JP2010258286A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2010258286A
JP2010258286A JP2009108043A JP2009108043A JP2010258286A JP 2010258286 A JP2010258286 A JP 2010258286A JP 2009108043 A JP2009108043 A JP 2009108043A JP 2009108043 A JP2009108043 A JP 2009108043A JP 2010258286 A JP2010258286 A JP 2010258286A
Authority
JP
Japan
Prior art keywords
island
wire
lead
semiconductor device
electrode pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009108043A
Other languages
Japanese (ja)
Inventor
Motoaki Wakui
元明 和久井
Takashi Kitazawa
崇 北澤
Yasushige Sakamoto
安繁 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009108043A priority Critical patent/JP2010258286A/en
Publication of JP2010258286A publication Critical patent/JP2010258286A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48471Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48477Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding)
    • H01L2224/48478Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball
    • H01L2224/48479Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being a pre-ball (i.e. a ball formed by capillary bonding) the connecting portion being a wedge bond, i.e. wedge on pre-ball on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48499Material of the auxiliary connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/85051Forming additional members, e.g. for "wedge-on-ball", "ball-on-wedge", "ball-on-ball" connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85186Translational movements connecting first outside the semiconductor or solid-state body, i.e. off-chip, reverse stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00015Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed as prior art
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem: since a conventional semiconductor device uses a gold wire as a metallic thin wire, it is difficult to lower the material cost. <P>SOLUTION: The semiconductor device has a semiconductor element 9 fixed on an island 7 and also has a plurality of through holes 12 formed in the island 7 at a periphery of the fixation region of the semiconductor element 9. Then an electrode pad and a lead 6 of the semiconductor element 9 are electrically connected by a Cu wire 11. With this structure, using the Cu wire 11 lowers the material cost as compared with use of an Au wire. Further, an Au ball 10 is formed on the electrode pad to suppress generation of a splash, and electrode pads are prevented from mutually short-circuiting. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、銅線を用いてワイヤーボンディングされる半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device wire-bonded using a copper wire and a method for manufacturing the same.

従来の半導体装置の製造方法の一実施例として、下記の製造方法が知られている。図12(A)及び(B)は、従来の半導体装置の製造方法を説明するための断面図である。   As an example of a conventional method for manufacturing a semiconductor device, the following manufacturing method is known. 12A and 12B are cross-sectional views for explaining a conventional method for manufacturing a semiconductor device.

先ず、図12(A)に示す如く、リードフレームのダイパッド71上に半導体素子72を固着した後、リードフレームをワイヤーボンディング装置に設置する。半導体素子72の電極パッド73を約200℃に加熱し、キャピラリ74が電極パッド73上へと移動する。そして、超音波振動併用の熱圧着技術により、キャピラリ74の先端に形成された金属ボールを電極パッド73へと接続する。一般にこれをボールボンディングと言う。   First, as shown in FIG. 12A, after the semiconductor element 72 is fixed on the die pad 71 of the lead frame, the lead frame is set in a wire bonding apparatus. The electrode pad 73 of the semiconductor element 72 is heated to about 200 ° C., and the capillary 74 moves onto the electrode pad 73. Then, the metal ball formed at the tip of the capillary 74 is connected to the electrode pad 73 by a thermocompression bonding technique using ultrasonic vibration. This is generally called ball bonding.

次に、図12(B)に示す如く、キャピラリ74がインナーリード75の先端部上方へ移動し、インナーリード75に対し金属細線76を所望の荷重にて押し付ける。このとき、インナーリード75を約200℃に加熱し、インナーリード75に対し超音波振動併用の熱圧着技術により金属細線76を接続する。その後、ワイヤークランパー77を閉じた状態にてキャピラリ74が上昇し、金属細線76をインナーリード75の接続箇所にて破断する。一般にこれをステッチボンディングと言う。   Next, as shown in FIG. 12B, the capillary 74 moves to the upper end of the inner lead 75 and presses the metal thin wire 76 against the inner lead 75 with a desired load. At this time, the inner lead 75 is heated to about 200 ° C., and the fine metal wire 76 is connected to the inner lead 75 by a thermocompression bonding technique using ultrasonic vibration. Thereafter, the capillary 74 is raised with the wire clamper 77 closed, and the metal thin wire 76 is broken at the connection portion of the inner lead 75. This is generally called stitch bonding.

そして、図12(A)及び(B)にて説明したワイヤーボンディング作業を繰り返すことで、半導体素子72の全ての電極パッド73とインナーリード75とを金属細線76にて電気的に接続する(例えば、特許文献1参照。)。   Then, by repeating the wire bonding operation described with reference to FIGS. 12A and 12B, all the electrode pads 73 of the semiconductor element 72 and the inner leads 75 are electrically connected by the thin metal wires 76 (for example, , See Patent Document 1).

また、従来の半導体装置の製造方法の他の実施例として、下記の製造方法が知られている。図13(A)〜(C)は、従来の半導体装置の製造方法を説明するための断面図である。   As another example of the conventional method for manufacturing a semiconductor device, the following manufacturing method is known. 13A to 13C are cross-sectional views for explaining a conventional method for manufacturing a semiconductor device.

先ず、図13(A)に示す如く、配線基板81上に半導体チップ82を実装する。半導体チップ82上面には複数の電極パッド83が配置され、キャピラリ84の先端に形成された金属ボール85を電極パッド83へと接続する。その後、ワイヤークランパー86が閉じた状態にてキャピラリ84が上昇し、金属細線87を金属ボール85から切断する。   First, as shown in FIG. 13A, a semiconductor chip 82 is mounted on a wiring board 81. A plurality of electrode pads 83 are arranged on the upper surface of the semiconductor chip 82, and a metal ball 85 formed at the tip of the capillary 84 is connected to the electrode pad 83. Thereafter, the capillary 84 rises with the wire clamper 86 closed, and the fine metal wire 87 is cut from the metal ball 85.

次に、図13(B)に示す如く、キャピラリ84の先端から金属細線87が導出した状態にて、キャピラリ84が金属ボール85上に移動する。そして、金属ボール85に対してステッチボンディングを行った後、ワイヤークランパー86が開放した状態にてキャピラリ84が配線層88上方へ移動する。   Next, as shown in FIG. 13B, the capillary 84 moves onto the metal ball 85 in a state where the thin metal wire 87 is led out from the tip of the capillary 84. After the stitch bonding is performed on the metal ball 85, the capillary 84 moves above the wiring layer 88 with the wire clamper 86 opened.

次に、図13(C)に示す如く、配線層88に対してステッチボンディングを行った後、ワイヤークランパー86が閉じた状態にてキャピラリ84が上昇し、金属細線87を配線層88の接続箇所にて破断する(例えば、特許文献2参照。)。   Next, as shown in FIG. 13C, after stitch bonding is performed on the wiring layer 88, the capillary 84 is raised with the wire clamper 86 closed, and the metal thin wire 87 is connected to the connection portion of the wiring layer 88. (For example, refer to Patent Document 2).

特開平7−29943号公報(第4−5頁、第1図)Japanese Patent Laid-Open No. 7-29943 (page 4-5, FIG. 1) 特開2005−86200号公報(第6−7頁、第1−6図)Japanese Patent Laying-Open No. 2005-86200 (page 6-7, FIG. 1-6)

前述したように、ワイヤーボンディング工程に於いて、金属細線76は、高温状態下に置かれる。この時、金属細線としてAu線を用い、インナーリード75には銀メッキが施されるので、特に、酸化の問題は重要視されなかった。   As described above, in the wire bonding process, the fine metal wires 76 are placed under a high temperature condition. At this time, Au wire is used as the fine metal wire, and the inner lead 75 is plated with silver, so that the oxidation problem was not particularly regarded as important.

しかしながら、最近のデバイスの大容量化、そしてコスト低減に向けて、金属細線76としてCu線を用いる事が検討されている。この場合は、作業中にCu線が酸化されるという問題が発生する。特に、高機能の半導体素子では、端子数も多く、多ピン化される傾向にある。そのため、ワイヤーボンディングされるワイヤーの本数も多くなり、その作業時間が長くなることで、Cu線の酸化対策が重要視される。また、ダイパッド71やインナーリード75等も、メッキ処理等の対応が成されていない場合には、上記作業により酸化されるという問題が発生する。   However, the use of Cu wires as the thin metal wires 76 has been studied for the purpose of increasing the capacity and reducing the cost of recent devices. In this case, the problem that the Cu wire is oxidized during the operation occurs. In particular, a high-performance semiconductor element has a large number of terminals and tends to be multi-pinned. For this reason, the number of wires to be wire-bonded is increased, and the working time is increased, so that countermeasures against Cu wire oxidation are regarded as important. In addition, the die pad 71, the inner lead 75, and the like are also oxidized by the above-described operation when the plating process or the like is not performed.

更に、Cu線はAu線と比較して硬いため、例えば、Alから成る電極パッドに対して、直接、Cuボールをボールボンディングした場合、Cu線よりも軟らかい電極パッドがCuボールの周囲に追いやられ、Cuボールの周囲にスプラッシュが発生する。そして、そのスプラッシュにより隣り合う電極パッドがショートするという問題が発生する。また、Cuボールをボールボンディングした際の衝撃により、電極パッド下方の絶縁層にクラック等のダメージが発生する問題もある。   Furthermore, since the Cu wire is harder than the Au wire, for example, when the Cu ball is directly bonded to the electrode pad made of Al, the electrode pad softer than the Cu wire is driven around the Cu ball. Splash occurs around the Cu ball. And the problem that an adjacent electrode pad short-circuits by the splash generate | occur | produces. In addition, there is a problem that damage such as cracks occurs in the insulating layer below the electrode pad due to the impact when the Cu ball is bonded to the ball.

特に、スプラッシュによるショートを防止するため、電極パッド自体を薄くした場合には、電極パッド下方の絶縁層へダメージが更に加わる事になる。   In particular, when the electrode pad itself is thinned to prevent a short circuit due to splash, damage is further applied to the insulating layer below the electrode pad.

また前述のスプラシュは、以下の問題もある。つまり、Cuボール底面の電極パッドの大部分がスプラッシュとして移動し、Cuボールと電極パッドの接続領域が低減し、接続抵抗値が増大し、あるいは接続不良が起こるという問題が発生する。   The above-mentioned splash has the following problems. That is, most of the electrode pads on the bottom surface of the Cu ball move as splash, the connection area between the Cu ball and the electrode pad is reduced, the connection resistance value is increased, or a connection failure occurs.

一方、コストの面で考えてみると、Au線はCu線と比較して材料費が高く、原価コストを引き上げる問題がある。しかも、Au線はCu線よりも比抵抗が大きいため、電流容量がAuよりも小さく、大電流を扱う半導体素子ではAu線の使用量が増大し、材料コストが余分に掛かるという問題が発生する。   On the other hand, considering the cost, the Au wire has a higher material cost than the Cu wire, and there is a problem of raising the cost cost. In addition, since the resistivity of the Au wire is larger than that of the Cu wire, the current capacity is smaller than that of the Au, and there is a problem that the amount of Au wire used increases in a semiconductor element that handles a large current, resulting in an extra material cost. .

また、従来の技術では、複数のインナーリード75はクランパー(図示せず)にて一括して固定された状態にてワイヤーボンディングが行われる。しかしながら、Cu線はAu線よりも硬いため、ワイヤーボンディング時の荷重がAu線よりも大きくなる。そのため、クランパーとリードとの間に隙間が存在すると、リードの固定状態が悪く、ワイヤーボンディング時の荷重が、その硬度の反発で、逃げ易く、接続不良が起こり易いという問題が発生する。   In the conventional technique, wire bonding is performed in a state where the plurality of inner leads 75 are fixed together by a clamper (not shown). However, since the Cu wire is harder than the Au wire, the load during wire bonding is larger than that of the Au wire. Therefore, if there is a gap between the clamper and the lead, the fixed state of the lead is poor, and the load at the time of wire bonding tends to escape due to the repulsion of the hardness, and a problem of poor connection occurs.

上述した各事情に鑑みて成されたものであり、本発明の半導体装置では、アイランドと、前記アイランドの周囲に配置された複数のリードと、前記アイランド上に固着された半導体素子と、前記半導体素子の電極パッドと前記リードとを電気的に接続する銅を主材料とする細線と、前記アイランド、前記リード、前記銅線及び前記半導体素子とを被覆する樹脂パッケージとを有する半導体装置において、前記細線の一端は、前記パッド上に形成された前記銅よりも柔らかな金属ボールと接続され、前記細線の他端は、前記リードと接続されることを特徴とする。従って、本発明では、銅線を用いることで材料コストが低減される。そして、金属ボールを利用することで、スプラッシュによるショートやパッド電極下方の絶縁層へのクラックを防止できる。   In view of the circumstances described above, the semiconductor device according to the present invention has an island, a plurality of leads arranged around the island, a semiconductor element fixed on the island, and the semiconductor. In a semiconductor device comprising: a thin wire mainly composed of copper that electrically connects an electrode pad of an element and the lead; and a resin package that covers the island, the lead, the copper wire, and the semiconductor element. One end of the fine wire is connected to a metal ball softer than the copper formed on the pad, and the other end of the fine wire is connected to the lead. Therefore, in this invention, material cost is reduced by using a copper wire. By using the metal ball, it is possible to prevent a short circuit due to splash and a crack in the insulating layer below the pad electrode.

また、本発明の半導体装置の製造方法では、アイランドと、前記アイランドの周囲に配置された複数のリードと、前記アイランドから延在された吊りリードとを有する搭載部が設けられたリードフレームを準備し、前記アイランド上に半導体素子を固着し、前記半導体素子の電極パッドと前記リードとを銅を主材料とする細線にて電気的に接続し、前記搭載部を被覆する樹脂パッケージを形成した後、前記リードを曲げ加工し、前記リードフレームから前記樹脂パッケージを分離する半導体装置の製造方法において、前記リードフレームをワイヤーボンディング装置の載置台上に固定し、前記細線の接続領域の上方から、前記接続領域に向かい、前記細線の酸化を防止するガスの流れが生成されることを特徴とする。従って、本発明では、ワイヤーボンディングされた銅線の周囲に酸化を防止するガスが充満され易く、銅線の酸化が防止される。   Further, in the method for manufacturing a semiconductor device of the present invention, a lead frame provided with a mounting portion including an island, a plurality of leads arranged around the island, and a suspension lead extending from the island is prepared. Then, after fixing the semiconductor element on the island, electrically connecting the electrode pad of the semiconductor element and the lead with a thin wire mainly made of copper, and forming a resin package covering the mounting portion In the method of manufacturing a semiconductor device in which the lead is bent and the resin package is separated from the lead frame, the lead frame is fixed on a mounting table of a wire bonding apparatus, and from above the connection region of the thin wire, A gas flow is generated toward the connection region to prevent oxidation of the thin wire. Therefore, in this invention, the gas which prevents oxidation is easily filled around the copper wire by which wire bonding was carried out, and oxidation of a copper wire is prevented.

本発明では、Cu線を用いてワイヤーボンディングが行われることで、Au線が用いられる場合と比較して材料コストが低減される。   In this invention, material cost is reduced compared with the case where Au wire is used by performing wire bonding using Cu wire.

また、本発明では、電極パッド上にAuボールを形成することで、隣り合う電極パッドがスプラッシュによりショートすることを防止できる。   Further, in the present invention, by forming Au balls on the electrode pads, adjacent electrode pads can be prevented from being short-circuited by splash.

また、本発明では、電極パッド内に緩衝材層を形成することで、電極パッド下面の絶縁層へのクラック発生を防止できる。   In the present invention, the formation of a buffer material layer in the electrode pad can prevent the occurrence of cracks in the insulating layer on the lower surface of the electrode pad.

また、本発明では、アイランドの貫通孔が、樹脂パッケージの一部により埋設され、アイランドと樹脂パッケージとの密着性が向上される。   In the present invention, the through hole of the island is buried by a part of the resin package, and the adhesion between the island and the resin package is improved.

また、本発明では、ワイヤーボンディング領域に供給された不活性ガスをアイランド側へと吸引することで、Cu線の周囲に不活性ガスが充満され、Cu線の酸化が防止される。   Moreover, in this invention, the inert gas supplied to the wire bonding area | region is attracted | sucked to the island side, An inert gas is filled in the circumference | surroundings of Cu wire, and the oxidation of Cu wire is prevented.

また、本発明では、クランパーにより複数のリードを個別に固定した状態にてワイヤーボンディング作業を行う。そして、ワイヤーボンディング時の荷重の逃げを防止し、良好な接続状態を実現できる。   In the present invention, the wire bonding operation is performed in a state where a plurality of leads are individually fixed by a clamper. And the escape of the load at the time of wire bonding is prevented, and a favorable connection state is realizable.

また、本発明では、アイランドの貫通孔と吊りリードの裏面側まで樹脂を充填することで、アイランドが樹脂パッケージから抜け落ち難い構造を実現できる。   Further, in the present invention, by filling the resin up to the through hole of the island and the back side of the suspension lead, it is possible to realize a structure in which the island does not easily come off from the resin package.

本発明の実施の形態における半導体装置を説明するための(A)断面図、(B)平面図である。1A is a cross-sectional view for explaining a semiconductor device in an embodiment of the present invention, and FIG. 本発明の実施の形態における半導体装置を説明するための(A)平面図、(B)平面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a plan view for explaining a semiconductor device in an embodiment of the present invention, and FIG. 本発明の実施の形態における半導体装置を説明するための(A)断面図、(B)断面図である。1A and 1B are a cross-sectional view and a cross-sectional view for explaining a semiconductor device in an embodiment of the present invention. 本発明の実施の形態における半導体装置を説明するための(A)断面図、(B)断面図である。1A and 1B are a cross-sectional view and a cross-sectional view for explaining a semiconductor device in an embodiment of the present invention. 本発明の実施の形態における半導体装置を説明するための(A)断面図、(B)断面図である。1A and 1B are a cross-sectional view and a cross-sectional view for explaining a semiconductor device in an embodiment of the present invention. 本発明の実施の形態における半導体装置を説明するための(A)断面図、(B)平面図である。1A is a cross-sectional view for explaining a semiconductor device in an embodiment of the present invention, and FIG. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)平面図、(B)平面図である。It is (A) top view and (B) top view for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)平面図、(B)断面図である。It is (A) top view and (B) sectional drawing for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)断面図、(B)断面図、(C)断面図である。1A is a cross-sectional view for explaining a method of manufacturing a semiconductor device in an embodiment of the present invention, FIG. 2B is a cross-sectional view, and FIG. 本発明の実施の形態における半導体装置の製造方法を説明するための平面図である。It is a top view for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 本発明の実施の形態における半導体装置の製造方法を説明するための(A)断面図、(B)斜視図である。It is (A) sectional drawing and (B) perspective view for demonstrating the manufacturing method of the semiconductor device in embodiment of this invention. 従来の実施の形態における半導体装置の製造方法を説明するための(A)断面図、(B)断面図である。It is (A) sectional drawing for demonstrating the manufacturing method of the semiconductor device in conventional embodiment, (B) It is sectional drawing. 従来の実施の形態における半導体装置の製造方法を説明するための(A)断面図、(B)断面図、(C)断面図である。It is (A) sectional drawing, (B) sectional drawing, (C) sectional drawing for demonstrating the manufacturing method of the semiconductor device in conventional embodiment.

まず本発明について、そのポイントを説明した後に、実施例を説明していく。   First, after explaining the points of the present invention, examples will be described.

前述したように、銅(以下、Cuと記載する。)を金属細線として採用するため、色々な対策が打たれている。最後に述べる実施例は、全ての対策が取り入れられているが、若干の条件の違いにより、その中の少なくとも一つを選択すれば良い。   As described above, various measures have been taken to employ copper (hereinafter referred to as Cu) as the fine metal wire. In the embodiment described at the end, all the measures are taken, but at least one of them may be selected depending on a slight difference in conditions.

(イ):Cuの酸化防止:Cuは酸化されやすく、そのため不活性ガスを接続ポイントの周りに充満させる必要がある。そのため、Cu線両端、半導体素子側の電極パッド、そしてインナーリードの接続ポイントに積極的に不活性ガスが流れるよう、その流れを作っている。その一例として、貫通孔12を介して不活性ガスを吸引して流れを作っている。   (A): Antioxidation of Cu: Cu is easily oxidized, and therefore, it is necessary to fill an inert gas around the connection point. Therefore, the flow is made so that the inert gas flows positively at both ends of the Cu wire, the electrode pads on the semiconductor element side, and the connection points of the inner leads. As an example, a flow is created by sucking an inert gas through the through hole 12.

(ロ):硬いCuボールの衝撃吸収:半導体素子側の対策は、衝撃吸収である。簡単な表現で表わせば、座布団である。例えば座布団の下にガラスがあり、上からボールが落下する場合、ガラスを保護するには、座布団を厚くするだろう。しかし座布団に相当する電極パッド、ここではAlであるが、厚ければ厚いほど、図3(A)の様に、スプラッシュ23という跳ね上がりが発生する。スローモーション的に考えてみると、大まかな球から成るボールは、上から落下すると、先ずは点接触である。つまり、加わるポイントが一点に集中し、それから座布団に沈み込むに従い、徐々に座布団に沈みこむ体積が増加していく。つまり排除する領域が大きくなっていく。これが最大の問題である。要は、点接触で先ず、下層の破壊がスタートし、その後に、電極パッドを構成するAlを外に追い出す作用が働いてしまう。   (B): Shock absorption of hard Cu ball: The countermeasure on the semiconductor element side is shock absorption. In simple terms, it is a cushion. For example, if there is a glass under the cushion and the ball falls from above, the cushion will be thickened to protect the glass. However, although it is an electrode pad corresponding to a cushion, here, Al, the thicker it is, the more splashed splash 23 occurs as shown in FIG. Considering the slow motion, when a ball consisting of a rough sphere falls from above, it is first a point contact. In other words, as the points to be added concentrate on one point and then sink into the cushion, the volume sinking into the cushion gradually increases. In other words, the area to be excluded becomes larger. This is the biggest problem. In short, at the point contact, first, the destruction of the lower layer starts, and then the action of expelling Al constituting the electrode pad works.

そのため、第1の座布団である電極パッド上には、この電極パッドの中に沈まず、裏面全域で第1の座布団に面接触する第2の座布団が必要になる。上からボールが落下しても、その衝撃が、第2の座布団の裏面全域で第1の座布団に加われば、第1の座布団の排除動作が抑止できる。また上から垂直にダイレクトに座布団に力が加わらないような動作をすれば良い。実施例では、第2の座布団がAuボールであり、前記力が加わらない動作がスティッチボンドである。   Therefore, on the electrode pad which is the first cushion, a second cushion which does not sink into the electrode pad but comes into surface contact with the first cushion over the entire back surface is required. Even if the ball falls from above, if the impact is applied to the first cushion on the entire back surface of the second cushion, the removal operation of the first cushion can be suppressed. Moreover, it is sufficient to perform an operation so that no force is applied to the cushions directly from above. In the embodiment, the second cushion is an Au ball, and the operation in which the force is not applied is a stitch bond.

以下に、本発明の実施の形態について説明する。図1(A)は、図1(B)に示す樹脂パッケージのA−A線方向の断面図である。図1(B)は、樹脂パッケージの裏面側からの平面図である。図2(A)は、リードフレームの平面図である。図2(B)は、図2(A)に示すリードフレームにワイヤーボンディングした状況を示す平面図である。図3〜図5は、電極パッドでの接続状態を示す断面図である。   Embodiments of the present invention will be described below. FIG. 1A is a cross-sectional view of the resin package shown in FIG. FIG. 1B is a plan view from the back side of the resin package. FIG. 2A is a plan view of the lead frame. FIG. 2B is a plan view showing a state where wire bonding is performed on the lead frame shown in FIG. 3-5 is sectional drawing which shows the connection state in an electrode pad.

図1(A)に示す如く、半導体装置1は、例えば、QFP(Quad Flat Package)から成る。樹脂パッケージ2は、概ね、表面3、裏面4及び4つの側面5から成る6面体であり、断面で見ると樹脂封止金型の離型性から、その側面5の中央部分が外側に若干突出する。   As shown in FIG. 1A, the semiconductor device 1 is made of, for example, QFP (Quad Flat Package). The resin package 2 is generally a hexahedron composed of a front surface 3, a back surface 4 and four side surfaces 5. When viewed in cross section, the central portion of the side surface 5 slightly protrudes outward from the releasability of the resin-sealed mold. To do.

複数のリード6は、樹脂パッケージ2の4つの側面5から露出し、曲げ加工される。リード6の実装面は樹脂パッケージ2の裏面4とほぼ同一面に配置される。そして、アイランド7は、樹脂パッケージ2の裏面4から露出し、アイランド7上には、例えば、Agペースト、半田等の接着材8により半導体素子9が固着される。半導体素子9の上面には複数の電極パッド18(図2(B)参照)が形成され、電極パッド18上面にはAuボール10が形成される。そして、Auボール10とインナーリード部分とは本願テーマであるCu線11により接続される。Cu線11は、例えば、径が33〜50μm、99.9〜99.99wt%のCuから成るものが使用される。そして、図示したように、Cu線11は、インナーリード上にボールボンディングされ、Auボール10上にステッチボンディングされる。尚、Cu線11の径は、使用される用途に応じて任意の設計変更が可能である。   The plurality of leads 6 are exposed from the four side surfaces 5 of the resin package 2 and bent. The mounting surface of the lead 6 is disposed on substantially the same surface as the back surface 4 of the resin package 2. The island 7 is exposed from the back surface 4 of the resin package 2, and the semiconductor element 9 is fixed onto the island 7 by an adhesive 8 such as Ag paste or solder. A plurality of electrode pads 18 (see FIG. 2B) are formed on the upper surface of the semiconductor element 9, and Au balls 10 are formed on the upper surface of the electrode pads 18. The Au ball 10 and the inner lead portion are connected by the Cu wire 11 which is the theme of the present application. As the Cu wire 11, for example, a wire made of Cu having a diameter of 33 to 50 μm and 99.9 to 99.99 wt% is used. As shown in the figure, the Cu wire 11 is ball-bonded on the inner lead and stitch-bonded on the Au ball 10. In addition, the design of the diameter of the Cu wire 11 can be arbitrarily changed according to the intended use.

図示したように、アイランド7は、半導体素子9のサイズよりも大きく、半導体素子9の固着領域の周囲に複数の貫通孔12が配置される。詳細は後述するが、貫通孔12は、ダイボンディング時やワイヤーボンディング時に不活性ガス(フォーミングガス)の流通経路として利用される。そして、不活性ガスとして、例えば、窒素(N2)ガスが採用され、Cu線11のワイヤーボンディング作業に於いて、接続信頼性を向上させる。つまり、不活性ガスの流れの中にCu線11自体やCu線11の接続領域が配置され、それらの酸化が防止される。   As shown in the drawing, the island 7 is larger than the size of the semiconductor element 9, and a plurality of through holes 12 are arranged around the fixed region of the semiconductor element 9. Although details will be described later, the through hole 12 is used as a flow path of an inert gas (forming gas) during die bonding or wire bonding. For example, nitrogen (N 2) gas is employed as the inert gas, and the connection reliability is improved in the wire bonding work of the Cu wire 11. That is, Cu wire 11 itself and the connection area | region of Cu wire 11 are arrange | positioned in the flow of an inert gas, and those oxidation is prevented.

更に、二次的な効果であるが、貫通孔12は、樹脂モールド時に絶縁性樹脂により埋設され、貫通孔12は、アンカー効果を生み、アイランド7が樹脂パッケージ2内へと強固に支持される。樹脂パッケージ2内では、例えば、樹脂パッケージ2や接着材8内に含まれる低分子成分が半導体素子9の駆動熱等により気化し、ガスが発生する。このガスによりアイランド7は樹脂パッケージ2から外側に向けた外力を受ける。特に、アイランド7は、100〜250μmとその厚みが薄く、アイランド7と樹脂パッケージ2の密着度も弱く、上記ガスによりアイランド7が樹脂パッケージ2外へと押し出され易い。しかしながら、アイランド7の外周領域に貫通孔12を配置することで、樹脂パッケージ2とアイランド7との密着度が向上し、樹脂パッケージ2からアイランド7が抜け落ち難い構造となる。そして、貫通孔12が不活性ガスの流路となることで、貫通孔12側面の酸化が防止され、アイランド7と樹脂パッケージ2との密着度が更に向上される。   Further, as a secondary effect, the through hole 12 is embedded with an insulating resin at the time of resin molding, and the through hole 12 produces an anchor effect so that the island 7 is firmly supported in the resin package 2. . In the resin package 2, for example, a low molecular component contained in the resin package 2 or the adhesive 8 is vaporized by driving heat of the semiconductor element 9, and gas is generated. The island 7 receives an external force directed outward from the resin package 2 by this gas. In particular, the island 7 has a thin thickness of 100 to 250 μm, the adhesion between the island 7 and the resin package 2 is weak, and the island 7 is easily pushed out of the resin package 2 by the gas. However, by arranging the through holes 12 in the outer peripheral region of the island 7, the degree of adhesion between the resin package 2 and the island 7 is improved, and the island 7 is difficult to drop off from the resin package 2. And since the through-hole 12 becomes a flow path of an inert gas, the oxidation of the side surface of the through-hole 12 is prevented, and the adhesion degree between the island 7 and the resin package 2 is further improved.

また、アイランド7近傍の樹脂パッケージ2や接着材8に発生した上記ガスは、貫通孔12を排出経路とすることで、短い経路で樹脂パッケージ2外部へと排出される。そして、上記ガスが効率的に樹脂パッケージ2外部へと排出され、アイランド7が樹脂パッケージ2外部へと押し出され難くなる。   Further, the gas generated in the resin package 2 and the adhesive 8 in the vicinity of the island 7 is discharged to the outside of the resin package 2 through a short path by using the through hole 12 as a discharge path. And the said gas is efficiently discharged | emitted to the exterior of the resin package 2, and it becomes difficult to push the island 7 out of the resin package 2.

図1(B)に示す如く、貫通孔12は、例えば、アイランド7の1側辺に沿って2つ配置される。そして、貫通孔12の長さは、アイランド7の1側辺の半分程度の長さを有する。詳細は図7(B)を用いて後述するが、貫通孔12の開口面積が大きくすることで、リードフレームを載置台上に設置する際にリードフレームが若干ずれた場合でも、貫通孔12下方にはガス抜き孔59が配置され易く、不活性ガスの吸引力を適正に維持できる。   As shown in FIG. 1B, for example, two through holes 12 are arranged along one side of the island 7. The length of the through hole 12 is about half the length of one side of the island 7. Although details will be described later with reference to FIG. 7B, even if the lead frame is slightly displaced when the lead frame is placed on the mounting table by increasing the opening area of the through hole 12, the lower part of the through hole 12 The gas vent hole 59 is easily disposed on the surface, and the suction force of the inert gas can be properly maintained.

また、図示の如く、吊りリード13は、アイランド7の4つのコーナー部から延在し、樹脂パッケージ2の中側へと折り曲げ加工される。この構造により、吊りリード13の大部分は、樹脂パッケージ2内に配置され、アンカー効果が得られる。更に、アイランド7と吊りリード13の一部が、樹脂パッケージ2の裏面4から露出することで、半導体素子9から発生する熱が、速やかに樹脂パッケージ2外へと放出される。   Further, as shown in the drawing, the suspension leads 13 extend from the four corners of the island 7 and are bent into the inside of the resin package 2. With this structure, most of the suspension leads 13 are arranged in the resin package 2 and an anchor effect is obtained. Further, the island 7 and a part of the suspension lead 13 are exposed from the back surface 4 of the resin package 2, so that heat generated from the semiconductor element 9 is quickly released out of the resin package 2.

図2(A)に示す如く、リードフレーム14は、例えば、厚さが約100〜250μmのCuを主材料とするフレームから成る。しかし、リードフレーム14は、Fe―Niを主材料としても良いし、他の金属材料でも良い。そして、リードフレーム14には、一点鎖線で示す搭載部15が複数形成される。   As shown in FIG. 2A, the lead frame 14 is made of, for example, a frame whose main material is Cu having a thickness of about 100 to 250 μm. However, the lead frame 14 may be made of Fe—Ni as a main material or other metal material. A plurality of mounting portions 15 indicated by alternate long and short dash lines are formed on the lead frame 14.

この搭載部15は、主に、アイランド7と、アイランド7を支持する吊りリード13と、アイランド7の4側辺の近傍に一端が位置するリード6と、複数のリード6を支持するタイバー16とから構成される。そして、吊りリード13はアイランド7の4つのコーナー部から延在し、タイバー16の交差する支持領域17と連結する。支持領域17はリードフレーム14と一体となり、アイランド7がリードフレーム14に支持される。そして、アイランド7に点線で示す領域が半導体素子9の固着領域であり、本発明のポイントである貫通孔12は、その固着領域の周囲に配置される。   The mounting portion 15 mainly includes an island 7, a suspension lead 13 that supports the island 7, a lead 6 having one end located near the four sides of the island 7, and a tie bar 16 that supports a plurality of leads 6. Consists of The suspension leads 13 extend from the four corners of the island 7 and are connected to the support region 17 where the tie bars 16 intersect. The support region 17 is integrated with the lead frame 14, and the island 7 is supported by the lead frame 14. A region indicated by a dotted line on the island 7 is a fixing region of the semiconductor element 9, and the through hole 12 which is a point of the present invention is disposed around the fixing region.

図2(B)に示す如く、アイランド7上には半導体素子9が固着され、電極パッド18上面にはAuボール10が形成される。Cu線11は、インナーリード上面にボールボンディングされた後、Auボール10上面にステッチボンディングされる。そして、Cu線11やCu線11の接続領域等の酸化を防止する必要がある。図7(B)を用いて後述するが、貫通孔12から不活性ガスを引き抜く構造とすることで、不活性ガスは上方からボンディング領域へと流れ、Cu線11の配置領域が不活性ガスにより満たされ易く、Cu線11等の酸化が防止される。その結果、Au線に換えてCu線11を用いることが可能となり、大幅なコスト低減が可能となる。   As shown in FIG. 2B, the semiconductor element 9 is fixed on the island 7, and the Au ball 10 is formed on the upper surface of the electrode pad 18. The Cu wire 11 is ball bonded to the upper surface of the inner lead and then stitch bonded to the upper surface of the Au ball 10. And it is necessary to prevent the oxidation of the Cu wire 11 and the connection region of the Cu wire 11 or the like. As will be described later with reference to FIG. 7B, by adopting a structure in which the inert gas is extracted from the through hole 12, the inert gas flows from above to the bonding region, and the arrangement region of the Cu wire 11 is caused by the inert gas. It is easy to satisfy, and oxidation of Cu wire 11 etc. is prevented. As a result, the Cu wire 11 can be used instead of the Au wire, and the cost can be greatly reduced.

また、大電流を扱う半導体素子では、1つの電極パッドに対して複数本のAu線を用いて大電流に対応するが、Cu線の場合には、比抵抗が小さく、電流容量が大きいためAu線の場合よりも少ない本数で大電流に対応できる。その結果、Au線の場合よりもボンディング領域の面積を小さくでき、半導体素子の微細化が実現される。   Further, in a semiconductor element that handles a large current, a plurality of Au wires are used for one electrode pad to cope with a large current. However, in the case of a Cu wire, the specific resistance is small and the current capacity is large. It can handle a large current with a smaller number of wires than in the case of wires. As a result, the area of the bonding region can be made smaller than in the case of Au wire, and miniaturization of the semiconductor element is realized.

尚、本実施の形態では、貫通孔12の形状は、図示した形状に限定するものではない。貫通孔12の形状は、例えば、円形、楕円形または矩形の場合でも良く、貫通孔12は、隣り合うリード6間の離間幅と同等の幅か、またはそれ以上の幅を有するものであれば良い。この構造により、不活性ガスの吸引力も大きくなり、Cu線11の酸化が防止される効果が得られる。   In the present embodiment, the shape of the through hole 12 is not limited to the illustrated shape. The shape of the through hole 12 may be, for example, a circle, an ellipse, or a rectangle, and the through hole 12 has a width equal to or larger than the separation width between adjacent leads 6. good. With this structure, the suction force of the inert gas is increased and the effect of preventing the Cu wire 11 from being oxidized can be obtained.

図3(A)に示す如く、シリコン基板19上には、例えば、シリコン酸化膜、BPSG(Boron Phospho Silicate Glass)膜、TEOS(Tetra−Ethyl−Orso−Silicate)膜またはSOG(Spin On Glass)膜等から少なくとも1つの材料が選択され、絶縁層20が形成される。そして、絶縁層20上には電極パッド18が形成され、電極パッド18の膜厚は、例えば、0.4〜3.0μmである。電極パッド18は、例えば、Al層やAlを主体とする合金層により形成される。その合金層は、例えば、Al−Si膜、Al−Si−Cu膜、Al−Cu膜等である。そして、絶縁層20上には、例えば、シリコン窒化膜から成るシールド層21が形成され、電極パッド18上のシールド層21には開口部22が形成される。   As shown in FIG. 3A, on the silicon substrate 19, for example, a silicon oxide film, a BPSG (Boron Phospho Silicate Glass) film, a TEOS (Tetra-Ethyl-Orso-Silicate) film, or an SOG (Spin On Glass) film is formed. Etc., at least one material is selected, and the insulating layer 20 is formed. And the electrode pad 18 is formed on the insulating layer 20, and the film thickness of the electrode pad 18 is 0.4-3.0 micrometers, for example. The electrode pad 18 is formed of, for example, an Al layer or an alloy layer mainly composed of Al. The alloy layer is, for example, an Al—Si film, an Al—Si—Cu film, an Al—Cu film, or the like. A shield layer 21 made of, for example, a silicon nitride film is formed on the insulating layer 20, and an opening 22 is formed in the shield layer 21 on the electrode pad 18.

Auボール10が、開口部22から露出する電極パッド18上にボールボンディングされる。そして、ボールボンディング時の荷重によりAuボール10は、若干、電極パッド18内へと食い込み、Auボール10の周囲には、若干、スプラッシュ23が発生する場合もある。しかしながら、Auボール10はCuボールと比較して軟らかく、ボンディング時の荷重がCuボールの場合よりも小さい。そのため、スプラッシュ23は、開口部22内側の側面とAuボール10との間に発生する程度であり、電極パッド18の形成領域を超えて発生することはない。この構造により、隣り合う電極パッド18において、スプラッシュ23が接触し、ショートすることはない。尚、Auボール10は、超音波振動技術を用いることなく、熱圧着技術のみにて電極パッド18上に接続される場合でも良く、この場合には、前述したスプラッシュ23の発生を極力抑えられる。あるいは、Auボール10の大きさを小さくすることでボンディング荷重を調整し、前述したスプラッシュ23の発生を極力抑えることもできる。このAuボールは、第2の座布団の働きを示し、前述したようにCuよりも軟らかい材料であれば、良い。   The Au ball 10 is ball-bonded on the electrode pad 18 exposed from the opening 22. Then, the Au ball 10 slightly bites into the electrode pad 18 due to the load during ball bonding, and a slight splash 23 may occur around the Au ball 10. However, the Au ball 10 is softer than the Cu ball, and the bonding load is smaller than that of the Cu ball. Therefore, the splash 23 is generated only between the inner side surface of the opening 22 and the Au ball 10 and does not occur beyond the region where the electrode pad 18 is formed. With this structure, the splash 23 does not contact and short-circuit between adjacent electrode pads 18. The Au ball 10 may be connected to the electrode pad 18 only by the thermocompression bonding technique without using the ultrasonic vibration technique. In this case, the generation of the splash 23 described above can be suppressed as much as possible. Alternatively, the bonding load can be adjusted by reducing the size of the Au ball 10 to suppress the occurrence of the splash 23 as much as possible. The Au ball may be any material as long as it exhibits the function of the second cushion and is softer than Cu as described above.

更に、前述したように、スプラッシュ23の発生を低減することで、Auボール10底面と絶縁層20との間の電極パッド18が、十分に残存する。この構造により、Auボール10の底面は、電極パッド18と確実に接続した状態となり、電極パッド18での接続抵抗値の増大を防止できる。また、電極パッド18での接続不良も防止できる。   Further, as described above, by reducing the occurrence of the splash 23, the electrode pad 18 between the bottom surface of the Au ball 10 and the insulating layer 20 remains sufficiently. With this structure, the bottom surface of the Au ball 10 is securely connected to the electrode pad 18, and an increase in connection resistance value at the electrode pad 18 can be prevented. In addition, poor connection at the electrode pad 18 can be prevented.

図3(B)に示す如く、Cu線11がAuボール10上にステッチボンディングされる。前述したように、Auボール10は電極パッド18と広い接続領域を有するため、Cu線11のボンディング時の荷重はAuボール10により分散される。つまり、Auボール10が緩衝材として利用され、ボンディング時の衝撃により、電極パッド18下方の絶縁層20にクラック等のダメージを与えることを防止できる。また、ボンディング荷重が分散することで、スプラッシュ23が大幅に増大することを防止し、図3(A)に示すAuボール10接続時に発生するスプラッシュ23よりも、若干、大きくなる程度である。そのため、スプラッシュ23により隣り合う電極パッド18同士がショートすることもない。   As shown in FIG. 3B, the Cu wire 11 is stitch-bonded on the Au ball 10. As described above, since the Au ball 10 has a wide connection area with the electrode pad 18, the load during bonding of the Cu wire 11 is dispersed by the Au ball 10. That is, the Au ball 10 is used as a buffer material, and it is possible to prevent the insulating layer 20 below the electrode pad 18 from being damaged such as cracks due to an impact during bonding. Further, the dispersion of the bonding load prevents the splash 23 from significantly increasing, and is slightly larger than the splash 23 generated when the Au ball 10 is connected as shown in FIG. Therefore, the adjacent electrode pads 18 are not short-circuited by the splash 23.

更に、Cu線11は、Auボール10上にステッチボンディングされ、半導体素子9上の高さが抑えられることで、樹脂パッケージ2の薄型化が実現される。   Further, the Cu wire 11 is stitch-bonded on the Au ball 10 and the height on the semiconductor element 9 is suppressed, so that the resin package 2 can be made thinner.

尚、Cu線11は、Auボール10及びリード6に対してステッチボンディングされる場合でも良く、Auボール10に対してボールボンディングされ、リード6に対してステッチボンディングされる場合でも良い。これらの場合にも、前述したように、スプラッシュ23によるショートが防止され、絶縁層20へのダメージも防止される。   The Cu wire 11 may be stitch-bonded to the Au ball 10 and the lead 6, or may be ball-bonded to the Au ball 10 and stitch-bonded to the lead 6. Also in these cases, as described above, short circuit due to the splash 23 is prevented, and damage to the insulating layer 20 is also prevented.

次に、図4及び図5では、Auボール10(図3参照)を用いることなく、電極パッドの構造により前述したスプラッシュによるショートの問題や絶縁層へのクラックの問題に対応する。尚、以下の説明では、図3を用いて説明した半導体装置の各構成要素と同じ構成要素には同じ符番を付す。   Next, in FIG. 4 and FIG. 5, the problem of the short circuit caused by the splash and the problem of the crack in the insulating layer are dealt with by the structure of the electrode pad without using the Au ball 10 (see FIG. 3). In the following description, the same components as those of the semiconductor device described with reference to FIG.

図4(A)に示す如く、電極パッド24は、Al層25、27間に緩衝材層26が配置される構造である。例えば、Al層25の膜厚は、0.4μm程度であり、緩衝材層26の膜厚は、0.1μm程度であり、Al層27の膜厚は、2.9μm程度であり、電極パッド24のトータルの膜厚は、3.4μm程度となる。そして、緩衝材層26は、Al層25、27よりも硬い膜質であり、例えば、チタンナイトライド(TiN)層、チタンタングステン(TiW)層等の高融点金属層により形成される。尚、前述したように、緩衝材層26の上下面には、Alを主体とする合金層が配置される場合でも良い。   As shown in FIG. 4A, the electrode pad 24 has a structure in which a buffer material layer 26 is disposed between the Al layers 25 and 27. For example, the thickness of the Al layer 25 is about 0.4 μm, the thickness of the buffer material layer 26 is about 0.1 μm, the thickness of the Al layer 27 is about 2.9 μm, and the electrode pad The total film thickness of 24 is about 3.4 μm. The buffer material layer 26 is harder than the Al layers 25 and 27 and is formed of a refractory metal layer such as a titanium nitride (TiN) layer or a titanium tungsten (TiW) layer. As described above, an alloy layer mainly composed of Al may be disposed on the upper and lower surfaces of the buffer material layer 26.

図4(B)に示す如く、Cuボール28が、開口部22から露出する電極パッド24上にボールボンディングされる。そして、ボールボンディング時の荷重によりCuボール28は、若干、電極パッド24内へと食い込み、Cuボール28の周囲には、スプラッシュ29が発生する。   As shown in FIG. 4B, the Cu ball 28 is ball-bonded on the electrode pad 24 exposed from the opening 22. The Cu ball 28 slightly bites into the electrode pad 24 due to the load during ball bonding, and a splash 29 is generated around the Cu ball 28.

前述したように、電極パッド24を3層構造とすることで、電極パッド24トータルの膜厚は従前と同様であるが、Al層27の膜厚を薄くできる。その結果、ボンディング荷重によりCuボール28の周囲に追いやられる量が低減し、スプラッシュ29自体が小さくなる。この構造により、隣り合う電極パッド24において、スプラッシュ29が接触し、ショートすることを防止できる。その一方で、Al層25上には緩衝材層26が配置されることで、ボンディング時にCuボール28の周囲に追いやられ難い構造となる。その結果、Cuボール28の底面には確実にAl層25が存在し、電極パッド24での接続不良が防止される。   As described above, the electrode pad 24 has a three-layer structure, so that the total thickness of the electrode pad 24 is the same as before, but the thickness of the Al layer 27 can be reduced. As a result, the amount driven around the Cu ball 28 by the bonding load is reduced, and the splash 29 itself is reduced. With this structure, it is possible to prevent the splash 29 from coming into contact with the adjacent electrode pad 24 to cause a short circuit. On the other hand, the buffer material layer 26 is disposed on the Al layer 25, so that it is difficult to be driven around the Cu ball 28 during bonding. As a result, the Al layer 25 is surely present on the bottom surface of the Cu ball 28, and poor connection at the electrode pad 24 is prevented.

更に、Al層25、27間に緩衝材層26を配置することで、ボンディング荷重が緩衝材層26にて緩和される。この結果、電極パッド24下方の絶縁層20は、クラック等のダメージの発生を抑止する。更に、ボンディング荷重により緩衝材層26が破砕することで、その破砕した領域ではAl層25、27が直接接続する。そして、電流はその低抵抗領域を積極的に流れることで、電極パッド24での接続抵抗値の増大を緩和できる。尚、前述したように、緩衝材層26は低比抵抗な金属層から形成されることで、緩衝材層26が破砕しない場合でも、電極パッド24での接続抵抗値が大幅に増大することはない。   Further, by arranging the buffer material layer 26 between the Al layers 25 and 27, the bonding load is relaxed by the buffer material layer 26. As a result, the insulating layer 20 below the electrode pad 24 suppresses the occurrence of damage such as cracks. Furthermore, when the buffer material layer 26 is crushed by the bonding load, the Al layers 25 and 27 are directly connected in the crushed region. The current actively flows through the low resistance region, so that the increase in connection resistance value at the electrode pad 24 can be mitigated. As described above, since the buffer material layer 26 is formed of a low specific resistance metal layer, the connection resistance value at the electrode pad 24 is greatly increased even when the buffer material layer 26 is not crushed. Absent.

図5(A)に示す如く、電極パッド30は、絶縁層20上面に緩衝材層31を形成し、緩衝材層31を被覆するようにAl層32を配置して構成される場合でもよい。緩衝材層31は、シールド層21の開口部22よりも内側に配置され、開口部22の幅W1よりも狭い幅W2となる。緩衝材層31の形状は、開口部22の形状を相似的に小さくした形状である。そして、緩衝材層31の膜厚は、例えば、0.5〜1.0μmであり、Al層32の膜厚は、例えば、0.4〜3.0μmである。この構造により、電極パッド30では、緩衝材層31とAl層32との積層領域は、その他の領域よりも突出した領域となる。尚、緩衝材層31の材料は、緩衝材層26と同様であり、緩衝材層31の形状は、開口部22内に配置されれば任意の設計変更が可能である。また、電極パッド30に前述した突出領域が形成されれば良く、図4の構造と同様に緩衝材層31がAl層内に配置される場合でも良い。   As shown in FIG. 5A, the electrode pad 30 may be configured by forming a buffer material layer 31 on the upper surface of the insulating layer 20 and arranging an Al layer 32 so as to cover the buffer material layer 31. The buffer material layer 31 is disposed inside the opening 22 of the shield layer 21 and has a width W2 that is narrower than the width W1 of the opening 22. The shape of the buffer material layer 31 is a shape in which the shape of the opening 22 is similarly reduced. And the film thickness of the buffer material layer 31 is 0.5-1.0 micrometer, for example, and the film thickness of the Al layer 32 is 0.4-3.0 micrometers, for example. With this structure, in the electrode pad 30, the stacked region of the buffer material layer 31 and the Al layer 32 is a region protruding from the other regions. The material of the buffer material layer 31 is the same as that of the buffer material layer 26, and the design of the buffer material layer 31 can be arbitrarily changed as long as it is disposed in the opening 22. Further, it is sufficient that the above-described protruding region is formed on the electrode pad 30, and the buffer material layer 31 may be disposed in the Al layer similarly to the structure of FIG.

図5(B)に示す如く、Cuボール33が、開口部22から露出する電極パッド30上にボールボンディングされる。そして、ボールボンディング時の荷重によりCuボール33は、若干、電極パッド30内へと食い込み、Cuボール33の周囲には、スプラッシュ34が発生する。   As shown in FIG. 5B, the Cu ball 33 is ball-bonded on the electrode pad 30 exposed from the opening 22. Then, the Cu ball 33 slightly bites into the electrode pad 30 due to the load during ball bonding, and a splash 34 is generated around the Cu ball 33.

Cuボール33は、電極パッド30の突出領域にボールボンディングされることで、点線の矢印で示すように、突出領域のAl層32は、開口部22の側面側へと追いやられる。このとき、追いやられAl層32は、先ず、突出領域の周囲の窪んだ領域35(図5(A)参照)へと移動し、その窪んだ領域35を埋設する。そして、窪んだ領域35から溢れたAl層32がスプラッシュ34となることで、スプラッシュ34自体が小さくなる。この構造により、隣り合う電極パッド30において、スプラッシュ34が接触し、ショートすることを防止できる。   The Cu ball 33 is ball-bonded to the protruding region of the electrode pad 30, so that the Al layer 32 in the protruding region is driven to the side surface side of the opening 22 as indicated by a dotted arrow. At this time, the expelled Al layer 32 first moves to the recessed area 35 (see FIG. 5A) around the protruding area, and embeds the recessed area 35. Then, the Al layer 32 overflowing from the recessed region 35 becomes the splash 34, so that the splash 34 itself becomes smaller. With this structure, it is possible to prevent the splash 34 from coming into contact with the adjacent electrode pad 30 to cause a short circuit.

更に、Cuボール33がボールボンディングされる領域に緩衝材層31が配置されることで、ボンディング荷重が緩衝材層31にて緩和され、電極パッド30下方の絶縁層20にクラック等のダメージを与えることを防止できる。尚、ボンディング荷重により緩衝材層31にクラック等が発生しても特に問題はない。   Further, the buffer material layer 31 is disposed in the region where the Cu balls 33 are ball bonded, so that the bonding load is relaxed by the buffer material layer 31 and the insulating layer 20 below the electrode pad 30 is damaged such as cracks. Can be prevented. Note that there is no particular problem even if a crack or the like occurs in the buffer material layer 31 due to the bonding load.

前述したように、本実施の形態では、アイランド7に複数の貫通孔12が形成され、その貫通孔12を介して不活性ガスの流れを調整し、Cu線11やその接続領域の酸化を防止する場合について説明したが、この場合に限定するものではない。例えば、アイランド7に貫通孔12が配置されない場合でも、アイランド7とリード6との隙間やリード6同士の隙間を利用し、前述したように不活性ガスの流れを調整する場合でも良い。また、貫通孔12と前述した隙間とを組み合わせて利用し、不活性ガスの流れを調整する場合でも良い。その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。   As described above, in the present embodiment, a plurality of through holes 12 are formed in the island 7, and the flow of the inert gas is adjusted through the through holes 12 to prevent oxidation of the Cu wire 11 and its connection region. However, the present invention is not limited to this case. For example, even when the through hole 12 is not disposed in the island 7, the gap between the island 7 and the lead 6 or the gap between the leads 6 may be used to adjust the flow of the inert gas as described above. Further, the flow of the inert gas may be adjusted by using the through hole 12 in combination with the gap described above. In addition, various modifications can be made without departing from the scope of the present invention.

次に、他の実施の形態について説明する。図6(A)は、図6(B)に示す樹脂パッケージのB−B線方向の断面図である。図6(B)は、樹脂パッケージの表面側から見たリードフレームとヒートシンクを説明する図である。尚、本実施の形態の説明において、適宜、図1〜図5を用いて前述した半導体装置の説明を参照する。   Next, another embodiment will be described. 6A is a cross-sectional view of the resin package shown in FIG. 6B in the BB line direction. FIG. 6B is a view for explaining the lead frame and the heat sink as viewed from the surface side of the resin package. Note that in the description of this embodiment, the description of the semiconductor device described above with reference to FIGS.

図6(A)に示す半導体装置41では、その樹脂パッケージ42の裏面44からヒートシンク43の一部が露出する。半導体素子46が、例えば、Agペースト、半田等の接着材45によりヒートシンク43上に固着される。半導体素子46の電極パッド上にはAuボール48が形成され、Auボール48とリード47のインナーリード部分とは本願のテーマであるCu線49により電気的に接続される。Cu線49の形状、材質は、前述したCu線11と同じである。   In the semiconductor device 41 shown in FIG. 6A, a part of the heat sink 43 is exposed from the back surface 44 of the resin package 42. The semiconductor element 46 is fixed on the heat sink 43 by an adhesive material 45 such as Ag paste or solder. An Au ball 48 is formed on the electrode pad of the semiconductor element 46, and the Au ball 48 and the inner lead portion of the lead 47 are electrically connected by a Cu wire 49 which is the theme of the present application. The shape and material of the Cu wire 49 are the same as those of the Cu wire 11 described above.

また、ヒートシンク43には、半導体素子46の固着領域の周囲であり、Cu線49の配置領域の下方に貫通孔50が形成される。そして、リード47のインナーリード部分が、ヒートシンク43上方に配置され、リード47のインナーリード部分の先端は、貫通孔50の手前で終端する。貫通孔50がヒートシンク43に配置され、不活性ガス(フォーミングガス)の流通経路として利用されることで、前述したようにCu線49やその接続領域の酸化が防止される。更に、貫通孔50は絶縁性樹脂により埋設され、ヒートシンク43と絶縁性樹脂との密着領域が増大することで、ヒートシンク43と樹脂パッケージ42との密着度も向上される。   In addition, a through hole 50 is formed in the heat sink 43 around the fixed region of the semiconductor element 46 and below the region where the Cu wire 49 is disposed. The inner lead portion of the lead 47 is disposed above the heat sink 43, and the tip of the inner lead portion of the lead 47 terminates before the through hole 50. The through hole 50 is disposed in the heat sink 43 and is used as a flow path for the inert gas (forming gas), thereby preventing the Cu wire 49 and its connection region from being oxidized as described above. Further, the through hole 50 is buried with an insulating resin, and the adhesion area between the heat sink 43 and the insulating resin is increased, so that the adhesion degree between the heat sink 43 and the resin package 42 is also improved.

更に、電極パッド上にAuボール48が配置され、Cu線49がAuボールに対してワイヤーボンディングされることで、前述したようにスプラッシュによるショートの問題や電極パッド下方の絶縁層へのクラックの問題が解決される。また、半導体装置41においても、図4及び図5に示す電極パッド構造とすることで、Auボール48を用いることなく、電極パッドの構造により前述したスプラッシュによるショートの問題や絶縁層へのクラックの問題に対応することもできる。   Furthermore, the Au ball 48 is disposed on the electrode pad, and the Cu wire 49 is wire-bonded to the Au ball. As described above, there is a problem of short circuit due to splash and a problem of a crack in the insulating layer below the electrode pad. Is resolved. Also, in the semiconductor device 41, by adopting the electrode pad structure shown in FIGS. 4 and 5, the problem of short circuit due to the above-described splash or cracks in the insulating layer can be achieved without using the Au ball 48 due to the structure of the electrode pad. It can also deal with problems.

次に、図6(B)に示す如く、ヒートシンク43の長辺は、半導体素子46の1辺の長さに対し2〜4倍程度であり、ヒートシンク43の短辺は、半導体素子46の1辺の長さに対し1〜2倍程度である。そして、ヒートシンク43は、樹脂パッケージ42の裏面44よりも一回り小さく、逆に言えば、その裏面44のほぼ全面に渡り配置される。ヒートシンク43が、樹脂パッケージ42の裏面44側から露出することで、放熱性が向上される。   Next, as shown in FIG. 6B, the long side of the heat sink 43 is about 2 to 4 times the length of one side of the semiconductor element 46, and the short side of the heat sink 43 is one of the semiconductor elements 46. It is about 1 to 2 times the length of the side. The heat sink 43 is slightly smaller than the back surface 44 of the resin package 42, and conversely, is disposed over almost the entire back surface 44. Since the heat sink 43 is exposed from the back surface 44 side of the resin package 42, heat dissipation is improved.

次に、本発明の半導体装置の製造方法について説明する。図7(A)及び(B)は、リードフレームの平面図である。図8(A)は、クランパーの平面図である。図8(B)は、ワイヤーボンディング時における不活性ガスの流れを示す断面図である。図9(A)〜(C)は、ワイヤーボンディング工程を示す断面図である。図10は、樹脂モールド工程を示す平面図である。図11は、リードの加工、切断工程を示す(A)断面図、(B)斜視図である。尚、以下の説明では、図1〜図3を用いて説明した半導体装置の各構成要素と同じ構成要素には同じ符番を付す。また、本実施の形態の製造方法の説明において、適宜、図1〜図3を用いて説明する。   Next, a method for manufacturing a semiconductor device of the present invention will be described. 7A and 7B are plan views of the lead frame. FIG. 8A is a plan view of the clamper. FIG. 8B is a cross-sectional view showing the flow of an inert gas during wire bonding. 9A to 9C are cross-sectional views illustrating a wire bonding process. FIG. 10 is a plan view showing a resin molding process. 11A and 11B are a cross-sectional view and a perspective view, respectively, showing a lead processing and cutting process. In the following description, the same reference numerals are given to the same components as those of the semiconductor device described with reference to FIGS. Moreover, in the description of the manufacturing method of the present embodiment, the description will be made with reference to FIGS.

先ず、図7(A)に示す如く、例えば、Cuを主材料とするリードフレーム14を準備する。このリードフレーム14には、一点鎖線で示すように、複数の搭載部15が形成される。リードフレーム14の長手方向(紙面X軸方向)は、スリット51により一定間隔に区切られる。そして、スリット51にて区切られたリードフレーム14の1区間には、例えば、リードフレーム14の短手方向(紙面Y軸方向)に2つの搭載部15が配置される。また、リードフレーム14の長手方向には、その上下端部領域にインデックス孔52が一定の間隔で設けられ、各工程での位置決めに用いられる。尚、搭載部15を構成する詳細の構造は、図2(A)にて説明した通りである。   First, as shown in FIG. 7A, for example, a lead frame 14 mainly made of Cu is prepared. A plurality of mounting portions 15 are formed on the lead frame 14 as indicated by a one-dot chain line. The longitudinal direction (paper surface X-axis direction) of the lead frame 14 is divided at regular intervals by the slits 51. In one section of the lead frame 14 delimited by the slits 51, for example, two mounting portions 15 are arranged in the short direction of the lead frame 14 (the Y axis direction on the paper surface). In the longitudinal direction of the lead frame 14, index holes 52 are provided at regular intervals in the upper and lower end regions, and are used for positioning in each step. The detailed structure constituting the mounting portion 15 is as described with reference to FIG.

また、図8(B)を用いて後述するが、図7(B)の点線にて示す領域が、載置台53のガス抜き孔59の配置領域であり、例えば、1つの貫通孔12に対して1つのガス抜き孔59が配置される。そして、個々の貫通孔12の長さLを大きくすることで、載置台53上にリードフレーム14を配置する際に、リードフレーム14が若干ずれた場合でも、貫通孔12を介して確実に不活性ガスを吸引することが可能となる。尚、本実施の形態では、不活性ガスの流れを載置台53側へと向け、その流れの中にCu線11やCu線11の接続領域等を配置し、それらの酸化を防止する。そのため、ガス抜き孔59が貫通孔12よりも大きくても良く、例えば、アイランド7とリード6間の開口領域やリード6同士間の開口領域を利用して不活性ガスを引き抜く場合でも良い。   8B, an area indicated by a dotted line in FIG. 7B is an arrangement area of the gas vent hole 59 of the mounting table 53. For example, for one through hole 12, the area shown in FIG. One vent hole 59 is arranged. Further, by increasing the length L of each through hole 12, even when the lead frame 14 is slightly displaced when the lead frame 14 is disposed on the mounting table 53, the length L can be reliably prevented through the through hole 12. The active gas can be sucked. In the present embodiment, the flow of the inert gas is directed toward the mounting table 53, and the Cu wire 11 and the connection region of the Cu wire 11 are arranged in the flow to prevent oxidation thereof. Therefore, the gas vent hole 59 may be larger than the through hole 12. For example, the inert gas may be extracted by using an opening region between the island 7 and the lead 6 or an opening region between the leads 6.

次に、図2(B)に示す如く、リードフレーム14の搭載部15毎に、アイランド7上に接着材8(図1(A)参照)を用いて半導体素子9を固着する。このとき、加熱機構が組み込まれたダイボンド装置の載置台上にリードフレーム14を配置し、クランパーにてリードフレーム14を載置台上に固定する。そして、リードフレーム14のアイランド7やその作業領域内を、例えば、250〜260℃程度に加熱した状態にして、それぞれアイランド7上に連続して半導体素子9を固着する。詳細は図8(B)にて説明するワイヤーボンディング工程の不活性ガスの流れと同様であるが、リードフレーム14を固定するクランパーからその作業領域内に不活性ガスが供給される。そして、不活性ガスが、アイランド7の貫通孔12を介して載置台側へと引き抜かれることで、リードフレーム14の周囲は不活性ガスにより満たされる。その結果、リードフレーム14は、長時間に渡り高温状態下に配置されるが、その酸化が防止される。   Next, as shown in FIG. 2B, the semiconductor element 9 is fixed on the island 7 using the adhesive 8 (see FIG. 1A) for each mounting portion 15 of the lead frame 14. At this time, the lead frame 14 is arranged on a mounting table of a die bonding apparatus in which a heating mechanism is incorporated, and the lead frame 14 is fixed on the mounting table by a clamper. Then, the island 7 of the lead frame 14 and the work area thereof are heated to, for example, about 250 to 260 ° C., and the semiconductor elements 9 are continuously fixed on the islands 7 respectively. The details are the same as the flow of the inert gas in the wire bonding step described with reference to FIG. 8B, but the inert gas is supplied into the working area from the clamper that fixes the lead frame 14. Then, the inert gas is pulled out to the mounting table side through the through holes 12 of the island 7, so that the periphery of the lead frame 14 is filled with the inert gas. As a result, the lead frame 14 is placed in a high temperature state for a long time, but its oxidation is prevented.

次に、ワイヤーボンディング装置の載置台53上にリードフレーム14を配置し、リードフレーム14の搭載部15毎にワイヤーボンディングを行う。   Next, the lead frame 14 is disposed on the mounting table 53 of the wire bonding apparatus, and wire bonding is performed for each mounting portion 15 of the lead frame 14.

先ず、図8(A)に示すクランパー54について説明する。クランパー54は、不活性ガスを送り込むパイプ55と、搭載部15の大きさに合わせて開口された開口領域56とを有する。そして、クランパー54のパイプ55から送風された不活性ガスは、リード固定領域57間から開口領域56へと吹き込む。Cu線11の径が45μmの場合には、例えば、1.9リットル/分の窒素ガス(若干の水素ガスが含まれる)が用いられる。そして、Cu線11は、高温状態の作業領域内に置かれることで酸化し易い状態となるが、前述の不活性ガスの存在によりCu線11の酸化が防止される。   First, the clamper 54 shown in FIG. The clamper 54 has a pipe 55 that feeds an inert gas and an opening region 56 that is opened in accordance with the size of the mounting portion 15. Then, the inert gas blown from the pipe 55 of the clamper 54 blows into the opening region 56 from between the lead fixing regions 57. In the case where the diameter of the Cu wire 11 is 45 μm, for example, 1.9 liter / min of nitrogen gas (including some hydrogen gas) is used. The Cu wire 11 is easily oxidized by being placed in a high temperature work area, but the presence of the inert gas prevents the Cu wire 11 from being oxidized.

更に、開口領域56周囲のクランパー54には、搭載部15のリード6形状に合わせて複数のリード固定領域57が、櫛歯形状に配置される。そして、複数のリード6は、リード固定領域57により個別に載置台53(図8(B)参照)上に固定される。このとき、Cu線11はAu線と比較して硬いが、延性を有するため、ボールボンディング時の荷重(キャピラリ60(図9(A)参照)から加えられる荷重)がAu線よりも大きくなる。そして、複数のリード6は、それぞれの形状に対応したクランパー54のリード固定領域57により個別に固定されることで、ボンディング時の荷重の逃げが防止される。そして、Cu線11はリード6上に確実に接着され、接続不良が防止される。   Furthermore, a plurality of lead fixing regions 57 are arranged in a comb-tooth shape on the clamper 54 around the opening region 56 in accordance with the shape of the lead 6 of the mounting portion 15. The plurality of leads 6 are individually fixed on the mounting table 53 (see FIG. 8B) by the lead fixing region 57. At this time, the Cu wire 11 is harder than the Au wire, but has a ductility, so that the load at the time of ball bonding (the load applied from the capillary 60 (see FIG. 9A)) becomes larger than that of the Au wire. The plurality of leads 6 are individually fixed by the lead fixing region 57 of the clamper 54 corresponding to each shape, thereby preventing a load from being escaped during bonding. Then, the Cu wire 11 is securely bonded onto the lead 6 and connection failure is prevented.

次に、図8(B)に示す不活性ガスの流れについて説明する。加熱機構58を有する載置台53には、ガス抜き孔59が形成される。そして、ガス抜き孔59上面にアイランド7の貫通孔12が位置するように、載置台53上にリードフレーム14を配置する。点線の矢印で示すように、不活性ガスは、クランパー54のリード固定領域57間から開口領域56の中央側(搭載部)へと吹き込まれる。つまり、開口領域56では、その全周囲から中央側へと不活性ガスが吹き込まれる。そして、開口領域56上は遮蔽されてなく、開口領域56内が高温状態となることで、不活性ガスは、上昇気流により開口領域56上方へと放出されてしまう。そこで、本実施の形態では、貫通孔12を介して載置台53のガス抜き孔59から不活性ガスを吸引することで、リード6の上から吹き込まれた不活性ガスは、主に、アイランド7の貫通孔12側へと流れる。その結果、不活性ガスの主たる流れは、開口領域56の下方側(載置台53側)へとなり、Cu線11の配置領域は不活性ガスにて満たされ易い領域となる。   Next, the flow of the inert gas illustrated in FIG. 8B will be described. A gas vent hole 59 is formed in the mounting table 53 having the heating mechanism 58. Then, the lead frame 14 is arranged on the mounting table 53 so that the through hole 12 of the island 7 is positioned on the upper surface of the gas vent hole 59. As indicated by the dotted arrows, the inert gas is blown from the space between the lead fixing regions 57 of the clamper 54 to the center side (mounting portion) of the opening region 56. That is, in the opening region 56, the inert gas is blown from the entire periphery to the center side. And the opening area | region 56 is not shielded, but the inside of the opening area | region 56 will be in a high temperature state, and an inert gas will be discharge | released above the opening area | region 56 by an updraft. Therefore, in the present embodiment, the inert gas blown from the top of the lead 6 mainly sucks the island 7 by sucking the inert gas from the gas vent hole 59 of the mounting table 53 through the through hole 12. Flows to the through-hole 12 side. As a result, the main flow of the inert gas is to the lower side (the mounting table 53 side) of the opening region 56, and the arrangement region of the Cu wire 11 is a region that is easily filled with the inert gas.

そして、クランパー54の開口領域56内である作業領域は、加熱機構58により、例えば、250〜260℃程度に維持される。ワイヤーボンディングされたCu線11は、半導体素子9の全ての電極パッドに対しワイヤーボンディングが終わるまでは、その高温状態の作業領域内に置かれる。そこで、前述した不活性ガスの流れを起すことで、Cu線11の周囲には不活性ガスが充満し易く、効率的にCu線11の酸化が防止される。また、リード6等のリードフレーム14も酸化され易い状況下に置かれるが、不活性ガスが載置台53側へと流れることで、リードフレーム14も効率的に酸化が防止される。   The work area in the opening area 56 of the clamper 54 is maintained at, for example, about 250 to 260 ° C. by the heating mechanism 58. The wire wire-bonded Cu wire 11 is placed in the high-temperature work area until the wire bonding is completed for all the electrode pads of the semiconductor element 9. Therefore, by causing the flow of the inert gas described above, the inert gas is easily filled around the Cu wire 11, and the oxidation of the Cu wire 11 is efficiently prevented. In addition, the lead frame 14 such as the lead 6 is also easily oxidized, but the inert gas flows toward the mounting table 53, so that the lead frame 14 is also efficiently prevented from being oxidized.

尚、不活性ガスは、クランパー54のリード固定領域57間から吹き込まれる場合に限定されるものではなく、例えば、ガスノズルを利用して開口領域56内に吹き込まれる場合でも良い。また、開口領域56内に吹き込まれた全ての不活性ガスが、載置台53のガス抜き孔59から吸引される訳ではなく、不活性ガスの一部は開口領域56上方へと流れる。そして、開口領域56及びその周辺は、不活性ガスにより満たされた領域となる。   The inert gas is not limited to the case where the inert gas is blown from between the lead fixing regions 57 of the clamper 54. For example, the inert gas may be blown into the opening region 56 using a gas nozzle. Further, not all the inert gas blown into the opening region 56 is sucked from the gas vent holes 59 of the mounting table 53, and a part of the inert gas flows upward of the opening region 56. And the opening area | region 56 and its periphery become an area | region filled with the inert gas.

次に、図9(A)に示す如く、キャピラリ60の中心孔にはCu線61が挿通され、キャピラリ60の上方にはCu線61を挟持するためのワイヤークランパー62が配置される。そして、予めキャピラリ60の先端からは所望の長さのCu線61が導出し、キャピラリ60近傍に位置するトーチ63から放電され、キャピラリ60の先端にはイニシャルボール(Cuボール)64が形成される。尚、図示したように、イニシャルボール64を形成する作業領域には、上記不活性ガスが供給される。そのため、不活性ガス内に含まれる水素による酸化還元作用により、イニシャルボール64の球面形状が安定して形成される。   Next, as shown in FIG. 9A, a Cu wire 61 is inserted into the center hole of the capillary 60, and a wire clamper 62 for holding the Cu wire 61 is disposed above the capillary 60. Then, a Cu wire 61 having a desired length is led out from the tip of the capillary 60 in advance and discharged from the torch 63 located in the vicinity of the capillary 60, and an initial ball (Cu ball) 64 is formed at the tip of the capillary 60. . As shown in the drawing, the inert gas is supplied to the work area where the initial ball 64 is formed. Therefore, the spherical shape of the initial ball 64 is stably formed by the oxidation / reduction action of hydrogen contained in the inert gas.

次に、図9(B)に示す如く、キャピラリ60がリード6上に向けて下降し、イニシャルボール64をリード6上面に押し付ける。そして、超音波振動併用の熱圧着技術により、キャピラリ60の先端に形成されたイニシャルボール64がリード6と接続する。尚、この作業時には、ワイヤークランパー62は開放された状態である。   Next, as shown in FIG. 9B, the capillary 60 descends onto the lead 6 and presses the initial ball 64 against the upper surface of the lead 6. Then, the initial ball 64 formed at the tip of the capillary 60 is connected to the lead 6 by a thermocompression bonding technique using ultrasonic vibration. During this operation, the wire clamper 62 is open.

次に、図9(C)に示す如く、ワイヤークランパー62が開放された状態にて、一定のループを描きながらキャピラリ60が半導体素子9の電極パッド18上面に移動する。そして、ワイヤークランパー62にてCu線61を挟持した後、キャピラリ60が電極パッド18上に下降し、Cu線61を電極パッド18上のAuボール10上面に押し付ける。そして、超音波振動併用の熱圧着技術によりCu線61がAuボール10と接続する。その後、キャピラリ60が上昇し、イニシャルボールとなる長さのCu線61をキャピラリ60の先端から導出し、Cu線61を切断する。その後、キャピラリ60の先端から導出したCu線61が、前述したようにイニシャルボールへと加工される。   Next, as shown in FIG. 9C, the capillary 60 moves to the upper surface of the electrode pad 18 of the semiconductor element 9 while drawing a certain loop in a state where the wire clamper 62 is opened. Then, after the Cu wire 61 is clamped by the wire clamper 62, the capillary 60 is lowered onto the electrode pad 18 and presses the Cu wire 61 against the upper surface of the Au ball 10 on the electrode pad 18. Then, the Cu wire 61 is connected to the Au ball 10 by a thermocompression bonding technique using ultrasonic vibration. Thereafter, the capillary 60 rises, and a Cu wire 61 having a length to become an initial ball is led out from the tip of the capillary 60, and the Cu wire 61 is cut. Thereafter, the Cu wire 61 led out from the tip of the capillary 60 is processed into an initial ball as described above.

その後、半導体素子9の全ての電極パッド18上のAuボール10とリード6に対して、図9(A)〜(C)を用いて前述したワイヤーボンディング作業を繰り返す。尚、Auボール10が、ワイヤーボンディング工程前に予め電極パッド18上に接続されることで、図3を用いて前述したように、スプラッシュの問題や絶縁層へのクラックの問題が解決される。   Thereafter, the wire bonding operation described above with reference to FIGS. 9A to 9C is repeated for the Au balls 10 and the leads 6 on all the electrode pads 18 of the semiconductor element 9. Note that the Au ball 10 is connected to the electrode pad 18 in advance before the wire bonding step, thereby solving the problem of splash and cracking of the insulating layer as described above with reference to FIG.

次に、図10に示す如く、リードフレーム14の裏面側には、例えば、PET材から成る耐熱用シート(図示せず)が貼り合わされ、その耐熱用シートと樹脂封止金型(図示せず)が当接するように、リードフレーム14を樹脂封止金型に設置する。そして、個々の樹脂封止金型のキャビティ内に樹脂を充填し、樹脂パッケージ2を形成する。図示したように、リードフレーム14には、搭載部15毎に複数の樹脂パッケージ2が形成される。尚、耐熱用シートを用いることで、アイランド7(図1(A)参照)の裏面側への樹脂の廻り込みを防止し、樹脂パッケージ2の裏面側の平坦性が維持される。   Next, as shown in FIG. 10, a heat-resistant sheet (not shown) made of, for example, a PET material is bonded to the back side of the lead frame 14, and the heat-resistant sheet and a resin sealing mold (not shown) are bonded. The lead frame 14 is placed in a resin-sealed mold so that the Then, the resin is filled into the cavities of the individual resin sealing molds, and the resin package 2 is formed. As illustrated, a plurality of resin packages 2 are formed on the lead frame 14 for each mounting portion 15. In addition, by using the heat-resistant sheet, the resin 7 can be prevented from wrapping around the back surface of the island 7 (see FIG. 1A), and the flatness of the back surface of the resin package 2 can be maintained.

最後に、図11(A)に示す如く、リードフレーム14をリード曲げ加工用の台座65、66上に設置する。このとき、樹脂パッケージ2近傍のリード6をリード支持機構67で固定し、リード6の先端側(タイバー16側)を台座66上に設置する。そして、パンチ68にてリード6の先端側を切断しつつ、リード6を曲げ加工する。そして、この工程にてタイバー16(図2(A)参照)や支持領域17(図2(A)参照)も打ち抜かれることで、図11(B)に示すように、リードフレーム14から樹脂パッケージ2が切断される。   Finally, as shown in FIG. 11A, the lead frame 14 is placed on the pedestals 65 and 66 for lead bending. At this time, the lead 6 in the vicinity of the resin package 2 is fixed by the lead support mechanism 67, and the leading end side (tie bar 16 side) of the lead 6 is installed on the pedestal 66. Then, the lead 6 is bent while the tip end side of the lead 6 is cut by the punch 68. In this step, the tie bar 16 (see FIG. 2A) and the support region 17 (see FIG. 2A) are also punched out, and as shown in FIG. 2 is cut.

尚、本実施の形態では、クランパー54の開口領域56内に吹き込まれる不活性ガスの温度に関し特に限定していない。しかし、例えば、クランパー54内に加熱機構を設置する等により、不活性ガスを開口領域56内と同等に加熱した後、開口領域56内に不活性ガスを吹き込む場合でも良い。この場合には、Cu線61が不活性ガスにより冷却され難く、イニシャルボール形成時の電流効率を向上させることができる。   In the present embodiment, the temperature of the inert gas blown into the opening region 56 of the clamper 54 is not particularly limited. However, for example, an inert gas may be blown into the opening region 56 after the inert gas is heated in the same manner as in the opening region 56 by installing a heating mechanism in the clamper 54. In this case, the Cu wire 61 is hardly cooled by the inert gas, and the current efficiency at the time of forming the initial ball can be improved.

また、ワイヤーボンディングの際、クランパー54の開口領域56上方がプレート等の蓋部材によりカバーされない状況にて作業を行う場合について説明したが、この場合に限定するものではない。例えば、ワイヤーボンディングを行う作業領域のみ開口した蓋部材により開口領域56上方をカバーし、その蓋部材が作業領域に合わせてスライドする場合でもよい。この場合には、開口領域56上方が概ね蓋部材によりカバーされることで、開口領域56内が不活性ガスで充満され易くなる。そして、不活性ガスの供給量も低減され、製造コストを抑制できる効果も得られる。   In addition, although the case where the work is performed in a state where the upper portion of the opening region 56 of the clamper 54 is not covered with a lid member such as a plate during wire bonding has been described, the present invention is not limited to this case. For example, the upper portion of the opening area 56 may be covered with a lid member that is opened only in the work area where wire bonding is performed, and the lid member may slide in accordance with the work area. In this case, the upper part of the opening area 56 is generally covered with the lid member, so that the opening area 56 is easily filled with the inert gas. And the supply amount of an inert gas is also reduced and the effect which can suppress manufacturing cost is also acquired.

また、ワイヤーボンディングの際、個々のリード6が、個別にクランパー54のリード固定領域57により固定される場合について説明したがこの場合に限定するものではない。例えば、リードの形状やリードの高さ等のリード配置状況に応じて、隣接する複数のリード毎に区分けしてリード固定領域により固定する場合でもよい。この場合には、リード固定領域の数は、リードの総数よりも少なくなる。その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。   Further, the case where the individual leads 6 are individually fixed by the lead fixing region 57 of the clamper 54 during wire bonding has been described, but the present invention is not limited to this case. For example, a plurality of adjacent leads may be divided and fixed by a lead fixing region according to the lead arrangement situation such as the lead shape and lead height. In this case, the number of lead fixing areas is smaller than the total number of leads. In addition, various modifications can be made without departing from the scope of the present invention.

1 半導体装置
2 樹脂パッケージ
6 リード
7 アイランド
12 貫通孔
54 クランパー
56 開口領域
57 リード固定領域
59 ガス抜き孔
DESCRIPTION OF SYMBOLS 1 Semiconductor device 2 Resin package 6 Lead 7 Island 12 Through-hole 54 Clamper 56 Opening area 57 Lead fixing area 59 Gas vent hole

Claims (13)

アイランドと、前記アイランドの周囲に配置された複数のリードと、前記アイランド上に固着された半導体素子と、前記半導体素子の電極パッドと前記リードとを電気的に接続する銅を主材料とする細線と、前記アイランド、前記リード、前記銅線及び前記半導体素子とを被覆する樹脂パッケージとを有する半導体装置において、
前記細線の一端は、前記パッド上に形成された前記銅よりも柔らかな金属ボールと接続され、前記細線の他端は、前記リードと接続されることを特徴とする半導体装置。
An island, a plurality of leads arranged around the island, a semiconductor element fixed on the island, and a thin wire mainly composed of copper electrically connecting the electrode pad of the semiconductor element and the lead And a semiconductor device having a resin package that covers the island, the lead, the copper wire, and the semiconductor element,
One end of the fine wire is connected to a metal ball softer than the copper formed on the pad, and the other end of the fine wire is connected to the lead.
前記金属ボールは、金から成ることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the metal ball is made of gold. 前記金属ボール上に接続される前記細線の一端は、スティッチボンドされることを特徴とする請求項2記載の半導体装置。 The semiconductor device according to claim 2, wherein one end of the thin wire connected to the metal ball is stitch-bonded. アイランドと、前記アイランドの周囲に配置された複数のリードと、前記アイランド上に固着された半導体素子と、前記半導体素子の電極パッドと前記リードとを電気的に接続する銅を主材料とする細線と、前記アイランド、前記リード、前記銅線及び前記半導体素子とを被覆する樹脂パッケージとを有する半導体装置において、
前記電極パッドの内層または前記電極パッドの下面には緩衝材層が配置され、前記細線の一端は前記電極パッドとボンディングされることを特徴とする半導体装置。
An island, a plurality of leads arranged around the island, a semiconductor element fixed on the island, and a thin wire mainly composed of copper electrically connecting the electrode pad of the semiconductor element and the lead And a semiconductor device having a resin package that covers the island, the lead, the copper wire, and the semiconductor element,
A semiconductor device, wherein a buffer material layer is disposed on an inner layer of the electrode pad or a lower surface of the electrode pad, and one end of the fine wire is bonded to the electrode pad.
前記緩衝材層は、前記電極パッドを構成する金属層よりも硬い金属層であり、前記金属パッド内にて破砕していることを特徴とする請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein the buffer material layer is a metal layer harder than a metal layer constituting the electrode pad, and is crushed in the metal pad. 前記電極パッドは前記半導体素子表面を被覆するシールド層の開口部から露出し、前記緩衝材層は前記開口部の開口面積よりも小さく、前記開口部内に配置されることを特徴とする請求項4または請求項5に記載の半導体装置。 5. The electrode pad is exposed from an opening of a shield layer that covers the surface of the semiconductor element, and the buffer material layer is smaller than an opening area of the opening and is disposed in the opening. Alternatively, the semiconductor device according to claim 5. 前記アイランドには、前記半導体素子の固着領域の周囲に複数の貫通孔が形成され、前記貫通孔は前記樹脂パッケージを構成する樹脂により充填されることを特徴とする請求項1または請求項4に記載の半導体装置。 5. The island according to claim 1, wherein a plurality of through holes are formed in the island around a fixed region of the semiconductor element, and the through holes are filled with a resin constituting the resin package. The semiconductor device described. 前記貫通孔の形状は、円形、楕円形または矩形であり、前記貫通孔の幅は、前記隣り合うリード間の離間幅と同等またはそれ以上の幅であることを特徴とする請求項7に記載の半導体装置。 The shape of the through hole is a circle, an ellipse, or a rectangle, and the width of the through hole is equal to or larger than the separation width between the adjacent leads. Semiconductor device. アイランドと、前記アイランドの周囲に配置された複数のリードと、前記アイランドから延在された吊りリードとを有する搭載部が設けられたリードフレームを準備し、
前記アイランド上に半導体素子を固着し、前記半導体素子の電極パッドと前記リードとを銅を主材料とする細線にて電気的に接続し、前記搭載部を被覆する樹脂パッケージを形成した後、前記リードを曲げ加工し、前記リードフレームから前記樹脂パッケージを分離する半導体装置の製造方法において、
前記リードフレームをワイヤーボンディング装置の載置台上に固定し、
前記細線の接続領域の上方から、前記接続領域に向かい、前記細線の酸化を防止するガスの流れが生成されることを特徴とする半導体装置の製造方法。
Preparing a lead frame provided with a mounting portion having an island, a plurality of leads arranged around the island, and a suspension lead extending from the island;
After fixing a semiconductor element on the island, electrically connecting the electrode pad of the semiconductor element and the lead with a fine wire mainly made of copper, and forming a resin package covering the mounting portion, In a manufacturing method of a semiconductor device for bending a lead and separating the resin package from the lead frame,
Fixing the lead frame on the mounting table of the wire bonding apparatus;
A method of manufacturing a semiconductor device, characterized in that a gas flow that prevents oxidation of the fine wire is generated from above the fine wire connection region toward the connection region.
前記リードフレームに設けられた開口領域、または/および前記載置台のガス抜き孔から、前記ガスを引き抜くことを特徴とする請求項9に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 9, wherein the gas is extracted from an opening region provided in the lead frame and / or a gas vent hole of the mounting table. 少なくとも前記アイランドと前記リード間の前記開口領域または前記リード間の前記開口領域を介して前記ガスを引き抜くことを特徴とする請求項10に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 10, wherein the gas is extracted through at least the opening region between the island and the lead or the opening region between the leads. 前記アイランドには複数の貫通孔が設けられ、前記貫通孔の前記開口領域を介して前記ガスを引き抜くことを特徴とする請求項10または請求項11に記載の半導体装置の製造方法。 12. The method of manufacturing a semiconductor device according to claim 10, wherein the island is provided with a plurality of through holes, and the gas is extracted through the opening region of the through holes. 前記リードに対応したリード固定領域を有するクランパーにより前記リードを個別に固定することで、前記リードフレームを前記載置台上に固定し、
前記クランパーでは、前記リード固定領域間から前記搭載部へと前記ガスを供給することを特徴とする請求項9から請求項12のいずれかに記載の半導体装置の製造方法。
By fixing the leads individually by a clamper having a lead fixing area corresponding to the leads, the lead frame is fixed on the mounting table,
The method of manufacturing a semiconductor device according to claim 9, wherein the clamper supplies the gas from between the lead fixing regions to the mounting portion.
JP2009108043A 2009-04-27 2009-04-27 Semiconductor device and method of manufacturing the same Pending JP2010258286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108043A JP2010258286A (en) 2009-04-27 2009-04-27 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108043A JP2010258286A (en) 2009-04-27 2009-04-27 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010258286A true JP2010258286A (en) 2010-11-11

Family

ID=43318843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108043A Pending JP2010258286A (en) 2009-04-27 2009-04-27 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010258286A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004779A (en) * 2011-06-17 2013-01-07 Sanken Electric Co Ltd Semiconductor device and semiconductor device manufacturing method
CN103545435A (en) * 2012-07-10 2014-01-29 深圳市斯迈得光电子有限公司 High-reliability weld wire device applied to SMD (surface mount device) light-emitting diode
CN104900791A (en) * 2015-04-09 2015-09-09 苏州君耀光电有限公司 LED encapsulation structure
WO2024029286A1 (en) * 2022-08-03 2024-02-08 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253825A (en) * 1985-05-02 1986-11-11 Toshiba Corp Semiconductor element assembling method
JPS63148646A (en) * 1986-12-12 1988-06-21 Toshiba Corp Semiconductor device
JPH01238032A (en) * 1988-03-18 1989-09-22 Toshiba Corp Semiconductor device in which copper or copper-alloy metal fine wire is provided at its electrical connection part
JPH01255234A (en) * 1988-04-05 1989-10-12 Toshiba Corp Semiconductor device
JPH08203947A (en) * 1995-01-23 1996-08-09 Sony Corp Nozzle for wire bonding
JP2007134504A (en) * 2005-11-10 2007-05-31 Tatsuta Electric Wire & Cable Co Ltd Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253825A (en) * 1985-05-02 1986-11-11 Toshiba Corp Semiconductor element assembling method
JPS63148646A (en) * 1986-12-12 1988-06-21 Toshiba Corp Semiconductor device
JPH01238032A (en) * 1988-03-18 1989-09-22 Toshiba Corp Semiconductor device in which copper or copper-alloy metal fine wire is provided at its electrical connection part
JPH01255234A (en) * 1988-04-05 1989-10-12 Toshiba Corp Semiconductor device
JPH08203947A (en) * 1995-01-23 1996-08-09 Sony Corp Nozzle for wire bonding
JP2007134504A (en) * 2005-11-10 2007-05-31 Tatsuta Electric Wire & Cable Co Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004779A (en) * 2011-06-17 2013-01-07 Sanken Electric Co Ltd Semiconductor device and semiconductor device manufacturing method
CN103545435A (en) * 2012-07-10 2014-01-29 深圳市斯迈得光电子有限公司 High-reliability weld wire device applied to SMD (surface mount device) light-emitting diode
CN104900791A (en) * 2015-04-09 2015-09-09 苏州君耀光电有限公司 LED encapsulation structure
WO2024029286A1 (en) * 2022-08-03 2024-02-08 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3935370B2 (en) Bumped semiconductor element manufacturing method, semiconductor device and manufacturing method thereof, circuit board, and electronic device
US6661087B2 (en) Lead frame and flip chip semiconductor package with the same
US7042071B2 (en) Leadframe, plastic-encapsulated semiconductor device, and method for fabricating the same
JP3584930B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP2009094118A (en) Lead frame, electronic component with the same, and manufacturing method thereof
KR20040111395A (en) Wafer-level coated copper stud bumps
WO2004100258A2 (en) Ribbon bonding
WO2010098500A1 (en) Semiconductor device and method for producing the same
KR101293685B1 (en) High bond line thickness for semiconductor devices
JP2008103685A (en) Semiconductor device and method of manufacturing same
JP2005064479A (en) Circuit module
US9508673B2 (en) Wire bonding method
JP2010258286A (en) Semiconductor device and method of manufacturing the same
JP2005244035A (en) Mounting method of semiconductor device, and semiconductor device
JPWO2013108706A1 (en) Semiconductor device
US8471383B2 (en) Semiconductor package and fabrication method thereof
JP6354467B2 (en) Semiconductor device
JP5411553B2 (en) Manufacturing method of semiconductor device
JP5411529B2 (en) Manufacturing method of semiconductor device
JP2016086003A (en) Manufacturing method of power semiconductor device
KR20100025750A (en) Semiconductor package
JP2013201218A (en) Semiconductor device and semiconductor module using the same
JP4642047B2 (en) Semiconductor device
JP2005116916A (en) Semiconductor device and its manufacturing method
JP2007035863A (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408