JP2010238947A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2010238947A
JP2010238947A JP2009085848A JP2009085848A JP2010238947A JP 2010238947 A JP2010238947 A JP 2010238947A JP 2009085848 A JP2009085848 A JP 2009085848A JP 2009085848 A JP2009085848 A JP 2009085848A JP 2010238947 A JP2010238947 A JP 2010238947A
Authority
JP
Japan
Prior art keywords
island
lead
resin package
semiconductor device
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009085848A
Other languages
Japanese (ja)
Inventor
Motoaki Wakui
元明 和久井
Takashi Kitazawa
崇 北澤
Yasushige Sakamoto
安繁 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009085848A priority Critical patent/JP2010238947A/en
Publication of JP2010238947A publication Critical patent/JP2010238947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/787Means for aligning
    • H01L2224/78703Mechanical holding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10162Shape being a cuboid with a square active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

<P>PROBLEM TO BE SOLVED: To reduce material cost, by overcoming the problem that a gold wire is used as a metal thin wire in a conventional semiconductor device, which makes it difficult to reduce the material cost. <P>SOLUTION: In the semiconductor device, a semiconductor element 9 is secured onto an island 7, and a plurality of through-holes 11 are formed on the island 7 around the area to which the semiconductor element 9 is secured. Then, the electrode pads of the semiconductor element 9 and leads 4 are electrically connected by copper wires 10. In this structure, the material cost is reduced by using the copper wires 10 in comparison with gold wires. Also, by embedding part of a resin package 2 in the through-holes 11, the island 7 is easily supported within the resin package 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、銅線を用いてワイヤーボンディングされる半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device wire-bonded using a copper wire and a method for manufacturing the same.

従来の半導体装置の製造方法の一実施例として、下記の製造方法が知られている。図9(A)及び(B)は、従来の半導体装置の製造方法を説明するための断面図である。   As an example of a conventional method for manufacturing a semiconductor device, the following manufacturing method is known. 9A and 9B are cross-sectional views for explaining a conventional method for manufacturing a semiconductor device.

先ず、図9(A)に示す如く、リードフレームのダイパッド51上に半導体素子52を固着した後、リードフレームをワイヤーボンディング装置に設置する。半導体素子52の電極パッド53を約200℃に加熱し、キャピラリ54が電極パッド53上へと移動する。そして、超音波振動併用の熱圧着技術により、キャピラリ54の先端に形成された金属ボールを電極パッド53へと接続する。一般にこれをボールボンディングと言う。   First, as shown in FIG. 9A, after fixing the semiconductor element 52 on the die pad 51 of the lead frame, the lead frame is set in a wire bonding apparatus. The electrode pad 53 of the semiconductor element 52 is heated to about 200 ° C., and the capillary 54 moves onto the electrode pad 53. Then, the metal ball formed at the tip of the capillary 54 is connected to the electrode pad 53 by a thermocompression bonding technique using ultrasonic vibration. This is generally called ball bonding.

次に、図9(B)に示す如く、キャピラリ54がインナーリード55の先端部上方へ移動し、インナーリード55に対し金属細線56を所望の荷重にて押し付ける。このとき、インナーリード55を約200℃に加熱し、インナーリード55に対し超音波振動併用の熱圧着技術により金属細線56を接続する。その後、ワイヤークランパー57を閉じた状態にてキャピラリ54が上昇し、金属細線56をインナーリード55の接続箇所にて破断する。一般にこれをステッチボンディングと言う。   Next, as shown in FIG. 9B, the capillary 54 moves above the tip of the inner lead 55 and presses the metal thin wire 56 against the inner lead 55 with a desired load. At this time, the inner lead 55 is heated to about 200 ° C., and the thin metal wire 56 is connected to the inner lead 55 by a thermocompression bonding technique using ultrasonic vibration. Thereafter, the capillary 54 is raised with the wire clamper 57 closed, and the fine metal wire 56 is broken at the connection portion of the inner lead 55. This is generally called stitch bonding.

そして、図9(A)及び(B)にて説明したワイヤーボンディング作業を繰り返すことで、半導体素子52の全ての電極パッド53とインナーリード55とを金属細線56で電気的に接続する(例えば、特許文献1参照。)。   Then, by repeating the wire bonding operation described with reference to FIGS. 9A and 9B, all the electrode pads 53 of the semiconductor element 52 and the inner leads 55 are electrically connected by the thin metal wires 56 (for example, (See Patent Document 1).

特開平7−29943号公報(第4−5頁、第1図)Japanese Patent Laid-Open No. 7-29943 (page 4-5, FIG. 1)

前述したように、ワイヤーボンディング工程では、金属細線56は、ワイヤーボンディング作業中は高温状態下に置かれる。このとき、従前の技術では、金属細線として金線を用い、インナーリードには銀メッキが施されることで、特に、酸化の問題は重要視されなかった。   As described above, in the wire bonding process, the fine metal wires 56 are placed in a high temperature state during the wire bonding operation. At this time, in the conventional technique, a gold wire is used as the fine metal wire, and the inner lead is plated with silver, so that the oxidation problem is not particularly regarded as important.

しかしながら、金属細線56として銅線を用いる場合には、作業中に銅線が酸化されるという問題が発生する。特に、高機能化の半導体素子では、端子数も多く、多ピン化される傾向にある。そのため、ワイヤーボンディングされるワイヤーの本数も多くなり、その作業時間が長くなることで、銅線の酸化が重要視される。また、ダイパッド51や外部リード55等も、メッキ処理等の対応が成されていない場合には、上記作業により酸化されるという問題が発生する。   However, when a copper wire is used as the thin metal wire 56, there arises a problem that the copper wire is oxidized during the operation. In particular, a highly functional semiconductor element has a large number of terminals and tends to be multi-pinned. Therefore, the number of wires to be wire-bonded increases and the working time becomes longer, so that the oxidation of the copper wire is regarded as important. In addition, the die pad 51, the external lead 55, and the like are also oxidized due to the above-described work when the plating process or the like is not performed.

また、従前の技術では、複数のインナーリード55はクランパー(図示せず)にて一括して固定された状態にてワイヤーボンディングが行われる。金属細線56の材料として金線と銅線とを比較すると、金線は、銅線と比較して軟らかく延性が小さい。そのため、金線は、ステッチボンディング時の切断が容易であり、クランパーによるインナーリード55の固定状況が特に重要視されなかった。   In the conventional technique, wire bonding is performed in a state where the plurality of inner leads 55 are fixed together by a clamper (not shown). When a gold wire and a copper wire are compared as the material of the fine metal wire 56, the gold wire is softer and less ductile than the copper wire. For this reason, the gold wire can be easily cut at the time of stitch bonding, and the fixing state of the inner lead 55 by the clamper is not particularly regarded as important.

しかしながら、銅線は金線よりも硬いが、延性を有するため、ステッチボンディング時の荷重が金線よりも大きくなる。そのため、クランパーとインナーリード55との間に隙間が存在すると、ステッチボンディング時にインナーリード55が動くことで荷重が逃げ易く、金属細線56が切断し難く、金属細線56の切断箇所が安定し難いという問題が発生する。   However, the copper wire is harder than the gold wire, but has a ductility, so that the load at the time of stitch bonding is larger than that of the gold wire. For this reason, if there is a gap between the clamper and the inner lead 55, the inner lead 55 moves during stitch bonding, so that the load can easily escape, the metal fine wire 56 is difficult to cut, and the cut portion of the metal fine wire 56 is difficult to stabilize. A problem occurs.

更に、金線は銅線と比較して材料費が高く、原価コストを引き上げる問題がある。しかも、金線は銅線よりも比抵抗が大きいため電流容量が小さく、大電流を扱う半導体素子では金線の使用量が増大し、材料コストが余分に掛かるという問題が発生する。   Furthermore, the gold wire has a higher material cost than the copper wire, and there is a problem of raising the cost. In addition, since the specific resistance of the gold wire is larger than that of the copper wire, the current capacity is small. In a semiconductor element that handles a large current, the amount of gold wire used increases, resulting in an extra material cost.

上述した各事情に鑑みて成されたものであり、本発明の半導体装置では、アイランドと、前記アイランドの周囲に配置された複数のリードと、前記アイランド上に接着材を介して固着された半導体素子と、前記半導体素子の電極パッドと前記リードとを電気的に接続する銅線と、前記アイランド、前記リード、前記銅線及び前記半導体素子とを被覆する樹脂パッケージとを有する半導体装置において、前記アイランドは樹脂パッケージの裏面から露出し、前記露出したアイランドには、前記半導体素子の固着領域の周囲に複数の貫通孔が形成され、前記貫通孔は前記樹脂パッケージを構成する樹脂により充填され、前記リードの一端側は、前記樹脂パッケージの側面から導出し、折り曲げ加工されることを特徴とする。従って、本発明では、銅線を用いることで材料コストが低減される。そして、貫通孔を利用することでアイランドと樹脂パッケージの密着性が向上される。   In view of the above-described circumstances, the semiconductor device according to the present invention includes an island, a plurality of leads arranged around the island, and a semiconductor fixed on the island via an adhesive. In a semiconductor device comprising: an element; a copper wire that electrically connects the electrode pad of the semiconductor element and the lead; and a resin package that covers the island, the lead, the copper wire, and the semiconductor element. The island is exposed from the back surface of the resin package, and the exposed island is formed with a plurality of through holes around a fixed region of the semiconductor element, and the through holes are filled with a resin constituting the resin package, One end side of the lead is led out from the side surface of the resin package and is bent. Therefore, in this invention, material cost is reduced by using a copper wire. And the adhesiveness of an island and a resin package is improved by utilizing a through-hole.

また、本発明の半導体装置の製造方法では、アイランドと、前記アイランドの周囲に配置された複数のリードと、前記アイランドから延在された吊りリードとを有する搭載部が設けられ、前記アイランドには複数の貫通孔が設けられたリードフレームを準備し、前記アイランド上に半導体素子を固着し、前記半導体素子の電極パッドと前記リードとを銅線にて電気的に接続し、前記搭載部を被覆する樹脂パッケージを形成した後、前記リードを曲げ加工しながら前記リードフレームから前記樹脂パッケージを分離する半導体装置の製造方法において、前記貫通孔をワイヤーボンディング装置の載置台に設けられたガス抜き孔上に位置させ、前記搭載部へ供給した不活性ガスを前記貫通孔を介して前記ガス抜き孔から引き抜くことを特徴とする。従って、本発明では、ワイヤーボンディングされた銅線の周囲に不活性ガスが充満され易く、銅線の酸化が防止される。   In the method of manufacturing a semiconductor device according to the present invention, a mounting portion including an island, a plurality of leads arranged around the island, and a suspension lead extending from the island is provided. A lead frame provided with a plurality of through holes is prepared, a semiconductor element is fixed on the island, an electrode pad of the semiconductor element and the lead are electrically connected by a copper wire, and the mounting portion is covered In the semiconductor device manufacturing method of separating the resin package from the lead frame while forming the resin package to be bent, the through hole is formed on a gas vent hole provided on a mounting table of the wire bonding apparatus. The inert gas supplied to the mounting portion is extracted from the gas vent hole through the through hole.Therefore, in the present invention, the inert gas is easily filled around the wire-bonded copper wire, and the copper wire is prevented from being oxidized.

本発明では、銅線を用いてワイヤーボンディングが行われることで、金線が用いられる場合と比較して材料コストが低減される。   In this invention, material cost is reduced compared with the case where a gold wire is used by performing wire bonding using a copper wire.

また、本発明では、アイランドの貫通孔が、樹脂パッケージの一部により埋設され、アイランドと樹脂パッケージとの密着性が向上される。   In the present invention, the through hole of the island is buried by a part of the resin package, and the adhesion between the island and the resin package is improved.

また、本発明では、ワイヤーボンディング領域に供給された不活性ガスをアイランドに形成された貫通孔を介して引き抜く。そして、ワイヤーボンディングされた銅線の周囲に不活性ガスが充満され易くすることで、銅線の酸化が防止される。   Moreover, in this invention, the inert gas supplied to the wire bonding area | region is extracted through the through-hole formed in the island. And the oxidation of a copper wire is prevented by making it easy to fill an inert gas around the copper wire by which wire bonding was carried out.

また、本発明では、クランパーにより複数のリードを個別に固定した状態にてワイヤーボンディング作業を行う。そして、ステッチボンディング時の荷重の逃げを防止し、銅線の切断箇所を安定させる。   In the present invention, the wire bonding operation is performed in a state where a plurality of leads are individually fixed by a clamper. And the escape of the load at the time of stitch bonding is prevented, and the cut portion of the copper wire is stabilized.

また、本発明では、アイランドの貫通孔と吊りリードの裏面側まで樹脂を充填することで、アイランドが樹脂パッケージから抜け落ち難い構造を実現できる。   Further, in the present invention, by filling the resin up to the through hole of the island and the back side of the suspension lead, it is possible to realize a structure in which the island does not easily come off from the resin package.

本発明の実施の形態における半導体装置を説明するための(A)断面図、(B)平面図である。1A is a cross-sectional view for explaining a semiconductor device in an embodiment of the present invention, and FIG. 本発明の実施の形態における半導体装置を説明するための(A)平面図、(B)平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a plan view for explaining a semiconductor device in an embodiment of the present invention, and FIG. 本発明の実施の形態における半導体装置を説明するための(A)断面図、(B)平面図である。1A is a cross-sectional view for explaining a semiconductor device in an embodiment of the present invention, and FIG. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)平面図、(B)平面図である。It is (A) top view and (B) top view for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)平面図、(B)断面図である。It is (A) top view and (B) sectional drawing for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)断面図、(B)断面図、(C)断面図である。1A is a cross-sectional view for explaining a method of manufacturing a semiconductor device in an embodiment of the present invention, FIG. 2B is a cross-sectional view, and FIG. 本発明の実施の形態における半導体装置の製造方法を説明するための平面図である。It is a top view for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)断面図、(B)斜視図である。It is (A) sectional drawing and (B) perspective view for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 従来の実施の形態における半導体装置の製造方法を説明するための(A)断面図、(B)断面図である。It is (A) sectional drawing for demonstrating the manufacturing method of the semiconductor device in conventional embodiment, (B) It is sectional drawing.

以下に、本発明の一実施の形態の半導体装置について説明する。図1(A)は、図1(B)に示す樹脂パッケージのA−A線方向の断面図である。図1(B)は、樹脂パッケージの裏面側からの平面図である。図2(A)は、リードフレームを説明するための平面図である。図2(B)は、図2(A)に示すリードフレームにワイヤーボンディングした状況を示す図である。   A semiconductor device according to an embodiment of the present invention will be described below. FIG. 1A is a cross-sectional view of the resin package shown in FIG. FIG. 1B is a plan view from the back side of the resin package. FIG. 2A is a plan view for explaining the lead frame. FIG. 2B is a diagram illustrating a state where wire bonding is performed on the lead frame illustrated in FIG.

図1(A)に示す如く、半導体装置1は、例えば、QFP(Quad Flat Package)から成る。樹脂パッケージ2は、概ね、表面、裏面及び4つの側面から成る6面体であり、図示のように樹脂封止金型の離型性からその側面が外側に若干突出している。   As shown in FIG. 1A, the semiconductor device 1 is made of, for example, QFP (Quad Flat Package). The resin package 2 is generally a hexahedron composed of a front surface, a back surface, and four side surfaces, and the side surfaces slightly protrude outward from the releasability of the resin sealing mold as shown in the figure.

複数のリード4は、樹脂パッケージ2の4つの側面3から露出し、曲げ加工される。リード4の実装面5は樹脂パッケージ2の裏面6とほぼ同一面に配置される。そして、アイランド7は、樹脂パッケージ2の裏面6から露出し、アイランド7上には、例えば、Agペースト、半田等の接着材8により半導体素子9が固着される。半導体素子9の電極パッドとリード4のインナーリード部分とは本願のテーマである銅線10により電気的に接続される。銅線10は、例えば、径が33〜50μm、99.9〜99.99wt%の銅から成るものが使用される。そして、銅線10は、半導体素子9の電極パッド上にボールボンディングされ、リード4上にステッチボンディングされる。尚、銅線10の径は、使用される用途に応じて任意の設計変更が可能である。   The plurality of leads 4 are exposed from the four side surfaces 3 of the resin package 2 and bent. The mounting surface 5 of the lead 4 is disposed on substantially the same surface as the back surface 6 of the resin package 2. The island 7 is exposed from the back surface 6 of the resin package 2, and the semiconductor element 9 is fixed on the island 7 by an adhesive 8 such as Ag paste or solder. The electrode pad of the semiconductor element 9 and the inner lead portion of the lead 4 are electrically connected by the copper wire 10 which is the theme of the present application. The copper wire 10 is made of, for example, copper having a diameter of 33 to 50 μm and 99.9 to 99.99 wt%. The copper wire 10 is ball-bonded on the electrode pad of the semiconductor element 9 and stitch-bonded on the lead 4. In addition, the design of the diameter of the copper wire 10 can be arbitrarily changed according to the intended use.

図示したように、アイランド7は、半導体素子9のサイズよりも大きく、半導体素子9の固着領域の外周領域に複数の貫通孔11が配置される。詳細は後述するが、貫通孔11は、ダイボンディング時やワイヤーボンディング時に不活性ガス(フォーミングガス)の流通経路として利用される。そして、樹脂モールド時には絶縁性樹脂により埋設される。   As shown in the drawing, the island 7 is larger than the size of the semiconductor element 9, and a plurality of through holes 11 are arranged in the outer peripheral region of the fixed region of the semiconductor element 9. Although details will be described later, the through hole 11 is used as a flow path of an inert gas (forming gas) during die bonding or wire bonding. And it embeds with insulating resin at the time of resin molding.

不活性ガスとして、例えば、窒素(N)ガスが採用され、銅線10のワイヤーボンディング作業に於いて、接続信頼性を向上させるために使用される。つまり、銅線11自体の酸化や銅線11とインナーリードとの接続部の酸化が防止される。図6(A)〜(C)に示すように、不活性ガスは紙面上方から貫通孔11に向かって流れる。そして、その不活性ガスの流れの中には銅線10が配置される。また、キャピラリ40にも不活性ガスが吹き掛けられるため、銅線10の酸化防止が可能となる。 For example, nitrogen (N 2 ) gas is used as the inert gas, and is used for improving the connection reliability in the wire bonding operation of the copper wire 10. That is, oxidation of the copper wire 11 itself and oxidation of the connection portion between the copper wire 11 and the inner lead are prevented. As shown in FIGS. 6A to 6C, the inert gas flows from the upper side of the paper toward the through hole 11. And the copper wire 10 is arrange | positioned in the flow of the inert gas. Further, since the inert gas is sprayed onto the capillary 40, the copper wire 10 can be prevented from being oxidized.

更に、二次的な効果であるが、貫通孔11は、アンカー効果を生み、アイランド7が樹脂パッケージ2内へと強固に支持される。樹脂パッケージ2内では、例えば、樹脂パッケージ2や接着材8内に含まれる低分子成分が半導体素子9の駆動熱等により気化し、ガスが発生する。このガスによりアイランド7は樹脂パッケージ2から押し出される方向へと外力を受ける。特に、アイランド7は、100〜250μmとその厚みが薄く、アイランド7と樹脂パッケージ2の密着度も弱く、上記ガスによりアイランド7が樹脂パッケージ2外へと押し出され易い。しかしながら、アイランド7の外周領域に貫通孔11を配置することで、樹脂パッケージ2とアイランド7との密着度が向上し、樹脂パッケージ2からアイランド7が抜け落ち難い構造となる。   Further, as a secondary effect, the through hole 11 produces an anchor effect, and the island 7 is firmly supported in the resin package 2. In the resin package 2, for example, a low molecular component contained in the resin package 2 or the adhesive 8 is vaporized by driving heat of the semiconductor element 9, and gas is generated. With this gas, the island 7 receives an external force in the direction of being pushed out of the resin package 2. In particular, the island 7 has a thin thickness of 100 to 250 μm, the adhesion between the island 7 and the resin package 2 is weak, and the island 7 is easily pushed out of the resin package 2 by the gas. However, by arranging the through holes 11 in the outer peripheral area of the island 7, the degree of adhesion between the resin package 2 and the island 7 is improved, and the island 7 is difficult to drop out from the resin package 2.

更に、アイランド7近傍の樹脂パッケージ2や接着材8に発生した上記ガスは、貫通孔11を排出経路とすることで、短い経路で樹脂パッケージ2外部へと排出される。そして、上記ガスが効率的に樹脂パッケージ2外部へと排出され、アイランド7が樹脂パッケージ2外部へと押し出され難くなる。   Further, the gas generated in the resin package 2 and the adhesive 8 in the vicinity of the island 7 is discharged to the outside of the resin package 2 through a short path by using the through hole 11 as a discharge path. And the said gas is efficiently discharged | emitted to the exterior of the resin package 2, and it becomes difficult to push the island 7 out of the resin package 2.

次に、図1(B)に示す如く、貫通孔11は、例えば、アイランド7の1側辺に沿って2つ配置される。そして、貫通孔11の長さは、アイランド7の1側辺の半分程度の長さを有する。詳細は図5(B)を用いて後述するが、リードフレームを載置台上に設置する際に、貫通孔11の開口面積が大きいと、リードフレームが若干ずれた場合でも、貫通孔11下方にはガス抜き孔39が配置され易く、不活性ガスの吸引力を適正に維持できる。そして、貫通孔11が不活性ガスの流路となることで、貫通孔11側面の酸化が防止され、アイランド7と樹脂パッケージ2との密着度が更に向上される。   Next, as illustrated in FIG. 1B, two through holes 11 are arranged along one side of the island 7, for example. The length of the through hole 11 is about half the length of one side of the island 7. Although details will be described later with reference to FIG. 5B, when the lead frame is placed on the mounting table, if the opening area of the through hole 11 is large, even if the lead frame is slightly displaced, the lead frame is located below the through hole 11. The gas vent hole 39 is easily disposed, and the suction force of the inert gas can be properly maintained. And since the through-hole 11 becomes a flow path of an inert gas, the oxidation of the side surface of the through-hole 11 is prevented, and the adhesion degree between the island 7 and the resin package 2 is further improved.

また、図示の如く、吊りリード12は、アイランド7の4つのコーナー部から延在し、樹脂パッケージ2の中側へと折り曲げ加工される。この構造により、吊りリード12の大部分は、樹脂パッケージ2内に配置され、アンカー効果が得られる。   Further, as shown in the drawing, the suspension leads 12 extend from the four corners of the island 7 and are bent into the inside of the resin package 2. With this structure, most of the suspension leads 12 are arranged in the resin package 2 and an anchor effect is obtained.

また、図示の如く、アイランド7と吊りリード12の一部が、樹脂パッケージ2の裏面から露出することで、半導体素子9から発生する熱が、速やかに樹脂パッケージ2外へと放出される。   Further, as shown in the drawing, the island 7 and a part of the suspension lead 12 are exposed from the back surface of the resin package 2, so that heat generated from the semiconductor element 9 is quickly released to the outside of the resin package 2.

次に、図2(A)に示す如く、リードフレーム13は、例えば、厚さが約100〜250μmの銅を主材料とするフレームから成る。しかし、リードフレーム13は、Fe―Niを主材料としても良いし、他の金属材料でも良い。そして、リードフレーム13には、一点鎖線で示す搭載部14が複数形成される。   Next, as shown in FIG. 2A, the lead frame 13 is made of, for example, a frame whose main material is copper having a thickness of about 100 to 250 μm. However, the lead frame 13 may be made of Fe—Ni as a main material or other metal material. A plurality of mounting portions 14 indicated by alternate long and short dash lines are formed on the lead frame 13.

この搭載部14は、主に、アイランド7と、アイランド7を支持する吊りリード12と、アイランド7の4側辺の近傍に一端が位置するリード4と、複数のリード4を支持するタイバー15とから構成される。そして、吊りリード12はアイランド7の4つのコーナー部から延在し、タイバー15の交差する支持領域16と連結する。支持領域16はリードフレーム13と一体となり、アイランド7がリードフレーム13に支持される。そして、アイランド7に点線で示す領域が半導体素子9の固着領域であり、本発明のポイントである貫通孔11は、その固着領域を囲むような位置に配置される。   The mounting portion 14 mainly includes an island 7, a suspension lead 12 that supports the island 7, a lead 4 having one end located near the four sides of the island 7, and a tie bar 15 that supports a plurality of leads 4. Consists of The suspension leads 12 extend from the four corners of the island 7 and are connected to the support region 16 where the tie bars 15 intersect. The support region 16 is integrated with the lead frame 13, and the island 7 is supported by the lead frame 13. A region indicated by a dotted line on the island 7 is a fixing region of the semiconductor element 9, and the through hole 11 which is a point of the present invention is disposed at a position surrounding the fixing region.

次に、図2(B)に示す如く、アイランド7上には半導体素子9が固着され、電極パッド17とリード4とは銅線10により電気的に接続される。しかし、この接続工程に於いて、銅線10、銅線10とリード4や電極パッド17との接続部位等の酸化を防止する必要がある。図5(B)を用いて後述するが、貫通孔11から不活性ガスを引き抜く構造とすることで、不活性ガスは上方からボンディング領域へと流れ、銅線10の配置領域が不活性ガスにより満たされ、その酸化が防止される。その結果、ワイヤーボンディング材料として、不活性で安定した材料である金線に換えて銅線10を用いることが可能となり、大幅なコスト低減が可能となる。   Next, as shown in FIG. 2B, the semiconductor element 9 is fixed on the island 7, and the electrode pad 17 and the lead 4 are electrically connected by the copper wire 10. However, in this connection step, it is necessary to prevent oxidation of the copper wire 10, the connection portion between the copper wire 10 and the lead 4, or the electrode pad 17. As will be described later with reference to FIG. 5 (B), by adopting a structure in which the inert gas is extracted from the through hole 11, the inert gas flows from the upper side to the bonding region, and the arrangement region of the copper wire 10 is caused by the inert gas. It is filled and its oxidation is prevented. As a result, the copper wire 10 can be used as the wire bonding material instead of the gold wire which is an inert and stable material, and the cost can be greatly reduced.

また、大電流を扱う半導体素子では、1つの電極パッド17に対して複数本の金線を用いて大電流に対応するが、銅線の場合には、非抵抗が小さく、電流容量が大きいため金線の場合よりも少ない本数で大電流に対応できる。その結果、金線の場合よりも電極パッド17の形成面積を小さくでき、半導体素子の微細化が実現される。   Further, in a semiconductor element that handles a large current, a plurality of gold wires are used for one electrode pad 17 to cope with a large current. However, in the case of a copper wire, the non-resistance is small and the current capacity is large. A large number of wires can be used with fewer wires than in the case of gold wires. As a result, the formation area of the electrode pad 17 can be made smaller than in the case of a gold wire, and miniaturization of the semiconductor element is realized.

尚、本実施の形態では、貫通孔11の形状は、図示した形状に限定するものではない。貫通孔11の形状は、例えば、円形、楕円形または矩形の場合でも良く、貫通孔11は、隣り合うリード4間の離間幅と同等の幅か、またはそれ以上の幅を有するものであれば良い。この構造により、不活性ガスの吸引力も大きくなり、銅線10の酸化が防止される効果が得られる。   In the present embodiment, the shape of the through hole 11 is not limited to the illustrated shape. The shape of the through hole 11 may be, for example, a circle, an ellipse, or a rectangle, and the through hole 11 has a width equal to or larger than the separation width between adjacent leads 4. good. With this structure, the suction force of the inert gas is increased, and the effect of preventing the copper wire 10 from being oxidized can be obtained.

また、QFP方式のパッケージやQFN(Quad Flat Non−leaded Package)方式のパッケージ等のように、個別モールド型のパッケージに限定するものではない。例えば、MAP(Mold Array Package)方式のように複数の搭載部を一括して樹脂モールドした後、個片化される樹脂パッケージについても、上述した同様な効果が得られる。その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。   Further, the present invention is not limited to an individual mold type package such as a QFP type package or a QFN (Quad Flat Non-Leaded Package) type package. For example, the same effect as described above can be obtained with respect to a resin package that is individually molded after a plurality of mounting portions are resin-molded collectively as in the MAP (Mold Array Package) method. In addition, various modifications can be made without departing from the scope of the present invention.

次に、他の実施の形態の半導体装置について説明する。図3(A)は、図3(B)に示す樹脂パッケージのB−B線方向の断面図を示す。図3(B)は、樹脂パッケージの表面側から見たリードフレームとヒートシンクを説明する図である。尚、本実施の形態の説明において、適宜、図1及び図2を用いて前述した半導体装置の説明を参照する。   Next, semiconductor devices according to other embodiments will be described. FIG. 3A shows a cross-sectional view of the resin package shown in FIG. FIG. 3B is a view for explaining the lead frame and the heat sink as viewed from the surface side of the resin package. Note that in the description of this embodiment, the description of the semiconductor device described above with reference to FIGS.

図3(A)に示す如く、半導体装置21は、例えば、QFPから成り、その樹脂パッケージ22の裏面24からは、ヒートシンク23裏面の一部が露出する。半導体素子26が、例えば、Agペースト、半田等の接着材25によりヒートシンク23上に固着される。半導体素子26の電極パッドとリード27のインナーリード部分とは本願のテーマである銅線28により電気的に接続される。銅線28の形状、材質は、前述した銅線10と同じである。   As shown in FIG. 3A, the semiconductor device 21 is made of, for example, QFP, and a part of the back surface of the heat sink 23 is exposed from the back surface 24 of the resin package 22. The semiconductor element 26 is fixed on the heat sink 23 with an adhesive 25 such as Ag paste or solder. The electrode pad of the semiconductor element 26 and the inner lead portion of the lead 27 are electrically connected by the copper wire 28 which is the theme of the present application. The shape and material of the copper wire 28 are the same as those of the copper wire 10 described above.

また、ヒートシンク23には、半導体素子26の固着領域の周囲であり、銅線28の配置領域の下方に貫通孔29が形成される。そして、リード27のインナーリード部分が、ヒートシンク23上に配置され、リード27のインナーリードの先端は、貫通孔29の手前で終端している。図1及び図2で述べたように、貫通孔29がヒートシンク23に配置されることで、ダイボンディング時やワイヤーボンディング時に不活性ガス(フォーミングガス)の流通経路として利用され、銅線28の酸化が防止される。更に、貫通孔29は絶縁性樹脂により埋設されることで、ヒートシンク23と絶縁性樹脂との密着領域が増大し、ヒートシンク23と樹脂パッケージ22との密着度も向上される。   Further, a through hole 29 is formed in the heat sink 23 around the fixed region of the semiconductor element 26 and below the region where the copper wire 28 is disposed. The inner lead portion of the lead 27 is disposed on the heat sink 23, and the tip of the inner lead of the lead 27 terminates before the through hole 29. As described in FIGS. 1 and 2, the through hole 29 is arranged in the heat sink 23 so that it can be used as a distribution path of an inert gas (forming gas) at the time of die bonding or wire bonding, thereby oxidizing the copper wire 28. Is prevented. Furthermore, since the through hole 29 is embedded with an insulating resin, an adhesion region between the heat sink 23 and the insulating resin is increased, and an adhesion degree between the heat sink 23 and the resin package 22 is also improved.

次に、図3(B)に示す如く、ヒートシンク23の長辺は、半導体素子26の1辺の長さに対し2〜4倍程度であり、ヒートシンク23の短辺は、半導体素子26の1辺の長さに対し1〜2倍程度である。そして、ヒートシンク23は、樹脂パッケージ22の裏面よりも一回り小さく、逆に言えば、その裏面のほぼ全面に渡り配置される。ヒートシンク23が、樹脂パッケージ22の裏面側から露出することで、放熱性を向上できる。   Next, as shown in FIG. 3B, the long side of the heat sink 23 is about 2 to 4 times the length of one side of the semiconductor element 26, and the short side of the heat sink 23 is 1 of the semiconductor element 26. It is about 1 to 2 times the length of the side. The heat sink 23 is slightly smaller than the back surface of the resin package 22. In other words, the heat sink 23 is arranged over almost the entire back surface. Since the heat sink 23 is exposed from the back side of the resin package 22, heat dissipation can be improved.

また、図示したように、貫通孔29がワイヤーボンディング領域に形成され、不活性ガスが貫通孔29を介して吸引されることで、不活性ガスがヒートシンク23側へと流れ易くなる。そして、銅線28、銅線28とリード24や電極パッドとの接続部位等が、不活性ガスにより満たされ易くなり、その酸化が防止される。   Further, as shown in the drawing, the through hole 29 is formed in the wire bonding region, and the inert gas is sucked through the through hole 29, so that the inert gas easily flows to the heat sink 23 side. And the connection part of the copper wire 28, the copper wire 28, the lead | read | reed 24, and an electrode pad etc. become easy to be filled with an inert gas, and the oxidation is prevented.

次に、本発明の半導体装置の製造方法について説明する。図4(A)及び(B)は、リードフレームを説明するための平面図である。図5(A)は、クランパーを説明するための平面図である。図5(B)は、ワイヤーボンディング時における不活性ガスの流れを説明するための断面図である。図6(A)〜(C)は、ワイヤーボンディング工程を説明するための断面図である。図7は、樹脂モールド工程を説明するための平面図である。図8は、リードの加工、切断工程を説明するための(A)断面図、(B)斜視図である。尚、以下の説明では、図1及び図2を用いて説明した半導体装置の各構成要素と同じ構成要素には同じ符番を付す。また、本実施の形態の製造方法の説明において、適宜、図1及び図2を用いて説明する。   Next, a method for manufacturing a semiconductor device of the present invention will be described. 4A and 4B are plan views for explaining the lead frame. FIG. 5A is a plan view for explaining the clamper. FIG. 5B is a cross-sectional view for explaining the flow of an inert gas during wire bonding. 6A to 6C are cross-sectional views for explaining the wire bonding step. FIG. 7 is a plan view for explaining the resin molding process. FIGS. 8A and 8B are a cross-sectional view and a perspective view, respectively, for explaining the lead processing and cutting steps. In the following description, the same reference numerals are assigned to the same components as those of the semiconductor device described with reference to FIGS. Further, in the description of the manufacturing method of the present embodiment, it will be described with reference to FIGS. 1 and 2 as appropriate.

先ず、図4(A)に示す如く、例えば、銅を主材料とするリードフレーム13を準備する。このリードフレーム13には、一点鎖線で示すように、複数の搭載部14が形成される。リードフレーム13の長手方向(紙面X軸方向)は、スリット31により一定間隔に区切られる。そして、スリット31にて区切られたリードフレーム13の1区間には、例えば、リードフレーム13の短手方向(紙面Y軸方向)に2つの搭載部14が配置される。また、リードフレーム13の長手方向には、その上下端部領域にインデックス孔32が一定の間隔で設けられ、各工程での位置決めに用いられる。尚、搭載部14を構成する詳細の構造は、図2(A)にて説明した通りである。   First, as shown in FIG. 4A, for example, a lead frame 13 mainly made of copper is prepared. A plurality of mounting portions 14 are formed on the lead frame 13 as indicated by a one-dot chain line. The longitudinal direction of the lead frame 13 (paper surface X-axis direction) is divided by the slits 31 at regular intervals. Then, in one section of the lead frame 13 delimited by the slits 31, for example, two mounting portions 14 are arranged in the short direction of the lead frame 13 (the Y axis direction on the paper surface). In the longitudinal direction of the lead frame 13, index holes 32 are provided in the upper and lower end regions at regular intervals, and are used for positioning in each step. The detailed structure constituting the mounting portion 14 is as described with reference to FIG.

また、図5(B)を用いて後述するが、図4(B)の点線にて示す領域が、載置台33のガス抜き孔39の配置領域であり、例えば、1つの貫通孔11に対して1つのガス抜き孔39が配置される。そして、個々の貫通孔11の長さLを大きくすることで、載置台33上にリードフレーム13を配置する際に、リードフレーム13が若干ずれた場合でも、貫通孔11を介して確実に不活性ガスを吸引することが可能となる。尚、本実施の形態では、不活性ガスの流れを載置台33側へと向け、その流れの中に銅線10や銅線10の接続部等を配置し、それらの酸化を防止するものである。そのため、ガス抜き孔39が貫通孔11よりも大きくても良く、例えば、アイランド7とリード4との間のスペースやリード4同士間のスペースを利用して不活性ガスを引き抜く場合でも良い。   Further, as will be described later with reference to FIG. 5B, a region indicated by a dotted line in FIG. 4B is an arrangement region of the gas vent holes 39 of the mounting table 33, for example, for one through hole 11. One vent hole 39 is arranged. Further, by increasing the length L of each through hole 11, even when the lead frame 13 is slightly displaced when the lead frame 13 is disposed on the mounting table 33, the through hole 11 can be reliably prevented. The active gas can be sucked. In the present embodiment, the flow of the inert gas is directed toward the mounting table 33, and the copper wire 10 and the connection portion of the copper wire 10 are arranged in the flow to prevent the oxidation thereof. is there. For this reason, the gas vent hole 39 may be larger than the through hole 11. For example, the inert gas may be extracted by using the space between the island 7 and the lead 4 or the space between the leads 4.

次に、図2(B)に示す如く、リードフレーム13の搭載部14毎に、アイランド7上に接着材8(図1(A)参照)を用いて半導体素子9を固着する。このとき、加熱機構が組み込まれたダイボンド装置の載置台上にリードフレーム13を配置し、クランパーにてリードフレーム13を載置台上に固定する。そして、リードフレーム13のアイランド7やその作業領域内を、例えば、250〜260℃程度に加熱した状態にして、それぞれアイランド7上に連続して半導体素子9を固着する。詳細は図5(B)にて説明するワイヤーボンディング工程の不活性ガスの流れと同様であるが、リードフレーム13を固定するクランパーからその作業領域内に不活性ガスが供給される。そして、不活性ガスが、アイランド7の貫通孔11を介して載置台側へと引き抜かれることで、リードフレーム13の周囲は不活性ガスにより満たされる。その結果、リードフレーム13は、長時間に渡り高温状態下に配置されるが、その酸化が防止される。   Next, as shown in FIG. 2B, the semiconductor element 9 is fixed to the island 7 using the adhesive 8 (see FIG. 1A) for each mounting portion 14 of the lead frame 13. At this time, the lead frame 13 is arranged on a mounting table of a die bonding apparatus in which a heating mechanism is incorporated, and the lead frame 13 is fixed on the mounting table by a clamper. Then, the island 7 of the lead frame 13 and the work area thereof are heated to, for example, about 250 to 260 ° C., and the semiconductor elements 9 are continuously fixed on the islands 7 respectively. The details are the same as the flow of the inert gas in the wire bonding process described with reference to FIG. 5B, but the inert gas is supplied into the working area from the clamper that fixes the lead frame 13. And the periphery of the lead frame 13 is filled with the inert gas by the inert gas being pulled out to the mounting table side through the through hole 11 of the island 7. As a result, the lead frame 13 is placed in a high temperature state for a long time, but its oxidation is prevented.

次に、ワイヤーボンディング装置の載置台33上にリードフレーム13を配置し、リードフレーム13の搭載部14毎にワイヤーボンディングを行う。   Next, the lead frame 13 is disposed on the mounting table 33 of the wire bonding apparatus, and wire bonding is performed for each mounting portion 14 of the lead frame 13.

先ず、図5(A)に示すクランパー34について説明する。クランパー34は、不活性ガスを送り込むパイプ35と、搭載部14の大きさに合わせて開口された開口領域36とを有する。そして、クランパー34のパイプ35から送風された不活性ガスは、リード固定領域37間から開口領域36へと吹き込む。銅線10の径が45μmの場合には、例えば、1.9リットル/分の窒素ガス(若干の水素ガスが含まれる)が用いられる。そして、銅線10は、高温状態の作業領域内に置かれることで酸化し易い状態となるが、前述の不活性ガスの存在により銅線10の酸化が防止される。   First, the clamper 34 shown in FIG. The clamper 34 includes a pipe 35 that feeds an inert gas, and an opening region 36 that is opened in accordance with the size of the mounting portion 14. Then, the inert gas blown from the pipe 35 of the clamper 34 is blown into the opening region 36 from between the lead fixing regions 37. In the case where the diameter of the copper wire 10 is 45 μm, for example, 1.9 liter / min of nitrogen gas (including some hydrogen gas) is used. And although the copper wire 10 will be in the state which is easy to oxidize by putting in the working area | region of a high temperature state, the oxidation of the copper wire 10 is prevented by presence of the above-mentioned inert gas.

更に、開口領域36の周囲のクランパー34には、搭載部14のリード4形状に合わせて複数のリード固定領域37が、櫛歯形状に配置される。そして、複数のリード4は、リード固定領域37により個別に載置台33(図5(B)参照)上に固定され、ステッチボンディングが行われる。このとき、銅線10は金線と比較して硬いが、延性を有する。そのため、確実に銅線10を切断するためにステッチボンディング時の荷重(キャピラリ40(図6(A)参照)から加えられる荷重)が金線よりも大きくなる。そして、複数のリード4は、それぞれの形状に対応したクランパー34のリード固定領域37により個別にしっかりと固定されることで、ステッチボンディング時の荷重の逃げが防止される。そして、銅線10はリード4上に確実に接着した状態にて切断される。   Furthermore, a plurality of lead fixing regions 37 are arranged in a comb-tooth shape on the clamper 34 around the opening region 36 in accordance with the shape of the lead 4 of the mounting portion 14. The plurality of leads 4 are individually fixed on the mounting table 33 (see FIG. 5B) by the lead fixing region 37, and stitch bonding is performed. At this time, the copper wire 10 is harder than the gold wire, but has ductility. Therefore, in order to cut the copper wire 10 reliably, the load at the time of stitch bonding (the load applied from the capillary 40 (see FIG. 6A)) becomes larger than that of the gold wire. The plurality of leads 4 are individually and securely fixed by the lead fixing regions 37 of the clampers 34 corresponding to the respective shapes, so that escape of load during stitch bonding is prevented. Then, the copper wire 10 is cut in a state where it is securely bonded onto the lead 4.

次に、図5(B)に示す不活性ガスの流れについて説明する。加熱機構38を有する載置台33には、ガス抜き孔39が形成される。そして、ガス抜き孔39上面にアイランド7の貫通孔11が位置するように、載置台33上にリードフレーム13を配置する。点線の矢印で示すように、不活性ガスは、クランパー34のリード固定領域37間から開口領域36の中央側(搭載部)へと吹き込まれる。つまり、開口領域36では、その全周囲から中央側へと不活性ガスが吹き込まれる。そして、開口領域36上は遮蔽されてなく、開口領域36内が高温状態となることで、不活性ガスは、上昇気流により開口領域36上方へと放出されてしまう。そこで、本実施の形態では、貫通孔11を介して載置台33のガス抜き孔39から不活性ガスを吸引することで、リード4の上から吹き込まれた不活性ガスは、主に、アイランド7の貫通孔11側へと流れる。その結果、不活性ガスの主たる流れは、開口領域36の下方側(載置台33側)へとなり、銅線10の配置領域は不活性ガスにて満たされ易い領域となる。   Next, the flow of the inert gas illustrated in FIG. 5B will be described. A gas vent hole 39 is formed in the mounting table 33 having the heating mechanism 38. Then, the lead frame 13 is disposed on the mounting table 33 so that the through hole 11 of the island 7 is positioned on the upper surface of the gas vent hole 39. As indicated by the dotted arrows, the inert gas is blown from between the lead fixing regions 37 of the clamper 34 toward the center side (mounting portion) of the opening region 36. That is, in the opening region 36, the inert gas is blown from the entire periphery to the center side. Then, the opening region 36 is not shielded, and the inside of the opening region 36 is brought into a high temperature state, so that the inert gas is released upward of the opening region 36 due to the rising airflow. Therefore, in the present embodiment, the inert gas blown from the top of the lead 4 is mainly sucked from the island 7 by sucking the inert gas from the gas vent hole 39 of the mounting table 33 through the through hole 11. Flows to the through-hole 11 side. As a result, the main flow of the inert gas is to the lower side (the mounting table 33 side) of the opening region 36, and the arrangement region of the copper wire 10 is a region that is easily filled with the inert gas.

そして、クランパー34の開口領域36内である作業領域は、加熱機構38により、例えば、250〜260℃程度に維持される。ワイヤーボンディングされた銅線10は、半導体素子9の全ての電極パッドに対しワイヤーボンディングが終わるまでは、その高温状態の作業領域内に置かれる。そこで、前述した不活性ガスの流れを起すことで、銅線10の周囲には不活性ガスが充満し易く、効率的に銅線10の酸化が防止される。また、リード4等のリードフレーム13も酸化され易い状況下に置かれるが、不活性ガスが載置台33側へと流れることで、リードフレーム13も効率的に酸化が防止される。   The work area in the opening area 36 of the clamper 34 is maintained at, for example, about 250 to 260 ° C. by the heating mechanism 38. The wire wire-bonded copper wire 10 is placed in the high-temperature work area until the wire bonding is completed for all the electrode pads of the semiconductor element 9. Therefore, by causing the flow of the inert gas described above, the inert gas is easily filled around the copper wire 10 and the oxidation of the copper wire 10 is efficiently prevented. Further, the lead frame 13 such as the lead 4 is also placed in a state where it is easily oxidized. However, the inert gas flows toward the mounting table 33, so that the lead frame 13 is also efficiently prevented from being oxidized.

尚、不活性ガスは、クランパー34のリード固定領域37間から吹き込まれる場合に限定されるものではなく、例えば、ガスノズルを利用して開口領域36内に吹き込まれる場合でも良い。また、開口領域36内に吹き込まれた全ての不活性ガスが、載置台33のガス抜き孔39から吸引される訳ではなく、不活性ガスの一部は開口領域36上方へと流れる。そして、開口領域36及びその周辺は、不活性ガスにより満たされた領域となる。   The inert gas is not limited to the case where the inert gas is blown from between the lead fixing regions 37 of the clamper 34. For example, the inert gas may be blown into the opening region 36 using a gas nozzle. Further, not all the inert gas blown into the opening region 36 is sucked from the gas vent holes 39 of the mounting table 33, and a part of the inert gas flows upward of the opening region 36. And the opening area | region 36 and its periphery become an area | region filled with the inert gas.

次に、図6(A)に示す如く、キャピラリ40の中心孔には銅線41が挿通され、キャピラリ40の上方には銅線41を挟持するためのワイヤークランパー42が配置される。そして、予めキャピラリ40の先端からは所望の長さの銅線41が導出し、キャピラリ40近傍に位置するトーチ43から放電され、キャピラリ40の先端にはイニシャルボール44が形成される。ここで、径が45μmの銅線41を用いた場合、イニシャルボール44の形成時には、例えば、125mAの電流が必要となる。そして、同じ径の金線を用いてイニシャルボールを形成する際には、例えば、75mAの電流が必要となる。この電流の相違は、銅線41が金線と比較して熱伝導率が高く、放熱性に優れる材料であり、銅線41は不活性ガスにより冷却され易いからである。尚、図示したように、イニシャルボール44を形成する作業領域には、上記不活性ガスが供給される。そのため、不活性ガス内に含まれる水素による酸化還元作用により、イニシャルボール44の球面形状が安定して形成される。   Next, as shown in FIG. 6A, a copper wire 41 is inserted into the center hole of the capillary 40, and a wire clamper 42 for holding the copper wire 41 is disposed above the capillary 40. Then, a copper wire 41 having a desired length is led out from the tip of the capillary 40 in advance and discharged from the torch 43 located in the vicinity of the capillary 40, and an initial ball 44 is formed at the tip of the capillary 40. Here, when the copper wire 41 having a diameter of 45 μm is used, for example, a current of 125 mA is required when the initial ball 44 is formed. When an initial ball is formed using a gold wire having the same diameter, for example, a current of 75 mA is required. This difference in current is because the copper wire 41 is a material having higher thermal conductivity and excellent heat dissipation than the gold wire, and the copper wire 41 is easily cooled by an inert gas. As shown in the drawing, the inert gas is supplied to the work area where the initial ball 44 is formed. Therefore, the spherical shape of the initial ball 44 is stably formed by the redox action of hydrogen contained in the inert gas.

次に、図6(B)に示す如く、キャピラリ40が半導体素子9の電極パッド17上に向けて下降し、イニシャルボール44を電極パッド17上面に押し付ける。そして、超音波振動併用の熱圧着技術により、キャピラリ40の先端に形成されたイニシャルボール44が電極パッド17と接続する。尚、この作業時には、ワイヤークランパー42は開放された状態である。   Next, as shown in FIG. 6B, the capillary 40 descends onto the electrode pad 17 of the semiconductor element 9 and presses the initial ball 44 against the upper surface of the electrode pad 17. Then, the initial ball 44 formed at the tip of the capillary 40 is connected to the electrode pad 17 by a thermocompression bonding technique using ultrasonic vibration. During this operation, the wire clamper 42 is in an open state.

次に、図6(C)に示す如く、ワイヤークランパー42が開放された状態にて、一定のループを描きながらキャピラリ40がリード4上面に移動する。そして、ワイヤークランパー42にて銅線41を挟持した後、キャピラリ40がリード4上に下降し、銅線41をリード4上面に押し付ける。そして、超音波振動併用の熱圧着技術により銅線41がリード4と接続する。その後、キャピラリ40が上昇し、イニシャルボールとなる長さの銅線41をキャピラリ40の先端から導出し、銅線41を切断する。その後、キャピラリ40の先端から導出した銅線41が、前述したようにイニシャルボールへと加工される。   Next, as shown in FIG. 6C, the capillary 40 moves to the upper surface of the lead 4 while drawing a fixed loop in a state where the wire clamper 42 is opened. Then, after the copper wire 41 is clamped by the wire clamper 42, the capillary 40 is lowered onto the lead 4 and presses the copper wire 41 against the upper surface of the lead 4. The copper wire 41 is connected to the lead 4 by a thermocompression bonding technique using ultrasonic vibration. Thereafter, the capillary 40 is raised, and a copper wire 41 having a length to become an initial ball is led out from the tip of the capillary 40, and the copper wire 41 is cut. Thereafter, the copper wire 41 led out from the tip of the capillary 40 is processed into an initial ball as described above.

その後、半導体素子9の全ての電極パッド17とリード4に対して、図6(A)〜(C)を用いて前述したワイヤーボンディング作業を繰り返す。このとき、リード4は、それぞれ個別にクランパー34のリード固定領域37により載置台33上に固定されることで、銅線41が確実に切断される。これは、リード固定領域37により個別にリード4が固定され、安定したボンディングが可能となるからである。   Thereafter, the wire bonding operation described above with reference to FIGS. 6A to 6C is repeated for all the electrode pads 17 and the leads 4 of the semiconductor element 9. At this time, the lead 4 is individually fixed on the mounting table 33 by the lead fixing region 37 of the clamper 34, so that the copper wire 41 is reliably cut. This is because the leads 4 are individually fixed by the lead fixing region 37 and stable bonding is possible.

次に、図7(A)に示す如く、リードフレーム13の裏面側には、例えば、PET材から成る耐熱用シート(図示せず)が貼り合わされ、その耐熱用シートと樹脂封止金型(図示せず)が当接するように、リードフレーム13を樹脂封止金型に設置する。そして、個々の樹脂封止金型のキャビティ内に樹脂を充填し、樹脂パッケージ2を形成する。図示したように、リードフレーム13には、搭載部14毎に複数の樹脂パッケージ2が形成される。尚、耐熱用シートを用いることで、アイランド7(図1(A)参照)の裏面側への樹脂の廻り込みを防止し、樹脂パッケージ2の裏面側の平坦性が維持される。   Next, as shown in FIG. 7A, a heat-resistant sheet (not shown) made of, for example, a PET material is bonded to the back side of the lead frame 13, and the heat-resistant sheet and a resin-sealed mold ( The lead frame 13 is placed in a resin-sealed mold so that the contact (not shown) abuts. Then, the resin is filled into the cavities of the individual resin sealing molds, and the resin package 2 is formed. As illustrated, a plurality of resin packages 2 are formed on the lead frame 13 for each mounting portion 14. In addition, by using the heat-resistant sheet, the resin 7 can be prevented from wrapping around the back surface of the island 7 (see FIG. 1A), and the flatness of the back surface of the resin package 2 can be maintained.

最後に、図8(A)に示す如く、リードフレーム13をリード曲げ加工用の台座45、46上に設置する。このとき、樹脂パッケージ2近傍のリード4をリード支持機構47で固定し、リード4の先端側(タイバー15側)を台座46上に設置する。そして、パンチ48にてリード4の先端側を切断しつつ、リード4を曲げ加工する。そして、この工程にてタイバー15(図2(A)参照)や支持領域16(図2(A)参照)も打ち抜かれることで、図8(B)に示すように、リードフレーム13から樹脂パッケージ2が切断される。   Finally, as shown in FIG. 8A, the lead frame 13 is placed on the pedestals 45 and 46 for lead bending. At this time, the lead 4 in the vicinity of the resin package 2 is fixed by the lead support mechanism 47, and the tip end side (tie bar 15 side) of the lead 4 is placed on the base 46. Then, the lead 4 is bent while cutting the tip end side of the lead 4 with the punch 48. In this step, the tie bar 15 (see FIG. 2A) and the support region 16 (see FIG. 2A) are also punched, so that the resin package is removed from the lead frame 13 as shown in FIG. 8B. 2 is cut.

尚、本実施の形態では、クランパー34の開口領域36内に吹き込まれる不活性ガスの温度に関し特に限定していない。しかし、例えば、クランパー34内に加熱機構を設置する等により、不活性ガスを開口領域内と同等に加熱した後、開口領域36内に吹き込む場合でも良い。この場合には、銅線41が不活性ガスにより冷却され難く、イニシャルボール形成時の電流効率を向上させることができる。   In the present embodiment, the temperature of the inert gas blown into the opening region 36 of the clamper 34 is not particularly limited. However, for example, an inert gas may be heated in the same manner as in the opening region by installing a heating mechanism in the clamper 34 and then blown into the opening region 36. In this case, the copper wire 41 is not easily cooled by the inert gas, and the current efficiency at the time of forming the initial ball can be improved.

また、ワイヤーボンディングの際、クランパー34の開口領域36上方がプレート等の蓋部材によりカバーされない状況にて作業を行う場合について説明したが、この場合に限定するものではない。例えば、ワイヤーボンディングを行う作業領域のみ開口した蓋部材により開口領域36上方をカバーし、その蓋部材が作業領域に合わせてスライドする場合でもよい。この場合には、開口領域36上方が概ね蓋部材によりカバーされることで、開口領域36内が不活性ガスで充満され易くなる。そして、不活性ガスの供給量も低減され、製造コストを抑制できる効果も得られる。   In addition, although the case where the work is performed in a state where the upper portion of the opening region 36 of the clamper 34 is not covered with a lid member such as a plate during wire bonding has been described, the present invention is not limited to this case. For example, the upper part of the opening area 36 may be covered with a lid member that is opened only in the work area where wire bonding is performed, and the lid member may slide in accordance with the work area. In this case, the upper part of the opening region 36 is generally covered with the lid member, so that the inside of the opening region 36 is easily filled with the inert gas. And the supply amount of an inert gas is also reduced and the effect which can suppress manufacturing cost is also acquired.

また、ワイヤーボンディングの際、個々のリード4が、個別にクランパー34のリード固定領域37により固定される場合について説明したがこの場合に限定するものではない。例えば、リードの形状やリードの高さ等のリード配置状況に応じて、隣接する複数のリード毎に区分けしてリード固定領域により固定する場合でもよい。この場合には、リード固定領域の数は、リードの総数よりも少なくなるが、不活性ガスの吹き込み方法は、上述したようにリード固定領域間から吹き込む方法と同様である。その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。   Further, although the case where the individual leads 4 are individually fixed by the lead fixing region 37 of the clamper 34 during wire bonding has been described, the present invention is not limited to this case. For example, a plurality of adjacent leads may be divided and fixed by a lead fixing region according to the lead arrangement situation such as the lead shape and lead height. In this case, the number of lead fixing regions is smaller than the total number of leads, but the method of blowing inert gas is the same as the method of blowing from between the lead fixing regions as described above. In addition, various modifications can be made without departing from the scope of the present invention.

1 半導体装置
2 樹脂パッケージ
4 リード
7 アイランド
11 貫通孔
12 吊りリード
34 クランパー
36 開口領域
37 リード固定領域
39 ガス抜き孔
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Resin package 4 Lead 7 Island 11 Through-hole 12 Suspended lead 34 Clamper 36 Opening area 37 Lead fixing area 39 Gas vent hole

Claims (6)

アイランドと、前記アイランドの周囲に配置された複数のリードと、前記アイランド上に接着材を介して固着された半導体素子と、前記半導体素子の電極パッドと前記リードとを電気的に接続する銅線と、前記アイランド、前記リード、前記銅線及び前記半導体素子とを被覆する樹脂パッケージとを有する半導体装置において、
前記アイランドは樹脂パッケージの裏面から露出し、前記露出したアイランドには、前記半導体素子の固着領域の周囲に複数の貫通孔が形成され、前記貫通孔は前記樹脂パッケージを構成する樹脂により充填され、
前記リードの一端側は、前記樹脂パッケージの側面から導出し、折り曲げ加工されることを特徴とする半導体装置。
An island, a plurality of leads arranged around the island, a semiconductor element fixed on the island via an adhesive, and a copper wire electrically connecting the electrode pad of the semiconductor element and the lead And a semiconductor device having a resin package that covers the island, the lead, the copper wire, and the semiconductor element,
The island is exposed from the back surface of the resin package, and the exposed island is formed with a plurality of through holes around a fixed region of the semiconductor element, and the through holes are filled with a resin constituting the resin package,
One end of the lead is led out from a side surface of the resin package and is bent.
前記アイランドは、前記リードよりも前記樹脂パッケージの裏面側であり、且つ前記リードの他端よりも前記樹脂パッケージの中央側に位置し、
前記貫通孔の形状は、円形、楕円形または矩形であり、前記貫通孔の幅は、前記隣り合うリード間の離間幅と同等またはそれ以上の幅であることを特徴とする請求項1に記載の半導体装置。
The island is located on the back side of the resin package with respect to the lead and on the center side of the resin package with respect to the other end of the lead,
The shape of the through hole is a circle, an ellipse, or a rectangle, and the width of the through hole is equal to or larger than the separation width between the adjacent leads. Semiconductor device.
前記アイランドから前記樹脂パッケージ表面側へと延在する吊りリードを有し、前記アイランド近傍の前記吊りリードの一部分は前記樹脂パッケージ裏面から露出し、前記吊りリードの他の部分は前記樹脂パッケージ内に配置されることを特徴とする請求項2に記載の半導体装置。 A suspension lead extending from the island to the resin package surface side is provided, a part of the suspension lead in the vicinity of the island is exposed from the back surface of the resin package, and the other part of the suspension lead is in the resin package. The semiconductor device according to claim 2, wherein the semiconductor device is arranged. アイランドと、前記アイランドの周囲に配置された複数のリードと、前記アイランドから延在された吊りリードとを有する搭載部が設けられ、前記アイランドには複数の貫通孔が設けられたリードフレームを準備し、
前記アイランド上に半導体素子を固着し、前記半導体素子の電極パッドと前記リードとを銅線にて電気的に接続し、前記搭載部を被覆する樹脂パッケージを形成した後、前記リードを曲げ加工しながら前記リードフレームから前記樹脂パッケージを分離する半導体装置の製造方法において、
前記貫通孔をワイヤーボンディング装置の載置台に設けられたガス抜き孔上に位置させ、前記搭載部へ供給した不活性ガスを前記貫通孔を介して前記ガス抜き孔から引き抜くことを特徴とする半導体装置の製造方法。
A mounting portion having an island, a plurality of leads arranged around the island, and a suspension lead extending from the island is provided, and a lead frame having a plurality of through holes is prepared in the island And
A semiconductor element is fixed on the island, the electrode pad of the semiconductor element and the lead are electrically connected with a copper wire, and after forming a resin package that covers the mounting portion, the lead is bent. While in the method of manufacturing a semiconductor device for separating the resin package from the lead frame,
A semiconductor characterized in that the through hole is positioned on a gas vent hole provided on a mounting table of a wire bonding apparatus, and an inert gas supplied to the mounting portion is extracted from the gas vent hole through the through hole. Device manufacturing method.
前記リードに対応したリード固定領域を有するクランパーにより前記リードを個別に固定することで、前記リードフレームを前記載置台上に配置し、
前記クランパーでは、前記リード固定領域間から前記不活性ガスを供給することを特徴とする請求項4に記載の半導体装置の製造方法。
By individually fixing the leads by a clamper having a lead fixing area corresponding to the leads, the lead frame is disposed on the mounting table,
5. The method of manufacturing a semiconductor device according to claim 4, wherein the clamper supplies the inert gas from between the lead fixing regions.
前記樹脂パッケージを形成するときに前記貫通孔内に前記樹脂を充填させ、前記樹脂パッケージと前記貫通孔内の樹脂とを一体に形成することを特徴とする請求項4または請求項5に記載の半導体装置の製造方法。 The said resin package is filled with the said resin when forming the said resin package, The said resin package and the resin in the said through hole are integrally formed, The Claim 4 or Claim 5 characterized by the above-mentioned. A method for manufacturing a semiconductor device.
JP2009085848A 2009-03-31 2009-03-31 Semiconductor device and method of manufacturing the same Pending JP2010238947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009085848A JP2010238947A (en) 2009-03-31 2009-03-31 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009085848A JP2010238947A (en) 2009-03-31 2009-03-31 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010238947A true JP2010238947A (en) 2010-10-21

Family

ID=43093012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009085848A Pending JP2010238947A (en) 2009-03-31 2009-03-31 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010238947A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196006A (en) * 1998-12-24 2000-07-14 Matsushita Electronics Industry Corp Semiconductor device and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196006A (en) * 1998-12-24 2000-07-14 Matsushita Electronics Industry Corp Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4173346B2 (en) Semiconductor device
JP2014220439A (en) Method of manufacturing semiconductor device and semiconductor device
US8692370B2 (en) Semiconductor device with copper wire ball-bonded to electrode pad including buffer layer
JP2006202976A (en) Resin sealed semiconductor device and lead frame
JP2011091145A (en) Semiconductor device and method of manufacturing the same
JP4243270B2 (en) Manufacturing method of semiconductor device
JP2000243891A (en) Resin sealing type semiconductor device, its manufacture method, and lead frame
JP5411529B2 (en) Manufacturing method of semiconductor device
JP2010258286A (en) Semiconductor device and method of manufacturing the same
JP2008113021A (en) Manufacturing method of semiconductor device
JP5585352B2 (en) Lead frame, semiconductor device and manufacturing method thereof
JP2010238947A (en) Semiconductor device and method of manufacturing the same
JP5411553B2 (en) Manufacturing method of semiconductor device
JP4066050B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JP4207791B2 (en) Semiconductor device
JP4747188B2 (en) Manufacturing method of semiconductor device
JP2006216993A (en) Resin sealed semiconductor device
JP4294034B2 (en) Semiconductor device
JP2011238663A (en) Method of manufacturing semiconductor device and wire bonding apparatus
JP5250756B2 (en) Semiconductor device manufacturing method and semiconductor device
JP3795047B2 (en) Resin-sealed semiconductor device
JP2009231322A (en) Manufacturing method of semiconductor device
JP2011204861A (en) Method of manufacturing semiconductor device
JP2004235237A (en) Resin sealing metallic mold and manufacture of semiconductor device using it
JP4225990B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401