JP3561649B2 - 内燃機関の蒸発燃料処理装置 - Google Patents

内燃機関の蒸発燃料処理装置 Download PDF

Info

Publication number
JP3561649B2
JP3561649B2 JP02926099A JP2926099A JP3561649B2 JP 3561649 B2 JP3561649 B2 JP 3561649B2 JP 02926099 A JP02926099 A JP 02926099A JP 2926099 A JP2926099 A JP 2926099A JP 3561649 B2 JP3561649 B2 JP 3561649B2
Authority
JP
Japan
Prior art keywords
pressure
tank
fuel
check
internal pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02926099A
Other languages
English (en)
Other versions
JP2000227051A (ja
Inventor
高志 磯部
隆 山口
聡 木曽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP02926099A priority Critical patent/JP3561649B2/ja
Priority to US09/495,746 priority patent/US6363919B1/en
Publication of JP2000227051A publication Critical patent/JP2000227051A/ja
Application granted granted Critical
Publication of JP3561649B2 publication Critical patent/JP3561649B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、燃料タンク内で発生する蒸発燃料を内燃機関の吸気系に放出する内燃機関の蒸発燃料処理装置に関し、より具体的には、燃料タンクからエンジン吸気系に至る蒸発燃料排出抑止系の漏れの有無を判定することができる内燃機関の蒸発燃料処理装置に関する。
【0002】
【従来の技術】
特開平7−83125には、タンク系の漏れの有無を判定する手法が記載されている。蒸発燃料排出抑止系を所定圧力まで減圧し、次に燃料タンクの圧力の減圧目標値を上限値および下限値に交互に設定して燃料タンクの圧力を除々に減圧目標値に収束させるフィードバック減圧を行い、燃料タンクの単位時間あたりの圧力変動量を算出する(リークダウンチェックモード)。判定結果に対するベーパの影響を取り除くため、補正値として蒸発燃料による単位時間あたりの圧力変動量を算出する。タンク系の漏れの有無の判定は、上記のリークダウンチェックモードで算出された圧力変動量から、補正チェックモードで算出された圧力変動量に係数を掛けた値を引いた値に基づいて行われる。この値が所定値以下であれば、タンク系に漏れがなく正常と判定し、この値が所定値より大きければ、タンク系に漏れがあると判定する。
【0003】
【発明が解決しようとする課題】
しかし、このようなリークチェックおよび補正チェックを行ってタンク系の漏れの有無を判定する場合に、補正チェック中の運転状態とリークチェック中の運転状態が大きく異なる場合には、正確な補正を行うことができない。例えば、補正チェック中は安定したクルーズ走行であって、リークチェック中には加速状態が含まれる場合、加速時には燃料タンクの内圧上昇が小さくなるため、タンク系に漏れがあっても正常と判断されることがある。この発明の発明者は、減速時には、燃料の消費が少ないなどの原因で、燃料タンクの内圧上昇が速まるのに対し、加速時には、燃料の消費が多いなどの原因で、燃料タンクの内圧上昇が遅くなる(内圧が負圧方向に変動する)ことを見いだした。
【0004】
たとえば0.5mm径の穴のような微小な穴による漏れを検出するには、補正チェックおよびリークチェックに30秒から60秒という長い時間を必要とし、補正チェック中およびリークチェック中の運転状態が大きく異なることがある。このような場合、補正チェック時およびリークチェック時の運転状態の相違が燃料タンクの内圧に影響を及ぼし、漏れの有無判定の精度を害する。
【0005】
この発明は、これらの問題を解決し、判定の信頼性を向上させることを目的とする。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、この発明は、燃料タンク、内部を大気に開放する開放口を有し前記燃料タンク内に発生した蒸発燃料を吸着するキャニスタ、前記燃料タンクと前記キャニスタを連通するチャージ通路、前記キャニスタと内燃機関の吸気管を連通するパージ通路、前記チャージ通路に設けられた圧力調整弁、前記圧力調整弁をバイパスする通路に設けられたバイパス弁、前記パージ通路に設けられたパージ制御弁、前記開放口を開閉可能なベントシャット弁、前記燃料タンクの内圧を検出するための内圧センサ、前記燃料タンクを大気圧状態にした後に閉鎖したときの前記燃料タンクの内圧の変化度合いを検出する補正チェック手段、前記燃料タンクを負圧にした後に閉鎖したときの前記燃料タンクの内圧の変化度合いを検出する漏れチェック手段、前記漏れチェック手段および補正チェック手段による検出結果に基づいて前記燃料タンクの漏れの有無を判定する判定手段を有する蒸発燃料処理装置において、前記補正チェック手段による検出の際の燃料消費量および前記漏れチェック手段による検出の際の燃料消費量を算出する算出手段と、前記算出されたそれぞれの燃料消費量が実質的に異なるとき、前記判定手段による漏れの有無の判定を禁止する判定禁止手段とを備えるという構成をとる。
【0007】
燃料消費量が実質的に異なるとは、燃料消費量の相違が漏れの有無の判定に影響を及ぼす程度であることをいい、具体的には予め実験またはシミュレーションによって決めた値以上の相違があることをいう。
【0008】
この発明によると、補正チェック中およびリークチェック中のそれぞれの燃料消費量を算出し、算出された燃料消費量が実質的に異なる場合には、判定を禁止するので、タンク系の漏れの有無の判定において誤った判定を回避することができ、判定の信頼性を向上させることができる。
【0009】
【発明の実施の形態】
次に図面を参照してこの発明の実施の形態を説明する。図1は、この発明の実施形態による内燃機関の蒸発燃料処理装置の全体構成図である。この装置は、内燃機関(以下、「エンジン」という)1、蒸発燃料排出抑止装置31および電子制御ユニット(以下、「ECU」という)5を備える。
【0010】
ECU5は、エンジン1の各部の制御を行うための演算を実行するCPU91、エンジン各部の制御を行うためのプログラムおよび各種のデータを格納する読み取り専用メモリ(ROM)92、CPU91による演算の作業領域を提供し、エンジン各部から送られてくるデータおよびエンジン各部に送り出す制御信号を一時記憶するランダムアクセスメモリ(RAM)93、エンジン各部から送られてくるデータを受け入れる入力回路94、エンジン各部に制御信号を送る出力回路95を備えている。
【0011】
図1では、プログラムは、モジュール1、モジュール2、モジュール3等で示されており、この発明による漏れの有無を検出するプログラムは、たとえばモジュール3、4、5に含まれている。また、演算に用いる各種のデータはテーブル1、テーブル2等の形でROM92に格納されている。ROM92は、EEPROMのような書き換え可能なROMであってもよく、この場合、ある運転サイクルにおいてECU5が演算した結果をROMに格納しておき、次の運転サイクルで利用することができる。また、種々の処理でセットされた多くのフラグ情報をEEPROMに記録しておくことにより、故障診断に利用することができる。
【0012】
エンジン1は、例えば4気筒を備えるエンジンであり、吸気管2が連結されている。吸気管2の上流側にはスロットル弁3が配されており、スロットル弁3に連結されたスロットル弁開度センサ(θTH)4は、スロットル弁3の開度に応じた電気信号を出力してECUに供給する。
【0013】
燃料噴射弁6は、吸気管2の途中であって、エンジン1とスロットル弁3の間に各気筒毎に設けられ、ECUからの制御信号により開弁時間が制御される。燃料供給管7は、燃料噴射弁6および燃料タンク9を接続し、その途中に設けられた燃料ポンプ8が燃料を燃料タンク9から燃料噴射弁6に供給する。図示しないレギュレータが、ポンプ8と燃料噴射弁6の間に設けられ、吸気管2から取り込まれる空気の圧力と、燃料供給管7を介して供給される燃料の圧力との間の差圧を一定にするよう動作して、燃料の圧力が高すぎるときは図示しないリターン管を通して余分な燃料を燃料タンク9に戻す。こうして、スロットル弁3を介して取り込まれた空気は、吸気管2を通り、燃料噴射弁6から噴射される燃料と混合してエンジン1のシリンダに供給される。
【0014】
吸気管圧力(PBA)センサ13および吸気温(TA)センサ14は、吸気管2のスロットル弁3の下流側に装着されており、それぞれ吸気管圧力および吸気温を検出して電気信号に変換し、それをECU5に送る。
【0015】
エンジン水温(TW)センサ15は、エンジン1のシリンダブロックの冷却水が充満した気筒周壁に取り付けられ、エンジン冷却水の温度を検出し、電気信号に変換して結果をECU5に送る。エンジン回転数(NE)センサ16がエンジン1のカム軸周囲またはクランク軸周囲に取り付けられ、エンジン1のクランク軸の180度回転毎に所定のクランク角度位置で信号パルス(TDC信号パルス)を出力し、それをECU5に送る。
【0016】
エンジン1は排気管12を持ち、排気管12の途中に設けられた排気ガス浄化装置である三元触媒33を介して排気する。O2センサ32は排気濃度センサであり、排気管12の途中に装着され、排気ガス中の酸素濃度を検出し、検出値に応じた信号をECU5に送る。
【0017】
車速(VP)センサ17、バッテリ電圧(VB)センサ18および大気圧(PA)センサ19は、ECU5に接続されており、それぞれ車両の走行速度、バッテリ電圧および大気圧を検出し、それをECU5に送る。
【0018】
各種センサからの入力信号は入力回路94に渡される。入力回路94は、入力信号波形を整形して電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する。CPU91は、変換されたデジタル信号を処理し、ROM92に格納されているプログラムに従って演算を実行し、車の各部のアクチュエータに送る制御信号を作り出す。この制御信号は出力回路95に送られ、出力回路95は、燃料噴射弁6、バイパス弁24、ベントシャット弁26およびパージ制御弁30その他のアクチュエータに制御信号を送る。
【0019】
次に、蒸発燃料排出抑止系(以下、「排出抑止系」という)31について説明する。排出抑止系31は、燃料タンク9、チャージ通路20、キャニスタ25、パージ通路27およびいくつかの制御弁を備え、燃料タンク9からの蒸発燃料の排出を制御する。排出抑止系31は、チャージ通路20にあるバイパス弁24を境に、便宜上2つに分けて考えることができ、燃料タンク9を含む側をタンク系、キャニスタ25を含む側をキャニスタ系と呼ぶ。
【0020】
燃料タンク9は、チャージ通路20を介してキャニスタ25に接続され、燃料タンク9からの蒸発燃料が、キャニスタ25に移動できるようになっている。チャージ通路20は、第1の分岐20aおよび第2の分岐20bを持ち、これらはエンジンルーム内に設けられている。内圧センサ11は、チャージ通路20の燃料タンク側に取り付けられており、チャージ通路20内の内圧と大気圧との差圧を検出する。定常状態においては、チャージ通路20内の圧力が燃料タンク9内の圧力とがほぼ等しいので、内圧センサ11により検出された内圧を、燃料タンク9の圧力(以下、「タンク内圧」という)とみなすことができる。
【0021】
第1の分岐20aには二方向弁23が設けられ、二方向弁23は2つの機械式の弁23aおよび23bを備える。弁23aは、タンク内圧が大気圧より15mmHg程度高くなったときに開く正圧弁であり、これが開弁状態にあると、蒸発燃料がキャニスタ25に流れ、そこで吸着される。弁23bは、タンク内圧がキャニスタ25側の圧力より10mmHgから15mmHg程度低くなったとき開く負圧弁であり、これが開弁状態にあると、キャニスタ25に吸着された蒸発燃料が燃料タンク9に戻る。
【0022】
第2の分岐20bには電磁弁であるバイパス弁24が設けられる。バイパス弁24は、通常は閉弁状態にあり、この発明による排出抑止系31の漏れを検出する際に、ECU5からの制御信号により開閉を制御される。
【0023】
キャニスタ25は、燃料蒸気を吸着する活性炭を内蔵し、通路26aを介して大気に連通する吸気口(図示せず)を持つ。通路26aの途中に、電磁弁であるベントシャット弁26が設けられる。ベントシャット弁26は、通常は開弁状態にあり、この発明による排出抑止系31の漏れを検出する際に、ECU5からの制御信号により開閉を制御される。
【0024】
キャニスタ25は、パージ通路27を介して吸気管2のスロットル弁3の下流側に接続される。パージ通路27の途中には電磁弁であるパージ制御弁30が設けられ、キャニスタ25に吸着された燃料が、パージ制御弁30を介してエンジンの吸気系に適宜パージされる。パージ制御弁30は、ECU5からの制御信号に基づいて、オン−オフデューティ比を変更することにより、流量を連続的に制御する。
【0025】
図2は、この発明の実施形態に関連するECU5を機能ブロックで示してあり、これらは図1に示されるECU5のハードウェア構成およびROM92に格納されているプログラムにより実現される。ECU5内の機能ブロックによるデータの受け渡しは、主にRAM93(図1)を介して行われる。ECU5は、弁制御部50、タンク減圧モード実行部60、燃料消費量算出部80および燃料噴射弁制御部81を備える。
【0026】
弁制御部50は、バイパス弁24の開閉を制御するバイパス弁制御部51、ベントシャット弁26の開閉を制御するベントシャット弁制御部52およびパージ制御弁30の開弁量を制御するパージ制御弁制御部53を備え、タンク減圧実行モード部60からの制御信号に応じて、それぞれの弁に駆動信号を送る。
【0027】
タンク減圧モード実行部60は、大気開放部61、補正チェック部62、減圧部63、タンクリークチェック部65およびベーパチェック部66を備え、後で図4を参照して述べるタンク減圧モニターを実行する。補正チェック部62およびタンクリークチェック部65は、それぞれ圧力変動量算出部71および72を備え、これらは、内圧センサ11により検出された圧力値に基づいて、補正チェック中およびタンクリークチェック中の単位時間あたりの圧力変動量をそれぞれ算出する。算出された値は、ベーパチェック部66の判定部76に渡される。
【0028】
燃料噴射弁制御部81は、図示しない各種センサからの信号に基づいて、噴射信号を燃料噴射弁6に送り、燃料噴射弁6の開弁時間を制御する。燃料噴射弁6の開弁時間は、燃料消費量算出部80に渡される。燃料消費量算出部80は、大気開放部61がプロセスの終了時に1に設定するフラグに基づいて、現在補正チェック中であることを検出し、燃料噴射弁制御部81から受け取った燃料噴射弁6の開弁時間に基づいて、燃料消費量を算出する。また、燃料消費量算出部80は、減圧部63がプロセス終了時に1に設定するフラグに基づいてタンクリークチェック中であることを検出し、燃料噴射弁制御部81から受け取った燃料噴射弁6の開弁時間に基づいて燃料消費量を算出する。それぞれ算出された値は、ベーパチェック部66の判定実行チェック部73に渡される。
【0029】
ベーパチェック部66は、判定実行チェック部73、圧力変化チェック部74、判定禁止部75および判定部76を備える。判定実行チェック部73は、燃料消費量算出部80により算出された補正チェック中の燃料消費量およびタンクリークチェック中の燃料消費量に基づいて、タンク系の漏れの有無の判定を行うかどうか判断する。圧力変化チェック部74は、タンクリークチェック部65が処理を終了した時のタンク内圧が正圧だったかどうかに基づいて、漏れの有無の判定を行うかどうか判断する。判定実行チェック部73および圧力変化チェック部74による判断結果に応じて、判定禁止部75または判定禁止部76が動作する。判定禁止部75は判定を禁止し、判定部76は、圧力変動量算出部71および72により算出された補正チェック中およびタンクリークチェック中の単位時間あたりの圧力変動量に基づいて、タンク系の漏れの有無の判定を行う。
【0030】
次に、排出抑止系31の漏れの有無の判定の概要を説明する。図3は、エンジンの始動から停止までの1運転サイクルにおける、漏れの有無の判定におけるタンク系の圧力の遷移の例を示したものである。漏れの有無の判定プロセスは、4つの段階、すなわち、始動後オープン処理、タンク内圧監視モニター、キャニスタモニターおよびタンク減圧モニターを有する。タンク減圧モニターについては、図4を参照して説明するので、ここでは始動後オープン処理、タンク内圧監視モニター、キャニスタモニターの概要を述べる。
【0031】
始動後オープン処理、内圧監視モニター
始動後オープン処理は、エンジン始動直後に、バイパス弁24およびベントシャット弁26を開き、パージ制御弁30を閉じて、排出抑止系31の圧力を大気圧に開放し、この時に、タンク内圧が大気開放前の値から所定値以上変動すれば、タンク系の漏れがなく正常と判定する。この所定値は、0.5および1mm径の穴に対応して異なる値が設定される。漏れがあるならば、始動前のタンク系はほぼ大気圧であるので、圧力の変動が小さい。
【0032】
始動後オープン処理後は、タンク内圧監視モニターを実行する。これは、バイパス弁24を閉じた状態で内圧センサ11の出力レベルを連続的にチェックし、そのレベルが正圧または負圧に所定値以上変動する場合には漏れがないと判定する。
【0033】
キャニスターモニター
キャニスタモニターは、大気開放、減圧、内圧安定待ち、リークチェックおよび圧力復帰モードを含む。キャニスタモニターは、キャニスタを負圧にし、負圧の保持状態を検出することにより漏れの有無を判定するものである。
【0034】
タンク減圧モニター
図4は、図3のタンク減圧モニターの部分を詳細に示した図である。タンク減圧モニターは、内圧監視モニター後に実施され、始動後オープン処理および内圧監視モニターで検出されなかった漏れを検出することができる。例えば、始動後オープン処理または内圧監視モニターで1mm径以上の穴による漏れについてだけ正常判定とされた場合には、このタンク減圧モニターを実行して、0.5mm径の穴による漏れの有無について判定することができる。また、始動後オープン処理および内圧監視モニターで1mm径基準および0.5mm径基準のどちらについても漏れがなく正常と判定されれば、タンク減圧モニターを実施しないこともできる。
【0035】
タンク減圧モニターは、大気開放、補正チェック、減圧、タンクリークチェックおよびベーパチェック(圧力復帰)モードを含む。実線45は、内圧センサ11の示す圧力値を示したものである。通常モードは、バイパス弁24のみ閉じられ、ベントシャット弁26およびパージ制御弁30は開いている。
【0036】
補正チェックモードに先だって、バイパス弁24を開き、パージ制御弁30を閉じて、大気開放モードに移行する。タンク内圧は、実線45に示すように、大気圧へと変化する。大気開放モードに要する時間は、例えば15秒である。
【0037】
タンク内圧が大気圧になった時、バイパス弁24を閉じ、ベントシャット弁26を開き、パージ制御弁30を閉じて、補正チェックモードに移行する。燃料タンク9ではベーパが発生しており、この量に依存してタンク内圧が上昇する。したがって、この圧力上昇分を、後のタンク系の漏れの判定の際に考慮する必要がある。補正チェックモードでは、補正値として、大気圧から正圧に上昇する単位時間あたりの圧力変動量を測定する。補正チェックモードに要する時間は、例えば30秒である。
【0038】
次に、バイパス弁24を開き、ベントシャット弁26を閉じて、減圧モードに移行し、パージ制御弁を制御しながら、タンク内圧を所定の圧力、例えば−15mmHgにまで安定的に減圧する。内圧センサ11は、すぐに負圧状態になる細いチャージ通路20に設けられており、それに対して燃料タンク9は容量が大きいため、センサ11が負圧を示す時でも、タンク9が負圧でない場合が生じる。したがって、安定した負圧状態にするため、オープン減圧をした後に、フィードバック減圧を行う。
【0039】
最初に行われるオープン減圧は、オープン減圧目標流量テーブルを検索して、現在のタンク内圧に応じたパージ流量を算出し、そのパージ流量に対応するデューティ比を設定し、パージ制御弁30の開弁量を制御する。その後、ベントシャット弁26を閉じ、バイパス弁24およびパージ制御弁30を開いて、タンク系を減圧する。この減圧を所定時間継続することで、ある圧力までタンク系を減圧する。
【0040】
オープン減圧を実行した後、フィードバック減圧を実行する。オープン減圧により、減圧目標値の下限値付近にタンク内圧があるので、次の減圧目標値を、その上限値に変更する。現在のタンク内圧および減圧目標値に基づいて、タンク内圧が減圧目標値に達するようパージ流量を減少させる。減少されたパージ流量に対応する開弁量に、パージ制御弁30を設定する。その結果、それに応じてタンク内圧は上昇する。タンク内圧のセンサ出力が上限値に達すると、タンク内圧の減圧目標値をその下限値に変更し、現在のタンク内圧および減圧目標値に基づいて、タンク内圧が減圧目標値に達するようパージ流量を増大させる。増大されたパージ流量に対応する開弁量に、パージ制御弁30を設定する。その結果、それに応じてタンク内圧は減少する。タンク内圧のセンサ出力が下限値に達すると、タンク内圧の減圧目標値をその上限値に変更する。
【0041】
このように、減圧目標値の上限値および下限値の間で、パージ流量を増減しながら復圧および減圧を繰り返すと、パージ流量がその下限値にはりつく。すなわち、パージ流量を減少させても、タンク内圧が目標上限値まで上がらなくなる。または、パージ流量がその上限値にはりつき、パージ流量を増加させても、タンク内圧が目標下限値まで下がらなくなる。これは、タンク内圧が上限値と下限値の間の負圧状態であって、パージ流量を変えてもタンク内圧が変わらない安定点に達したことを示すので、このような状態に達した時、フィードバック減圧を終える。
【0042】
この減圧により、内圧センサ11により示される圧力および実際のタンク内圧の差圧がほぼゼロになる。減圧モードに要する時間は、例えば30秒〜40秒である。
【0043】
タンク系が所定の負圧状態になった後、すべての弁24、26および30を閉じ、タンクリークチェックモードに移行する。タンク系に漏れがなければ、負圧はほぼ保持されたままとなり、復帰する圧力量(これは、ベーパの影響による)が小さい。タンク系に漏れがあれば、復帰する圧力量が大きい。0.5mmという非常に小さい穴を検出する必要があるので、タンクリークチェックモードに要する時間は、例えば30秒である。
【0044】
次に、バイパス弁24およびベントシャット弁26を開き、ベーパチェックモード(圧力復帰モード)に移行し、タンク系を大気圧に戻す。ここで、正圧から大気圧に向けてタンク内圧が変動した場合には、タンクリークチェックの間にベーパの発生等により正圧にまで変動しており、タンクリークチェック中に正確な圧力変動量が算出されていないことを示すので、漏れの有無の判定を禁止する。反対に、負圧から大気圧に変動した場合には、リークチェック中の単位時間あたりの圧力変動量から、補正チェック中の単位時間あたりの圧力変動量に係数を掛けた値を引いた値に基づいて、タンク系の漏れの有無を判断する。ベーパチェックモードに要する時間は、たとえば3秒である。
【0045】
このように、タンク系の漏れの有無を最終的に判定するには、燃料タンク9のベーパによる圧力上昇分を補正する必要がある。しかし、例えばタンクリークチェックモード中に車両を急速に加速させて燃料を大量に消費すると、燃料タンクの圧力上昇分が小さくなり、たとえ燃料タンクに穴があったとしても漏れがなく正常と判断されることがある。また、0.5mm径のような微小な穴による漏れを検出するためには十分長い時間(30秒〜60秒)のタンクリークチェックモードを必要とする。したがって、補正チェック中とタンクリークチェック中とで運転状態が異なることがあり、補正が不適正になり誤った判定を導くことがある。
【0046】
この発明は、補正チェックモード中およびタンクリークチェック中の運転状態を示す燃料消費量を算出し、これらの値に基づいて、タンク系の漏れの有無の判定を行うかどうか判断する。
【0047】
燃料消費量算出
図5は、補正チェックモードおよびタンクリークチェックモードにおける燃料消費量を算出する処理を示す流れ図であり、図2に示される燃料消費量算出部80により実行される。このプロセスは、タンク減圧モニターのプロセスのバックグラウンドで適宜実行される。
【0048】
ステップ701では、車両が始動モードかどうか判断し、始動モードであればステップ706に進み、燃料噴射時間合計TTOUTLおよび燃料消費量USEDGASを、それぞれゼロに初期化する。始動モードでなければ、燃料消費量算出プロセスを開始する。
【0049】
ステップ702では、現在タンク減圧モニター中かどうか判断する。タンク減圧モニター中でなければ、ステップ704に進み、算出されるべき補正チェック中の燃料消費量RGASおよびタンクリークチェック中の燃料消費量LGASを、それぞれゼロに初期化する。タンク減圧モニター中であれば、ステップ703で、補正チェック中であれば1に設定されている補正チェック許可フラグに基づいて、現在補正チェック中かどうか判断する。現在補正チェック中でなければ、ステップ705で、タンクリークチェック中であれば1に設定されているタンクリークチェック許可フラグに基づいて、現在タンクリークチェック中かどうか判断する。現在補正チェック中でもタンクリークチェック中でもなければ、ステップ706に進み、燃料噴射時間合計TTOUTLおよび燃料消費量USEDGASを、それぞれゼロに初期化する。
【0050】
現在補正チェック中またはタンクリークチェック中ならば、ステップ707に進む。現在キャニスタモニター中でなければステップ708に進み、さらに燃料がエンジンに供給されないフュエルカット中でなければ、ステップ709に進む。現在キャニスタモニター中またはフュエルカット中はここでの燃料消費に関係ないので、ステップ710に跳ぶ。
【0051】
ステップ709では、燃料噴射時間合計TTOUTLに、燃料噴射時間TCYLを加算する。ここで、燃料噴射時間TCYLは、図2に示される燃料噴射弁制御部81により制御される燃料噴射弁6の開弁時間であり、これは、燃料噴射弁制御部81から燃料消費量算出部80に渡される。図5に示されるプロセスは所定時間ごとに繰り返し実行されるので、補正チェック中またはタンクリークチェック中の燃料噴射時間が、ステップ709でTTOUTLに合計される。
【0052】
ステップ710に進み、ステップ709で算出された燃料噴射時間合計TTOUTLを、燃料消費量USEDGASに変換する。変換は、以下の式に従う。ここで、0.1ccあたりの噴射時間は予め決められた値である。
【0053】
【数1】
USEDGAS = TTOUTL / 燃料0.1ccあたりの噴射時間
【0054】
ステップ711に進み、補正チェック許可フラグに基づいて、現在なお補正チェック中かどうか判断し、補正チェック中であればステップ712に進み、補正チェック燃料消費量RGASに、ステップ710で算出された燃料消費量USEDGASを設定し、RGASをRAM93に保管する。ステップ713に進み、タンクリークチェック許可フラグに基づいて、現在なおタンクリークチェック中かどうか判断し、タンクリークチェック中であればステップ714に進み、タンクリークチェック燃料消費量LGASに、ステップ710で算出された燃料消費量USEDGASを設定し、LGASをRAM93に記憶する。保管されたRGASおよびLGASは、ベーパチェックモードで使用される。
【0055】
次に説明する補正チェック、タンクリークチェックおよびベーパチェックの流れ図を実行するプログラムは、例えば80ミリ秒ごとに呼び出される前述したタンク減圧モニタープロセスを実行するプログラムの一部である。
【0056】
補正チェックモード
図6は、補正チェックモードにおいて補正値を算出する流れ図であり、図2に示される補正チェック部62およびその圧力変動量算出部71により実行される。ステップ801で、大気開放モードのプロセス完了時に大気開放部61(図2)により設定される補正チェック許可フラグが1ならばステップ802に進み、補正チェックのプロセスを開始する。ステップ802で、バイパス弁24およびパージ制御弁30を閉じ、ベントシャット弁26を開く。
【0057】
ステップ803に進み、タンク内圧読み込みタイマーがゼロでなければステップ804に進み、内圧センサ11の出力を検出して、タンク内圧の初期値P1としてRAM93に保管する。タンク内圧読み込みタイマーを設けたのは、バイパス弁24を開いた状態から閉じるとタンク内圧が変動するため、所定時間経過して圧力がある程度落ち着いた時のタンク内圧を読み込むためである。
【0058】
ステップ803でタンク内圧読み込みタイマーがゼロであれば、すなわち所定時間経過したならば、ステップ805に進み、補正チェックモードタイマーがゼロかどうか判断する。補正チェックタイマーは、補正値算出に必要な時間が経過したかどうかを判断するためのものであり、上記のタンク内圧読み込みタイマーより大きい値に設定される。補正チェックタイマーがゼロであれば、ステップ806に進む。
【0059】
ステップ806では、現在のタンク内圧P2と、ステップ804で保管されたタンク内圧の初期値P1とを比較し、タンク内圧が負圧側へ所定値以上変動しているかどうかを判断する。負圧側へ変動していれば、燃料タンク内の温度が低下することにより蒸発燃料が液化している状態であり、適切な補正値を得ることができない。したがって、ステップ810に進み、タンク減圧モニター完了フラグに1を設定し、この運転サイクルにおけるタンク減圧モニターを禁止する。
【0060】
ステップ806で負圧側への変動がなければ、ステップ807に進み、単位時間あたりのタンク内圧の変動量を示す補正値RVARを、以下の式に従って算出する。
【0061】
【数2】
補正値RVAR =(P2−P1)/ 補正チェックタイマー経過時間
【0062】
ステップ808に進み、算出された補正値RVARが所定値以上であれば、ベーパが大量に発生して、二方向弁23の正圧側コントロール圧にタンク内圧がはりついている可能性があり、そのような状態で算出された値は適切な補正値でないので、ステップ810に進み、タンク減圧モニター完了フラグに1を設定してタンク減圧モニターを禁止する。補正値RVARが所定値より小さければ、ステップ809に進み、補正チェック許可フラグにゼロを設定し、次の減圧モードを実行するため減圧許可フラグに1を設定する。得られた補正値RVARは、RAM93に保管され、ベーパチェックモードで使用される。
【0063】
タンクリークチェックモード
図7は、タンクリークチェックモードにおいて燃料タンク内を負圧にしたときの単位時間あたりの圧力変動量を算出する流れ図であり、図2に示されるタンクリークチェック部65およびその圧力変動量算出部72により実行される。ステップ901で、減圧モードのプロセス完了時に減圧モード部63(図2)により1に設定されるタンクリークチェック許可フラグが1ならば、ステップ902に進み、タンクリークチェックのプロセスを開始する。
【0064】
ステップ902では、バイパス弁24、ベントシャット弁26およびパージ制御弁30をすべて閉じる。ステップ903に進み、タンク内圧読み込みタイマーがゼロかどうか判断する。タンク内圧読み込みタイマーがゼロでなければ、ステップ904に進み、内圧センサ11により検出された値を、タンク内圧の初期値P3としてRAM93に保管する。タンク内圧読み込みタイマーを設けたのは、補正チェックモードの場合と同様に、所定時間経過させて圧力をある程度落ち着かせてからタンク内圧を読み込むためである。
【0065】
ステップ903でタンク内圧読み込みタイマーがゼロならば、ステップ905に進み、復圧履歴監視タイマーがゼロかどうか判断し、ゼロであれば復圧履歴監視(ステップ906から908)を行う。復圧履歴監視は、タンクリークチェックモード中に所定時間ごとに実行され、その度にステップ908でタンク内圧を読み込んで時系列にRAM93に保管し(すなわち、前回のタンク内圧をP4(n)、前々回のタンク内圧をP4(n−1)...と保管する)、圧力変動量を監視する。
【0066】
ステップ906では、現在のタンク内圧P4と、前回のタンク内圧P4(n)との差の絶対値が予め決められた値以上ならば、液面の揺れなどによる圧力の急変と判断し、適切な圧力変動量を算出できないので、タンク減圧モニターを中断し、圧力を復帰させて通常モードに移行する。ここで禁止でなく中断とするのは、今回のタンクリークチェックでは急激な圧力変動量があったけれども、次回のタンクリークチェックでは、そのような圧力変化が起きないことがあるからである。
【0067】
ステップ907に進み、現在のタンク内圧P4および前回のタンク内圧P4(n)の差P4−P4(n)(これを、△Pxとする)と、前回のタンク内圧P4(n)および前々回のタンク内圧P4(n−1)の差P4(n)−P4(n−1)(これを、△Pyとする)を算出し、△Pxと△Pyとの差の絶対値|△Px−△Py|が予め決められた値以上ならば、燃料タンクが満タン時のカットオフ弁作動中と判断し、このような状態では適切な圧力変動量を算出できないので、ステップ915に進み、タンク減圧モニター完了フラグに1を設定して、この運転サイクルのタンク減圧モニターを禁止する。
【0068】
復圧履歴監視を終えた後、ステップ909に進み、タンクリークチェックタイマーがゼロかどうか判断する。ゼロであれば、ステップ910に進み、現在のタンク内圧P4およびステップ904で記憶されたタンク内圧の初期値P3に基づいて、以下の式に従い、タンクリークチェックモードの単位時間あたりの圧力変動量LVARを算出する。算出されたLVARは、RAM93に記憶され、ベーパチェックモードで使用される。
【0069】
【数3】
単位時間あたりの圧力変動量LVAR =(P4−P3)/ タンクリークチェックタイマー経過時間
【0070】
ステップ911に進み、内圧センサ11により検出された圧力値を、タンクリークチェック終了時のタンク内圧P5として、RAM93に記憶する。これは、後のベーパチェックモードで使用するためである。ステップ912に進み、タンクリークチェック許可フラグにゼロを設定し、次のベーパチェックモードを実行するため、ベーパチェック許可フラグに1を設定する。
【0071】
ステップ909でタンクリークチェックタイマーがゼロでなければ、ステップ916に進み、現在のタンク内圧P4が、大気圧近傍の所定範囲内にあるかどうか判断する。所定範囲内にあるならばステップ917に進み、現在のタンク内圧P4と、前回のタンク内圧P4(n)との差の絶対値|P4−P4(n)|が、予め決められた値以上かどうか判断する。この値より小さければ、圧力がほぼ落ち着いてきており、タンクリークチェックタイマーによる時間経過を待つ必要がないので、ステップ910に進み、単位時間あたりの圧力変動量を算出する。この場合の算出は、以下の式に従う。
【0072】
【数4】
Figure 0003561649
【0073】
ベーパチェックモード
図8は、ベーパチェックモードにおいて、タンクリークチェックモード終了時のタンク内圧の状況を判断し、タンク系の漏れの有無を判定する流れ図であり、図2に示されるベーパチェック部66と、それに含まれる判定実行チェック部73、圧力変化チェック部74、判定禁止部75および判定部76により実行される。ステップ1001で、タンクリークチェックのプロセス終了時に設定されるベーパチェック許可フラグが1ならば、ステップ1002に進み、ベーパチェックのプロセスを開始する。
【0074】
ステップ1002で、ステップ712(図5)で得られた補正チェック燃料消費量RGASと、ステップ714で得られたタンクリークチェック燃料消費量LGASとの差の絶対値が、所定値(たとえば、10cc)以上かどうか判断する。所定値以上ならば、両モードの運転状態が大きく異なるため正確な判定を行うことができないと判断し、ステップ1010に進み、タンク減圧モニター完了フラグに1を設定し、この運転サイクルのタンク減圧モニターを禁止する。これにより、タンク系の漏れの有無の判定は行われない。この所定値は、微小な穴による漏れ検出に対し、補正チェックモードとリークチェックモードとで運転状態が異なることによる影響を示すデータを実験およびシミュレーションで蓄積し、その結果に基づいて決定する。
【0075】
この実施形態では、燃料消費量RGASは補正チェックモードの全期間にわたる総燃料消費量であり、燃料消費量LGASはタンクリークチェックの全期間にわたる総燃料消費量であり、それぞれの総燃料消費量を比較するので(ステップ1002)、それぞれの燃料消費量の測定時間に対応した所定値が使用される。または、補正チェックモードおよびタンクリークチェックモードのそれぞれの単位時間あたりの燃料消費量を算出して、それに対応した所定値を用いて比較することもできる。
【0076】
ステップ1002で、RGASとLGASとの差の絶対値がこうして決められた値より小さければ、ステップ1003に進み、バイパス弁24およびベントシャット弁26を開き、パージ制御弁30を閉じて、タンク系を大気圧に開放する。ステップ1004に進み、現在のタンク内圧と、タンクリークチェックのステップ911(図7)で保管されたタンクリークチェック終了時のタンク内圧P5とを比較して、タンク内圧が正圧から大気圧に向けて低下したかどうか判断する。すなわち、タンク内圧が正圧になっていたかどうか判定する。
【0077】
正圧から大気圧に向けて所定値(たとえば、1.0mmHg)以上低下したならば、ベーパが大量に発生してタンクリークチェックモード終了時にタンク内圧が正圧にまで変動していたことを示し、判定を正確に行うことができないので、ステップ1010に進み、タンク減圧モニター完了フラグに1を設定してモニターを禁止し、タンク系の漏れの有無の判定を行わない。正圧から大気圧に所定値以上低下したのでなければ、ステップ1005に進み、判定を行うための最終計測値を、以下の式に従って算出する。
【0078】
【数5】
最終計測値=LVAR−(補正係数*RVAR)
【0079】
ここで、LVARはステップ910(図7)で得られたタンクリークチェック中の単位時間あたりの圧力変動量であり、RVARはステップ807(図6)で得られた補正チェック中の単位時間あたりの圧力変動量である。補正係数は、補正チェックモードにおける大気圧からの圧力上昇量と、タンクリークチェックモードにおける負圧からの圧力上昇量とは条件が異なるので、それを補正するための係数であり、例えば1.5〜2.0である。
【0080】
ステップ1006に進み、算出された最終計測値が判定値1(たとえば、8mmHg)以上ならば、タンクリークチェックモードの圧力上昇はタンク系の漏れによるものと考えられるので、ステップ1008に進み、タンク系に漏れがあり異常と判定(NG判定)し、OKフラグに「0」を設定する。算出された最終計測値が判定値1より小さければ、ステップ1007に進む。ステップ1007において、算出された最終計測値が判定値2(たとえば、3mmHg)以下ならば、タンクリークチェックモードの圧力上昇はベーパの発生によるものと考えられるので、ステップ1009に進み、タンク系に漏れがなく正常と判定(OK判定)し、OKフラグに「1」を設定する。
【0081】
ステップ1007で、最終計測値が判定値2より大きければ、すなわち、最終計測値が判定値2より大きく判定値1より小さい場合には、漏れのある/なしを正確に判定することができないので、ステップ1010に進み、タンク減圧モニター完了フラグに1を設定し、タンク減圧モニターを禁止する。これらの関係を以下の表に示す。
【0082】
【表1】
Figure 0003561649
【0083】
【発明の効果】
この発明によれば、タンク系の漏れの有無の判定の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】この発明による蒸発燃料処理装置を示す図。
【図2】この発明に関連するECUの機能ブロック図。
【図3】この発明による蒸発燃料処理装置の排出抑止系の漏れの有無を判定する際の圧力の変化を示す図。
【図4】図3におけるタンク減圧モニターの部分であって、タンク系の漏れを判定する際のタンク内圧の変化を示す図。
【図5】補正チェックモードおよびタンクリークチェックモードにおける燃料消費量を算出する流れ図。
【図6】補正チェックモードの単位時間あたりの圧力変動量を算出する流れ図。
【図7】タンクリークチェックモードの単位時間あたりの圧力変動量を算出する流れ図。
【図8】ベーパチェックモードにおいてタンク系の漏れの有無の判定を行う流れ図。
【符号の説明】
1 エンジン(内燃機関) 60 タンク減圧モード実行部
2 吸気管 62 補正チェック部
6 燃料噴射弁 64 減圧部
9 燃料タンク 65 タンクリークチェック部
11 内圧センサ 66 ベーパチェック部
20 チャージ通路 71、72 圧力変動量算出部
24 バイパス弁 73 判定実行チェック部
25 キャニスタ 74 圧力変化チェック部
26 ベントシャット弁 75 判定禁止部
27 パージ通路 76 判定部
30 パージ制御弁 80 燃料消費量算出部
50 弁制御部 81 燃料噴射弁制御部

Claims (1)

  1. 燃料タンク、内部を大気に開放する開放口を有し前記燃料タンク内に発生した蒸発燃料を吸着するキャニスタ、前記燃料タンクと前記キャニスタを連通するチャージ通路、前記キャニスタと内燃機関の吸気管を連通するパージ通路、前記チャージ通路に設けられた圧力調整弁、前記圧力調整弁をバイパスする通路に設けられたバイパス弁、前記パージ通路に設けられたパージ制御弁、前記開放口を開閉可能なベントシャット弁、前記燃料タンクの内圧を検出するための内圧センサ、前記燃料タンクを大気圧状態にした後に閉鎖したときの前記燃料タンクの内圧の変化度合いを検出する補正チェック手段、前記燃料タンクを負圧にした後に閉鎖したときの前記燃料タンクの内圧の変化度合いを検出する漏れチェック手段、前記漏れチェック手段および補正チェック手段による検出結果に基づいて前記燃料タンクの漏れの有無を判定する判定手段を有する蒸発燃料処理装置において、
    前記補正チェック手段による検出の際の燃料消費量および前記漏れチェック手段による検出の際の燃料消費量を算出する算出手段と、
    前記算出されたそれぞれの燃料消費量が実質的に異なるとき、前記判定手段による漏れの有無の判定を禁止する判定禁止手段と、
    を備えることを特徴とする内燃機関の蒸発燃料処理装置。
JP02926099A 1999-02-05 1999-02-05 内燃機関の蒸発燃料処理装置 Expired - Fee Related JP3561649B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02926099A JP3561649B2 (ja) 1999-02-05 1999-02-05 内燃機関の蒸発燃料処理装置
US09/495,746 US6363919B1 (en) 1999-02-05 2000-02-01 Evaporated fuel treatment apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02926099A JP3561649B2 (ja) 1999-02-05 1999-02-05 内燃機関の蒸発燃料処理装置

Publications (2)

Publication Number Publication Date
JP2000227051A JP2000227051A (ja) 2000-08-15
JP3561649B2 true JP3561649B2 (ja) 2004-09-02

Family

ID=12271321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02926099A Expired - Fee Related JP3561649B2 (ja) 1999-02-05 1999-02-05 内燃機関の蒸発燃料処理装置

Country Status (2)

Country Link
US (1) US6363919B1 (ja)
JP (1) JP3561649B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892712B2 (en) * 2001-09-11 2005-05-17 Denso Corporation Leak check for fuel vapor purge system
DE10247936A1 (de) * 2002-10-15 2004-04-29 Daimlerchrysler Ag Kraftstoffversorgungssystem für eine Brennkraftmaschine
JP4260079B2 (ja) * 2004-08-06 2009-04-30 株式会社日本自動車部品総合研究所 内燃機関の燃料性状計測装置および内燃機関
US20060053868A1 (en) * 2004-09-16 2006-03-16 Jae Chung Fuel vapor detection system for vehicles
US7349793B2 (en) * 2005-06-16 2008-03-25 Hitachi, Ltd. Control apparatus for vehicle and method of switching mode of control unit of control apparatus
JP5109899B2 (ja) * 2008-09-22 2012-12-26 マツダ株式会社 蒸発燃料処理装置の故障診断装置
KR101686592B1 (ko) * 2010-09-06 2016-12-15 콘티넨탈 오토모티브 시스템 주식회사 연료탱크의 리크 진단 방법 및 이에 적용되는 장치
US8843265B2 (en) 2012-04-23 2014-09-23 Chrysler Group Llc Turbo-charged engine purge flow monitor diagnostic
US20150114370A1 (en) * 2013-10-24 2015-04-30 Ford Global Technologies, Llc Fuel separation via fuel vapor management systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635270B2 (ja) * 1992-08-27 1997-07-30 三菱電機株式会社 蒸発燃料制御装置の故障検出装置
JP3009988B2 (ja) 1993-11-25 2000-02-14 本田技研工業株式会社 内燃エンジンの蒸発燃料処理装置
JP3198865B2 (ja) * 1995-03-20 2001-08-13 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
JP3565611B2 (ja) * 1995-03-29 2004-09-15 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
US5878727A (en) * 1997-06-02 1999-03-09 Ford Global Technologies, Inc. Method and system for estimating fuel vapor pressure
US6148803A (en) * 1997-12-04 2000-11-21 Denso Corporation Leakage diagnosing device for fuel evaporated gas purge system
JP3561651B2 (ja) * 1999-02-05 2004-09-02 本田技研工業株式会社 内燃機関の蒸発燃料処理装置

Also Published As

Publication number Publication date
JP2000227051A (ja) 2000-08-15
US6363919B1 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US5230319A (en) Apparatus for detecting malfunction in evaporated fuel purge system
US5826566A (en) Evaporative fuel-processing system for internal combustion engines
US6904792B2 (en) Abnormality diagnosing apparatus for vehicle
KR100408111B1 (ko) 내연기관제어장치
JP3106816B2 (ja) エバポシステムの故障診断装置
US20080092858A1 (en) Fuel vapor treatment system
JP3561651B2 (ja) 内燃機関の蒸発燃料処理装置
JP2759908B2 (ja) 内燃エンジンの蒸発燃料処理装置
US6336446B1 (en) Evaporated fuel treatment apparatus for internal combustion engine
US6789523B2 (en) Failure diagnosis apparatus for evaporative fuel processing system
JP3561649B2 (ja) 内燃機関の蒸発燃料処理装置
JP3167924B2 (ja) 蒸発燃料処理装置
JP3561650B2 (ja) 内燃機関の蒸発燃料処理装置
JPH09329063A (ja) エバポシステムの診断方法
US6276344B1 (en) Evaporated fuel leak detection apparatus
JP3243413B2 (ja) 内燃エンジンの蒸発燃料処理装置
US6935162B2 (en) Apparatus for detecting leakage in an evaporated fuel processing system
JPH09126064A (ja) 蒸発燃料処理装置
US6382192B2 (en) Evaporating fuel processing apparatus and method of internal combustion engine
US6213102B1 (en) Evaporated fuel treatment device
JP3808797B2 (ja) 蒸発燃料処理系のリークを判定する装置
JP2001329894A (ja) 内燃機関の燃料系異常診断装置
JP2004027936A (ja) 内燃機関の蒸発燃料処理装置
JPH0712015A (ja) 内燃エンジンの蒸発燃料処理装置
JP4374739B2 (ja) 燃料蒸気パージシステム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees