JP3808797B2 - 蒸発燃料処理系のリークを判定する装置 - Google Patents

蒸発燃料処理系のリークを判定する装置 Download PDF

Info

Publication number
JP3808797B2
JP3808797B2 JP2002137357A JP2002137357A JP3808797B2 JP 3808797 B2 JP3808797 B2 JP 3808797B2 JP 2002137357 A JP2002137357 A JP 2002137357A JP 2002137357 A JP2002137357 A JP 2002137357A JP 3808797 B2 JP3808797 B2 JP 3808797B2
Authority
JP
Japan
Prior art keywords
fuel
determination
leak
fuel level
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002137357A
Other languages
English (en)
Other versions
JP2003328865A (ja
Inventor
秀行 沖
栄作 五所
政弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002137357A priority Critical patent/JP3808797B2/ja
Publication of JP2003328865A publication Critical patent/JP2003328865A/ja
Application granted granted Critical
Publication of JP3808797B2 publication Critical patent/JP3808797B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、内燃機関の蒸発燃料処理系にリークがあるかどうかを判定する装置に関し、より具体的には、燃料レベルを考慮に入れてリーク判定の信頼性を向上させるリーク判定装置に関する。
【0002】
【従来の技術】
燃料タンク内で発生した蒸発燃料を処理する蒸発燃料処理系にリーク(漏れ)があるかどうかを判定する様々な方法が提案されている。特開2001―173524号公報には、走行中にリーク判定において、燃料タンクの揺れをリーク判定の実施条件に含める手法が示されている。この手法では、リーク判定用の燃料レベルを算出するためのなまし係数が、燃料の量に応じて複数設定される。検出された燃料タンク内の燃料レベルに対応するなまし係数を用いて、リーク判定用の燃料レベルを求める。該求められた燃料レベルに基づいて、燃料の揺れ幅を求める。揺れ幅が所定値以上ならば、リーク判定の実施を禁止する。
【0003】
蒸発燃料処理系におけるリーク判定は、内燃機関が停止した後に実施される場合もある。この場合、内燃機関を停止した後に、蒸発燃料処理系の圧力と大気圧との差圧の推移を検出する。検出された差圧の変動量に基づいて、リークがあるかどうかが判定される。
【0004】
【発明が解決しようとする課題】
蒸発燃料処理系の圧力変化は燃料タンク内に残存する燃料の量に依存する。したがって、内燃機関を停止した後のリーク判定の精度を向上させるためには、該リーク判定時において燃料タンクに残っている燃料の量を考慮する必要がある。一方、給油時に蒸発燃料処理系は閉回路とならないため、リークありと誤判定を招くおそれがある。
【0005】
したがって、この発明は、内燃機関が停止した後にリーク判定を実施する場合において、燃料レベルを考慮したリーク判定を実施し、該リーク判定の精度を向上させることを目的とする。
【0006】
【課題を解決するための手段】
この発明の一つの側面によると、リーク判定装置は、燃料タンクと、大気に連通する吸気口が設けられ、該燃料タンク内で発生する蒸発燃料を吸着するキャニスタと、該燃料タンクおよび該キャニスタを接続する第1の通路と、該キャニスタを内燃機関の吸気系に接続する第2の通路と、キャニスタの吸気口を開閉するベントシャット弁と、第2の通路に設けられたパージ制御弁とを備える蒸発燃料処理系のリークを判定する。リーク判定装置は、さらに、蒸発燃料処理系の圧力を検出する圧力センサと、内燃機関の停止を検出する期間停止検出手段と、リーク判定手段を備える。リーク判定手段は、内燃機関の停止が検出されたならば、パージ制御弁およびベントシャット弁を閉じることにより、蒸発燃料処理系を閉じる。その後、リーク判定手段は、所定期間中に圧力センサによって検出された圧力と所定の判定値とに基づいて、該蒸発燃料処理系内のリークの有無を判定する。リーク判定装置は、さらに、燃料タンク内の燃料の量を検出する残燃料検出手段と、該検出された燃料量に、所定の第1のなまし係数を用いたなまし演算を適用して、第1の燃料レベルを算出する第1の燃料レベル算出手段と、該算出された第1の燃料レベルに基づいて、リーク判定手段で用いられる前記判定値を補正する判定値補正手段を備える。リーク判定装置は、さらに、前記検出された燃料量に、所定の第2のなまし係数を用いたなまし演算を適用して、第2の燃料レベルを算出する第2の燃料レベル算出手段と、第2の燃料レベル算出手段によって算出された前記第2の燃料レベルに基づいて、リーク判定手段によるリークの判定を禁止する判定禁止手段を備える。
【0007】
この発明によると、内燃機関の停止後のリーク判定において、第1の燃料レベルに基づいて補正された判定値が使用されるので、リーク判定の精度を向上させることができる。さらに、第2の燃料レベルに基づいて、誤判定を招くおそれのあるリーク判定の実施を回避することができる。こうして、第1および第2の燃料レベルを目的に応じて使い分けることにより、内燃機関停止後のリーク判定をより正確に実施することができる。
【0008】
この発明の他の側面によると、第1のなまし係数は、第2のなまし係数よりも小さい。この発明によると、第1の燃料レベルを算出するための燃料量に対する“なまし”の程度は、第2の燃料レベルを算出するための燃料量に対する“なまし”の程度より大きい。言い換えると、第2の燃料レベルは、第1の燃料レベルよりも、燃料量の変動をより敏感に反映する。したがって、第2の燃料量を算出することにより、内燃機関の停止後の燃料の比較的小さい変動を検出することができる。これにより、たとえば給油行為が行われているかどうかを判断することが可能となる。また、第1の燃料レベルは、検出された燃料量を比較的大きく平均化する。したがって、第1の燃料レベルによって判定値を補正することにより、リーク判定の精度を向上させることができる。
【0009】
【発明の実施の形態】
次に図面を参照してこの発明の実施の形態を説明する。図1は、この発明の実施形態に従う、内燃機関およびその制御装置の全体構成図である。
【0010】
電子制御ユニット(以下、「ECU」)という)5は、車両の各部から送られてくるデータを受け入れる入力インターフェース5a、車両の各部の制御を行うための演算を実行するCPU5b、読み取り専用メモリ(ROM)およびランダムアクセスメモリ(RAM)を有するメモリ5c、および車両の各部に制御信号を送る出力インターフェース5dを備えている。メモリ5cのROMには、車両の各部の制御を行うためのプログラムおよび各種のデータが格納されている。この発明にリーク判定を実施するためのプログラム、および該プログラムの実行の際に用いるデータおよびテーブルは、このROMに格納されている。ROMは、EEPROMのような書き換え可能なROMでもよい。RAMには、CPU5bによる演算のための作業領域が設けられる。車両の各部から送られてくるデータおよび車両の各部に送り出す制御信号は、RAMに一時的に記憶される。
【0011】
エンジン1は、例えば4気筒を備えるエンジンであり、吸気管2が連結されている。吸気管2の上流側にはスロットル弁3が配されており、スロットル弁3に連結されたスロットル弁開度センサ(θTH)4は、スロットル弁3の開度に応じた電気信号を出力してECU5に供給する。
【0012】
燃料噴射弁6は、吸気管2の途中であって、エンジン1とスロットル弁3の間に各気筒毎に設けられ、ECU5からの制御信号によって開弁時間が制御される。燃料供給管7は、燃料噴射弁6および燃料タンク9を接続し、その途中に設けられた燃料ポンプ8が、燃料を燃料タンク9から燃料噴射弁6に供給する。図示しないレギュレータが、ポンプ8と燃料噴射弁6の間に設けられ、吸気管2から取り込まれる空気の圧力と、燃料供給管7を介して供給される燃料の圧力との間の差圧を一定にするよう動作して、燃料の圧力が高すぎるときは図示しないリターン管を通して余分な燃料を燃料タンク9に戻す。こうして、スロットル弁3を介して取り込まれた空気は、吸気管2を通り、燃料噴射弁6から噴射される燃料と混合してエンジン1のシリンダ(図示せず)に供給される。燃料タンク9には、給油のための給油口10が設けられ、給油口10には、フィラーキャップ11が取り付けられている。
【0013】
吸気管圧力(PBA)センサ13および吸気温(TA)センサ14は、吸気管2のスロットル弁3の下流側に装着されており、それぞれ吸気管圧力PBAおよび吸気温TAを検出して電気信号に変換し、それをECU5に送る。
【0014】
エンジン回転数(NE)センサ17が、カム軸またはクランク軸周辺に取り付けられ、クランク軸が180度回転するたびに、所定のクランク角度位置でTDC信号を出力する。検出されたTDC信号パルスは、ECU5に送られる。エンジン水温(TW)センサ18は、エンジン1のシリンダブロックの冷却水が充満した気筒周壁(図示せず)に取り付けられ、エンジン冷却水の温度TWを検出し、これをECU5に送る。
【0015】
エンジン1は排気管12を持ち、排気管12の途中に設けられた排気ガス浄化装置である三元触媒(図示せず)を介して排気する。排気管12の途中に装着されたLAFセンサ19は広域空燃比センサであり、リーンからリッチにわたる範囲において排気ガス中の酸素濃度すなわち実空燃比を検出し、それをECU5に送る。
【0016】
外気温を検出する外気温(TAT)センサ41およびイグニッションスイッチ42がECU5に接続されている。TATセンサ41によって検出された信号およびイグニッションスイッチ42の切換信号は、ECU5に送られる。
【0017】
バッテリ電圧(VB)センサ43および車速(VP)センサ44がECU5に接続されており、それぞれ、バッテリ電圧および車両の速度を検出し、それをECU5に送る。
【0018】
次に、蒸発燃料処理系について説明する。蒸発燃料処理系50は、燃料タンク9、チャージ通路31、バイパス通路31a、キャニスタ33、パージ通路32、二方向弁35、バイパス弁36、パージ制御弁34、通路37およびベントシャット弁38を備える。
【0019】
燃料タンク9は、チャージ通路31を介してキャニスタ33に接続され、燃料タンク9からの蒸発燃料が、キャニスタ33に移動できるようになっている。チャージ通路31には、機械式の二方向弁35が設けられている。二方向弁35は、タンク内圧が大気圧より第1の所定圧(たとえば、2.7kPa)以上高いときに開く正圧弁と、タンク内圧がキャニスタ33の圧力より第2の所定圧以上低いとき開く負圧弁を備える。
【0020】
二方向弁をバイパスするバイパス通路31aが設けられている。バイパス通路31aには、電磁弁であるバイパス弁36が設けられる。バイパス弁36は、通常は閉弁状態にあり、ECU5からの制御信号に従って開弁する。
【0021】
圧力センサ15は、二方向弁35と燃料タンク9との間に設けられており、その検出信号はECU5に送られる。圧力センサ15の出力PTANKは、キャニスタ33および燃料タンク9内の圧力が安定している定常状態では、燃料タンク内の圧力に等しくなる。一方、圧力センサ15の出力PTANKは、キャニスタ33または燃料タンク9内の圧力が変化しているときは、実際のタンク内圧とは異なる圧力を示す。圧力センサ15の出力を、以下「タンク内圧PTANK」と呼ぶ。
【0022】
キャニスタ33は、燃料蒸気を吸着する活性炭を内蔵し、通路37を介して大気に連通する吸気口(図示せず)を持つ。通路37の途中には、ベントシャット弁38が設けられる。ベントシャット弁38は、ECU5により制御される電磁弁であり、給油時またはパージ実行中に開弁される。また、ベントシャット弁38は、後述するリーク判定時に開閉される。ベントシャット弁38は、駆動信号が供給されないときは、開弁状態にある。
【0023】
キャニスタ33は、パージ通路32を介して吸気管2のスロットル弁3の下流側に接続される。パージ通路32の途中には電磁弁であるパージ制御弁34が設けられ、キャニスタ33に吸着された燃料が、パージ制御弁34を介してエンジンの吸気系に適宜パージされる。パージ制御弁34は、ECU5からの制御信号に基づいて、オン−オフデューティ比を変更することにより、パージ流量を連続的に制御する。
【0024】
燃料タンク9には、燃料タンク内の気層(空気と蒸発燃料とからなる混合気層)の温度を検出する気層温度(TGT)センサ39が設けられている。さらに、燃料タンク9には、燃料タンク9内の残存する燃料の量を検出する燃料レベル(FR)センサ45が設けられている。気層温度センサ39および燃料レベルセンサ45からの検出信号は、それぞれECU5に送られる。
【0025】
この実施形態によると、イグニッションスイッチ42がオフされても、リーク判定を実施する期間中は、ECU5、バイパス弁36およびベントシャット弁38には電気が供給される。パージ制御弁34は、イグニッションスイッチ42がオフされると電気が供給されなくなり、閉弁状態を維持する。
【0026】
燃料タンク9の給油時に蒸発燃料が多量に発生すると、二方向弁35が開き、該蒸発燃料がキャニスタ33に貯蔵される。エンジン1の所定の運転状態において、パージ制御弁34のデューティ制御が実施され、これにより、適量の蒸発燃料がキャニスタ33から吸気管2に供給される。
【0027】
各種センサからの入力信号はECU5の入力インターフェース5aに渡される。入力インターフェース5aは、入力信号波形を整形して電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する。CPU5bは、変換されたデジタル信号を処理し、ROM5cに格納されているプログラムに従って演算を実行し、車の各部のアクチュエータに送る制御信号を作り出す。この制御信号は出力インターフェース5dに送られ、出力インターフェース5dは、燃料噴射弁6、パージ制御弁34、バイパス弁36およびベントシャット弁38に制御信号を送る。
【0028】
図2は、エンジンを停止した後に実施されるリーク判定のタイムチャートを示す。タンク内圧PTANKは、実際には絶対圧として検出されるが、大気圧を基準とした差圧で示されている。
【0029】
時間t1においてエンジンが停止すると、バイパス弁36が開かれ、ベントシャット弁38は開弁状態を維持される。これにより、蒸発燃料処理系50は大気に開放され、タンク内圧PTANKは大気圧と等しくなる。パージ制御弁34は、エンジンが停止した時に閉じられる。第1の大気開放期間は、所定期間TOTA1(たとえば、120秒)にわたって継続する。
【0030】
時刻t2において、ベントシャット弁38が閉じられ、第1の判定モードが開始する。第1の判定モードでは、蒸発燃料処理系50が閉じた状態に置かれる。第1の判定モードは、第1の判定時間TPHASE1(たとえば、900秒)にわたって続く。タンク内圧PTANKが、破線L1で示されるように、第1の所定の圧力PTANK1(たとえば、「大気圧+1.3kPa(10mmHg)」)を超えたならば、蒸発燃料処理系50にリークが無いと判定される(時刻t3)。一方、タンク内圧PTANKが、実線L2で示されるように、第1の所定の圧力PTANK1に達しないとき、最大タンク内圧PTANKMAXが記憶される(時刻t4)。
【0031】
時刻t4においてベントシャット弁38が開かれ、蒸発燃料処理系50が大気に開放される。第2の大気開放期間は、所定期間TOTA2(たとえば、120秒)にわたって継続する。
【0032】
時刻t5において、ベントシャット弁38が閉じられ、第2の判定モードが開始する。第2の判定モードは、第2の判定時間TPHASE2(たとえば、2400秒)にわたって続く。タンク内圧PTANKが、破線L3で示されるように、第2の所定圧力PTANK2(たとえば、「大気圧−1.3kPa(10mmHg)」)よりも低くなったとき(時刻t6)、蒸発燃料処理系50はリークが無いと判定される。一方、タンク内圧PTANKが、実線L4で示されるように変化したとき、最小タンク内圧PTANKMINが記憶される(時刻t7)。
【0033】
時刻t7において、バイパス弁36が閉じられ、ベントシャット弁38が開かれる。記憶された最大タンク内圧PTANKMAXおよび最小タンク内圧PTANKMINの差ΔPが、判定しきい値ΔPTHより大きいとき、蒸発燃料処理系50にはリークが無いと判定される。該差ΔPが、判定しきい値ΔPTH以下であるとき、蒸発燃料処理系50にリークがあると判定される。これは、リークがあるとき、タンク内圧PTANKの大気圧に対する変動量が小さくなり、よってΔPが小さくなるからである。
【0034】
図3は、この発明に従う、リーク判定装置の機能ブロック図を示す。第1の燃料レベル算出部51は、燃料レベルセンサ45から燃料タンク9に残っている燃料量FLEVELを受け取り、以下の式(1)に従って、第1の燃料レベルFLEVELFを算出する。ここで、kはサイクルを識別する識別子であり、(k)は今回のサイクルを示し、(k-1)は前回のサイクルを示す。
【0035】
係数CFLFは、第1のなまし係数を示しており、予め決められた値(たとえば、0.01)がセットされる。代替的に、燃料レベルに応じて、または他のパラメータに応じて、可変であってもよい。第1のなまし係数CFLFの大きさは、燃料レベルセンサによって検出された燃料レベルの変動が吸収されるように設定される。
【0036】
【数1】
Figure 0003808797
第2の燃料レベル算出部52は、燃料レベルセンサ45から燃料タンク9に残っている燃料量FLEVELを受け取り、以下の式(2)に従って、第2の燃料レベルFLEVELRを算出する。係数CFLRは、第2のなまし係数を示しており、予め決められた値(たとえば、0.25)がセットされる。代替的に、燃料レベルに応じて、または他のパラメータに応じて、可変であってもよい。第2のなまし係数の大きさは、燃料レベルが徐々に上昇する給油行為のような燃料の変動を追従することができるように設定される。したがって、第2のなまし係数は、第1のなまし係数よりも大きく設定される。
【0037】
【数2】
Figure 0003808797
給油判定部53は、車速センサ44(図1)から検出された車速VPおよび第2の燃料レベルFLEVELRに基づいて、現在給油が実施されているかどうかを判断する。一方、エンジン停止検出部54は、エンジンが停止しているかどうかを判断する。リーク判定許可部55は、エンジンが停止しており、かつ給油が実施されていないとき、リーク判定の実施を許可する。当然ながら、リーク判定許可部55は、さらに他の条件が成立したときに、リーク判定を許可するようにしてもよい。
【0038】
リーク判定の実施が許可されたならば、判定値補正部56は、第1の燃料レベルFLEVELFに基づいて、図2を参照して前述したリーク判定に用いられるしきい値PTANK1、PTANK2およびΔPTHを補正する。リーク判定部57は、補正されたこれらのしきい値を用いて、リーク判定を実施する。
【0039】
図4および図5を参照して、第1の燃料レベルおよび第2の燃料レベルの違いについて説明する。図4の(a)において、グラフ61および62は、それぞれ、車速VPおよび燃料レベルFLEVELの時間的推移の一例を示す。図4の(b)において、グラフ63は、第1の燃料レベルFLEVELFの時間的推移を示す。グラフ63で示される第1の燃料レベルFLEVELFは、グラフ62で示される燃料レベルFLEVELに上記の式(1)を適用した結果である。グラフ63の第1の燃料レベルFLEVELFから明らかなように、比較的小さい第1のなまし係数CFLFを用いることにより、走行中に検出された燃料レベルの変動が吸収されているのがわかる。
【0040】
図5におけるグラフ65および66は、それぞれ、給油開始からの経過時間に伴うタンク内圧PTANKおよび燃料レベルFLEVELの推移を示す。これらのグラフに示されるように、給油が進行するにつれ、燃料レベルFLEVELは徐々に上昇し、よってタンク内圧PTANKも徐々に上昇する。この燃料レベルの変動を検出することができるように、第2のなまし係数CFLRが設定される。給油の場合、たとえば4ガロン(=15.14リットル)/分の燃料レベルの上昇レートを検出することができるように設定される。グラフ67によって示される第2の燃料レベルFLEVELRは、グラフ66に示される燃料レベルFLEVELに上記の式(2)を適用した結果である。グラフ67の第2の燃料レベルFLEVELRの推移から明らかなように、比較的大きい第2のなまし係数CLFRを用いることにより、給油行為のような、燃料レベルの緩やかな変動を検出することができる。
【0041】
図6は、燃料レベルを算出する処理のフローチャートを示す。この処理は、所定時間(たとえば、100ミリ秒)ごとに実施される。
【0042】
ステップS11において、エンジンが始動モードにあるかどうかを判断する。たとえば、エンジン回転数NEが所定回転数(たとえば、500rpm)未満であれば始動モードと判断される。始動モードならば、ステップS13に進み、燃料レベルを検出する条件が成立しなかったことを示すため、条件フラグFLVLCNDにゼロを設定する。
【0043】
ステップS12において、バッテリ電圧が所定値(たとえば、10.5V)以下かどうかを判断する。バッテリ電圧が所定値以下ならば、ステップS13に進み、条件フラグFLVLCNDにゼロを設定する。ステップS11およびS12の両方の判断がNOならば、燃料レベルを検出する条件が成立したことを示すため、条件フラグFLVLCNDに1を設定する(S14)。
【0044】
ステップ15において、異常検出フラグFCSが1であるかどうかを判断する。異常検出フラグFCSは、圧力センサ15の断線またはショート、またはベントシャット弁38の断線またはショートが検出されたとき、1に設定される(図10参照)。異常検出フラグFCSが1ならば、ステップS16に進み、初期フラグFLVLINITをゼロに設定し、第1の燃料レベルFLEVELFおよび第2の燃料レベルFLEVELRを、所定値FLEVELDにそれぞれセットする(S17およびS18)。
【0045】
ステップS15の判断がNOのとき、ステップS19において、タイマーTGPONに所定期間TMFLVLDYをセットする。これは、エンジンの始動から所定期間が経過してエンジンが安定した後に、燃料レベルを検出するためである。タイマーTGPONが所定期間TMFLVLDYを経過していなければ、ステップS20およびS21において、検出された燃料レベルFLEVELを、第1の燃料レベルFLEVELFおよび第2の燃料レベルFLEVELRにそれぞれセットし、このルーチンを抜ける。
【0046】
次にこのルーチンに入ったとき、ステップS19において、タイマTGPONが所定期間TMFLVLDYを経過しているならば、ステップS22において、初期フラグFLVLINITの値を調べる。初期フラグFLVLINITの初期値はゼロである。したがって、エンジンが始動した後に初めてこのステップを実行するとき、この判断はNOとなる。ステップS23に進み、初期フラグFLVLINITを1にセットする。ステップS20および21において、再び、第1および第2の燃料レベルFLEVELFおよびFLEVELRに、検出された燃料レベルFLEVELをセットし、このルーチンを抜ける。
【0047】
次にこのルーチンに入ったとき、ステップS22の判断はYESとなる。ステップS24において、上記の式(1)に従い、第1の燃料レベルFLEVELFを算出する。ステップS25において、上記の式(2)に従い、第2の燃料レベルFLEVELRを算出する。
【0048】
ステップS26において、燃料レベルの最小値FLMINを更新する。具体的には、ステップ24で算出された第1の燃料レベルFLEVELFが、現在の最小値FLMINより小さければ、該第1の燃料レベルFLEVELFが、新たな最小値FLMINとして記憶される。
【0049】
ステップ27において、車速VPがゼロかどうかを判断する。車速がゼロならば、ステップS28おいて、ステップ25において算出された第2の燃料レベルFLVELRが、最小値FLMINより所定値以上大きいかどうかを判断する。この判断がYesならば、現在給油が実施されていることを示す。したがって、給油フラグF_RFUELに1をセットする(S29)。
【0050】
図7は、リーク判定許可フラグFDETを設定する判断する処理のフローチャートである。この処理は、所定時間(たとえば、100ミリ秒)ごとに実施される。
【0051】
ステップS31において、イグニッションスイッチ42(図1)がオフされたかどうかを判断する。イグニッションスイッチがオフされなかったときは、このルーチンを抜ける。イグニッションスイッチがオフされたときは、前述した異常検出フラグFCSが1であるかどうかを判断する(S32)。異常検出フラグFCSが1であるとき、処理はステップS39に進み、リーク判定許可フラグFDETをゼロに設定し、リーク判定を禁止する。FCS=0であるとき、前述した給油フラグF_RFUELが1かどうかを判断する(S33)。給油フラグFRFUELが1であるとき、給油が行われていることを示す。したがって、リーク判定許可フラグFDETをゼロに設定し(S39)、リーク判定を禁止する。
【0052】
給油フラグF_RFUELがゼロであるとき、前回のサイクルにおいてエンジンが作動していたかどうかを判断する(S34)。この判断がNOであるとき、このルーチンを抜ける。YESであるとき(すなわち、エンジンが停止した直後であるとき)、外気温センサ41の検出値TATを読み込み(S35)、さらに気層温度センサ39の検出値TTGを読み込む(S36)。
【0053】
ステップS37において、気層温度TTGと外気温TATとの差が所定温度ΔT1(たとえば、5℃)より大きいかどうかを判断する。この判断がNOであるとき(すなわち、気層温度TTGと外気温TATとの差が小さいとき)、リーク判定を実施すると誤判定を起こす可能性が高い。したがって、ステップS39に進み、リーク判定を禁止する。ステップS37の判断がYESであるとき、リーク判定許可フラグFDETを1に設定し(S38)、リーク判定を許可する。
【0054】
図8および図9は、リーク判定を実行する処理のフローチャートである。この処理は、所定時間(たとえば、100ミリ秒)ごとに実施される。
【0055】
ステップS41において、エンジン1が停止したかどうかを判断する。エンジン1が作動中であるときは、第1のアップカウントタイマTM1の値をゼロにセットし(S43)、このルーチンを抜ける。第1のアップカウントタイマTM1は、第1の大気開放期間TOTA1(図2参照)を計測するためのタイマである。エンジン1が停止すると、ステップS42において、リーク判定許可フラグFDETが1であるかどうかを判断する。許可フラグFDETがゼロであるとき、ステップS43に進む。
【0056】
FDET=1であるときは、補正テーブルPEOJDを、第1の燃料レベルFLEVELFおよび外気温TATに基づいて検索し、しきい値PTANK1、PTANK2およびΔPを抽出する。補正テーブルPEOJDは、第1の燃料レベルFLEVELFおよび外気温TATに基づくしきい値PTANK1、PTANK2およびΔPを規定するテーブルである。こうして、燃料タンクに残存する燃料量および外気温に基づいて適切なしきい値が選択されるので、リーク判定の精度を高めることができる。
【0057】
ステップS45に進み、第1のアップカウントタイマTM1の値が、予め決められた第1の大気開放時間TOTA1を超えたかどうかを判断する。最初にこのステップを実行するとき、この判断はNOとなるので、ステップS46においてバイパス弁36を開き、ベントシャット弁38の開弁状態を維持する(図2の時刻t1)。ステップS47において、第2のアップカウントタイマTM2の値をゼロにセットし、このルーチンを抜ける。第2のアップカウントタイマTM2は、第1の判定期間TPHASE1を計測するためのタイマである。
【0058】
次にこのルーチンに入ったとき、第1のアップカウントタイマTM1の値が第1の大気開放期間TOTA1に達したならば(図2の時刻t2)、ステップS45からステップS48に進み、第1のアップカウントタイマTM2の値が第1の判定期間TPHASE1(図2)より大きいかどうかを判断する。最初にこのステップを実施するとき、この判断はNOであるので、ステップS49においてベントシャット弁38を閉じる。ステップS50において、タンク内圧PTANKが第1の所定タンク内圧PTANK1より高いかどうかを判断する。最初にこのステップを実行するとき、この判断はNOとなるので、ステップS52において第3のアップカウントタイマTM3の値をゼロにセットする。第3のアップカウントタイマTM3は、第2の大気開放期間TOTA2(図2)を計測するためのタイマである。
【0059】
ステップS53において、タンク内圧PTANKが、最大タンク内圧PTANKMAXより高いかどうかを判断する。最大タンク内圧PTANKMAXの初期値は、大気圧より低い値を持つよう設定されている。したがって、最初にこのステップを実行するとき、この判断はYESとなり、現在のタンク内圧PTANKが、最大タンク内圧PTANKMAXにセットされる(S54)。ステップS53の判断がNOであるときは、このルーチンを抜ける。こうして、第1の判定モードにおける最大タンク内圧PTANKMAXが得られる。
【0060】
ステップS50の判断がYESとなったとき(図2の破線L1および時刻t3を参照)、タンク内圧PTANKの上昇が大きいので、蒸発燃料処理系にリークは無いと判定し(S51)、リーク判定を終了する。
【0061】
このルーチンに入ったときに、ステップS48において、第2のアップカウントタイマTM2の値が第1の判定期間TPHASE1に達したならば(図2の時刻t4)、ステップS55に進む。ステップS55において、第3のアップカウントタイマTM3の値が、第2の大気開放期間TOTA2より大きいかどうかを判断する。最初にこのステップを実行するとき、この判断はNOであるので、ステップS56においてベントシャット弁を開く(時刻t4)。ステップS57において、第4のアップカウントタイマTM4にゼロをセットし、このルーチンを抜ける。第4のアップカウントタイマTM4は、第2の判定期間TPHASE2を計測するためのタイマである。
【0062】
このルーチンに入ったとき、ステップS55において、第3のアップカウントタイマTM3の値が第2の大気開放期間TOTA2に達したならば(図2の時刻t5)、ステップ61(図9)に進む。ステップS61において、第4のアップカウントタイマTM4の値が、第2の判定期間TPHASE2より大きいかどうかを判断する。最初にこのステップを実行するとき、この判断はNOであるので、ステップS62においてベントシャット弁38を閉じる。ステップS63に進み、タンク内圧PTANKが第2の所定タンク内圧PTANK2より低いかどうかを判断する。最初にこのステップを実行するとき、この判断はNOとなるので、ステップS65に進み、タンク内圧PTANKが最小タンク内圧PTANKMINより低いかどうかを判断する。最小タンク内圧PTANKMINの初期値は、大気圧より高い値を持つように設定されているので、最初にこのステップを実行するとき、この判断はYESとなる。したがって、現在のタンク内圧PTANKが最小タンク内圧PTANKMINに設定される(S66)。ステップS65の判断がNOであるときは、このルーチンを終了する。こうして、第2の判定モードにおける最小タンク内圧PTANKMINが得られる。
【0063】
ステップS63の判断がYESとなったとき(図2の破線L3および時刻t6を参照)、タンク内圧PTANKの減少が大きいので、蒸発燃料処理系50にリークは無いと判定し(S64)、リーク判定を終了する。
【0064】
このルーチンに入ったとき、ステップS61において、第4のアップカウントタイマTM4の値が第2の判定期間TPHASE2に達したならば(時刻t7)、バイパス弁36を閉じ、ベントシャット弁38を開く(S67)。ステップS68において、最大タンク内圧PTANKMAXと最小タンク内圧PTANKMINとの差ΔPを算出し、該差ΔPが、しきい値ΔPTHより大きいかどうかを判断する(S69)。ΔP>ΔPTHであるとき、蒸発燃料処理系50は正常と判定して、リーク判定を終了する(S70)。ΔP≦ΔPTHであるとき、蒸発燃料処理系50にはリークがあると判定し、リーク判定を終了する(S71)。
【0065】
図10は、異常検出フラグFCSを設定する処理のフローチャートである。この処理は、所定時間(たとえば、100ミリ秒)ごとに実施される。
【0066】
ステップS81において、図8および図9に示されるリーク判定を実行しているかどうかが判断される。リーク判定を実行していないとき、このルーチンを抜け、リーク判定を実行しているとき、ステップS82〜S92の処理を実施する。
【0067】
ステップS82において、圧力センサ15(図1)の断線およびショートを検出する処理を実施する。この処理では、圧力センサ15の出力電圧および出力電流に基づいて、断線またはショートの発生が検出される。ステップS83において、バイパス弁36の断線およびショートを検出する処理を実行する。この処理では、バイパス弁36の入力電圧および入力電流に基づいて、断線またはショートの発生が検出される。ステップS84においては、ベントシャット弁38の断線およびショートを検出する処理を実行する。この処理では、ベントシャット弁38の入力電圧および入力電流に基づいて、断線またはショートの発生が検出される。
【0068】
ステップS85において、圧力センサ15の断線が検出されたかどうかを判断する。ステップS86において、圧力センサ15のショートが検出されたかどうかを判断する。ステップS87において、バイパス弁36の断線が検出されたかどうかを判断する。ステップS88において、バイパス弁36のショートが検出されたかどうかを判断する。ステップS89において、ベントシャット弁38の断線が検出されたかどうかを判断する。ステップS90において、ベントシャット弁38のショートが検出されたかどうかを判断する。ステップS85〜S90のいずれかにおいて、断線またはショートが検出されたならば、ステップS92において、異常検出フラグFCSを1に設定する。ステップS85〜S90のすべての判断がNOであるとき、異常検出フラグFCSをゼロに設定する(S91)。
【0069】
このように、リーク判定の実施に直接関わる圧力センサ15、バイパス弁36およびベントシャット弁38の断線またはショートが検出されたときは、リーク判定の実施が禁止されるので、誤判定の発生を防止することができる。
【0070】
他の実施形態では、吸気温センサ14によって検出される吸気温を、外気温TATとして用いても良い。また、圧力センサ15を、燃料タンク9に設けてもよい。
【0071】
本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンにも適用が可能である。
【0072】
【発明の効果】
この発明によれば、内燃機関停止後のリーク判定の精度を向上させることができる。
【図面の簡単な説明】
【図1】この発明の一実施例に従う、蒸発燃料処理装置および内燃機関の制御装置を概略的に示す図。
【図2】この発明の一実施例に従う、リーク判定の概要を説明するためのタイムチャートを示す図。
【図3】この発明の一実施例に従う、リーク判定装置の機能ブロック図。
【図4】この発明の一実施例に従う、第1の燃料レベルの推移を示す図。
【図5】この発明の一実施例に従う、第2の燃料レベルの推移を示す図。
【図6】この発明の一実施例に従う、燃料レベルを算出する処理のフローチャート。
【図7】この発明の一実施例に従う、リーク判定許可フラグを設定する処理のフローチャート。
【図8】この発明の一実施例に従う、リーク判定処理のフローチャート。
【図9】この発明の一実施例に従う、リーク判定処理のフローチャート。
【図10】この発明の一実施例に従う、異常検出フラグを設定する処理のフローチャート。
【符号の説明】
1 エンジン 5 ECU
6 燃料噴射弁 9 燃料タンク
34 パージ制御弁 36 バイパス弁
38 ベントシャット弁 45 燃料レベルセンサ

Claims (2)

  1. 燃料タンクと、大気に連通する吸気口が設けられ、該燃料タンク内で発生する蒸発燃料を吸着するキャニスタと、該燃料タンクおよび該キャニスタを接続する第1の通路と、該キャニスタを内燃機関の吸気系に接続する第2の通路と、該キャニスタの吸気口を開閉するベントシャット弁と、該第2の通路に設けられたパージ制御弁とを備える蒸発燃料処理系のリークを判定する装置であって、
    前記蒸発燃料処理系の圧力を検出する圧力センサと、
    前記内燃機関の停止を検出する機関停止検出手段と、
    前記機関停止検出手段によって前記内燃機関が停止されたことが検出されたならば、前記パージ制御弁および前記ベントシャット弁を閉じることにより、前記蒸発燃料処理系を閉じた後、所定期間中に前記圧力センサによって検出された圧力と所定の判定値とに基づいて、該蒸発燃料処理系内のリークの有無を判定するリーク判定手段と、
    前記燃料タンク内の燃料の量を検出する残燃料検出手段と、
    前記検出された燃料量に、所定の第1のなまし係数を用いたなまし演算を適用して、第1の燃料レベルを算出する第1の燃料レベル算出手段と、
    前記第1の燃料レベル算出手段によって算出された前記第1の燃料レベルに基づいて、前記リーク判定手段で用いられる前記判定値を補正する判定値補正手段と、
    前記検出された燃料量に、所定の第2のなまし係数を用いたなまし演算を適用して、第2の燃料レベルを算出する第2の燃料レベル算出手段と、
    前記第2の燃料レベル算出手段によって算出された前記第2の燃料レベルが、前記第1の燃料レベルの最小値より所定値以上大きければ、給油が行われていると判断して、前記リーク判定手段によるリークの判定を禁止する判定禁止手段と、を備え、前記第2のなまし係数は、前記第1のなまし係数よりも大きい、
    リーク判定装置。
  2. 前記判定禁止手段は、さらに、前記内燃機関が搭載された車両の車速を判断する手段を備えており、該車速がゼロならば、前記給油が行われているかどうかを判断する、請求項1に記載のリーク判定装置。
JP2002137357A 2002-05-13 2002-05-13 蒸発燃料処理系のリークを判定する装置 Expired - Fee Related JP3808797B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002137357A JP3808797B2 (ja) 2002-05-13 2002-05-13 蒸発燃料処理系のリークを判定する装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002137357A JP3808797B2 (ja) 2002-05-13 2002-05-13 蒸発燃料処理系のリークを判定する装置

Publications (2)

Publication Number Publication Date
JP2003328865A JP2003328865A (ja) 2003-11-19
JP3808797B2 true JP3808797B2 (ja) 2006-08-16

Family

ID=29699137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002137357A Expired - Fee Related JP3808797B2 (ja) 2002-05-13 2002-05-13 蒸発燃料処理系のリークを判定する装置

Country Status (1)

Country Link
JP (1) JP3808797B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE440001T1 (de) * 2004-10-28 2009-09-15 Inergy Automotive Systems Res Auftanksystem und -verfahren
JP4556667B2 (ja) * 2004-12-27 2010-10-06 日産自動車株式会社 蒸発燃料処理装置のリーク診断装置
JP4636327B2 (ja) * 2005-10-31 2011-02-23 スズキ株式会社 船外機の蒸発燃料処理装置
JP4561599B2 (ja) * 2005-11-07 2010-10-13 スズキ株式会社 船外機用携行型燃料タンクの蒸発燃料処理装置
JP5975847B2 (ja) * 2012-10-30 2016-08-23 本田技研工業株式会社 蒸発燃料処理装置、および、蒸発燃料処理装置の診断方法
JP5950279B2 (ja) * 2012-10-30 2016-07-13 本田技研工業株式会社 蒸発燃料処理装置

Also Published As

Publication number Publication date
JP2003328865A (ja) 2003-11-19

Similar Documents

Publication Publication Date Title
JP3776344B2 (ja) 蒸発燃料処理装置の故障診断装置
JPH06146867A (ja) 二次空気供給機構の異常検出装置
JP3561651B2 (ja) 内燃機関の蒸発燃料処理装置
US6736117B2 (en) Abnormality detecting device for evaporative fuel processing system
JP3808797B2 (ja) 蒸発燃料処理系のリークを判定する装置
JP3243413B2 (ja) 内燃エンジンの蒸発燃料処理装置
JP2836270B2 (ja) 燃料噴射系の異常診断装置
JP3544197B2 (ja) 内燃機関の電子制御装置
JP4001231B2 (ja) 蒸発燃料処理系のリークを判定する装置
JP3561650B2 (ja) 内燃機関の蒸発燃料処理装置
JP3561649B2 (ja) 内燃機関の蒸発燃料処理装置
JP4004911B2 (ja) 内燃機関制御デバイスの故障診断装置
JP3819379B2 (ja) 蒸発燃料処理系のリークを判定する装置
US20010022177A1 (en) Monitoring apparatus for fuel feed system
JP2009167991A (ja) 内燃機関のアイドル運転制御装置
US8573179B2 (en) Engine ignition control apparatus
JP2004027936A (ja) 内燃機関の蒸発燃料処理装置
JP3892188B2 (ja) 内燃機関の燃料制御異常判定禁止方法
JP4305174B2 (ja) 内燃機関の排気浄化装置
JP2000220532A (ja) エンジンのegr制御装置
JP3880926B2 (ja) 燃料レベル検出器の異常診断装置
JPH05149166A (ja) 内燃エンジンのアイドリング時燃料供給制御装置
JPS60233329A (ja) 内燃機関の空燃比制御装置
JPH0693911A (ja) 内燃機関のスロットル制御装置
JP3776390B2 (ja) 内燃機関の蒸発燃料処理系のリーク判定装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees