JP3578592B2 - Die attach resin paste for semiconductor - Google Patents

Die attach resin paste for semiconductor Download PDF

Info

Publication number
JP3578592B2
JP3578592B2 JP14551797A JP14551797A JP3578592B2 JP 3578592 B2 JP3578592 B2 JP 3578592B2 JP 14551797 A JP14551797 A JP 14551797A JP 14551797 A JP14551797 A JP 14551797A JP 3578592 B2 JP3578592 B2 JP 3578592B2
Authority
JP
Japan
Prior art keywords
resin
paste
formula
compound represented
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14551797A
Other languages
Japanese (ja)
Other versions
JPH10330441A (en
Inventor
豊 松田
敏郎 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP14551797A priority Critical patent/JP3578592B2/en
Publication of JPH10330441A publication Critical patent/JPH10330441A/en
Application granted granted Critical
Publication of JP3578592B2 publication Critical patent/JP3578592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject paste low in stainability and excellent in solder- cracking resistance by compounding a specific acrylic or methacrylic resin, a thermoplastic elastomer, an organic peroxide and silver powder or silica filler. SOLUTION: This die attach resin paste contains (A) an acrylic resin of formula I R1 is CH2 , etc.; R2 is a Cn H2n [(n) is <=4]; (X)+(Y)=4 or larger} or a methacrylic resin of formula II, (B) an acrylic resin of formula III [(a) is 0, 1; (b) is 1, 2; (c) is 1, 2; (b)+(c)=3] or a methacrylic resin of formula IV, (C) a thermoplastic elastomer (e.g. a polyester resin), (D) an organic peroxide (e.g. t-butylperoxy-2-ethyl hexanoate) and (E) silver powder or silica filler as essential components. The component B is contained in an amount of 0.1-50 wt.% based on all the resins.

Description

【0001】
【発明の属する技術分野】
本発明は、IC、LSI等の半導体素子を基板等に接着する樹脂ペーストに関するものである。
【0002】
【従来の技術】
近年のエレクトロニクス産業の著しい発展に伴い、トランジスタ、IC、LSI、超LSIと半導体素子における回路の集積度は急激に増大している。このため、半導体素子の大きさも、従来長辺が数mm程度だったものが10数mmと飛躍的に増大している。又、リードフレームは従来の42アロイから、熱伝導性も良く安価である銅材が主流となりつつある。一方、半導体製品の実装は表面実装法になり、しかも高密度実装化のため半導体製品自体、すなわちパッケージの大きさは小さく、且つ薄くなってきている。
【0003】
このような半導体製品の動向に従い、半導体製品の構成材料に対する要求性能も変化してきており、半導体素子と金属フレームを接合するダイボンディング用樹脂ペーストに対しても、従来要求されていた接合の信頼性のみならず、大型チップと銅フレームの熱膨張率の差に基づく熱応力を吸収緩和する応力緩和特性、更に薄型パッケージでの表面実装に基づく耐半田クラック特性が要求され始めている。
【0004】
この様な耐半田クラック性のダイボンディング用樹脂ペーストの条件としては、低応力性、低吸水性、低汚染性などの項目があげられる。
これらの項目のうち、低応力性、低吸水性に関しては樹脂、硬化剤、添加剤等広汎にわたる研究開発がなされており実用化されている。一方、汚染性に関しては、一般にダイボンディング用樹脂ペーストは、樹脂と無機充填材から構成されているが、塗布作業性を考慮するためにペーストの粘度が限定される。
【0005】
従来のエポキシ樹脂を使用する場合は、樹脂は元来粘稠な液体、又は固形であるため、ペースト化するには希釈剤を加え低粘度化する必要がある。その希釈剤としては、例えば、モノエポキシ、脂肪族ポリエポキシ等の反応性希釈剤、又は溶剤で代表される非反応性希釈剤がある。
【0006】
反応性希釈剤の場合においては、ペーストの硬化中にアウトガスとして一部が揮散し、基板、チップ表面等を汚染し易く、更に封止樹脂組成物で封止したときの封止樹脂と基板やチップ表面との密着性が悪くなり、封止樹脂組成物やペーストに採用されている低応力性が生かされず、ストレスがかかった時の界面剥離やパッケージクラックが起きやすくなるという欠点があった。又、半田クラック性とは関係ないが、反応性希釈剤は、揮発し易く一般に作業環境に難点がある。このため硬化時に排気を十分にしなければならない等の問題があり、環境面で好ましくない。一方、非反応性希釈剤を用いる場合は、基板、チップへの汚染は殆どないが、ペースト層にボイドが発生し易い、ペースト厚みが一定しない等の問題があった。
【0007】
又、液状エポキシ樹脂、液状の硬化剤、銀粉及びその他の成分の組み合わせがあるが、一般にリードフレームにペーストを塗布する時に糸引き不良が発生し易く、実際の作業に適用するには問題があった。
従って希釈剤、又は溶剤を添加しない低汚染性で、且つ耐半田クラック性に優れたペーストの開発が望まれていた。
【0008】
【発明が解決しようとする課題】
本発明は、低汚染性及び耐半田クラック性に優れたダイボンディング用樹脂ペーストを提供するものである。
【0009】
【課題を解決するための手段】
本発明は、
(A)下記一般式(1)で示される化合物、または一般式(2)で示される化合物
(B)下記一般式(3)で示される化合物、または一般式(4)で示される化合物
(C)熱可塑性エラストマー、
(D)有機過酸化物、
(E)銀粉または、シリカフィラー
を必須成分とし、一般式(3)で示される化合物、または一般式(4)で示される化合物が全樹脂中0.1〜50重量%であることを特徴とする半導体用ダイアタッチ樹脂ペースト。
【0010】
【化1】

Figure 0003578592
【0011】
【化2】
Figure 0003578592
【0012】
【化3】
Figure 0003578592
【0013】
【化4】
Figure 0003578592
【0014】
本発明に用いる式(1)または(2)で示される化合物は、低弾性率の特徴を有している。式中のR1はメチレン基・イソプロピレン基のものが工業化されている。また、式中のR2は、エチレン基、イソプロピレン基のものが工業化されているが、イソプロピレン基のほうが好ましい。エチレン基を導入した場合、親水性が高く、吸水率増加の原因となる。また、X+Yは、4以上であることが好ましく、4未満であると接着後のチップの反りが急激に大きくなり、低応力性の特徴がなくなる。
【0015】
全樹脂中に含まれる式(3)または(4)の化合物は0.1〜50重量%が好ましい。
0.1重量%未満では接着強度の低下が起こり、また、50重量%以上では硬化時に発生するアウトガスが増加、汚染性が低下して耐半田クラック性低下の原因となる。
【0016】
本発明で用いられる熱可塑性エラストマーとしては特に制限はないが、例えばポリエステル樹脂類、ポリウレタン樹脂類、ポリイミド樹脂類、ポリブタジエン、ポリプロピレン、スチレン−ブタジエン−スチレン共重合体、ポリアセタール樹脂、ブチルゴム、ポリアミド樹脂、アクリロニトリル−ブタジエン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、ポリ酢酸ビニル樹脂、ナイロン、スチレン−イソプレン共重合体、フェノキシ樹脂などを用いることができる。また、このような樹脂骨格中にアクリル基、メタクリル基、水酸基など各種官能基を導入したものも用いることができる。添加量は、各樹脂の粘度によっても異なるが、通常全樹脂中の0.1〜40重量%が好ましい。0.1重量%では、ワイヤーボンディング時にかかる熱衝撃によりペレットの剥離が発生することがあり、また、40重量%ではペーストの粘度が上昇して、作業性が著しく低下する。
【0017】
本発明に用いられる有機過酸化物としては特に限定されるものではなく、例えば1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサネート、t−ブチルパ−オキシ−2−エチルヘキサネート、t−ヘキシルパ−オキシ−2−エトルヘキサネート、1,1−ビス(t−ブチルパ−オキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパ−オキシ)−3,3,5−トリメチルシクロヘキサン、ビス(4−t−ブチルシクロヘキシル)パ−オキシジカーボネート等が挙げられる。これら過酸化物は単独あるいは硬化性をコントロールするため2種以上を混合して用いることもできる。さらに、樹脂の保存性を向上するために各種重合禁止剤を予め添加しておくことも可能である。
【0018】
本発明で用いる無機フィラーとしては炭酸カルシウム、シリカ、アルミナ等の絶縁フィラー、銀粉、金粉、ニッケル粉、銅粉等の導電性フィラーが挙げられるが用途によりこれらを複数混合しても良い。更にニードル詰りを防止するため、これらの粒径は50μm以下が好ましい。
【0019】
本発明における樹脂ペーストは必要により消泡剤、カップリング剤、界面活性剤等の添加剤を用いることができる。本発明のペーストの製造方法としては、例えば予備混合して三本ロール等を用いてペーストを得て真空下脱泡する等がある。
【0020】
【実施例】
以下、実施例を用いて本発明を具体的に説明する。なお配合割合は、重量部である。
実施例1〜6
・式(1)に示すR1=C(CH32、R2=CH2CH(CH3 )、X+Y=20を有する化合物(A成分)
・式(4)に示すa=1、b=1、c=2を有する化合物(B成分)
・アクリル変性ブタジエンゴム(C成分)
・1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサネート(D成分)
・平均粒径3μmのフレーク状銀粉(E成分)
・平均粒径6μmの球状シリカフィラー(F成分)
・ビスフェノールFジグリシジルエーテル(G成分)
・ターシャリブチルフェニルグリシジルエーテル(H成分)
・ブチルセルソルブアセテート(I成分)
・フェノールノボラック樹脂(J成分)
・2−フェニル,4−メチルイミダゾール(K成分)
を表1に示す割合で配合し、三本ロールで充分に混練、脱泡後、樹脂ペーストを得て、各種性能を評価した。評価結果を表1に示す。
【0021】
比較例1〜
表2に示す割合で配合し、実施例と同様にして樹脂ペーストを得て、実施例と同様にして各種性能を評価した。評価結果を表2に示す。
【0022】
評価方法
粘 度 :25℃でE型粘度計を用いて回転数2.5rpmでの粘度を測定した。
接着強度 :ペーストを用いて、2×2mmのシリコンチップを銅フレームにマウントし、150℃のオーブン中で30分間硬化した。硬化後プッシュプルゲージを用い250℃での熱時ダイシェア強度(吸水前)を測定した。又硬化後のサンプルを85℃、相対湿度85%、72時間吸水処理し240℃での熱時ダイシェア強度(吸水後)を測定した。
吸 水 率:テフロンシート上にペーストを50×50×0.1mmになるように塗布し200℃のオーブン中で60分間硬化した後、85℃、相対湿度85%、72時間吸水処理を行ない、処理前後の重量変化より吸水率を算出した。
ボ イ ド:リードフレームに10mm×10mmのガラスチップをマウントし硬化後、外観でボイドをチェックした。被着面積の15%以下のボイドならば良好、15%を越えるものを不良とした。
WB処理時の剥離:リードフレームに6mm×15mmのチップをマウントし硬化後、250℃にてワイヤ−ボンディング処理を行ない、ペレットの接着状態を観察した。剥離が無ければ良好、剥離が観察されれば不良とした。
耐パッケージクラック性:スミコンEME−7320(住友ベークライト(株)・製)の封止材料を用い、下記の条件で成形したパッケージを85℃、相対湿度85%、168時間吸水処理した後、IRリフロー(240℃、10秒)にかけ、断面観察により内部クラックの数を測定し耐パッケージクラック性の指標とした。
パッケージ :80pQFP(14×20×2mm厚さ)
チップサイズ :7.5×7.5mm(アルミ配線のみ)
リードフレーム :42アロイ
成 形 :175℃、2分間
ポストモールドキュア:175℃、4時間
全パッケージ数 :12
【0023】
【表1】
Figure 0003578592
【0024】
【表2】
Figure 0003578592
【0025】
【発明の効果】
本発明は、従来のエポキシ樹脂で使用していた反応性希釈剤、溶剤の含有ないため、硬化時のアウトガスによる基材の汚染が殆どなく、且つ硬化物層にボイドの発生もなく、耐半田クラック性に優れるものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin paste for bonding a semiconductor element such as an IC or an LSI to a substrate or the like.
[0002]
[Prior art]
With the remarkable development of the electronics industry in recent years, the degree of integration of circuits in transistors, ICs, LSIs, VLSIs and semiconductor devices has been rapidly increasing. For this reason, the size of the semiconductor element has been dramatically increased from about several mm in the related art to about several tens mm. Further, the lead frame is mainly made of inexpensive copper material having good thermal conductivity from the conventional 42 alloy. On the other hand, the mounting of semiconductor products has become a surface mounting method, and the size of the semiconductor product itself, that is, the package, has become smaller and thinner for high-density mounting.
[0003]
In accordance with these trends in semiconductor products, the performance requirements for the constituent materials of semiconductor products have also changed, and the conventionally required bonding reliability for the die bonding resin paste for bonding the semiconductor element and the metal frame has also changed. In addition, a stress relaxation property for absorbing and relaxing thermal stress based on a difference in thermal expansion coefficient between a large chip and a copper frame, and a solder crack resistance property based on surface mounting in a thin package are beginning to be required.
[0004]
The conditions for such a solder crack-resistant resin paste for die bonding include items such as low stress, low water absorption, and low contamination.
Among these items, extensive research and development on resins, hardeners, additives, etc. have been carried out for low stress properties and low water absorption, and these have been put to practical use. On the other hand, regarding the contamination, the resin paste for die bonding is generally composed of a resin and an inorganic filler, but the viscosity of the paste is limited in consideration of the coating workability.
[0005]
When a conventional epoxy resin is used, since the resin is originally a viscous liquid or solid, it is necessary to reduce the viscosity by adding a diluent to form a paste. Examples of the diluent include a reactive diluent such as monoepoxy and aliphatic polyepoxy, and a non-reactive diluent represented by a solvent.
[0006]
In the case of the reactive diluent, a part is volatilized as outgas during the curing of the paste, and the substrate, the chip surface and the like are easily contaminated, and the sealing resin and the substrate when sealed with the sealing resin composition are further removed. Adhesion with the chip surface deteriorates, the low stress properties employed in the sealing resin composition and paste are not utilized, and there is a disadvantage that interface peeling and package cracking are likely to occur when stress is applied. Although not related to the solder cracking property, the reactive diluent is easily volatilized and generally has a problem in the working environment. For this reason, there is a problem that exhaust must be sufficiently performed at the time of curing, which is unfavorable in terms of environment. On the other hand, when the non-reactive diluent is used, there is almost no contamination on the substrate and the chip, but there are problems such as easy generation of voids in the paste layer and unevenness of the paste thickness.
[0007]
In addition, there are combinations of liquid epoxy resin, liquid curing agent, silver powder and other components. However, in general, when applying paste to a lead frame, stringing failure easily occurs, and there is a problem in applying to actual work. Was.
Therefore, there has been a demand for the development of a paste which does not contain a diluent or a solvent and has low contamination and excellent solder crack resistance.
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention provides a resin paste for die bonding excellent in low contamination and solder crack resistance.
[0009]
[Means for Solving the Problems]
The present invention
(A) a compound represented by the following general formula (1), or a compound represented by the general formula (2),
(B) a compound represented by the following general formula (3), or a compound represented by the general formula (4),
(C) a thermoplastic elastomer,
(D) an organic peroxide,
(E) silver powder or a silica filler as essential components, and wherein the compound represented by the general formula (3), or a compound represented by the general formula (4) is 0.1 to 50 wt% in the total resin Die attach resin paste for semiconductors.
[0010]
Embedded image
Figure 0003578592
[0011]
Embedded image
Figure 0003578592
[0012]
Embedded image
Figure 0003578592
[0013]
Embedded image
Figure 0003578592
[0014]
Compounds or formula (1) used in the present invention is represented by (2) is characterized in low modulus. R1 in the formula is a methylene group / isopropylene group having been industrialized. Further, R2 in the formula is an ethylene group or an isopropylene group, but an isopropylene group is more preferable. When an ethylene group is introduced, it has high hydrophilicity and causes an increase in water absorption. Further, X + Y is rather preferably be 4 or more, the chip warping of after adhesion is less than 4 rapidly increases, low stress property characteristics is eliminated.
[0015]
The compound of the formula (3) or (4) contained in the whole resin is preferably 0.1 to 50% by weight.
If it is less than 0.1% by weight, the adhesive strength is reduced, and if it is more than 50% by weight, outgas generated at the time of curing is increased, the contamination is reduced, and the solder crack resistance is reduced.
[0016]
The thermoplastic elastomer used in the present invention is not particularly limited, for example, polyester resins, polyurethane resins, polyimide resins, polybutadiene, polypropylene, styrene-butadiene-styrene copolymer, polyacetal resin, butyl rubber, polyamide resin, Acrylonitrile-butadiene copolymer, acrylonitrile-butadiene-styrene copolymer, polyvinyl acetate resin, nylon, styrene-isoprene copolymer, phenoxy resin, and the like can be used. Further, those in which various functional groups such as an acrylic group, a methacryl group, and a hydroxyl group are introduced into such a resin skeleton can also be used. The amount of addition varies depending on the viscosity of each resin, but is usually preferably 0.1 to 40% by weight of the total resin. At 0.1% by weight, the pellet may be peeled off due to the thermal shock applied during wire bonding, and at 40% by weight, the viscosity of the paste increases and the workability is significantly reduced.
[0017]
The organic peroxide used in the present invention is not particularly limited, and examples thereof include 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanate and t-butylperoxy-2-ethylhexanate. , T-hexylperoxy-2-ethorhexanate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -3 , 3,5-trimethylcyclohexane, bis (4-t-butylcyclohexyl) peroxydicarbonate, and the like. These peroxides can be used alone or in combination of two or more to control curability. Further, various polymerization inhibitors can be added in advance in order to improve the storage stability of the resin.
[0018]
Examples of the inorganic filler used in the present invention include insulating fillers such as calcium carbonate, silica, and alumina, and conductive fillers such as silver powder, gold powder, nickel powder, and copper powder. Further, in order to prevent needle clogging, the particle diameter is preferably 50 μm or less.
[0019]
Additives such as an antifoaming agent, a coupling agent, and a surfactant can be used as necessary for the resin paste in the present invention. As a method for producing the paste of the present invention, for example, there is a method in which the paste is preliminarily mixed, a paste is obtained using a three-roll or the like, and the paste is defoamed under vacuum.
[0020]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples. The mixing ratio is part by weight.
Examples 1 to 6
- formula (1) shows R 1 = C (CH 3) 2, R 2 = CH 2 CH (CH 3), compounds having X + Y = 20 (A component)
Compounds having a = 1, b = 1 and c = 2 shown in the formula (4) (component B)
・ Acrylic modified butadiene rubber (C component)
・ 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanate (D component)
-Flaky silver powder with an average particle size of 3 μm (E component)
・ Spherical silica filler with an average particle size of 6 μm (F component)
・ Bisphenol F diglycidyl ether (G component)
・ Tertiary butyl phenyl glycidyl ether (H component)
・ Butyl cellosolve acetate (I component)
・ Phenol novolak resin (J component)
・ 2-phenyl, 4-methylimidazole (K component)
Were mixed in the proportions shown in Table 1, thoroughly kneaded with three rolls, and defoamed to obtain a resin paste, and various performances were evaluated. Table 1 shows the evaluation results.
[0021]
Comparative Examples 1 to 5
They were blended at the ratios shown in Table 2 to obtain resin pastes in the same manner as in the examples, and various performances were evaluated in the same manner as in the examples. Table 2 shows the evaluation results.
[0022]
Evaluation method Viscosity: The viscosity was measured at 25 ° C. using a E-type viscometer at a rotation speed of 2.5 rpm.
Adhesive strength: Using a paste, a 2 × 2 mm silicon chip was mounted on a copper frame and cured in an oven at 150 ° C. for 30 minutes. After curing, the die shear strength under heat at 250 ° C. (before water absorption) was measured using a push-pull gauge. The cured sample was subjected to a water absorption treatment at 85 ° C. and a relative humidity of 85% for 72 hours, and the hot die shear strength at 240 ° C. (after water absorption) was measured.
Water absorption: After applying the paste on a Teflon sheet so as to have a size of 50 × 50 × 0.1 mm and curing it in an oven at 200 ° C. for 60 minutes, a water absorption treatment was performed at 85 ° C. and a relative humidity of 85% for 72 hours. The water absorption was calculated from the weight change before and after the treatment.
Void: A 10 mm × 10 mm glass chip was mounted on a lead frame, and after curing, voids were visually checked. If the voids were 15% or less of the adhered area, they were good, and those exceeding 15% were bad.
Peeling during WB treatment: A 6 mm × 15 mm chip was mounted on a lead frame, cured, and then subjected to a wire-bonding treatment at 250 ° C. to observe the adhesion state of the pellet. If there was no peeling, it was good, and if peeling was observed, it was bad.
Package crack resistance: Using a sealing material of Sumicon EME-7320 (manufactured by Sumitomo Bakelite Co., Ltd.), a package molded under the following conditions was subjected to a water absorption treatment at 85 ° C. and a relative humidity of 85% for 168 hours, followed by IR reflow. (240 ° C., 10 seconds), the number of internal cracks was measured by cross-sectional observation and used as an index of package crack resistance.
Package: 80pQFP (14 × 20 × 2mm thickness)
Chip size: 7.5 x 7.5mm (aluminum wiring only)
Lead frame: 42 alloy molding: 175 ° C, 2 minutes post-mold cure: 175 ° C, 4 hours Total number of packages: 12
[0023]
[Table 1]
Figure 0003578592
[0024]
[Table 2]
Figure 0003578592
[0025]
【The invention's effect】
Since the present invention does not contain a reactive diluent and a solvent used in conventional epoxy resins, there is almost no contamination of the base material due to outgas during curing, and there is no generation of voids in the cured product layer and solder resistance. It has excellent cracking properties.

Claims (1)

(A)下記一般式(1)で示される化合物、または一般式(2)で示される化合物、(B)下記一般式(3)で示される化合物、または一般式(4)で示される化合物、(C)熱可塑性エラストマー、(D)有機過酸化物、(E)銀粉または、シリカフィラーを必須成分とし、一般式(3)で示される化合物、または一般式(4)で示される化合物が全樹脂中0.1〜50重量%であることを特徴とする半導体用ダイアタッチ樹脂ペースト。
Figure 0003578592
Figure 0003578592
Figure 0003578592
Figure 0003578592
(A) a compound represented by the following general formula (1), or a compound represented by the general formula (2), a compound represented by (B) a compound represented by the following general formula (3), or general formula (4), (C) a thermoplastic elastomer, (D) an organic peroxide, (E) silver powder or a silica filler as essential components, a compound represented by the general formula (3), or a compound represented by the general formula (4) All A die attach resin paste for a semiconductor, which is 0.1 to 50% by weight in the resin.
Figure 0003578592
Figure 0003578592
Figure 0003578592
Figure 0003578592
JP14551797A 1997-06-03 1997-06-03 Die attach resin paste for semiconductor Expired - Lifetime JP3578592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14551797A JP3578592B2 (en) 1997-06-03 1997-06-03 Die attach resin paste for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14551797A JP3578592B2 (en) 1997-06-03 1997-06-03 Die attach resin paste for semiconductor

Publications (2)

Publication Number Publication Date
JPH10330441A JPH10330441A (en) 1998-12-15
JP3578592B2 true JP3578592B2 (en) 2004-10-20

Family

ID=15387071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14551797A Expired - Lifetime JP3578592B2 (en) 1997-06-03 1997-06-03 Die attach resin paste for semiconductor

Country Status (1)

Country Link
JP (1) JP3578592B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503736B2 (en) * 1998-05-27 2004-03-08 住友ベークライト株式会社 Die attach paste
CN101627465B (en) 2007-02-28 2011-06-01 住友电木株式会社 Adhesive film for semiconductor and semiconductor device using the adhesive film
JP4600429B2 (en) * 2007-05-28 2010-12-15 日立化成工業株式会社 Resin paste composition and semiconductor device using the same
JP5833005B2 (en) 2010-07-13 2015-12-16 日立化成株式会社 Dicing / die bonding integrated film

Also Published As

Publication number Publication date
JPH10330441A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
JP2001519838A (en) Die adhesive or encapsulant of epoxysiloxane and polyepoxy resin
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
JPH06322350A (en) Conductive adhesive, its production and method for bonding semiconductor chip
JP5157938B2 (en) Resin paste for die bonding, semiconductor device manufacturing method using the resin paste, and semiconductor device obtained by the manufacturing method
JP4736506B2 (en) Epoxy resin composition and semiconductor device
JP2006233016A (en) Epoxy resin composition and semiconductor device
JP3578592B2 (en) Die attach resin paste for semiconductor
JP2006152185A (en) Epoxy resin composition and semiconductor device
JPH0790239A (en) Electrically conductive resin paste
JP2007142117A (en) Die-bonding paste and semiconductor device using same
JP3240861B2 (en) Epoxy resin composition and semiconductor device
JPH1161086A (en) Die-attach resin paste for semiconductor
JP2974902B2 (en) Conductive resin paste
US20090198013A1 (en) Adhesive film for semiconductor
JP2002252235A (en) Resin paste for semiconductor and semiconductor device using it
JPH0967553A (en) Resin paste for die bonding
JPH0841168A (en) Liquid epoxy resin composition and semiconductor device
KR100250770B1 (en) Low humid and good adhesive epoxy resin composition for the encapsulation of semiconductor
JP2000336244A (en) Liquid sealing resin composition and semiconductor device using the composition
JPH10120873A (en) Insulating resin paste for semiconductor
JPH10237156A (en) Die-attach resin paste for semiconductor
JPH1160654A (en) Die attach resin paste for semiconductor
JP3200251B2 (en) Semiconductor device and epoxy resin composition used therefor
JP2006176555A (en) Epoxy resin composition and semiconductor device
JP2004137397A (en) Resin composition and electronic part device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

EXPY Cancellation because of completion of term