JP3586008B2 - ディスク記録再生装置のデータ再生処理装置 - Google Patents
ディスク記録再生装置のデータ再生処理装置 Download PDFInfo
- Publication number
- JP3586008B2 JP3586008B2 JP23999495A JP23999495A JP3586008B2 JP 3586008 B2 JP3586008 B2 JP 3586008B2 JP 23999495 A JP23999495 A JP 23999495A JP 23999495 A JP23999495 A JP 23999495A JP 3586008 B2 JP3586008 B2 JP 3586008B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- filter
- parameter
- reproduction
- servo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Digital Magnetic Recording (AREA)
- Moving Of The Head To Find And Align With The Track (AREA)
Description
【発明の属する技術分野】
本発明は、例えばハードディスク装置等のディスク記録再生装置において、ヘッドによりディスクから読出したリード信号を再生処理するためのデータ再生処理装置に関する。
【0002】
【従来の技術】
従来、ハードディスク装置(HDD)等のディスク記録再生装置は、ヘッドとデータ記録再生系回路により記録媒体であるディスクにデータを記録し、またディスクからデータ再生する記録再生動作を実行する。
【0003】
データ記録再生系回路の構成要素であるデータ再生処理装置として、近年ではリードチャネルと称するLSIが開発されている。リードチャネルは、大別してヘッド系(ヘッドとヘッドアンプ)により読出されたリード信号の信号処理を行なうリード信号処理部とデコーダとからなる。
【0004】
デコーダは、リード信号処理部から出力されたディジタルのリードデータ(ここではホストデータまたはユーザデータを意味する)をデコードして元の記録データに再生する。
【0005】
リードチャネルは、図13に示すように、通常では利得調整機能を有するアンプ(VGA)2、ローパスフィルタ(LPF)3、A/Dコンバータ4、PLL回路等の構成要素を有し、それ以外にピーク検出方式やPRML(Partial Response Maximum Likelihood)方式に適用した構成要素を有する。具体的には、ピーク検出方式のパルスピーク検出回路6等や、PRML方式のPRイコライザ5やビタビ(viterbi)デコーダ等の構成要素が含まれる。さらに、HDDでは、ディスク上に予め記録されたサーボデータを再生するが、サーボデータに含まれるバーストデータ(トラック毎の位置情報)を復調するためのサーボ復調回路7が必要である。
【0006】
PRML方式を適用したリードチャネルは、図13に示すように、PRイコライザ5によりPR等化されたディジタルデータ(リードデータRD)からホストデータをビタビデコーダにより再生する。
【0007】
一方、サーボデータに含まれるシリンダコード(トラックアドレス)CDは、ピーク検出方式のパルスピーク検出回路6により処理されて、通常ではサーボコントローラ(後述)でコード列にデコードされる。
【0008】
ここで、ヘッド系1とは、例えば再生専用のMR(magnetoresistive)ヘッドとヘッドアンプとを意味する。即ち、MRヘッドから出力されたリード信号は、ヘッドアンプにより増幅されてリードチャネルに入力される。
【0009】
一方、ピーク検出方式を適用したリードチャネルは、図12に示すように、ホストデータを再生するためのリードデータRDも、サーボデータのシリンダコードCDと同様にパルスピーク検出回路6により処理される。この場合、リードデータRDは例えばNRZ符号に復号化するためのデコーダに与えられる。
【0010】
ところで、LPF3は、アナログのリード信号から高域ノイズを除去して、リード信号のS/N比を高めるなど、前記のような各データを正確に再生処理するための信号処理要素として重要である。
【0011】
近年、LPF3は、リードチャネルのLSIの内部にプログラマブル電子フィルタとして構成されている。このLPF3は、フィルタパラメータである低域遮断周波数(カットオフ周波数fc)とブースト量(高域強調係数)を外部から設定して、フィルタ特性を可変することができる電子フィルタである。
【0012】
セクタサーボ方式を採用している小型のHDDでは、同一のヘッドにより、周波数帯域が異なるホストデータとサーボデータを読出すため、それぞれのリード信号毎にLPF3のパラメータを切換えることがなされている。
【0013】
具体的には、図13に示すように、リードチャネルの中に、ホストデータとサーボデータのそれぞれのカットオフ周波数fcとブースト量を設定するためのレジスタ群からなるコントロールレジスタ10が設けられている。さらに、HDDのサーボコントローラからのサーボゲート(ヘッド位置決め制御時の制御信号)SGによりスイッチ動作するスイッチ回路11,12が設けられている。
【0014】
LPF3側には、カットオフ周波数fcを調整するための制御電流を出力するfc用制御回路8と、同じく調整用の制御電流を出力するブースト用制御回路9が設けられている。fc用制御回路8は、スイッチ回路11の切換え動作により、ホストデータまたはサーボデータに対応するfc用パラメータデータに従った制御電流を出力する。同様に、ブースト用制御回路9は、スイッチ回路12の切換え動作により、ホストデータまたはサーボデータに対応するブースト用パラメータデータに従った制御電流を出力する。
このような構成は、図12に示すように、ピーク検出方式を適用したリードチャネルの場合も同様である。
【0015】
【発明が解決しようとする課題】
前述のように、リードチャネルの内部レジスタであるコントロールレジスタ10にパラメータデータを設定すれば、サーボゲートSGなどの外部信号により、瞬時にホストデータとサーボデータのいずれかに最適なフィルタパラメータに切換えられるプログラマブル電子フィルタからなるLPF3が開発されている。
【0016】
したがって、周波数帯域が異なるホストデータとサーボデータのそれぞれに最適な低域遮断周波数(fc)と波形スリミングのためのブースト量が設定されるため、LPF3からは各データの再生処理に適正なリード信号が出力される。
【0017】
ところで、セクタサーボ方式では、前述したように、サーボデータには2値化データであるシリンダコードCDと振幅検波による位置情報を表すバーストデータBSの2種類がある。これら2種類のサーボデータは、HDDの製造工程時のサーボトラックライタ(STW)工程において、共通の基準クロックに基づいてディスク上のサーボエリアに記録される。また、各サーボデータは、ホストデータの周波数帯域に対して、それぞれが近い周波数帯域のため、従来ではサーボデータとして一つのフィルタ特性(1種類のパラメータ)で、十分に適正なリード信号の処理が可能であった。
【0018】
しかしながら、近年、ホストデータの記録エリアを拡張するために、データアドレス(トラックアドレス)等を記録しているID部を省略するフォーマットを採用した方式が開発されている。
【0019】
この方式では、サーボデータのシリンダコードがデータアドレスとして使用されることになる。このため、シリンダコードの信頼性は、HDDの記録再生動作の性能に大きな影響を与えることになる。特に、シリンダコードのビット品質を確保するために、リードチャネルにおけるLPF3のフィルタ特性は、重要な要素となる。さらにフォーマット効率改善のために、シリンダコードの記録エリアのビット密度を向上させる場合、波形干渉の影響を軽減するためにブースト量を高くする等のフィルタ特性の最適化処理が必要である。
【0020】
一方、サーボデータのもう1種類のバーストデータは、従来からS/N比の悪化による信頼性低下が問題になっている。LPF3のブースト量を高くすると、高域ノイズが増加して、位置情報としての精度の悪化が予想される。
【0021】
また、特にPRML方式のリードチャネルでは、図13に示すように、ホストデータはPR等化処理が実行されて、シリンダコードはピーク検出方式の処理が実行されるため、LPF3の周波数特性が大きく異なり、それぞれの最適化が必要となる。
【0022】
本発明の目的は、データ再生処理のフィルタ特性の設定を、ホストデータとサーボデータの2種類だけでなく、サーボデータのシリンダコードとバーストデータのそれそれに最適なフィルタ特性を設定できるようにして、各データに対する信頼性の高い再生動作を実現することにある。
【0023】
【課題を解決するための手段】
本発明は、ディスク上に記録されたホストデータ、及びアドレスコード(シリンダコード)とバーストデータの2種類のサーボデータのそれぞれを再生処理するデータ再生処理装置(リードチャネル)において、例えばプログラマブル電子フィルタを利用して、ヘッドからのリード信号に対して高域ノイズの除去等の再生処理に必要なローパスフィルタ(LPF)による信号処理装置に関する。
【0024】
本発明の特徴は、ディスク上からヘッドにより読出された読出し信号を入力し、前記ディスク上に記録されたホストデータ、及びアドレスコードとバーストデータとを含むサーボデータのそれぞれを再生処理するデータ再生処理装置であって、フィルタ動作特性を決定するフィルタパラメータが可変的に設定可能で、当該フィルタパラメータに従って、前記ホストデータ、前記アドレスコード、及び前記バーストデータに対応する前記読出し信号の信号処理を行なうフィルタ手段と、前記フィルタパラメータにおいて、前記ホストデータの再生処理に適正な第1のフィルタパラメータ、前記アドレスコードの再生処理に適正な第2のフィルタパラメータ、及び前記バーストデータの再生処理に適正な第3のフィルタパラメータのそれぞれを保持するレジスタ手段と、前記ホストデータを再生する第1の再生動作、前記アドレスコードを再生する第2の再生動作、及び前記バーストデータを再生する第3の再生動作のそれぞれに必要な前記第1から第3の各フィルタパラメータを前記レジスタ手段から前記フィルタ手段に設定し、かつ前記各再生動作の切換え時に前記フィルタ手段に対する前記各フィルタパラメータの切換え設定を、当該切換え時に要する時間経過後に実行するフィルタパラメータ設定手段とを備えたデータ再生処理装置である。
【0025】
このような方式のリードチャネルにより、ホストデータ、アドレスコード、バーストデータの3種類のデータの再生動作を確実に実行することが可能となる。特に、アドレスコードとバーストデータに対して、各データの特性に応じた最適な再生処理が可能となるため、信頼性を高くすることが可能となる。このため、バーストデータの信頼性向上により、ヘッドの位置決め制御精度を高くすることができる。また、アドレスコードの信頼性向上により、ホストデータの記録エリアからID部を省略するフォーマットを採用した方式において、アドレスコードの高記記録密度化を実現することが可能となる。
【0026】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を説明する。
図1は第1の実施形態に関係するリードチャネルの要部を示すブロック図であり、図2は本実施形態の動作を説明するためのタイミングチャートであり、図3は本実施形態に関係するHDDの要部を示すブロック図であり、図4は本実施形態のディスクのフォーマットを説明するための概念図であり、図5は本実施形態に関係するトラックフォーマットを説明するための概念図である。
(HDDの構成)
本実施形態のPRML方式のリードチャネルは、図1に示すように、アンプ(VGA)2、ローパスフィルタ(LPF)3、A/Dコンバータ4、PLL回路等の構成要素、およびPRML方式の信号処理要素であるPRイコライザ5、ピーク検出方式のパルスピーク検出回路6、さらにバーストデータを復調するためのサーボ復調回路7を備えている。
【0027】
本実施形態のリードチャネルでは、LPF3は、フィルタパラメータである低域遮断周波数(カットオフ周波数fc)とブースト量(高域強調係数)を外部から設定して、フィルタ特性を可変することができるプログラマブル電子フィルタを想定している。
【0028】
図3に示すように、本実施形態のリードチャネル35は、セクタサーボ方式の小型のHDDに適用される。HDDは、記録媒体であるディスク30と、ディスク30を高速回転させるスピンドルモータ31と、ヘッド32を位置決めするためのヘッドアクチュエータを構成するボイスコイルモータ(VCM)33、及びヘッドアンプ34を有する。
【0029】
ディスク30は、図4に示すように、ここではCDR(constant density recording)方式のフォーマットを想定しており、多数のトラック(シリンダ)は複数のゾーンZ0〜Z3に分割されている。
【0030】
各トラックは、図5に示すように、所定の間隔でサーボエリアが設けられており、このサーボエリアを基準としてホストデータの記録エリアであるデータセクタが構成されている。CDR方式ではゾーン毎にデータセクタ数が異なる。したがって、各トラックにおいて、サーボエリア間のデータセクタ数も異なる。
【0031】
サーボエリアには、前述のようなシリンダコードCDとバーストデータBSの2種類のサーボデータが記録されている。
ヘッド32は、再生専用のMRヘッド32aと記録用の誘導型薄膜ヘッド32bとが組合わせられた記録再生分離型のヘッドである。MRヘッド32aは、ホストデータとサーボデータの両方の再生用として使用される。
【0032】
ヘッドアンプ34は、MRヘッド32aにより読出されたリード信号を増幅して、リードチャネル35に出力する。リードチャネル35は、リード信号からホストデータであるリードデータRDをディスクコントローラ(HDC)36に出力する。また、リードチャネル35は、サーボデータのシリンダコードCDに相当するディジタルデータをサーボコントローラ38に出力し、バーストデータに相当するアナログのバースト信号BSをサンプル/ホールド(S/H)回路39に出力する。
【0033】
HDC36は大別してデータコントローラとホストインターフェースを構成している。HDC36は、入力したリードデータRDを再生データとしてホストコンピュータに転送する。また、HDC36は、ホストコンピュータからの記録データを、図示しないデータ記録再生系回路のライト回路に出力する。
【0034】
マイクロコントローラ37は、HDDのメイン制御装置であり、大別してマイクロプロセッサ(CPU)37aと、A/Dコンバータ37bと、D/Aコンバータ37cとを有する。CPU37aは、主としてサーボデータに基づいて、ヘッド32をディスク30上の目標位置(目標トラック)に位置決めするための位置決め制御を実行する。
【0035】
A/Dコンバータ37bは、S/H回路39によりホールドされたバースト信号BSのピーク値をディジタルデータに変換してCPU37aに出力する。また、D/Aコンバータ37cは、CPU37aにより算出されたヘッド位置決め用の制御量をアナログ信号に変換して、VCM/SPMドライバ40に出力する。
【0036】
VCM/SPMドライバ40は、VCM33とスピンドルモータ(SPM)31を駆動するためのダブルドライバである。
(リードチャネルの構成)
本実施形態のリードチャネル35は、図1に示すように、フィルタパラメータである低域遮断周波数(カットオフ周波数fc)とブースト量(高域強調係数)を、コントロールレジスタ100からのパラメータデータに基づいて調整するためのfc用制御回路8とブースト用制御回路9を有するLPF3を内蔵している。
【0037】
LPF3は、ヘッド系1により読出されたリード信号をフィルタリングして、ホストデータの処理系のA/Dコンバータ4とサーボデータの処理系に出力する。ここで、ヘッド系1はMRヘッド32aとヘッドアンプ34とを意味する。VGA2は、ヘッドアンプ34からのリード信号を増幅してLPF3に出力する。VGA2は、自動ゲインコントローラ(AGC機能)を有し、ヘッドアンプ34からのリード信号のレベルを一定に保持するための増幅器である。
【0038】
なお、PRイコライザ5は、A/Dコンバータ4により変換されたディジタルデータに対して、PR(Partial Response)特性に従った波形等化処理を実行するためのディジタルフィルタを有する。ビタビデコーダは、ビタビ・アルゴリズムに基づいて、PR等化されたディジタルデータ(コードデータ列)から最尤のデータ系列(最も確からしい系列)を検出する最尤(ML)推定復号化回路である。
【0039】
本実施形態では、LPF3の周辺回路として、コントロールレジスタ100以外に、スイッチ回路20〜23とフリップフロップ24が設けられている。コントロールレジスタ100は、ホストデータ、シリンダコード、バーストデータのそれぞれに対応するfc用レジスタR1〜R3とブースト用レジスタR4〜R6を有する。
【0040】
スイッチ回路20,21は、サーボコントローラ38から出力されるサーボゲート(ヘッド位置決め制御時に有意となる制御信号)SGにより切換え動作する。即ち、データ再生時に、スイッチ回路20はfc用レジスタR1のホストデータ用のfcパラメータデータをfc用制御回路8にセットする。また、スイッチ回路21はブースト用レジスタR4のホストデータ用のブーストパラメータデータをブースト用制御回路9にセットする。
【0041】
スイッチ回路22,23は、フリップフロップ24から出力される制御信号Qにより切換え動作する。フリップフロップ24は、サーボコントローラ38から出力されるS/H回路39のサンプリングゲートSTの入力に応じて、制御信号Qを出力する。サンプリングゲートSTは、例えば2相のバーストデータ(BA,BB,BC,BD)をサンプルホールドするためのタイミング信号である(図2を参照)。
【0042】
即ち、ヘッド位置決め制御の速度制御時に、スイッチ回路22はスイッチ回路20を介して、fc用レジスタR2のシリンダコード用のfcパラメータデータをfc用制御回路8にセットする。また、スイッチ回路23はスイッチ回路21を介して、ブースト用レジスタR5のシリンダコード用のブーストパラメータデータをブースト用制御回路9にセットする。このとき、スイッチ回路20,21はサーボデータの再生モード側になっている。
(第1の実施形態のリードチャネルの動作)
まず、HDDでは、ディスク30からホストデータを再生するデータ再生動作とサーボデータを再生する再生動作(以下サーボモードと称する)に大別される。さらに、サーボモードは、シリンダコードを使用する速度制御モードとバーストデータを使用する位置制御モードに大別される。
【0043】
ヘッド系1は、図2に示すように、サーボデータとホストデータとが混在したリード信号を出力する。ここで、サーボエリアを基準とした通常では複数のデータセクタを含む範囲をサーボセクタと称する。サーボセクタは、サーボコントローラ38により生成されるセクタパルスにより検出される。データセクタを検出するためのデータセクタパルスは、そのセクタパルスに基づいて生成される。
【0044】
本実施形態のLPF3は、サーボゲートSGのタイミングに基づいて、データ再生動作時には、ホストデータに相当するリード信号(RD)に対するフィルタリング処理が有効となる。
【0045】
具体的には、図1に示すように、スイッチ回路20により、コントロールレジスタ100のfc用レジスタR1のホストデータ用のfcパラメータデータが、fc用制御回路8にセットされる。また、スイッチ回路21により、ブースト用レジスタR4のホストデータ用のブーストパラメータデータがブースト用制御回路9にセットされる。これにより、LPF3は、ホストデータの再生処理に最適なフィルタ特性に従った信号処理を実行することになる。
【0046】
次に、サーボモード時には、サーボコントローラ38からのサーボゲートSGにより、LPF3のモードはホストモードRDからシリンダコードモード(CD)の切換えられる。このとき、切換え時間CTが必要となる。
【0047】
即ち、サーボゲートSGにより、スイッチ回路20,21はサーボデータ側にスイッチ動作する。ここで、サーボモードでは、最初に速度制御モードから実行されるため、スイッチ回路22,23はシリンダコードのレジスタR2,R5側にオンしている。
【0048】
したがって、スイッチ回路22とスイッチ回路20により、fc用レジスタR2のシリンダコード用のfcパラメータデータがfc用制御回路8にセットされる。また、スイッチ回路23とスイッチ回路21により、ブースト用レジスタR5のシリンダコード用のブーストパラメータデータがブースト用制御回路9にセットされる。これにより、LPF3は、シリンダコードの再生処理に最適なフィルタ特性に従った信号処理を実行することになる。
【0049】
ここで、パルスピーク検出回路6は、電磁変換位置に相当する波形ピーク点を検出し、アナログのリード信号を2値化データに変換して、アドレスコードであるシリンダコードCDを含む2値化データを出力する。通常では、シリンダコードCDは、サーボコントローラ38により抽出されてマイクロコントローラ37に送られる。
【0050】
次に、位置制御モードに移行すると、図2に示すように、サーボコントローラ38から前述したサンプリングゲートSTが出力されると、LPF3のモードはシリンダコードモード(CD)からバーストデータBSのモードに切換えられる。このとき、切換え時間CTが必要となるため、本実施形態では、2相のバーストデータ(BA,BB,BC,BD)において最初のバーストデータBSをそれ以外のバーストデータより、データ長が長くなるように記録する。
【0051】
フリップフロップ24は、サンプリングゲートSTのタイミングに応じた制御信号Qを出力する。
この制御信号Qにより、スイッチ回路22,23はバーストデータ側にスイッチ動作する。したがって、スイッチ回路22とスイッチ回路20により、fc用レジスタR3のバーストデータ用のfcパラメータデータがfc用制御回路8にセットされる。また、スイッチ回路23とスイッチ回路21により、ブースト用レジスタR6のバーストデータ用のブーストパラメータデータがブースト用制御回路9にセットされる。これにより、LPF3は、バーストデータの再生処理に最適なフィルタ特性に従った信号処理を実行することになる。
【0052】
ここで、サーボ復調回路7は、LPF3からのリード信号(バースト信号BSを含む信号)の振幅をDC電圧レベルに変換してS/H回路39に出力する。
以上のように本実施形態によれば、ホストデータ、サーボデータに含まれるシリンダコードCDとバーストデータBSのそれぞれに最適なfcとブースト量のフィルタパラメータを、LPF3に設定することができる。したがって、LPF3に各データの再生処理に最適なフィルタ特性に設定できるため、各データを確実に再生処理することができる。
【0053】
特に、PRML方式のリードチャネルでは、ホストデータのリード信号に対してはPR等化特性に最適な信号処理を行なうことができる。また、バーストデータについてはS/N比を向上できるように、LPF3のブースト量を適正に設定し、高域ノイズを確実に除去することが可能となる。
【0054】
また、シリンダコードのビット品質を確保するために、波形干渉の影響を軽減するためにブースト量を高くするなど、最適なフィルタ特性の設定が可能となる。したがって、ホストデータに対してLPF3の周波数特性が大きく異なるシリンダコードをデータアドレスとして使用する方式の場合に、シリンダコードの再生動作における信頼性を高めることが可能となる。
【0055】
なお、従来のプログラマブル電子フィルタにおいて、フィルタパラメータの切換えに要する時間は、特性を決定するための制御電流の切換え処理と特性の安定化に要する時間に依存するが、早くても数100ns程度である。
【0056】
本実施形態では、サーボゲートSGの入力タイミングにより、ホストデータとシリンダコードの各フィルタ特性の切換えに要する切換え時間CTを確保している。また、シリンダコードからバーストデータへの切換え処理は、サンプリングゲートSTにより動作するフリップフロップ24と、最初のバーストデータBAのデータ長を長くすることにより、所定の時間を確保している。
(第2の実施形態)
第2の本実施形態は、図6に示すように、シリンダコードCDの専用の第2のLPF3bを設けて、第1のLPF3aによりホストデータRDとバーストデータBSのリード信号の信号処理を行なう構成である。
【0057】
即ち、第2のLPF3bでは、fc用レジスタR2のシリンダコード用のfcパラメータデータが、fc用制御回路8bにセットされる。また、ブースト用レジスタR5のシリンダコード用のブーストパラメータデータが、ブースト用制御回路9bにセットされる。
【0058】
これにより、サーボモード時に、第2のLPF3bは、シリンダコードCDの再生処理に最適なフィルタ特性に従った信号処理を実行することになる(図7のLPF3bのモードを参照)。
【0059】
第1のLPF3aでは、データ再生時に、スイッチ回路20を介して、fc用レジスタR1のホストデータ用のfcパラメータデータが、fc用制御回路8aにセットされる。また、スイッチ回路21を介して、ブースト用レジスタR4のホストデータ用のブーストパラメータデータがブースト用制御回路9にセットされる。これにより、第1のLPF3aは、ホストデータの再生処理に最適なフィルタ特性に従った信号処理を実行することになる。
【0060】
一方、サーボモード時に、スイッチ回路20はサーボゲートSGにより、バーストデータ側にスイッチ動作する。したがって、スイッチ回路20により、fc用レジスタR3のバーストデータ用のfcパラメータデータが、fc用制御回路8aにセットされる。
【0061】
また、スイッチ回路21はサーボゲートSGにより、バーストデータ側にスイッチ動作する。したがって、スイッチ回路21により、ブースト用レジスタR6のバーストデータ用のブーストパラメータデータが、ブースト用制御回路9aにセットされる。
【0062】
これにより、第1のLPF3aは、バーストデータの再生処理に最適なフィルタ特性に従った信号処理を実行することになる(図7のLPF3aのモードを参照)。なお、他の構成は前述の第1の実施形態と同様である。
【0063】
第2の実施形態の特徴は、シリンダコードCDの専用の第2のLPF3bを設けた構成である。これにより、シリンダコードCDの再生処理に最適なフィルタ特性を設定し、信頼性の高いシリンダコードCDを再生することが可能となる。したがって、前述したように、データセクタからID部を省略したフォーマットを採用する方式に適用した場合に、高ビット品質でかつ高記録密度のシリンダコードCDを要求に十分に対処することが可能となる。
【0064】
また、サーボモード時に、サーボゲートSGにより、第1のLPF3aはバーストデータの再生処理に最適なフィルタ特性に切換えられている。即ち、サーボゲートSGの発生直後に、第1のLPF3aはバーストデータ用フィルタ特性に切換えられて、シリンダコードCDの信号処理の期間に、そのフィルタ特性に安定化している。したがって、前述の第1の実施形態のように、LPFモードがシリンダコードからバーストデータに移行するときに、フィルタ特性の切換え時間CTのためのバーストデータBAのデータ長は必要としない(図2のLPFモードを参照)。
(第3の実施形態)
第3の実施形態は、前述の第2の実施形態の応用例であって、図8に示すように、リードチャネルの内部にサーボPLL回路80を追加した構成である。
【0065】
また、第1のLPF3aは、サーボゲートSGにより、ホストデータRDとバーストデータBSの各モードに従ってブースト特性のみを切換える。一方、シリンダコードCDの専用の第2のLPF3bは、サーボゲートSGにより、fc特性のみを切換える。切換え動作はセレクタ81により実行される。
【0066】
即ち、シリンダコードCDは、PRML方式の信号処理を採用するホストデータRDとは異なり、ピーク検出方式の信号処理を採用するため、周波数特性が大きく異なる。また、バーストデータBSとは異なり、前述のように、ビット密度を高めるためには、波形干渉の影響を軽減するために、波形スリミングを向上させるブースト量を高くする必要がある。
【0067】
そこで、第2のLPF3bでは、ブースト量はシリンダコードCDの特性に従って最適値が固定的に設定されており、サーボモード時にコントロールレジスタ100からシリンダコード用のfcパラメータデータが、fc用制御回路8にセットされる。
【0068】
一方、バーストデータBSは、ブースト量を高くすると、S/N比が低下するため、相対的に下げる必要がある。そこで、第1のLPF3aでは、fcパラメータはホストデータRDの特性に従って最適値が固定的に設定されており、サーボモード時にコントロールレジスタ100からバーストデータ用のブーストパラメータデータが、ブースト用制御回路9にセットされる。また、データ再生時には、コントロールレジスタ100からホストデータ用のブーストパラメータデータが、ブースト用制御回路9にセットされる。
【0069】
サーボPLL回路80は、図9に示すように、サーボゲートSGの立上がりタイミングで、アクジション(位相引込み)し、AGCSYNCエリア中でアクジションが完了するように構成されている。
【0070】
サーボPLL回路80は、位相同期したサーボクロックを生成してサーボコントローラ38に供給し、シリンダコードCDの再生タイミングとして使用される。
【0071】
従来では、水晶発振から作成した基準クロックとシリンダコードの2値化データをカウンタでカウントする程度で、シリンダコードのビット信頼性を十分確保することが可能であった。しかし、前述のようなIDレスのフォーマット採用によるシリンダコードの信頼性要求及び線記録密度向上によるシリンダコードの周波数向上の要求に対して、従来のカウンタ方式では信頼性が不十分である。
【0072】
そこで、前記の要求を満たすためには、シリンダコードCDのビットタイミングを改善する必要があるが、シリンダコードCDの2値化データを使用して、サーボPLL回路80によりサーボクロックを作成する方式が有効である。
【0073】
しかしながら、サーボPLL回路80を使用する方式では、サーボPLL回路80において、位相追従されるシリンダコードCDは、LPFを通過して2値化されたものであるから、原波形に対してLPFの群遅延特性を含んでいることになる。
【0074】
ここで、バーストデータBSは、サーボPLL回路80からのサーボクロックにより作成されたサンプルゲートSTでサンプリングされることになる。したがって、群遅延特性(増減)がサーボクロックに影響すると、サンプルゲートSTのオン/オフタイミングがばらつき、バーストデータBSの復調処理精度(リピータビリティ)が低下する。
【0075】
そこで、群遅延特性がサーボPLL回路80から出力されるサーボクロックに影響することを防止するために、シリンダコードCDの専用の第2のLPF3bのfc特性を最適値に設定することが必要となる。
【0076】
以上のように本実施形態のような構成であれば、シリンダコードCDの専用の第2のLPF3bとサーボPLL回路80とを使用した方式により、高ビット密度のシリンダコードCDを高精度に再生することができる。また、サーボPLL回路80からのサーボクロックを使用するバーストデータの再生処理においても、高精度の再生処理を実現することができる。
(第4の実施形態)
第4の実施形態は、前述の第1の実施形態と第2の実施形態の応用例であり、PRML方式に対してピーク検出方式のリードチャネルに適用した場合である。
【0077】
図10は、第1の実施形態のPRML方式のリードチャネルに対して、ピーク検出方式に適用した場合の構成である。この方式では、ホストデータRDは、ピーク検出方式のパルスピーク検出回路6により信号処理されて再生される。なお、ホストデータRDの信号処理以外の構成は、第1の実施形態と同様である。
【0078】
図11は、第2の実施形態のPRML方式のリードチャネルに対して、ピーク検出方式に適用した場合の構成である。この方式では、パルスピーク検出回路6には、ホストデータRDとシリンダコードCDの各リード信号が入力されるため、入力切換え用のスイッチ回路25が設けられている。
【0079】
スイッチ回路25はサーボゲートSGにより切換え動作し、サーボモード時にはシリンダコードCDの専用の第2のLPF3bから出力されるリード信号をパルスピーク検出回路6に入力する。また、データ再生時には、第1のLPF3aから出力されるホストデータRDに対応するリード信号をパルスピーク検出回路6に入力する。
なお、それ以外の構成は第2の実施形態と同様である。
【0080】
【発明の効果】
以上詳述したように本発明によれば、特にセクタサーボ方式のHDD等のディスク記録再生装置において、データ再生処理に必要なフィルタに対して、ホストデータとサーボデータの2種類だけでなく、サーボデータのシリンダコードとバーストデータのそれそれに最適なフィルタ特性を設定することができる。したがって、各データに対する信頼性の高い再生動作を実現することが可能になる。
【0081】
特に、セクタサーボ方式のHDDにおいて、ホストデータの記録エリアからID部を省略するフォーマットを採用した方式に適用すれば、シリンダコードの高ビット記録化と高精度の再生処理を実現できるため、シリンダコードをデータアドレスとして使用することが容易となり、極めて有効である。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に関係するリードチャネルのブロック図。
【図2】第1の実施形態に関係するタイミングチャート。
【図3】第1の実施形態に関係するHDDのブロック図。
【図4】第1の実施形態に関係するディスクフォーマットを示す概念図。
【図5】第1の実施形態に関係するトラックフォーマットを示す概念図。
【図6】第2の実施形態に関係するリードチャネルのブロック図。
【図7】第2の実施形態に関係するタイミングチャート。
【図8】第3の実施形態に関係するリードチャネルのブロック図。
【図9】第3の実施形態に関係するタイミングチャート。
【図10】第4の実施形態に関係するリードチャネルのブロック図。
【図11】第4の実施形態に関係するリードチャネルのブロック図。
【図12】従来のピーク検出方式のリードチャネルのブロック図。
【図13】従来のPRML方式のリードチャネルのブロック図。
【符号の説明】
1…ヘッド系(MRヘッド32aとヘッドアンプ34)
2…アンプ(VGA)
3…ローパスフィルタ(プログラマブル電子LPF)
4…A/Dコンバータ
5…PRイコライザ
6…パルスピーク検出回路
7…サーボ復調回路
8,8a,8b…fc(低域遮断周波数)制御回路
9,9a,9b…ブースト(高域強調係数)制御回路
20〜23,25…スイッチ回路
24…フリップフロップ
30…ディスク
35…リードチャネル
37…マイクロコントローラ
38…サーボコントローラ
100…コントロールレジスタ
Claims (5)
- ディスク上からヘッドにより読出された読出し信号を入力し、前記ディスク上に記録されたホストデータ、及びアドレスコードとバーストデータとを含むサーボデータのそれぞれを再生処理するデータ再生処理装置であって、
フィルタ動作特性を決定するフィルタパラメータが可変的に設定可能で、当該フィルタパラメータに従って、前記ホストデータ、前記アドレスコード、及び前記バーストデータに対応する前記読出し信号の信号処理を行なうフィルタ手段と、
前記フィルタパラメータにおいて、前記ホストデータの再生処理に適正な第1のフィルタパラメータ、前記アドレスコードの再生処理に適正な第2のフィルタパラメータ、及び前記バーストデータの再生処理に適正な第3のフィルタパラメータのそれぞれを保持するレジスタ手段と、
前記ホストデータを再生する第1の再生動作、前記アドレスコードを再生する第2の再生動作、及び前記バーストデータを再生する第3の再生動作のそれぞれに必要な前記第1から第3の各フィルタパラメータを前記レジスタ手段から前記フィルタ手段に設定し、かつ前記各再生動作の切換え時に前記フィルタ手段に対する前記各フィルタパラメータの切換え設定を、当該切換え時に要する時間経過後に実行するフィルタパラメータ設定手段と
を具備したことを特徴とするデータ再生処理装置。 - 前記フィルタパラメータ設定手段は、
前記第1の再生動作時に、前記レジスタ手段から前記第1のフィルタパラメータを前記フィルタ手段に設定し、
前記サーボデータの再生処理に含まれる前記第2の再生動作時に、前記レジスタ手段から前記第2のフィルタパラメータを前記フィルタ手段に設定し、
前記第2の再生動作から前記第3の再生動作の切換え時に、前記レジスタ手段から前記第3のフィルタパラメータを前記フィルタ手段に設定することを特徴とする請求項1に記載のデータ再生処理装置。 - 前記フィルタ手段は、前記アドレスコードに対応する前記読出し信号の信号処理を行なう第1のフィルタ手段、及び前記ホストデータまたは前記バーストデータに対応する前記読出し信号の信号処理を行なう第2のフィルタ手段を有し、
前記フィルタパラメータ設定手段は、
前記第2の再生動作時に、前記レジスタ手段から前記第2のフィルタパラメータを前記第1のフィルタ手段に設定し、
前記第1の再生動作時に、前記レジスタ手段から前記第1のフィルタパラメータを前記第2のフィルタ手段に設定し、
前記第1の再生動作から前記第3の再生動作の切換え時に、前記レジスタ手段から前記第3のフィルタパラメータを前記第2のフィルタ手段に設定することを特徴とする請求項1に記載のデータ再生処理装置。 - 前記レジスタ手段には、第1のフィルタパラメータに含まれるブースト量を示す第1のパラメータデータ、前記第2のフィルタパラメータに含まれる周波数特性を示す第2のパラメータデータ、及び第3のフィルタパラメータに含まれるブースト量を示す第3のパラメータデータが保持されており、
前記フィルタ手段は、前記第2のフィルタパラメータの中で前記第2の再生動作に適したブースト量が固定的に設定されて、前記アドレスコードに対応する前記読出し信号の信号処理を行なう第1のフィルタ手段、及び第1のフィルタパラメータの中で前記第1の再生動作に適した周波数特性が固定的に設定されて、前記ホストデータまたは前記バーストデータに対応する前記読出し信号の信号処理を行なう第2のフィルタ手段を有し、
前記フィルタパラメータ設定手段は、
前記第2の再生動作時に、前記レジスタ手段から前記第2のパラメータデータを前記第1のフィルタ手段に設定し、
前記第1の再生動作時に、前記レジスタ手段から前記第1のパラメータデータを前記第2のフィルタ手段に設定し、
前記第1の再生動作から前記第3の再生動作の切換え時に、前記レジスタ手段から前記第3のパラメータデータを前記第2のフィルタ手段に設定することを特徴とする請求項1に記載のデータ再生処理装置。 - 請求項1に記載のデータ再生処理装置を有することを特徴とするディスクドライブ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23999495A JP3586008B2 (ja) | 1995-09-19 | 1995-09-19 | ディスク記録再生装置のデータ再生処理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23999495A JP3586008B2 (ja) | 1995-09-19 | 1995-09-19 | ディスク記録再生装置のデータ再生処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0991609A JPH0991609A (ja) | 1997-04-04 |
JP3586008B2 true JP3586008B2 (ja) | 2004-11-10 |
Family
ID=17052898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23999495A Expired - Fee Related JP3586008B2 (ja) | 1995-09-19 | 1995-09-19 | ディスク記録再生装置のデータ再生処理装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3586008B2 (ja) |
-
1995
- 1995-09-19 JP JP23999495A patent/JP3586008B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0991609A (ja) | 1997-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5838512A (en) | Apparatus for reproducing digital servo data and digital user data, for use in a disk storage system | |
US7661187B2 (en) | Manufacturing method for magnetic disk drive | |
JP2648554B2 (ja) | Prmlディスク駆動システムの非同期ゲイン調整方法および装置 | |
US20100142078A1 (en) | Systems and Methods for Memory Efficient Repeatable Run Out Processing | |
JP2004342213A (ja) | 磁気ディスク装置、リードゲート最適化方法及びプログラム | |
JP3645505B2 (ja) | ディスク記憶装置及び同装置に適用するリード方法 | |
US7009792B2 (en) | Method and apparatus for data reproducing in a disk drive | |
KR100855987B1 (ko) | 나선형 서보 트랙 기록에 있어서 디스크 열적 팽창으로인한 시간 변화를 보상하기 위한 지연 클럭 트랙 리드 백데이터 | |
US5453888A (en) | Servo signal noise suppression in a sectored servo system by separating user data from servo data and filtering each with a specific filter | |
JP2005209281A (ja) | データ記憶装置、記憶装置の制御方法及び磁気ディスク駆動装置 | |
JP5064666B2 (ja) | データ記憶装置及びそのユーザ・データの書き込み制御方法 | |
JP4028201B2 (ja) | 垂直磁気記録方式の磁気ディスク装置 | |
JP3586008B2 (ja) | ディスク記録再生装置のデータ再生処理装置 | |
JP2005346815A (ja) | ディスク装置、そのヘッドの位置決め制御方法、及び信号処理回路 | |
US6587291B2 (en) | Asynchronously sampling wide bi-phase codes | |
KR100853915B1 (ko) | 하드 디스크 드라이브 시스템에서의 프리앰프 판독 리커버리를 개선시키는 방법, 하드 디스크 드라이브 시스템에서 다수의 비판독 상태들로부터 판독 상태로 전환시키는 방법 및 이를 제어하는 시스템 | |
CN1983421A (zh) | 信息再现装置 | |
JP3663033B2 (ja) | Mrヘッドを用いた磁気ディスク装置及び同装置における再生信号処理方法 | |
JP3349392B2 (ja) | 記憶装置 | |
JP2003257124A (ja) | ディスク装置のフォーマット効率改善方法、ディスク装置のリード再生回路及びディスク装置 | |
US6674591B1 (en) | Method and apparatus for identifying a track of a rotating disk using EPR4 data equalization and detection techniques | |
JPH1196510A (ja) | 磁気ディスク装置及びそのリトライ方法 | |
JP2000090605A (ja) | 位置検出信号復調方法および磁気ディスク装置 | |
JP2010129136A (ja) | データ記憶装置、リード回路及びデータ記憶装置の製造方法。 | |
JPH09139035A (ja) | ディスク記録再生システム及びそのヘッド位置決め制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040805 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070813 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100813 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100813 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |