconductor element using a lead frame bent on the mounting surface side of the semiconductor element. This protrusion can improve the adhesion to the sealing resin body and improve the moisture resistance. Also, when the moisture accumulated in the package during solder dipping thermally expands, the moisture can easily escape, can prevent deformation and dripping of the die pad, and can maintain moisture resistance even after mounting on the printed circuit board. . In addition, it is possible to directly radiate heat from the exposed surface of the die pad to the printed circuit board.
[0059]
In the method of manufacturing a semiconductor device according to the present invention, since the die pad is resin-sealed using a lead frame having a structure in which the die pad is set to a position lower than the inner lead, if the lead frame is clamped during resin sealing, The exposed surface of the die pad is pressed against the bottom of the mold by the lead, preventing the resin from flowing under the die pad, and preventing a thin burr of the resin.
[0060]
Furthermore, if a groove is provided along the peripheral edge of the die pad, the sealing pressure at the time of resin sealing is released along the groove, and if the resin wraps around, the resin can be stopped by the groove. Burr can be minimized.
[Brief description of the drawings]
FIG. 1 is a plan view of a lead frame used in a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a semiconductor device according to the first embodiment of the present invention;
(A) is principal part sectional drawing of a semiconductor device.
(B) is a cross-sectional view along the diagonal line of FIG.
(C) is a rear view of the semiconductor device.
FIG. 3 is a diagram illustrating a semiconductor device according to a second embodiment;
(A) is a top view of the lead frame used for a semiconductor device
(B) is a fragmentary cross-sectional view of a semiconductor device
FIG. 4 is a diagram illustrating a semiconductor device according to a third embodiment;
(A) is a top view of the lead frame used for a semiconductor device
(B) is a fragmentary cross-sectional view of a semiconductor device
FIG. 5 is a view showing a lead frame used in the fourth embodiment.
(A) Plan view of the lead frame
(B) is a cross-sectional view of the main part of the lead frame.
FIG. 6 is a process sectional view for explaining a pre-process of a die bonding process according to a fourth embodiment.
FIG. 7 is a process cross-sectional view for explaining a die bonding process according to a fourth embodiment.
FIG. 8 is a process cross-sectional view for explaining a wire bonding process according to a fourth embodiment.
FIG. 9 is a process cross-sectional view for explaining a resin sealing process according to a fourth embodiment.
FIG. 10 is a rear view of the semiconductor device after resin sealing, and is a diagram for explaining a thin burr formed on the exposed surface of the die pad;
FIG. 11 is a view showing a semiconductor device after dam bar cutting.
12 is a diagram showing a conventional semiconductor device;
(A) is principal part sectional drawing of a semiconductor device.
(B) is a rear view of the semiconductor device.
[Explanation of symbols]
1 Die pad
2 Adhesive
3 Semiconductor elements
4 Thin metal wires
5 Inner lead
6 Outer lead
7 Sealing resin body
8 Protrusion
9 Protrusion
10 Support lead
11 Dam Bar
12 Outer frame
13 Inner frame
14 Guide hole
15 Lead frame
16 groove
17 stages
18 Dispenser
19 Collet
20 Heat stage
21 Bonding pads
22 Fixing jig
23 Lead frame polymer
24 Upper mold
25 Lower mold
26a on the cavity
26b under the cavity
27 pots
28 Plunger
29 Cal
30 runners
31 gate
32 Relief part
33 Thin Bali

Claims (12)

半導体素子と、
上記半導体素子を搭載するダイパッドと、
上記半導体素子を封止する封止樹脂体とを備え、
上記ダイパッドは、
上記封止樹脂体内で上記半導体素子を搭載する搭載面と、
上記封止樹脂体から外へ露出され上記搭載面と反対側の露出面と、
上記ダイパッドの搭載面側に屈曲されると共に上記封止樹脂体内に位置している周囲端部と、
上記周囲端部と上記搭載面とに跨って位置し、上記搭載面と上記露出面および上記周囲端部の表面と裏面を連通する複数の孔と
を有する半導体装置。
A semiconductor element;
A die pad on which the semiconductor element is mounted;
A sealing resin body for sealing the semiconductor element,
The die pad
A mounting surface for mounting the semiconductor element in the sealing resin body;
An exposed surface exposed to the outside from the sealing resin body and opposite to the mounting surface;
A peripheral end that is bent to the mounting surface side of the die pad and located in the sealing resin body;
A semiconductor device having a plurality of holes which are located across the peripheral end and the mounting surface and communicate with the mounting surface, the exposed surface, and the front and back surfaces of the peripheral end.
半導体素子と、
上記半導体素子を載置するダイパッドと、
上記半導体素子を封止する封止樹脂体とを備え、
上記ダイパッドは、
上記封止樹脂体内で上記半導体素子を載置する第1の面と、
上記封止樹脂体から外へ露出されて半導体装置の外形の一部を形成する第2の面と、
上記第1の面側に屈曲されると共に上記封止樹脂体内に位置される周囲端部と、
上記周囲端部の屈曲線上に位置し、上記第1の面と上記第2の面および上記周囲端部の表面と裏面を連通する複数の孔と
を有する半導体装置。
A semiconductor element;
A die pad for mounting the semiconductor element;
A sealing resin body for sealing the semiconductor element,
The die pad
A first surface on which the semiconductor element is placed in the sealing resin body;
A second surface that is exposed to the outside from the sealing resin body and forms a part of the outer shape of the semiconductor device;
A peripheral end that is bent toward the first surface and positioned within the sealing resin body;
A semiconductor device located on a bend line of the peripheral end and having a plurality of holes communicating the first surface, the second surface, and the front and back surfaces of the peripheral end.
上記第2の面は上記第1の面の裏面である請求項2に記載の半導体装置。The semiconductor device according to claim 2, wherein the second surface is a back surface of the first surface. 上記封止樹脂体の封止樹脂が上記孔内に充填されている請求項1〜請求項3のいずれかに記載の半導体装置。The semiconductor device according to claim 1, wherein a sealing resin of the sealing resin body is filled in the hole. 上記ダイパッドの複数の孔が上記ダイパッドの各辺に沿って所定間隔で位置する請求項1〜請求項4のいずれかに記載の半導体装置。The semiconductor device according to claim 1, wherein the plurality of holes of the die pad are located at predetermined intervals along each side of the die pad. 上記半導体素子に電気的に接続された複数本のインナーリードと、
各上記インナーリードにそれぞれ一体的に連結されたアウターリードと、
上記ダイパッドの四隅に支持リードとを備え、
上記インナーリードの高さからダウンセットされ、
上記支持リードは屈曲している請求項1〜請求項5のいずれかに記載の半導体装置。
A plurality of inner leads electrically connected to the semiconductor element;
Outer leads integrally connected to each of the inner leads,
With support leads at the four corners of the die pad,
Downset from the height of the inner lead,
The semiconductor device according to claim 1, wherein the support lead is bent.
上記支持リードは2箇所で屈曲している請求項6に記載の半導体装置。The semiconductor device according to claim 6, wherein the support lead is bent at two positions. 上記露出面にはリング状の溝が形成されている請求項1〜請求項7のいずれかに記載の半導体装置。The semiconductor device according to claim 1, wherein a ring-shaped groove is formed on the exposed surface. 上記溝は上記半導体チップよりも外側に形成されている請求項8に記載の半導体装置。The semiconductor device according to claim 8, wherein the groove is formed outside the semiconductor chip. 上記溝は二重に形成されている請求項9に記載の半導体装置。The semiconductor device according to claim 9, wherein the groove is formed double. 面実装型である請求項1〜請求項10のいずれかに記載の半導体装置。The semiconductor device according to claim 1, which is a surface mount type. 上記孔は、上記ダイパッドの端部には伸延しない請求項1〜請求項11のいずれかに記載の半導体装置。It said holes, the semiconductor device according to any one of claims 1 to 11 which does not extend to the end of the die pad.
JP36707598A 1998-12-24 1998-12-24 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3606078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36707598A JP3606078B2 (en) 1998-12-24 1998-12-24 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36707598A JP3606078B2 (en) 1998-12-24 1998-12-24 Semiconductor device and manufacturing method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2003433161A Division JP2004104155A (en) 2003-12-26 2003-12-26 Semiconductor device
JP2004114292A Division JP4308698B2 (en) 2004-04-08 2004-04-08 Semiconductor device

Publications (3)

Publication Number Publication Date
JP2000196006A JP2000196006A (en) 2000-07-14
JP2000196006A5 JP2000196006A5 (en) 2004-12-16
JP3606078B2 true JP3606078B2 (en) 2005-01-05

Family

ID=18488394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36707598A Expired - Lifetime JP3606078B2 (en) 1998-12-24 1998-12-24 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3606078B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895570B2 (en) 2000-12-28 2007-03-22 株式会社ルネサステクノロジ Semiconductor device
JP3953746B2 (en) * 2001-04-13 2007-08-08 ヤマハ株式会社 Semiconductor package and semiconductor package manufacturing method
KR100688595B1 (en) * 2002-08-30 2007-03-09 페어차일드코리아반도체 주식회사 Pad exposed type semiconductor package for good heat radiation
JP4469654B2 (en) 2004-05-13 2010-05-26 パナソニック株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2006135100A (en) * 2004-11-05 2006-05-25 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2007194379A (en) * 2006-01-19 2007-08-02 Matsushita Electric Ind Co Ltd Lead frame, semiconductor device, and method of manufacturing same
JP2010238947A (en) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
WO2013145532A1 (en) 2012-03-28 2013-10-03 パナソニック株式会社 Resin package
JP5420737B2 (en) * 2012-09-21 2014-02-19 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
CN107431060B (en) * 2015-06-24 2021-01-05 瑞萨电子株式会社 Method for manufacturing semiconductor device
KR102547235B1 (en) * 2018-04-20 2023-06-23 삼성디스플레이 주식회사 Display device
JP6952913B2 (en) * 2018-12-05 2021-10-27 三菱電機株式会社 Semiconductor device and antenna device
CN110164827B (en) * 2019-05-22 2024-07-26 河源市富宇光电科技有限公司 Integrated forming packaging structure and packaging process thereof

Also Published As

Publication number Publication date
JP2000196006A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
US7397113B2 (en) Semiconductor device
JP2891607B2 (en) Method for manufacturing semiconductor integrated circuit device
US6455348B1 (en) Lead frame, resin-molded semiconductor device, and method for manufacturing the same
US6208020B1 (en) Leadframe for use in manufacturing a resin-molded semiconductor device
EP0977251B1 (en) Resin sealed semiconductor device and method for manufacturing the same
JP4614586B2 (en) Method for manufacturing hybrid integrated circuit device
JP3606078B2 (en) Semiconductor device and manufacturing method thereof
KR100304754B1 (en) Semiconductor package with heat sink in sealing resin part and manufacturing method
JPH05267555A (en) Semiconductor device and its manufacture, and lead frame used for it and its manufacture
JP2000236060A (en) Semiconductor device
JP2006191143A (en) Semiconductor device
JPH08139218A (en) Hybrid integrated circuit device and its manufacture
JP2001110830A (en) Resin sealed semiconductor device and its manufacturing method
JP4591362B2 (en) Manufacturing method of electronic device
JPH098186A (en) Semiconductor integrated circuit device and its manufacture
JP4308698B2 (en) Semiconductor device
JP2002093982A (en) Semiconductor device and manufacturing method therefor
JP2001035985A (en) Semiconductor device sealed with resin
KR100237912B1 (en) Packaged semiconductor, semiconductor device made therewith and method for making same
JP4066050B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JP2004104155A (en) Semiconductor device
JP3007632B1 (en) Resin-sealed semiconductor device and method of manufacturing the same
JP3382516B2 (en) Semiconductor package
JP2002110884A (en) Lead frame laminate
KR20070103591A (en) Semiconductor package having insulator interposed between leads and method of fabricating semiconductor device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

EXPY Cancellation because of completion of term