JP3568042B2 - 石英ガラスの製造方法及びその装置 - Google Patents

石英ガラスの製造方法及びその装置 Download PDF

Info

Publication number
JP3568042B2
JP3568042B2 JP05815294A JP5815294A JP3568042B2 JP 3568042 B2 JP3568042 B2 JP 3568042B2 JP 05815294 A JP05815294 A JP 05815294A JP 5815294 A JP5815294 A JP 5815294A JP 3568042 B2 JP3568042 B2 JP 3568042B2
Authority
JP
Japan
Prior art keywords
plasma
quartz glass
torch
raw material
melting vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05815294A
Other languages
English (en)
Other versions
JPH07126034A (ja
Inventor
工 福西
吉彦 後藤
ケネス ウィリアムズ ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP05815294A priority Critical patent/JP3568042B2/ja
Publication of JPH07126034A publication Critical patent/JPH07126034A/ja
Application granted granted Critical
Publication of JP3568042B2 publication Critical patent/JP3568042B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、石英ガラスの製造方法及びその装置に関し、さらに詳細には、石英ガラスの構成物質である二酸化ケイ素以外の不純物が極めて少なく、しかもガラス中の水酸基を極めて低い値に制御し、高純度で耐熱性に優れた石英ガラスを製造するための石英ガラスの製造方法及びその装置に関する。
【0002】
【従来の技術】
従来、石英ガラスの製造方法には種々の技法があり、原材料を溶融する熱源には、水素−酸素、プロパン−酸素などの燃焼火炎手段と、グラファイト、モリブデン、タングステンなどを抵抗体とする電気的加熱手段などが採用されてきた。
【0003】
例えば、溶融熱源として上述の電気的加熱手段である電気ヒータを使用する場合には、予め容器内に粒状シリカ原料を充填し、容器の上部及びサイドに配置してある加熱ヒータの輻射熱により比較的ゆっくりとした速度で溶融する。
【0004】
このとき、充填した粒状シリカの粒子間及びその表面に付着するガス及びガス成分を溶融時に除去するには、溶融容器並びに加熱ヒータを含む一体の炉内を減圧状態に維持する真空排気設備を必要とする。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した従来の方法により得られる石英ガラスは、粒状シリカ原料の有する高純度の維持、低水酸基化、及び泡の低減化などについては技術的な限界を有していた。
【0006】
すなわち、石英ガラス中の水酸基を低く抑えるために、溶融熱源として、水素−酸素、プロパン−酸素などの可燃性ガスを用いた場合は、これらの可燃性ガスの燃焼火炎により水が生成されてガラス中に水酸基として取り込まれるので、ガラス中の水酸基を極めて低い値に制御することが困難であった。
【0007】
また、溶融熱源として電気ヒータなどのジュール熱を用いた場合は、熱源からの水素及び水の発生はないが、溶融する雰囲気の水の分圧を下げる工夫、例えば真空下での溶融などが必要となり、電気的加熱手段で溶融された石英ガラスは、可燃性ガスを用いた溶融手段に比較してガラス中に含まれる泡が多くなるなどの問題点があった。
【0008】
一方、石英ガラスの溶融手段として、アークやプラズマを熱源として使用する試みが従来より行われているが、実用化に関しては幾つかの問題点が解決できていないため、工業的規模での実施は行われていない。
【0009】
すなわち、アーク及びプラズマが使用されなかった背景には、まず第1に、石英ガラスが非導電性物質であるため、溶融体を対極とした移行式アーク及びプラズマは利用できず非移行式を採用したとしても、単なる黒鉛などを電極としたアーク方式では粉体原料を連続的に供給しながら溶融する際、方向性の定まらない周囲の空気振動によって、粉体の飛散が多く、また、ガラス中の泡をなくすことが困難であるからであった。
【0010】
また、従来の非移行式アークプラズマを使用する場合においても、そのプラズマアークの線速度が大きいために、上述したと同様な問題点があった。
【0011】
さらに、第2には、これらのアーク及びプラズマを使用する場合において、電極材の消耗による石英ガラスへの不純物の混入が避けられず、本来高純度が望まれる石英ガラスの溶融熱源としては好ましくなく、実用化を阻む要因となっていた。
【0012】
これに対して、高周波プラズマ(radio frequency plasma)は、これらの問題点を解決できる機能を有しているが、工業的規模の装置費用が高価であること、エネルギー変換効率が著しく低いこと、更に生産性が低いことなどから生産設備としての実用化の可能性は低いという問題があった。
【0013】
本発明は、従来の技術の有する上記したような種々の問題点に鑑みてなされたものであり、その目的とするところは、石英ガラスの溶融時に石英ガラス中に水酸基を取り込まず、経済的に溶融することができる石英ガラスの製造方法及びその装置を提供しようとするものである。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明による石英ガラスの製造装置は、例えば、炉体内に回転および昇降自在に設置された底部および側壁部を有する溶融容器と、石英ガラス原材料を上記炉体内の上記溶融容器に供給する原料供給管と、上記溶融容器のプラズマアーク・カップリング帯域に対称的に配置されたプラズマアノードトーチとプラズマカソードトーチとからなるツインプラズマトーチとを有して構成されたものである。
【0015】
また、本発明による石英ガラスの製造方法は、炉体内に回転および昇降自在に設置された溶融容器と、石英ガラス原材料を上記炉体内の上記溶融容器に供給する原料供給管と、上記溶融容器のプラズマアーク・カップリング帯域に対称的に配置されたプラズマアノードトーチとプラズマカソードトーチとからなるツインプラズマトーチとを有し、上記溶融容器に石英ガラス原材料を所定の厚さに敷き詰めた後、対称的に配置された上記ツインプラズマトーチの上記プラズマアノードトーチと上記プラズマカソードトーチとから生成されるプラズマアークによりカップリングされる近傍を溶融部の頂点として、上記石英ガラス原材料の溶融を行うようにしたものである。
【0016】
こうして、従来、石英ガラスの溶融に実用化できなかったアークプラズマを、ツイントーチプラズマを開発することにより解決したものであって、先に出願した特願平3−267729号に記載された技術をベースにして、更に発展させることにより実用化を図ったものである。
【0017】
【作用】
本発明による石英ガラスの製造方法は、エネルギー密度の高いアークプラズマを使用することにより実現されるものであり、石英ガラスの溶融に際して、プラズマの持つ高エネルギーを最大限に利用して生産性効率を向上させる上で、プラズマ化ガスとし、石英ガラスに悪影響を及ぼさない二原子分子の窒素ガスを用いることが望ましい。
【0018】
また、溶融容器には石英ガラス原材料を所定の厚さに敷き詰め、溶融操作は、対称配置されたツインプラズマトーチのプラズマアノードトーチとプラズマカソードトーチとから生成されるプラズマアークがカップリングされる近傍を溶融部の頂点とする形で溶融を行うものである。
【0019】
従って、本発明によって製造された石英ガラスは、極めて高純度であり、水酸基が極めて低く、泡が極少なく精製できるので、耐熱性、化学的不活性、透明性(赤外域から紫外域での光透過性)に優れ、しかも非磁性体であり、切断、切削、あるいは研磨を施すことにより、光学材料や半導体機器などのさまざまな装置や器具に使用できる。
【0020】
【実施例】
以下、図面に基づいて、本発明による石英ガラスの製造方法及びその装置における実施例を詳細に説明するものとする。
【0021】
図1は、本発明による石英ガラスの製造装置を示す概略構成図であり、図1において符号10は石英ガラスの原材料である粒状シリカなどの供給原料が充填されるホッパーである。
【0022】
なお、石英ガラスの原材料としては、粒状シリカの他に、シリカサンド、水晶塊、水晶砂または無定型シリカ、クリストバライトなどがあり、好ましくは、70μm乃至500μmの粒度範囲を有している。
【0023】
ホッパー10の底部には、供給原料の定量供給装置12を経て炉体20に至る連結管14及び原料供給管16が連結されており、炉体20内の溶融容器18のプラズマアーク・カップリング(結合)帯域22を経由し、またはこれに接近するように配置されているとともに、上下および左右に位置調整することが可能とされている。
【0024】
上記炉体20の上方からは、プラズマアノードトーチ24とプラズマカソードトーチ26とからなるツインプラズマトーチが、溶融容器18のプラズマアーク・カップリング帯域22に対称的に配置され、トーチ角度および炉体20への挿入深さなどが調節できるように挿入されている。
【0025】
プラズマアノードトーチ24およびプラズマカソードトーチ26は、好ましくは、それぞれが垂直軸に対して45゜乃至65゜の角度をなし、それぞれのプラズマトーチの炉中心の垂直軸に対する水平距離が50mm乃至100mmであるように設定されるものである。
【0026】
ここで、上記原料供給管16は、図2に示すように、粒状シリカなどの供給原料を連続的に溶融ゾーンへ供給する石英ガラス製導管28と、その外側に冷却水を循環させる注水口30a及び排水口30bを有する金属製の水冷導管30と、この石英ガラス製導管28と水冷導管30との間に一定の間隔を設けたシールガス通路32とを備えている。なお、シールガス通路32が一定の間隔を保持するために、金属製の水冷導管30の内壁部に、石英ガラス製導管28の中心が同軸上の位置となるように、突起部を円周方向に対して3箇所、長さ方向に対して2箇所設けている。
【0027】
すなわち、原料供給管16より供給原料を溶融ゾーンへ供給する場合に、供給原料と導管内面の摩擦により導管材質の微量の混入が懸念されるとともに、これを設置して使用する環境はプラズマアークによる非常な高温度に晒されることから、耐熱強度の高い異種材質の導管を使用するより石英ガラス管を使用することが高純度を維持する上から最も好ましいので、石英ガラス製導管28の外側を水冷導管30で覆い、プラズマアークからの輻射熱を遮断している。
【0028】
また、上記シールガス通路32には、ガス導入口32aよりアルゴン、ヘリウム、ネオン、または窒素ガスなどを導入してガス出口32bより排出させることにより、連続して原料供給管16の先端部より落下する供給原料の外周部を、上記ガスが同心円状に包むように流れるので、プラズマ流によって粒状シリカなどの供給原料が飛散するのを防ぎ、溶融容器18へ適切に供給原料を落とすことができるとともに、供給原料を高収率でガラス化できるようになっている。
【0029】
つまり、原料供給管16は、粒状シリカなどの供給原料を溶融ゾーンへ供給するための石英ガラス製導管28をプラズマアークの輻射熱から防御し、さらに溶融面からの蒸発物の付着を防ぐために、水令された金属製の水冷導管30の内径に石英ガラス製導管28を挿入し、さらに水冷導管30と石英ガラス製導管28との間にシールガス通路32を設けているものである。
【0030】
なお、原料供給管16は、好ましくは、溶融面の水平軸に対して全方位において45゜乃至90゜の角度をなし、溶融面に対する先端部の直線距離が50mm乃至200mmの任意の位置にあるようになされている。
【0031】
上記プラズマアノードトーチ24とプラズマカソードトーチ26とからなるツインプラズマトーチによりアークプラズマを生成するが、工業設備としての実用性の面から、プラズマカソードトーチ26へ窒素ガスをアルゴンに対して5%〜50%混合して使用した場合に、長時間運転においてカソード電極の消耗が起こるため、プラズマフレームの僅かな偏りが起きて溶融条件を乱すことがある。
【0032】
そこで、図3ないし図5に示すように、2ガス方式のプラズマカソードトーチ26が提案されており、このプラズマカソードトーチ26は、カソード電極34を包むように形成された内側通路36aよりアルゴンガスArを流し、アルゴンアークをトーチノズルより発生させるとともに、外側通路36bに連通してトーチノズルの先端部に放射状に配列され、かつノズルセンタに収束される角度を有する小穴38より窒素ガスNを噴出させ、アルゴンアークにより窒素ガスを電離し、アルゴン−窒素プラズマを発生させるものである。
【0033】
この方法により、電極材のタングステンは直接窒素ガスに触れることなしにアルゴンアークを発生するため、窒素との化学反応を起こさず、電極材の溶損は極めて僅かであり、カソード電極の寿命を従来の数十時間から数百時間に延長することが可能になる。
【0034】
また、上記プラズマアノードトーチ24とプラズマカソードトーチ26には、それぞれノズルの外側を冷却する注水口40aと排水口40b、およびチップ内側を冷却する注水口42aと排水口42bとが設けられており、冷却水を循環させることにより、プラズマアークからの輻射熱を遮断している。
【0035】
上記溶融容器18は、ステンレス、銅などの金属製の水冷容器からなり、この容器の底部中心が回転軸44に支持されている。そして、上記回転軸44は、炉体ベース46に設置された回転用モータ48、昇降用モータ50を介して回転および昇降可能に組み付けられており、しかも回転軸44の下端部には冷却水の注入口52aおよび排水口52bを有するロータリジョイント54が組付けられ、溶融容器18内に冷却水を循環させるようになっている。
【0036】
一方、上記炉体20の天井部はフラットな形状をしており、冷却水が循環して冷却されるとともに、溶融容器18の溶融面より上昇するシリカの蒸気は、炉体側壁に設けられた排気口56より排気される。
【0037】
上記溶融面からのシリカの蒸発は、溶融面に対して概ね垂直に位置する原料供給管16に多くが凝縮し、凝縮したシリカが成長すると、溶融面に落下しガラスの泡を生成することになる。この蒸発シリカの凝縮を防止するには、雰囲気温度の高い位置に原料供給管16を配置し、その表面温度を雰囲気温度に近付ける必要がある。
【0038】
そこで、本発明による水冷外筒を有する原料供給管16は、その表面温度は雰囲気温度に対して遥かに低いので、初期にその表面にシリカがコーティングされ、厚さが数ミリに達するとシリカの断熱効果によって表面温度が上昇し、更に、プラズマからの輻射熱により、その表面は燒結された状態となり、強度が増し長時間の溶融に際して溶融面に落下するのを防止することができる。
【0039】
上記原料供給管16は、二つのプラズマトーチ24、26のほぼ中間に位置し、極力ツインプラズマトーチへ近付けることにより、上記した効果が達せられ、長時間の溶融運転においても、過剰のシリカの凝縮を防ぎ、しかも付着したシリカの落下を防止している。
【0040】
以上の構成に基づいて、本発明による作用の説明をする。
【0041】
先ず溶融容器18の底部には溶融操作に先立ち、図6に示すように、粒状シリカ(なお、この粒状シリカとしては、供給原料のシリカ粒子と同一品位のものであって、粒度のみ大きいものを使用することが好ましい。)を1cm〜20cm程度の厚さに敷き詰め、溶融操作は、対称配置されたツインプラズマトーチのプラズマアノードトーチ24とプラズマカソードトーチ26とから生成されるプラズマアークがカップリングされる近傍を溶融部の頂点とする形で溶融を行うものである。
【0042】
最初はプラズマアークにより溶融容器18の底部に敷いたシリカ粒子を溶融し、続いて原料供給管16とツインプラズマトーチ24、26の角度、距離を調整し、溶融容器18を所定の速度で回転させながら、側壁部に原料粒子を供給して厚さ5mm〜50mm、高さ100mm程度の溶融シリカの断熱層60の壁を形成するように行う。そして、側壁部にシリカの断熱層が形成されたなら、原料供給管16とツインプラズマトーチ24、26を所定の位置に戻し、溶融容器18の中央部にて、粒状シリカ原料粉体を供給しながら溶融を開始する。
【0043】
もう一つの方法として、溶融容器18の底部に敷いたシリカ粒子の表面をプラズマアークで溶融し、ツインプラズマトーチ24、26の角度、位置を調整しながら溶融面積を拡大し、溶融容器の側壁近くまで溶融を行い、その後、前記同様に溶融操作を開始する。
【0044】
溶融容器の底部のシリカ粒子を溶融することにより、シリカの蒸発が起こり、水冷されている容器側壁部にシリカ微粒子が付着し、前記方法による断熱層よりも薄いが石英ガラスを溶融するには有効である。
【0045】
このように、供給原料と同一の純度を有するシリカ粒子を溶融容器18の底部へ予め充填し、さらに供給原料を用いて溶融容器18の側壁に溶融シリカ層を形成することにより、断熱保温効果を確保することができるものであり、この方法により、石英ガラスの高純度を維持することができる。
【0046】
また、従来においては、金属セラミックスの一部の溶融法としてセルフライニング法が試みられているが これらにおいては、容器内に充填した供給原料を何等かの加熱手段により溶融し、後で溶融物の周囲の未溶融部分を除去するものであり、本発明においては、水冷された溶融容器18を用いて溶融原料と同一品位の粒状シリカにより、予め断熱層を形成した後に石英ガラスの溶融操作を行うもので、従来とは全く異なる方法である。
【0047】
なお、エネルギー密度の高加熱源が得られるツイントーチプラズマアークでの高密度プラズマとの組み合わせのため、初めてこうした形でのセルフライニング断熱層形成が可能となる。
【0048】
石英ガラスを半導体製造工程の装置に使用する場合、あるいは光学用途に使用する場合においては、ガラスの化学的純度と泡が重要な特性として求められものであるが、高純度の確保は上述した技術により実現できる。
【0049】
なお、上記のように溶融容器18の内面に石英ガラスの原材料として、例えば、粒状シリカを図6の符号60の様に所定の厚さに敷き詰め、この粒状シリカのみを、ツインプラズマトーチのプラズマアノードトーチ24とプラズマカソードトーチ26とから生成されるプラズマアークがカップリングされる近傍の溶融部を頂点とする形で溶融して、石英ガラス製品を得てもよいことは勿論である。
【0050】
この際には、溶融容器18の壁面に沿って所望の形状で粒状シリカを敷き詰めることにより、所望の形状の石英ガラス製品を得ることができるようになる。
【0051】
溶融容器18の内面形状に沿った底部および側壁部の溶融シリカは、溶融容器18を水冷金属容器としているため、当該溶融容器18から当該溶融シリカをそのままの形状で外部に取り出すことが十分可能となる。
【0052】
なお、回転用モータ48による溶融容器18の回転速度は、溶融容器18の底部に敷き詰められた粒状シリカを溶融するときより、溶融容器18の底部以外の壁面(側壁部)に敷き詰められた粒状シリカを溶融するときの方が速くすることが好ましい。
【0053】
次に、ガラス中の泡をさらに低減する溶融方法について説明する。
【0054】
先ず、溶融容器18内にシリカによる断熱層60を形成した後、溶融容器18を回転させながら容器中央部において、原料供給管16とツインプラズマトーチ24、26を所定の位置に固定し、管理された粒度範囲の粒状シリカ原料を、定量供給装置12を用いて連続的に原料供給管16へ送り込むことにより、粒状シリカは原料供給管16の先端よりプラズマアークの中を通過し、溶融容器18内に堆積して溶融される。
【0055】
ここで、ツインプラズマアークは溶融部において、それぞれのアークが電気的にカップリングされる位置で溶融するもので、プラズマカップリングゾーン62へ供給されたシリカ原料は、高温度のプラズマアークにより瞬時に溶融され、このときシリカ粒子の捕捉している雰囲気ガスおよび揮発成分などは、液層面よりガスとして系外へ放出されることから、ガラスの中に泡として包含されることが防止される。また、このとき、図2に示すように、原料供給管16の石英ガラス管と水冷外筒との間隙よりヘリウムガスを流すことにより、さらにガラス中の泡を低減する効果を増大させることが判明した。
【0056】
さらに、ツインプラズマアークのプラズマカップリングゾーン62を溶融面に維持するため、連続的に溶融されるガラス層の生成速度に見合って、溶融容器18を降下させる。
【0057】
つまり、溶融石英ガラスの粘性は非常に高いので、原料シリカの溶融される部分と容器の側壁へ流動により広がる部分では、溶融部分を頂点とした山形状を呈するので、山の頂上部より裾野へのガラスの流動を十分に行うためには、溶融容器18の側壁部にかけて十分な高温度が維持されることが必要である。
【0058】
このため、プラズマカップリングゾーン62から伸びるツインプラズマトーチ24、26からのプラズマ流は、山の頂部から裾野へかけて溶融ガラスの表面を覆うので、溶融容器18の回転と相乗して溶融容器18の側壁部にかけてガラスの流動に必要な高温度を維持することができる。
【0059】
以上のように、本発明では、溶融面をプラズマが覆うように溶融が行われるために、プラズマ化ガスとして水素ガス以外を使用することにより、石英ガラスの低水酸基化が可能である。もちろん、使用するプラズマ化ガスの水分(露点)を極力低く管理する必要性があることはいうまでもない。
【0060】
次に、図6に示すように、溶融容器18と原料供給管16およびツインプラズマトーチ24、26との位置関係に基づいて溶融試験を行った場合について説明する。
【0061】
〔試験例1〕
(1)プラズマトーチの位置関係
θa:41.5度、 θc:41.5度、 fd:72mm、
td:144mm、 Atd,Ctd:164mm、
(2)溶融容器
底部:直径400mm、上部:直径500mm、深さ:200mm、
(3)原料供給管・シールガス供給量:N→5L/min、
(4)運転条件
・プラズマガス→アノードトーチ:Ar30L/min
・カソードトーチ:Ar30L/min+N30L/min
・電力→284V 544A(直流)
・原料粒度→74μm〜177μm
・溶融容器回転速度→1.5rpm
・溶融容器降下速度→40mm/H
・溶融容器の底部へシリカ粒子(3mm〜10mm粒子)を約10cmの厚さに敷き詰め、溶融容器を回転し、予めその表面をプラズマトーチを移動しながら溶融し、その後、上記条件にて約4時間の溶融試験を行った。その結果、概略寸法「直径320mm×高さ220mm」、「重量約17Kg」の泡の極めて少ない透明な石英ガラスを得ることができた。なお、このとき、原料の粒状シリカの収率は石英ガラスと未溶融シリカの重量を求め、計算により収率91%であることを確認した。また、得られた石英ガラスを評価した結果は図7の特性を確認した。
(5)化学分析値(単位:ppm)
図7参照
(6)水酸基(OH)含有量(単位:ppm)
OH:8ppm
【0062】
〔試験例2〕
(1)プラズマトーチの位置関係
θa:44.8度、 θc:45.8度、 fd:20mm、
td:155mm、 Atd:170mm、 Ctd:167mm、
(2)溶融容器
試験例1と同一仕様のものを使用した。
(3)原料供給管・シールガス供給量:He→3L/min、
(4)運転条件
・プラズマガス→アノードトーチ;Ar28L/min
・カソードトーチ:Ar16L/min+N14L/min
・電力→247V 480A(直流)
・原料粒度→74μm〜149μm
・溶融容器回転速度→3rpm
・溶融容器降下速度→20mm/H
・溶融容器の底部へシリカ粒子(5mm〜20mm粒子)を約5cmの厚さに敷き詰め、その上に原料シリカ粒子を散布して表面を平坦にした。溶融運転に入る前にプラズマを点火し、試験例1と同様にシリカ粒子の表面を溶融した。更に、溶融容器の回転速度を増し(40rpm〜60rpm)、側壁部へプラズマトーチと原料供給管を移動し、シリカ原料を供給しながら、溶融容器内壁へ厚さ約1cm、高さ10cmのシリカの燒結層を形成し断熱層とした。その後、プラズマトーチおよび原料供給管を上記位置条件に設定して6時間40分の溶融試験を実施した。その結果、概略寸法「直径340mm×高さ140mm」、「重量約22Kg」の形状が良く、泡の極めて少ない透明な石英ガラスを得ることができた。このときの原料の総投入量は24Kgであり、一時間当たりの平均投入量は、約3.6Kg/Hとなる。また、溶融石英ガラスの重量と未溶融シリカの重量を求め計算すると、このときの粒状シリカの収率は89%であった。さらに、溶融した透明石英ガラスの特性は図8のようであった。
(5)化学分析値(単位;ppm)
図8参照
(6)水酸基(OH)含有量(単位:ppm)
OH:3ppm
【0063】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0064】
石英ガラスの溶融時にガラス中に水酸基を取込まず、経済的に溶融することができる。
【0065】
従って、本発明によって製造された石英ガラスは、極めて高純度であり、水酸基が極めて低く、泡が極めて少なく精製できるので、耐熱性、化学的不活性、透明性(赤外域から紫外域での光透過性)に優れ、しかも非磁性体であり、切断、切削、あるいは研磨を施すことにより、光学材料や半導体機器などのさまざまな装置や器具に使用できる。
【図面の簡単な説明】
【図1】本発明による石英ガラスの製造装置を示す概略構成図である。
【図2】図1の原料供給管を示す拡大断面図である。
【図3】図1のプラズマトーチを拡大した斜視図である。
【図4】図3の要部を示す拡大断面図である。
【図5】本発明によるプラズマトーチの先端部を拡大した平面図である。
【図6】本発明による溶融容器と原料供給管およびプラズマトーチとの位置関係を示す試験用装置の説明図である。
【図7】試験例1による化学分析値を示した表である。
【図8】試験例2による化学分析値を示した表である。
【符号の説明】
10 ホッパー
12 定量供給装置
16 原料供給管
18 溶融容器
20 炉体
22 プラズマアーク・カップリング帯域
24 プラズマアノードトーチ
26 プラズマカソードトーチ
28 石英ガラス製導管
30 水冷導管
32 シールガス通路
46 炉体ベース

Claims (8)

  1. 炉体内に回転および昇降自在に設置された溶融容器と、石英ガラス原材料を前記炉体内の前記溶融容器に供給する原料供給管と、前記溶融容器のプラズマアーク・カップリング帯域に対称的に配置されたプラズマアノードトーチとプラズマカソードトーチとからなるツインプラズマトーチとを有し、前記溶融容器に石英ガラス原材料を所定の厚さに敷き詰めた後、対称的に配置された前記ツインプラズマトーチの前記プラズマアノードトーチと前記プラズマカソードトーチとから生成されるプラズマアークによりカップリングされる近傍を溶融部の頂点として、前記石英ガラス原材料の溶融を行うことを特徴とする石英ガラスの製造方法。
  2. 前記石英ガラス原材料は前記溶融容器の底部に敷き詰められた請求項1記載の石英ガラスの製造方法。
  3. 前記石英ガラス原材料は前記溶融容器の壁面に沿って所定の形状で敷き詰められた請求項1記載の石英ガラスの製造方法。
  4. 前記石英ガラス原材料は前記溶融容器の内面形状に沿って所定の厚さに敷き詰められた請求項1記載の石英ガラスの製造方法。
  5. 前記溶融容器の回転速度が、前記溶融容器の底部に敷き詰められた前記石英ガラス原材料の溶融時より、前記溶融容器の底部以外の壁面に敷き詰められた前記石英ガラス原材料を溶融時の方が速い請求項1、2、3または4のいずれか1項に記載の石英ガラスの製造方法。
  6. 炉体内に回転および昇降自在に設置された底部および側壁部を有する溶融容器と、
    石英ガラス原材料を前記炉体内の前記溶融容器に供給する原料供給管と、
    前記溶融容器のプラズマアーク・カップリング帯域に対称的に配置されたプラズマアノードトーチとプラズマカソードトーチとからなるツインプラズマトーチと
    を有することを特徴とする石英ガラスの製造装置。
  7. 炉体内に回転および昇降自在に設置された溶融容器と、
    石英ガラス原材料を前記炉体内の前記溶融容器に供給する原料供給管と、
    前記溶融容器のプラズマアーク・カップリング帯域に対称的に配置されたプラズマアノードトーチとプラズマカソードトーチとからなるツインプラズマトーチとを有する石英ガラスの製造装置であって、
    前記プラズマカソードトーチは、カソード電極を包むようにアルゴンアークをトーチノズルより発生させる内側通路と、トーチノズルの先端部に放射状に配列され、かつノズルセンタに収束される角度を有する小穴より窒素ガスを噴出させる外側通路と、ノズル外側及びチップ内側に設けた冷却水の循環通路とを備え、プラズマアークからの輻射熱を遮断するようにした
    ことを特徴とする石英ガラスの製造装置。
  8. 前記プラズマアノードトーチと前記プラズマカソードトーチとからなる前記ツインプラズマトーチを、前記溶融容器のプラズマアーク・カップリング帯域に対称的に配置し、トーチ角度および炉体への挿入深さを調節できるように配置した
    ことを特徴とする請求項6または7のいずれか1項に記載の石英ガラスの製造装置。
JP05815294A 1994-03-03 1994-03-03 石英ガラスの製造方法及びその装置 Expired - Fee Related JP3568042B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05815294A JP3568042B2 (ja) 1994-03-03 1994-03-03 石英ガラスの製造方法及びその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05815294A JP3568042B2 (ja) 1994-03-03 1994-03-03 石英ガラスの製造方法及びその装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29277193A Division JP3566326B2 (ja) 1993-10-28 1993-10-28 石英ガラスの製造方法及びその装置

Publications (2)

Publication Number Publication Date
JPH07126034A JPH07126034A (ja) 1995-05-16
JP3568042B2 true JP3568042B2 (ja) 2004-09-22

Family

ID=13076026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05815294A Expired - Fee Related JP3568042B2 (ja) 1994-03-03 1994-03-03 石英ガラスの製造方法及びその装置

Country Status (1)

Country Link
JP (1) JP3568042B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653348B2 (ja) * 2001-07-18 2011-03-16 新日本製鐵株式会社 溶鋼加熱用プラズマトーチ
TW202146341A (zh) * 2020-05-08 2021-12-16 美商康寧公司 以熱電漿熔融玻璃的裝置及方法
CN111453973A (zh) * 2020-05-08 2020-07-28 武汉美尔汀环保科技有限公司 一种电阻式熔融炉及起炉方法

Also Published As

Publication number Publication date
JPH07126034A (ja) 1995-05-16

Similar Documents

Publication Publication Date Title
JP2538150B2 (ja) 石英ガラスの製造方法、及びその製造装置
CN103833035B (zh) 一种碳化硅的制备方法
CN108025365A (zh) 等离子体雾化金属粉末制造工艺及其系统
US5028248A (en) Method of melting materials and apparatus therefor
JP2011521882A (ja) 石英ガラスるつぼの製造方法及び装置
KR20100024663A (ko) 열플라즈마를 이용한 나노 복합 분말의 직접적, 연속적 합성 방법과 이를 위한 플라즈마 토치
JP3568042B2 (ja) 石英ガラスの製造方法及びその装置
JPH069236A (ja) 光学品位の二酸化ケイ素ガラスインゴット製品の製造方法および製造装置
US6143073A (en) Methods and apparatus for minimizing white point defects in quartz glass crucibles
EP1279644A2 (en) Method for producing a quartz glass crucible for pulling up silicon single crystal and apparatus
JP3566326B2 (ja) 石英ガラスの製造方法及びその装置
JPS59152239A (ja) 光導波体の製造方法
WO1993002787A1 (en) Process for the production of ultra-fine powdered materials
JP2005529050A (ja) 厚肉シリカ管の製造
JPH1111956A (ja) 石英ガラス製ルツボの製造方法および製造装置
TWI552958B (zh) 矽精製方法及矽精製裝置
JPH06299209A (ja) 磁性材料の粉粒体の生成方法
JP2000264776A (ja) シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP4140868B2 (ja) シリコン単結晶引き上げ用石英ガラスるつぼ及び その製造方法
JP2000169162A (ja) 石英ガラスの製造方法
JP2002356337A (ja) プラズマ溶融によるアルミニウム及び/又はイットリウム含有複合石英ガラスの製造方法及びその用途
EP1204591B1 (en) Production of silica particles
JP5310343B2 (ja) 合成石英ガラスの製造方法
JP2002356336A (ja) プラズマ溶融によるジルコニウム含有複合石英ガラスの製造方法及びその用途
JPS644967B2 (ja)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees