JP2005529050A - 厚肉シリカ管の製造 - Google Patents

厚肉シリカ管の製造 Download PDF

Info

Publication number
JP2005529050A
JP2005529050A JP2004511224A JP2004511224A JP2005529050A JP 2005529050 A JP2005529050 A JP 2005529050A JP 2004511224 A JP2004511224 A JP 2004511224A JP 2004511224 A JP2004511224 A JP 2004511224A JP 2005529050 A JP2005529050 A JP 2005529050A
Authority
JP
Japan
Prior art keywords
chamber
process gas
helium
gas
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004511224A
Other languages
English (en)
Inventor
ウィネン,マイケル・ピー
アールグレン,フレデリック・エフ
ドラジオ,フレッド
ウォーカー,マイケル・ディー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2005529050A publication Critical patent/JP2005529050A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

【課題】 気泡含有量の低い石英ガラス体の製造方法の提供。
【解決手段】 回転炉ハウジング(20)のチャンバ(62)内でケイ砂を溶融して溶融シリカを形成する。ケイ砂の導入中及び加熱段階中には、ヘリウム含有ガスがチャンバ内に供給される。ヘリウムは他のガスよりも容易に溶融シリカから発散して低い気泡含有量を生じる。溶融段階後、ヘリウムをアルゴンで置換することでさらに低い気泡含有量を得ることができる。炉は、チャンバ内で離隔した電極(64,66)間にガスプラズマアーク(60)を確立することで加熱される。

Description

本発明は、広義には石英(SiO)ガラスの製造に関し、さらに具体的には気泡含有量の低い厚肉SiOの製造に関する。
SiOガラス(「溶融石英」ともいう。)は、各種用途に広く使用されている。管状の形態では、半導体ウェーハの加工に使用される。例えば、管は半導体材料の製造用の高純度容器、即ち溶融、ゾーンリファイニング、拡散又はエピタキシーのような加工段階で半導体材料を保持するための高純度容器に形成される。このような用途及びその他の用途には、気泡を含まずできるだけ均質な透明SiOガラスが好ましい。透明SiOガラスの他の用途には、高温高光度で高効率のランプ用の管球及び光通信システム用のエネルギー伝送ファイバーのような光学部品がある。
かかる管の製造には、天然及び合成シリカ材料が使用される。天然シリカには、石英結晶ような自形石英や他形脈又はペグマタイト石英などから物理的及び化学的選鉱で得られる粒状材料がある。高い透明度が所望される場合には、堆積石英は一般に使用されない。合成シリカの中には、SiO含有溶液又は蒸気からの高純度析出物及び堆積物として得られるものがある。
SiOガラス管の製造は、通例、水平に配置された円筒形の炉チャンバに粒状石英(ケイ砂)を仕込み、大抵はチャンバを回転させながら炉を加熱してケイ砂を溶融することを含んでいる。炉の加熱は、内部抵抗発熱体又は細長い高電力プラズマアークを用いて実施できる。いずれの方法でも、溶融は熱源に近い側の粒状仕込原料から半径方向に進行する。熱の流れに伴い、融液の厚さ方向に温度勾配が生じ、そのため溶融は非等温的となる。発熱体に固有の制約のため、融液の加熱表面温度は通常は2000℃を超えないが、融液の最も遠い側の層は概してクリストバライトの融点(1723℃)を超えない。
例えば、米国特許第3853520号には、抵抗又は誘導発熱体を用いて回転中空形態のシリカ原料を真空下で加熱することが開示されている。グラファイト部材の酸化を起こさずに中空形の冷却速度を高めるため冷却段階で窒素のような不活性ガスが導入される。米国特許第4212661号には、溶融石英インゴットの形成の際に窒素又はアルゴンのような乾燥不活性ガスを循環させることが示唆されている。
半導体ウェーハ加工工業で使用される厚肉(25mm以上)溶融石英管に関しては、管の純度が極めて重要である。原料として使用されるシリカは好ましくは連行空及び夾雑物を含まない(即ち、高いバルク純度を有する)。粒子の表面も、好ましくは夾雑物を含まない。SiOガラスの製造に用いる溶融設備についても、夾雑物の表面付着を最小限に抑えるべきである。
粒度が比較的小さいので、ケイ砂はガス圧式輸送装置を用いて回転炉チャンバ内に容易に装入される。こうした回転円筒の内径にケイ砂を「吹き付ける」技術をうまく制御することで、一様なケイ砂層厚さを得ることができる。しかし、特にケイ砂粒子の表面が汚染されている場合に、溶融ケイ砂粒子間の小さな隙間が通例非常に小さな気泡(直径約20〜50マイクロメートル)を形成するので、得られる溶融ガラスの気泡品質は劣る傾向がある。
有害な気泡を低減させるための様々な方法が提唱されている(例えば、米国特許第5312471号参照。)。融液の急速回転によって、気泡が融液の内面に浮き上がって脱出することが提案されている。しかし、高回転速度でも、融液の外面には高濃度の気泡層が依然として認められる。他の提案では、SiOの蒸発を低減又は回避するとともに融液をさらに過熱させるため、溶融炉内で高いガス圧が使用される。高い温度は気泡の移動度を高めるのには有利であるが、蒸発の低減又は回避を意図した高い圧力は気泡を圧縮してその大きさを縮小させ、そのため半径の二乗に比例する移動度を低下させる傾向があるという点で逆効果を招くことになる。
別の方法では、抵抗加熱及び火炎加熱のような二つの熱源を併用することで、仕込原料の両側からケイ砂が加熱される。しかし、第二の熱源として使用される火炎はヒドロキシル基及びその他の化学種を放出し、ガラス中に不純物をもたらしかねない。米国特許第5312471号に記載された別の方法では、粒状石英供給材料の導入速度を、融液の内径の減少速度が除去すべき融液中の最小気泡の脱出速度以下になるように調節することによって、所定の光学品質が達成される。この方法は良好な結果を達成し得るが、特に高い光学的品質(即ち、小さい気泡サイズ)が所望される場合には加工時間が増加する。
米国特許第3853520号 米国特許第4212661号 米国特許第5312471号
本発明は、上記その他の問題を解消する新規な改良SiOガラス製造方法を提供する。
本発明の例示的な実施形態では、気泡濃度の低い石英ガラス体の製造方法を提供する。本方法は、回転炉のチャンバ内にシリカ粒子を供給し、ヘリウムを含む第一のプロセスガス中でチャンバ内のシリカ粒子を加熱して溶融シリカを形成することを含む。溶融シリカの冷却によって管状石英ガラス体が形成される。
本発明の別の例示的な実施形態では、気泡濃度の低い管状石英ガラス体の製造方法を提供する。本方法は、チャンバ内で離隔した電極間にガスプラズマアークを確立することによって炉のチャンバ内でシリカを溶融することを含む。溶融段階において、約70重量%以上のヘリウムを含むプロセスガスがチャンバ内に供給される。
本発明の別の例示的な実施形態では、気泡濃度の低い石英ガラス体の製造装置が提供される。本装置は、内部チャンバを画成するハウジング、及びチャンバ内にシリカ粒子を供給する手段を備える。第一及び第二の離隔した電極がチャンバ内に延在している。チャンバを加熱するためのアークを電極間に発生させるため、電源が電極に接続される。ヘリウムを含む第一のプロセスガス源、及びアルゴンを含む第二のプロセスガス源が用意される。マニホルドによって、チャンバに第一及び第二のプロセスガス源が選択的に流体連絡される。
本発明の1以上の実施形態の一利点は、透明なSiOガラスの製造が可能となることである。
本発明の1以上の実施形態の別の利点は、ガラスの気泡含有量の低減にある。
本発明のさらに別の利点は、好ましい実施形態に関する以下の詳しい説明をさんしょうすることによって当業者には明らかとなろう。
図面の簡単な説明
図1は、本発明の一実施形態における炉の斜視図であり、
図2は、図1の炉の断面図であり、
図3は、本発明の別の実施形態における炉の断面図であり、
図4は、図1の炉と組み合わされたガス圧式供給装置の略図であり、
図5は、図1の炉と組み合わされたプロセスガス供給装置の略図であり、
図6は、各種のガス及び混合物を用いる炉サイクルに関し、気泡密度(気泡数/cm)を壁体位置に対してプロットした図であり、
図7は、各種のガス及び混合物を用いる炉サイクルに関し、気泡直径を壁体位置に対してプロットした図である。
気泡生成の低減から得られるシリカ品質の向上は、ガラスの製造中に溶融ガラスから気泡が脱出する速度を高めることで達成される。加工炉へのケイ砂の供給及び/又は溶融プロセス用のプロセスガスとしての供給に適したガス又はガス混合物を選択することによって、気泡生成の顕著な低減が達成される。
図1は、溶融プロセスを実施するための例示的な回転炉10を示すが、炉の具体的構造を変更し得ることは自明である。炉はプラズマアーク加熱を用いたものを示しているが、別法として、炉用の抵抗加熱又はその他の加熱装置も使用できる。
本明細書中で用いる「粒子」という用語は、石英ガラスの製造時に原料として使用される小粒状、微粉状、粒状の析出物、堆積物、スラグその他の微粉状シリカをいう。「SiO」及びシリカという用語は同義であり、天然及び合成シリカ材料並びにこれらの組合せをいう。
図2も参照しながら説明すれば、炉10は床取付用パッド14を有する機械台12並びに左及び右支持体16,18を含んでいる。回転炉10のハウジング20はドラム状をなし、三つの部品、即ち中空円筒形セクション22、左側フランジ付きカバー24及び右側フランジ付きカバー26から構成される。適宜、両方のフランジ付きカバー24及び26は、プラズマアークに対面する炉の内部に対し、ドーナツ形のモノリシックモノリシック耐火材28,30で断熱される。また、追加の断熱材32で円筒形セクション22の内側を覆うことができ、断熱材32は、適宜モリブデン箔で覆われたジルコニア層又はアルミナ層のような本質的に粒状又は固体状(モノリシック)とし得る。
ただし、高純度ガラスに関しては、図2に示すように断熱材28,30,32を省くのが好ましい。一実施形態では、プロセス全体を通じて非溶融状態に保たれるケイ砂の層34が溶融シリカとハウジング20の内面36との間の断熱層として作用する。この実施形態では、ハウジングの壁体は好ましくは1018グレード鋼のような低炭素鋼で形成されており、その内面36は研磨されていてもよい。使用前、内面36をメタノールのような溶剤でぬぐうことで夾雑物が除去される。
炉ハウジング20用の冷却装置40は、炉ハウジング20の直上で、炉の水平軸に平行に配置された「シャワーヘッド」形の水エゼクター42からなる(図4)。水エゼクター42は、炉ハウジング20にジェットを直接スプレーする多数のオリフィスを有する。流れ落ちた水はハウジング20直下のパン44内に集められるが、そこに集められた水は冷却装置自体に流してリサイクルすることができる(図示せず)。適宜、フランジ24及び26の追加の冷却を施すため、炉ハウジング自体がパン44内に部分的に沈められるが、一般に炉をスプレージェットで冷却するのがより効果的である。この冷却装置の一つの目的は、炉ハウジング内の保護断熱層28,30,32の厚さの最小化、さらに好ましくは完全になくすことができるようにすることである。
図2に戻ると、フランジ24,26の軸方向延長部50,52は、軸受アセンブリ54及び56を介して炉10を回転可能に支持するのに役立つ。アーク60は、ハウジング20の内部に画成された細長い円筒形のチャンバ62内で発生する。両方のフランジ付きカバー24及び26には、例えば銅で形成された回転しない中空の水冷電極64,66がそれぞれ貫通している。電極64,66は、高電流/高電圧DC電源の接続を可能にするため、好適には回転フランジから電気絶縁される。
炉10は、真空下又は高圧下での炉の運転及び様々なガス又はガス混合物の下での炉の運転を可能にするため、気密封止されている。この目的のため、フランジ付きカバー24,26を円筒形セクション22に封止するためガスケット型シール70,72が設けられており、軸方向延長部50,52内の電極64,66を封止するためOリング74,76が設けられている。炉をアーク60で加熱する場合、アークを持続させるためにヘリウム圧は約0.1〜3気圧の範囲内にあり、好ましくは0.5気圧以上であるのが好ましい。ただし、アークの代わりに抵抗加熱器のような他の加熱源を使用する場合には、この範囲外の圧力も可能である。
回転炉アセンブリ10は接地される。全出力及びその調整に関する要件が満たされる限り、あらゆるDC電源80を使用できる。溶融作業中に出力がゼロに低下するのを防止することでアーク60の安定性の維持を助けるため、電源80と直列に追加のインダクター82を加えてもよい。中空消耗スタブ90,92が電極から延在しており、これらは炭素(例えば、グラファイト)、タングステン又は他の導電性高温耐火材で形成できる。
ハウジング20を回転させるための駆動装置100は、左側の炉フランジ24の一部をなす中空軸又は軸方向延長部50を(直接又間接に)回転させるために使用される変速電動機102を備える。
電極の温度を調節するため、中空電極64,66の環状通路114,116中に循環させるための冷却材が入口110,112を通して導入される。
ケイ砂は、ガス圧式供給装置120によって炉に供給される(図4)。ガス圧式供給装置120は、供給管122を通してケイ砂粒子を炉に輸送するために供給ガスを使用する。供給ガスは加圧ボンベのような供給ガス源124から供給され、ケイ砂と混合されて供給管122中を流れる。供給管は、一方の電極64(入口電極)を貫通して画成された内腔126と流体連結されている。ケイ砂と供給ガスとの混合物は、好ましくは、まだ低温状態にある(即ち、アーク60を開始する前の)空の回転ハウジング20内に内腔126を通して供給される。チャンバ62内の雰囲気は最初は周囲空気からなるが、ケイ砂の導入前に初期パージ用の供給ガスをチャンバに供給することも想定されている。過剰の圧力は他方の電極66(排気電極という)の内腔128を通してチャンバ62から放出される。
詳しくは、図4に示されるように、マニホルド弁130としての原料供給装置が、ホッパー132から受け入れた粒子状シリカ原料を炉10に供給する。マニホルド弁134は、圧縮ガス源124からの供給ガスの導入速度を調節する。マニホルド弁134を通過した後、ガスは供給材料を取り込む。ガスはケイ砂をチャンバ62に運び、そこでケイ砂は回転円筒の壁体22に向けて吹き付けられる。無論、マニホルド弁130の代わりに他の供給装置を使用してもよい。例えば、ベンチュリ管のような連続供給装置が使用できる。
原料ケイ砂をチャンバに導入した後、ガス圧式供給装置を炉10から分離する。次いで、プロセスガス供給管140を内腔126に連結し(図5)、加圧ボンベ142のようなプロセスガス源からプロセスガスの流れをチャンバ62に供給する。溶融プロセス中に空気が侵入するのを防止するため、排気内腔128に取り付けられたリストリクター144がチャンバ62内にわずかな過圧を維持する。チャンバ62内への流量は調整器146で調節され、好ましくは約200立方フィート/時に維持される。
原料ケイ砂をチャンバ62に導入した後、消耗電極延長部90,92の間にプラズマアーク60を確立する。これは様々な方式で達成できる。例えば、グラファイト棒のようなストライカー電極150を排気電極の内腔128にはめ込む(図5)。電極64のスタブ64(図2)に接触するまでストライカー電極150を前進させ、電力を供給してアークを発生させる。ストライカー電極150を排気電極66内に徐々に後退させ、二つの電極64,66の間にアークを形成する。別法として、動力手段を用いて電極64,66の一方を他方の隣接した位置まで移動させてアークを開始させ、次いで電極をその動作位置まで引き離す。
アークはケイ砂を加熱し、徐々に溶融状態に変化させる。アークに最も近いケイ砂層が最初に溶融し、メルトフロントはハウジング壁体表面36に向かって徐々に外方に広がり、やがて溶融すべきすべてのケイ砂が溶融する(図2)。この時点(本明細書中では「溶融時間」という。)で、溶融シリカとハウジング壁体表面36との間に非溶融シリカの薄層34が残留するが、これはプロセスの残り時間を通じて非溶融状態に保たれる。概して溶融時間に達するまでの期間をプロセスの「初期段階」又は溶融段階といい、初期段階に続く期間(即ち、概して溶融時間後の期間)を「第二の段階」又は溶融後段階という。円筒形ハウジングの外面154は積極的に冷却されるが、これは溶融後段階でメルトフロント156がそれ以上前進するのを防止する。残留するケイ砂の薄層34は、チャンバ62から完成した管を取り出すのを助ける。第一の段階を完了するのに要する時間は、供給電力及び他の因子(例えば、供給材料の量)に依存する。通例、約400KWの入力で第一の段階を完了するには20〜30分で十分である。
チャンバ62内にケイ砂をガス圧で導入するためにケイ砂と混合される供給ガスは、好ましくはヘリウムを含む。供給ガスは、純ヘリウム又はヘリウムと他のガス(例えば、酸素)との混合物であり得る。(「純ヘリウム」とは、99.9%以上のヘリウムを意味する。)例えば、供給ガスは0〜20重量%の酸素及び100〜約80重量%のヘリウムを含み得る。また、少量のアルゴン又は他の不活性ガス、好ましくは20重量%未満のアルゴン、さらに好ましくは10重量%未満のアルゴンが供給ガス中に存在し得ることも想定されているが、最も好ましくは供給ガスはアルゴンを含まない。好ましい実施形態では、供給ガスは70重量%以上のヘリウム、さらに好ましくは95%以上のヘリウム、最も好ましくは約100%のヘリウムである。
溶融プロセスの第一の段階でチャンバ62内に供給され、任意には第二の段階でも供給されるプロセスガスは、やはり好ましくは純ヘリウム又はヘリウムと他のガスとの混合物である。プロセスガスは、供給ガスと同じガス又はガス混合物であり得る。例えば、供給ガスと同じく、プロセスガスは純ヘリウム又はヘリウムと酸素との混合物であり得る(例えば、0〜20重量%の酸素及び100〜約80重量%のヘリウムを含み得る)。さらに好ましくは、溶融プロセスの少なくとも初期段階でのプロセスガスは酸素を含まず、好ましくは100重量%又は100重量%に近いヘリウム(即ち、70重量%以上のヘリウム、さらに好ましくは80重量%以上のヘリウム、最も好ましくは95重量%を超えるヘリウム)である。また、溶融プロセスの初期段階では、少量のアルゴン、好ましくは10%未満のアルゴンがプロセスガス中に存在し得ることも想定されている。
シリカ中に夾雑物が存在する場合、酸素は精製剤として有用であることが判明した。溶融プロセスの熱と相俟って、酸素はケイ砂上の炭化水素や他の揮発性夾雑物を焼き払う雰囲気を提供する。かくして夾雑物はガラスの溶融前にケイ砂層及びチャンバ62の雰囲気から除去される(即ち、夾雑物はガラス中に気泡として閉じ込められる前に除去される)。しかし、酸素は気泡の形成という点では有害であることが判明している。したがって、高純度ケイ砂(即ち、揮発性有機化合物をほとんど又は全く含まないケイ砂)を使用する場合には、供給ガス及び/又はプロセスガス中の酸素濃度を低下又は完全に除去することができる。このように、ケイ砂の高純度を保証すると共に、供給ガス及びプロセスガスから酸素を低減又は完全に除去することで、ガラス品質の向上が達成される。純度の劣るケイ砂を使用する場合には、酸素の存在はその精製特性に総合的に有益であり得る。実験により、最小の気泡形成を達成しながら揮発性有機物の除去を可能にする最小酸素レベルを決定できる。このレベルは、一般に約1〜約20重量%の酸素である。
一実施形態では、供給ガスはヘリウムに加えて酸素を含む一方、プロセスガスは酸素を含まないか、又は酸素を実質的に含まない。さもなければ、プロセスガス中の酸素濃度をプロセスの初期段階中に徐々に低下させる。
ヘリウムは、最終溶融石英製品中での気泡形成を低減させるのに特に有効である。気泡カウント数(単位体積当たりの気泡数)は、他のプロセスガスに比べて減少する。ヘリウムは溶融シリカ中への高い拡散速度を有しており、少なくともプロセスの初期段階では、窒素やアルゴンのような他のガスよりも急速に溶融シリカ中に拡散することが判明した。さらに、概略溶融温度範囲である1700〜2000℃の温度範囲では、温度はその拡散係数に比較的少ない影響しか及ぼさない。
一般に、いかなるシリカ溶融プロセス中でも、(約200マイクロメートル以上の)大きい気泡は融液の内面160に浮き上がってガラスから脱出する(図2)。しかし、(約100マイクロメートル未満の)小さい気泡はそれほど急速に浮き上がらず、ガラス中に閉じ込められる傾向がある。ヘリウムは、大きい気泡及び小さい気泡を共に減少させることが判明した。供給ガス及び/又はプロセスガス中にヘリウムを使用すれば、大きい気泡及び小さい気泡が共に減少する。十分には理解されていないが、小さい気泡の減少は気泡の熟成(即ち、拡散によるサイズの成長)から生じる可能性のあることが示唆される。ヘリウムは溶融ガラス中に容易に拡散する結果、このガスは小さい気泡から大きい気泡に拡散するので、小さい気泡はさらに小さくなる。大きい気泡はさらに大きくなるので、これらは融液中をさらに急速に浮き上がることができ、溶融サイクル中にガラスから脱出する可能性が高くなる。
任意には、プロセスガス中のヘリウムの少なくとも一部又は全部がプロセス中にアルゴンで置換される。初期段階の少なくとも一部、好ましくは全部については、プロセスガス中にヘリウムを含むことが望ましいと判明した。しかし、プロセスの後期、好ましくは第二の段階でアルゴンを使用した場合には、気泡品質について向上した結果が見出された。
例えば、初期段階では、ヘリウム又は主としてヘリウムを他のガスと共に含む混合物が使用される。次いで、第二の段階では、純アルゴン又は主としてアルゴンを他のガスと共に含む混合物が使用される。(「純アルゴン」とは、99.9%以上のArを意味する。)例えば、弁146がマニホルド148の一部をなしていて、これがヘリウム含有ガス及びアルゴンをそれぞれ含む第一及び第二のボンベからプロセスガスを選択的に供給する。第二の段階には純アルゴンが好ましいが、アルゴンと他のガス(例えば、ヘリウム)との混合物、好ましくは50重量%未満のヘリウム、さらに好ましくは20%未満のヘリウム、最も好ましくは約10%未満のヘリウムを含む混合物を第二の段階で使用することもできる。第一の段階と同じく、圧力は好ましくはアークを持続させるのに十分な圧力、即ち約0.1〜3気圧のチャンバ圧力であり、さらに好ましくは0.5気圧以上である。
十分には理解されていないが、第二の段階(即ち、溶融が起こった後の段階)で使用されるアルゴンベースのプロセスガスは有益な効果を有することが示唆される。円筒形ハウジングの外面の冷却でガラスのメルトフロントが安定化された後には、溶融ガラスから残留気泡が除去される。プロセスガス混合物をヘリウム又はヘリウム−酸素からアルゴンに変えると、これらの残留気泡が数が減少する。このような二段階プロセスで製造したガラスの試料は、ガラス管の内面160(図2)付近に気泡カウント数の低い帯域を有していた。アルゴンに変えることの効果は、チャンバ62内の雰囲気中でのヘリウム及び酸素(存在する場合)の分圧を低下させることにあると示唆される。このような低下は、ヘリウムを融液の内面160に拡散させ、次いでガラスから発散させるための追加の推進力をもたらす。さらに、アルゴンは他のガスよりも溶融ガラス中に拡散する傾向が少ない。
好ましくは、プロセスガス及び供給ガスは窒素を含まないか、又は窒素を実質的に含まない(即ち、5重量%未満、さらに好ましくは1重量%未満の窒素を含む)。
意外にも、第二の段階でのアルゴンの利点は、通常は第一の段階で見られないことが判明した。二段階プロセス(段階1でヘリウム、段階2でアルゴン)で製造したガラスを、プロセス全体を通じてアルゴン雰囲気中で製造したガラスと比較したところ、二段階プロセスでは気泡分布の均質性の向上が見られた。アルゴンで処理した試料は領域の混合物を有していて、一部の領域は高い気泡カウント数を有しており、別の領域は低い気泡カウント数を有していた。全体を通じてヘリウム雰囲気を用いて製造したガラスは全体を通じてアルゴン雰囲気を用いて製造したガラスに比べて向上を示したが、二段階プロセスは総合的に最良の結果を示した。
任意には、粒子状供給材料が実際に融液の一部になる前にそれを精製するため、腐食性及び反応性ガスを供給ガス又はプラズマアーク雰囲気に少量だけ添加することができる。好ましくは、1%未満の塩素又は類似の腐食性ガスが供給ガス中に存在する。
加熱段階の完了後、溶融ガラスはチャンバ62内でガラスが固体になる温度に冷却又は放冷される。次いで、こうして形成された固体管状石英ガラス体がチャンバから取り出される。
本方法は、半導体工業での加工用途に好適な管を形成するために特に適している。例えば、約1〜約10cmの肉厚及び約15〜約50cmの外径(O.D.)を有する管が記載のプロセスで容易に形成されるが、他の寸法も想定されている。半導体加工用途には、管をリング状に切断し、適当な基板上に取り付けることができる。
本発明の技術的範囲を限定するつもりはないが、以下の実施例は本発明方法を用いた気泡形成の低減を実証している。
実施例
溶融品質及び気泡含有量に対するガスの種類の効果を調べるため、供給用及び溶融用として複数の種類のガスを使用した。この試験に使用したガスの種類は下記の通りである。
1.純Ar(99.998%Ar、O<5ppm、HO<3ppm)
2.純He(99.995%He、O<5ppm、HO<5ppm)
3.He(80重量%)/O(20重量%)
4.純N
これらのガスをケイ砂供給に使用すると共に、溶融中にアーク放電媒体(プロセスガス)として使用した。すべての種類のガスは同じ運転条件下で試験した。これらのパラメーターには下記のものがある。
Figure 2005529050
得られた気泡データを、ガスの種類で類別し、次いで壁体位置で類別して、図6(気泡密度、気泡数/cm)及び図7(気泡サイズ、マイクロメートル単位の直径)に示す(例えば、80/20 He/O_IDは、80%He/20%Oガスを用いた運転で得られた石英試料を管の内径付近で測定した結果を表している)。気泡密度は、単位体積当たりの気泡総数を表す。気泡直径は、球形と仮定した上で、気泡面積を用いて推定した気泡サイズである。
気泡密度及び気泡サイズのデータに基づけば、Heは壁体の厚さ全体を通じて一様なガス含有量を与えるのに対し、他のすべてのガスはIDからOD(外径)まで増加するガス含有量の勾配を生み出す。He/O混合物、He及びArは、ID試料に関して同様な面積分率及び密度を与える。
以上、好ましい実施形態に関して本発明を説明してきた。自明の通り、上記の詳しい説明を読んで理解すれば、修正及び変更が想起されるであろう。かかる修正及び変更が記載された請求項又はその同等物の技術的範囲内に含まれる限り、本発明はかかる修正及び変更のすべてを含むものと解すべきである。
本発明の一実施形態における炉の斜視図である。 図1の炉の断面図である。 本発明の別の実施形態における炉の断面図である。 図1の炉と組み合わされたガス圧式供給装置の略図である。 図1の炉と組み合わされたプロセスガス供給装置の略図である。 各種のガス及び混合物を用いる炉サイクルに関し、気泡密度(気泡数/cm)を壁体位置に対してプロットした図である。 各種のガス及び混合物を用いる炉サイクルに関し、気泡直径を壁体位置に対してプロットした図である。
符号の説明
10 回転炉
20 ハウジング
60 ガスプラズマアーク
62 チャンバ
64 電極
66 電極
80 電源
124 第一のプロセスガス源
126 通路
134 マニホルド
142 第二のプロセスガス源

Claims (21)

  1. 気泡濃度の低い管状石英ガラス体の製造方法であって、
    回転炉(10)のチャンバ(62)内にシリカ粒子を供給する段階、
    ヘリウムを含む第一のプロセスガス中でチャンバ内のシリカ粒子を加熱して溶融シリカを形成する段階、及び
    溶融シリカを冷却して管状石英ガラス体を形成する段階
    を含んでなる方法。
  2. 第一のプロセスガスが80重量%以上のヘリウムを含む、請求項1記載の方法。
  3. 第一のプロセスガスが純ヘリウムである、請求項2記載の方法。
  4. 第一のプロセスガスが酸素を約20重量%未満しか含まない、請求項1記載の方法。
  5. 第一のプロセスガスが酸素を約1重量%未満しか含まない、請求項2記載の方法。
  6. 第一のプロセスガスが酸素を含まない、請求項5記載の方法。
  7. 加熱段階がさらに、
    第一のプロセスガスを、アルゴンを少なくとも主成分とする第二のプロセスガスで置換して溶融シリカからヘリウムを追い出す
    ことを含む、請求項1記載の方法。
  8. 加熱段階で溶融すべきシリカ粒子が実質的にすべて溶融した後に第二のプロセスガスを導入する、請求項7記載の方法。
  9. 第一のプロセスガスが純アルゴンである、請求項7記載の方法。
  10. シリカ供給段階が、
    シリカを、ヘリウムを含む供給ガスと混合し、
    供給ガスをチャンバに導入する
    ことを含む、請求項1記載の方法。
  11. 供給ガスが酸素を20重量%未満しか含まない、請求項10記載の方法。
  12. 加熱段階中にシリカから揮発性有機夾雑物を除去するために供給ガスが酸素を約1重量%未満しか含まない、請求項11記載の方法。
  13. 供給ガスが90%以上のヘリウムを含む、請求項10記載の方法。
  14. 加熱段階が、
    チャンバ内で離隔した電極(64,66)間にガスプラズマアーク(60)を確立してチャンバを加熱する
    ことを含む、請求項1記載の方法。
  15. 加熱段階が、
    第一の電極(64)によって画成される通路(126)を通してチャンバ内に第一のプロセスガスを流す
    ことを含む、請求項14記載の方法。
  16. 加熱段階が、200立方フィート/時の流量でチャンバ内に第一のプロセスガスを流すことを含む、請求項1記載の方法。
  17. 気泡含有量の低い石英ガラス体の製造方法であって、
    チャンバ内で離隔した電極間にガスプラズマアーク(60)を確立することによって炉(10)のチャンバ(62)内でシリカを溶融する段階、及び
    溶融段階中に、約70重量%以上のヘリウムを含むプロセスガスをチャンバ内に供給する段階
    を含んでなる方法。
  18. プロセスガスが95重量%以上のヘリウムを含む、請求項17記載の方法。
  19. チャンバ内の圧力が約0.1〜約3気圧である、請求項17記載の方法。
  20. さらに、溶融段階後に、
    アルゴンを含む第二のプロセスガスをチャンバ内に供給する
    ことを含む、請求項17記載の方法。
  21. 気泡濃度の低い石英ガラス体の製造装置であって、
    内部チャンバ(62)を画成するハウジング(20)、
    チャンバ(62)内にシリカ粒子を供給する手段(120)、
    チャンバ内に延在する第一及び第二の離隔した電極(64,66)、
    チャンバを加熱するためのアーク(60)を電極間に発生させるため、電極に接続された電源(80)、
    ヘリウムを含む第一のプロセスガス源(124)、
    アルゴンを含む第二のプロセスガス源(142)、並びに
    チャンバに第一及び第二のプロセスガス源を選択的に流体連絡するマニホルド(134)
    を含んでなる装置。
JP2004511224A 2002-06-10 2003-05-23 厚肉シリカ管の製造 Withdrawn JP2005529050A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/166,442 US20030226376A1 (en) 2002-06-10 2002-06-10 Fabrication of heavy walled silica tubing
PCT/US2003/016339 WO2003104153A1 (en) 2002-06-10 2003-05-23 Fabrication of heavy walled silica tubing

Publications (1)

Publication Number Publication Date
JP2005529050A true JP2005529050A (ja) 2005-09-29

Family

ID=29710657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004511224A Withdrawn JP2005529050A (ja) 2002-06-10 2003-05-23 厚肉シリカ管の製造

Country Status (8)

Country Link
US (1) US20030226376A1 (ja)
EP (1) EP1527025A1 (ja)
JP (1) JP2005529050A (ja)
KR (1) KR20050010871A (ja)
CN (1) CN1675134A (ja)
AU (1) AU2003245320A1 (ja)
TW (1) TW200406362A (ja)
WO (1) WO2003104153A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179934A (ja) * 2015-03-24 2016-10-13 信越化学工業株式会社 焼結装置および焼結方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI382792B (zh) * 2008-11-18 2013-01-11 Ind Tech Res Inst 具電弧控制功能之大氣電漿產生裝置
JP5828232B2 (ja) * 2011-06-29 2015-12-02 住友電気工業株式会社 ガラス母材用加熱炉
DE102012006914B4 (de) * 2012-04-05 2018-01-18 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung synthetischer Quarzglaskörnung
US9751796B2 (en) * 2015-03-24 2017-09-05 Shin-Etsu Chemical Co., Ltd. Sintering apparatus and method for sintering
CN107021606B (zh) * 2017-04-20 2020-01-03 江苏太平洋石英股份有限公司 连熔法生产光纤用外套管的方法
CN109437517A (zh) * 2018-12-20 2019-03-08 贵州华烽电器有限公司 一种玻璃烧结工艺
EP3702333A1 (de) * 2019-03-01 2020-09-02 Heraeus Quarzglas GmbH & Co. KG Verfahren und vorrichtung zur herstellung eines glasbauteils
JP2023549526A (ja) * 2020-11-16 2023-11-27 モメンティブ パフォーマンス マテリアルズ クオーツ インコーポレイテッド 中空石英円筒体を製作するための装置および方法
CN112624579B (zh) * 2020-12-03 2021-09-17 东海县奥兰石英科技有限公司 一种一体集成法生产大直径透明石英坨的制备方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038627A (en) * 1935-07-18 1936-04-28 Corning Glass Works Method of making glass
DE1211766B (de) * 1962-06-25 1966-03-03 Patra Patent Treuhand Herstellung von blasenarmem Quarzrohr
US4122293A (en) * 1977-04-19 1978-10-24 Georgy Mikhailovich Grigorenko Feed system for plasma-arc furnace
JPH029727A (ja) * 1988-06-28 1990-01-12 Sumitomo Electric Ind Ltd 光フアイバ用母材の製造方法
US5312471A (en) * 1991-12-02 1994-05-17 Lothar Jung Method and apparatus for the manufacture of large optical grade SiO2 glass preforms
DE19541372A1 (de) * 1994-11-15 1996-05-23 Gen Electric Tiegel aus geschmolzenem Quarz sowie Verfahren zu dessen Herstellung
US5884323A (en) * 1995-10-13 1999-03-16 3Com Corporation Extendible method and apparatus for synchronizing files on two different computer systems
JP3665677B2 (ja) * 1996-05-10 2005-06-29 東芝セラミックス株式会社 石英ガラス管の製造方法
KR100383796B1 (ko) * 1999-04-06 2003-05-14 가부시키가이샤 난와쿼츠 석영유리도가니의 제조방법
JP3765368B2 (ja) * 1999-06-01 2006-04-12 東芝セラミックス株式会社 石英ガラスルツボおよびその製造方法
US6502422B1 (en) * 2000-10-27 2003-01-07 General Electric Company Method for quartz crucible fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179934A (ja) * 2015-03-24 2016-10-13 信越化学工業株式会社 焼結装置および焼結方法

Also Published As

Publication number Publication date
AU2003245320A1 (en) 2003-12-22
TW200406362A (en) 2004-05-01
CN1675134A (zh) 2005-09-28
EP1527025A1 (en) 2005-05-04
WO2003104153A1 (en) 2003-12-18
US20030226376A1 (en) 2003-12-11
KR20050010871A (ko) 2005-01-28

Similar Documents

Publication Publication Date Title
EP1355861B1 (en) Quartz fusion furnace and method for forming quartz articles
US6632086B1 (en) Quartz fusion crucible
JP2538150B2 (ja) 石英ガラスの製造方法、及びその製造装置
US6739155B1 (en) Quartz making an elongated fused quartz article using a furnace with metal-lined walls
US7427327B2 (en) Silica glass crucible with barium-doped inner wall
EP1094039B1 (en) Method for manufacturing quartz glass crucible
KR101595403B1 (ko) 석영 유리 도가니의 제조 방법 및 장치
US5312471A (en) Method and apparatus for the manufacture of large optical grade SiO2 glass preforms
JP2005529050A (ja) 厚肉シリカ管の製造
TW201734459A (zh) 用於純化極紫外線光源之目標材料之方法與裝置
US6143073A (en) Methods and apparatus for minimizing white point defects in quartz glass crucibles
JP4548682B2 (ja) 石英ガラスるつぼの製造方法
JP3625636B2 (ja) シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP4133329B2 (ja) 石英るつぼ製造方法
JP4087708B2 (ja) シリカるつぼ製造装置
JP2000264776A (ja) シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP3568042B2 (ja) 石英ガラスの製造方法及びその装置
JP4482567B2 (ja) シリコン単結晶引き上げ用石英ガラスるつぼの製造方法
JP3665677B2 (ja) 石英ガラス管の製造方法
JPH0834628A (ja) 高純度石英ガラスルツボの製造方法
TWI844545B (zh) 產生熔融矽裝置
KR20120026431A (ko) 실리콘 잉곳의 전자 주조 방법
JP2000169162A (ja) 石英ガラスの製造方法
US20030233847A1 (en) Manufacture of elongated fused quartz member
JP2002356336A (ja) プラズマ溶融によるジルコニウム含有複合石英ガラスの製造方法及びその用途

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801