JP3880926B2 - 燃料レベル検出器の異常診断装置 - Google Patents

燃料レベル検出器の異常診断装置 Download PDF

Info

Publication number
JP3880926B2
JP3880926B2 JP2002373528A JP2002373528A JP3880926B2 JP 3880926 B2 JP3880926 B2 JP 3880926B2 JP 2002373528 A JP2002373528 A JP 2002373528A JP 2002373528 A JP2002373528 A JP 2002373528A JP 3880926 B2 JP3880926 B2 JP 3880926B2
Authority
JP
Japan
Prior art keywords
fuel
fuel level
value
pressure
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002373528A
Other languages
English (en)
Other versions
JP2004205306A (ja
Inventor
秀行 沖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002373528A priority Critical patent/JP3880926B2/ja
Publication of JP2004205306A publication Critical patent/JP2004205306A/ja
Application granted granted Critical
Publication of JP3880926B2 publication Critical patent/JP3880926B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関に燃料を供給する燃料タンク内の燃料レベルを検出する燃料レベル検出器の異常診断装置に関する。
【0002】
【従来の技術】
内燃機関に燃料を供給する燃料タンク内の燃料レベルを検出する燃料レベル検出器の異常診断装置は、例えば特許文献1に示されている。この装置では、燃料タンクから燃料噴射弁を介して内燃機関に供給される燃料量を積算し、その燃料量積算値と、燃料レベル検出器の出力とを比較することにより、燃料レベル検出器の異常が判定される。
【0003】
【特許文献1】
特開平10−184479号公報
【0004】
【発明が解決しようとする課題】
燃料噴射弁から噴射される燃料量は、燃料レベル検出器の感度に比べて小さい。したがって、上記従来の装置では、燃料レベル検出器の出力の変化が正確に検出できる程度に燃料量積算値が達するまでにかなりの時間を要し、異常判定に時間がかかるという課題があった。
【0005】
本発明はこの点に着目してなされたものであり、比較的短時間で正確な故障診断を行うことができる燃料レベル検出器の故障診断装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため請求項1に記載の発明は、内燃機関に燃料を供給する燃料タンク内の燃料レベルを検出する燃料レベル検出器の出力(FLEVEL)の変化度合に基づいて、該燃料レベル検出器の異常診断を行う異常診断手段を備えた、燃料レベル検出器の異常診断装置において、前記燃料タンク内の圧力(PTANK)を検出する圧力検出手段と、前記燃料レベル検出器の出力(FLEVEL)に基づいて前記燃料タンクへの給油を判定する第1の給油判定手段と、前記圧力検出手段の出力(PTANK)に基づいて前記燃料タンクへの給油を判定する第2の給油判定手段とを備え、前記異常診断手段は、前記第1または第2の給油判定手段により給油中と判定されたときに、前記燃料レベル検出器の出力(FLEVEL)の変化度合に基づいて、前記燃料レベル検出器の異常を診断することを特徴とする。
【0007】
この構成によれば、燃料レベル検出器の出力に基づいて燃料タンクへの給油が判定されるとともに、圧力検出手段の出力に基づいて燃料タンクへの給油が判定され、いずれかの給油判定により給油中と判定されたときに、燃料レベル検出器の出力の変化度合に基づいて、燃料レベル検出器の異常が診断される。燃料レベル検出器の出力に基づく給油判定及び圧力検出手段の出力に基づく給油判定を実行し、いずれかの給油判定により燃料タンクへの給油を判定することにより、燃料レベル検出器の異常時においても正確な給油判定が可能となり、また給油中に異常診断を行うことにより、迅速に診断することが可能となる。
【0008】
請求項2に記載の発明は、請求項1に記載の燃料レベル検出器の異常診断装置において、前記異常診断手段は、前記機関が停止している期間において、前記異常診断を実行することを特徴とする。
この構成によれば、機関が停止しているときに異常診断が実行されるので、燃料タンク内の燃料レベルの変動の影響を排除し、正確な判定を行うことができる。
【0009】
より具体的には、給油時における燃料レベル検出器出力の増加速度(DFLEVEL)が、所定上限速度(DFLRFLH)より高い状態、または所定下限速度(DFLRFLL)より低い状態が所定判定時間(CTRFWAIT)より長く継続したとき、燃料レベル検出器が異常である判定することが望ましい。
【0010】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
図1は、本発明の一実施形態に係る内燃機関の制御装置の構成を示す図である。同図において、1は例えば4気筒を有する内燃機関(以下単に「エンジン」という)であり、エンジン1の吸気管2の途中にはスロットル弁3が配されている。また、スロットル弁3にはスロットル弁開度(THA)センサ4が連結されており、当該スロットル弁3の開度に応じた電気信号を出力して電子コントロールユニット(以下「ECU」という)5に供給する。
【0011】
燃料噴射弁6は、吸気管2の途中であってエンジン1とスロットル弁3との間の図示しない吸気弁の少し上流側に各気筒毎に設けられている。また、各燃料噴射弁6は燃料供給管7を介して燃料タンク9に接続されており、燃料供給管7の途中には燃料ポンプ8が設けられている。燃料タンク9は給油のための給油口10を有しており、給油口10にはフィラーキャップ11が取付けられている。
【0012】
燃料噴射弁6はECU5に電気的に接続され、該ECU5からの信号によりその開弁時間が制御される。吸気管2のスロットル弁3の下流側には吸気管内絶対圧PBAを検出する吸気管内絶対圧(PBA)センサ13、及び吸気温TAを検出する吸気温(TA)センサ14が装着されている。
【0013】
エンジン1の図示しないカム軸周囲又はクランク軸周囲にはエンジン回転数を検出するエンジン回転数(NE)センサ17が取付けられている。エンジン回転数センサ17はエンジン1のクランク軸の180度回転毎に所定のクランク角度位置でパルス(TDC信号パルス)を出力する。エンジン1の冷却水温TWを検出するエンジン水温センサ18及びエンジン1の排気中の酸素濃度を検出する酸素濃度センサ(以下「LAFセンサ」という)19が設けれられており、これらのセンサ13〜19の検出信号はECU5に供給される。LAFセンサ19は、排気中の酸素濃度(エンジン1に供給される混合気の空燃比)にほぼ比例する信号を出力する広域空燃比センサとして機能するものである。
【0014】
ECU5にはさらに、外気温TATを検出する外気温センサ42、エンジン1により駆動される車両の車速VPを検出する車速センサ43、各種センサ、電磁弁、及び当該ECU5に電源を供給するバッテリの出力電圧VBを検出するバッテリ電圧センサ44、及びイグニッションスイッチ45が接続されており、これらのセンサの検出信号及びイグニッションスイッチ45の切替信号がECU5に供給される。
【0015】
燃料タンク9は、チャージ通路31を介してキャニスタ33に接続され、キャニスタ33は、吸気管2のスロットル弁3の下流側にパージ通路32を介して接続されている。
チャージ通路31には、二方向弁35が設けられている。二方向弁35は、燃料タンク9内の圧力が大気圧より第1所定圧(例えば2.7kPa(20mmHg))以上高いとき開弁する正圧弁と、燃料タンク9内の圧力がキャニスタ33内の圧力より第2所定圧以上低いとき開弁する負圧弁とからなる。
【0016】
二方向弁35をバイパスするバイパス通路31aが設けられており、バイパス通路31aには、バイバス弁(開閉弁)36が設けられている。バイパス弁36は、通常は閉弁状態とされ、後述する故障診断実行中開閉される電磁弁であり、その動作はECU5により制御される。
【0017】
チャージ通路31には、二方向弁35と燃料タンク9との間に圧力センサ15が設けられており、その検出信号はECU5に供給される。圧力センサ15の出力PTANKは、キャニスタ33及び燃料タンク9内の圧力が安定している定常状態では、燃料タンク内の圧力に等しくなるが、キャニスタ33または燃料タンク9内の圧力が変化しているとき、実際のタンク内圧とは異なる圧力を示す。以下の説明では、圧力センサ15の出力を「タンク内圧PTANK」という。
【0018】
キャニスタ33は、燃料タンク9内の蒸発燃料を吸着するための活性炭を内蔵する。キャニスタ33には、空気通路37が接続されており、キャニスタ33は空気通路37を介して大気に連通可能となっている。
空気通路37の途中にはベントシャット弁(開閉弁)38が設けられている。ベントシャット弁38は、ECU5によりその作動が制御される電磁弁であり、給油時またはパージ実行中に開弁される。またベントシャット弁38は、後述する故障診断実行時に開閉される。ベントシャット弁38は、駆動信号が供給されないときは、開弁する常開型の電磁弁である。
【0019】
パージ通路32のキャニスタ33と吸気管2との間には、パージ制御弁34が設けられている。パージ制御弁34は、その制御信号のオン−オフデューティ比(制御弁の開度)を変更することにより流量を連続的に制御することができるように構成された電磁弁であり、その作動はECU5により制御される。
【0020】
燃料タンク9には、燃料タンク内の気層(空気と蒸発燃料とからなる混合気層)の温度を検出する気層温度検出手段としての気層温度センサ39、及び燃料タンク9内の燃料量を検出する燃料レベルセンサ(燃料レベル検出器)40が設けられている。気層温度センサ39及び燃料レベルセンサ40の検出信号は、ECU5に供給される。
【0021】
燃料タンク9、チャージ通路31、バイパス通路31a、キャニスタ33、パージ通路32、二方向弁35、バイパス弁36、パージ制御弁34、空気通路37、及びベントシャット弁38により、蒸発燃料処理装置41が構成される。
本実施形態では、イグニッションスイッチ45がオフされても、後述する故障診断を実行する期間中は、圧力センサ15、燃料レベルセンサ40、ECU5、バイパス弁36及びベントシャット弁38には電源が供給される。なおパージ制御弁34は、イグニッションスイッチ45がオフされると、電源が供給されなくなり、閉弁状態を維持する。
【0022】
燃料タンク9の給油時に蒸発燃料が大量に発生すると、二方向弁35が開弁し、キャニスタ33に蒸発燃料が貯蔵される。エンジン1の所定運転状態において、パージ制御弁34のデューティ制御が行われ、適量の蒸発燃料がキャニスタ33から吸気管2に供給される。
【0023】
ECU5は各種センサ等からの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される演算プログラム及び演算結果等を記憶する記憶回路のほか、燃料噴射弁6、パージ制御弁34、バイパス弁36及びベントシャット弁38に駆動信号を供給する出力回路等から構成される。
【0024】
ECU5のCPUは、エンジン回転数センサ17、吸気管内絶対圧センサ13、エンジン水温センサ18などの各種センサの出力信号に応じてエンジン1に供給する燃料量制御、パージ制御弁のデューティ制御、蒸発燃料処理装置41の故障診断、及び燃料レベルセンサ40の異常診断を行う。
【0025】
図2は、エンジン停止後に実行される故障診断を説明するためのタイムチャートである。なお、タンク内圧PTANKは実際には絶対圧として検出されるが、図2では大気圧を基準とした差圧で示されている。
エンジンが停止すると、バイパス弁(BPV)36が開弁され、ベントシャット弁(VSV)38の開弁状態が維持される(時刻t1)。これにより、蒸発燃料処理装置41が大気に開放され、タンク内圧PTANKは大気圧と等しくなる。なお、パージ制御弁34はエンジン停止時に閉弁する。
【0026】
時刻t2から第1判定モードが開始される。すなわち、ベントシャット弁38が閉弁され、蒸発燃料処理装置41が閉じた状態とされる。この状態は第1判定時間TPHASE1(例えば900秒)に亘って維持される。タンク内圧PTANKは破線L1で示すように第1所定タンク内圧PTANK1(例えば大気圧+1.3kPa(10mmHg))を越えて上昇したときは、直ちに蒸発燃料処理装置41は正常(漏れが無い)と判定される(時刻t3)。タンク内圧PTANKが実線L2で示すように変化したときは、最大タンク内圧PTANKMAXが記憶される(時刻t4)。
【0027】
次にベントシャット弁38が開弁され(時刻t4)、蒸発燃料処理装置が大気に開放される。
時刻t5から第2判定モードが開始される。すなわちベントシャット弁38が閉弁され、この状態が第2判定時間TPHASE2(例えば2400秒)に亘って維持される。タンク内圧PTANKが破線L3で示すように第2所定タンク内圧PTANK2(例えば大気圧−1.3kPa(10mmHg))より低くなったときは(時刻t6)、直ちに蒸発燃料処理装置41は正常(漏れが無い)と判定される。タンク内圧PTANKが実線L4で示すように変化したときは、最小タンク内圧PTANKMINが記憶される(時刻t7)。
【0028】
時刻t7においてバイパス弁36が閉弁されるとともに、ベントシャット弁38が開弁される。記憶した最大タンク内圧PTANKMAXと最小タンク内圧PTANKMINとの圧力差ΔPが判定閾値ΔPTHより大きいときは、蒸発燃料処理装置41は正常と判定され、圧力差ΔPが判定閾値ΔPTH以下であるときは、蒸発燃料処理装置41は故障した(漏れが有る)と判定される。漏れが有る場合には、タンク内圧PTANKは大気圧からの変化量が小さくなり、圧力差ΔPが小さくなるからである。
【0029】
図3は、故障診断許可フラグFDETの設定を行う処理のフローチャートである。この処理は、所定時間(例えば100ミリ秒)毎にECU5のCPUで実行される。
ステップS11では、今回イグニッションスイッチ45がオフされたか否かを判別し、オフされたときは、異常検出フラグFCSが「1」であるか否かを判別する(ステップS12)。異常検出フラグFCSは、図6の処理により、圧力センサ15の断線若しくはショート、バイパス弁36の断線若しくはショート、またはベントシャット弁38の断線若しくはショートが検出されたとき、「1」に設定される。
【0030】
FCS=1であるときは、ステップS18に進み、故障診断許可フラグFDETが「0」に設定され、故障診断が禁止される。FCS=0であるときは、前回(本処理の前回実行時において)エンジン1が作動していたか否かを判別する(ステップS13)。この答が肯定(YES)であってエンジン停止直後であるときは、外気温センサ42の検出値TATを読み込み(ステップS14)、次いで気層温度センサ39の検出値TTGを読み込む(ステップS15)。
【0031】
続くステップS16では、気層温度TTGと外気温TATとの差(TTG−TAT)が所定温度差ΔT1(例えば5℃)より大きいか否かを判別する。この答が否定(NO)であるとき、すなわち気層温度TTGと外気温TATとの差が小さいときは、故障診断を実行すると誤判定を起こす可能性が高いので、ステップS18に進み、故障診断を禁止する。一方ステップS16の答が肯定(YES)であるときは、故障診断許可フラグFDETが「1」に設定され(ステップS17)、故障診断が許可される。
【0032】
ステップS11またはステップS13の答が否定(NO)であるときは、給油判定フラグFREFUELが「1」であるか否かを判別する(ステップS19)。給油判定フラグは、後述する図8の処理で給油中と判定されたとき「1」に設定される(ステップS145)。FREFUEL=0であるときは、直ちに本処理を終了し、FREFUEL=1であって給油中であるときは、前記ステップS18に進み、故障診断を禁止する。
【0033】
図3の処理により、気層温度TTGと外気温TATとの差(TTG−TAT)が所定温度差ΔT1以下であるときは、エンジン停止後の故障診断を禁止するようにしたので、誤判定を防止し判定精度を高めることができる。
【0034】
図4及び5は故障診断を実行する処理のフローチャートである。この処理は、所定時間(例えば100ミリ秒)毎にECU5のCPUで実行される。
ステップS21では、エンジン1が停止したか否かを判別する。エンジン1が作動中であるときは、第1アップカウントタイマTM1の値を「0」にセットするとともに、大気開放フラグFPRESWTを「0」に設定し(ステップS23)、本処理を終了する。大気開放フラグFPRESWTは、ベントシャット弁38及びバイパス弁36がともに開弁され、蒸発燃料処理装置41が大気に開放されているとき、「1」に設定される(ステップS25参照)。
【0035】
エンジン1が停止すると、ステップS21からステップS22に進み、故障診断許可フラグFDETが「1」であるか否かを判別する。FDET=0であるときは前記ステップS23に進み、FDET=1であるときは、第1アップカウントタイマTM1の値が第1大気開放時間TOTA1(例えば120秒)を越えたか否かを判別する(ステップS24)。最初はこの答は否定(NO)であるので、バイパス弁36を開弁し、ベントシャット弁38の開弁状態を維持する(ステップS25)(図2,時刻t1)。このとき、大気開放フラグFPRESWTを「1」に設定する。次いで第2アップカウントタイマTM2の値を「0」に設定し(ステップS26)、本処理を終了する。
【0036】
第1アップカウントタイマTM1の値が第1大気開放時間TOTA1に達すると(時刻t2)、ステップS24からステップS27に進み、第2アップカウントタイマTM2の値が第1判定時間TPHASE1より大きいか否かを判別する。最初はこの答は否定(NO)であるので、ベントシャット弁38を閉弁するとともに、大気開放フラグFPRESWTを「0」に戻し(ステップS28)、タンク内圧PTANKが第1所定タンク内圧PTANK1より高いか否かを判別する(ステップS29)。最初はこの答は否定(NO)となるので、第3アップカウントタイマTM3の値を「0」に設定し(ステップS31)、タンク内圧PTANKが最大タンク内圧PTANKMAXより高いか否かを判別する(ステップS32)。最大タンク内圧PTANKMAXの初期値は、大気圧より低い値に設定されているため、最初はこの答は肯定(YES)となり、そのときのタンク内圧PTANKが最大タンク内圧PTANKMAXに設定される(ステップS33)。ステップS32の答が否定(NO)であるときは、直ちに本処理を終了する。ステップS32及びS33により、第1判定モードにおける最大タンク内圧PTANKMAXが得られる。
【0037】
ステップS29の答が肯定(YES)となったときは(図2,破線L1,時刻t3参照)、タンク内圧PTANKの上昇が大きいので蒸発燃料処理装置41は正常(漏れは無い)と判定し(ステップS30)、故障診断を終了する。
第2アップカウントタイマTM2の値が第1判定時間TPHASE1に達すると(時刻t4)、ステップS27からステップS34に進む。ステップS34では、第3アップカウントタイマTM3の値が第2大気開放時間TOTA2(例えば120秒)より大きいか否かを判別する。この答は最初は否定(NO)であるので、ベントシャット弁38を開弁するとともに、大気開放フラグFPRESWTを「1」に設定する(ステップS35)。次いで、第4アップカウントタイマTM4の値を「0」に設定し(ステップS36)、本処理を終了する。
【0038】
第3アップカウントタイマTM3の値が第2大気開放時間TOTA2に達すると(時刻t5)、ステップS34からステップS41(図5)に進み、第4アップカウントタイマTM4の値が第2判定時間TPHASE2より大きいか否かを判別する。最初はこの答は否定(NO)であるので、ベントシャット弁38を閉弁するとともに、大気開放フラグFPRESWTを「0」に戻し(ステップS42)、タンク内圧PTANKが第2所定タンク内圧PTANK2より低いか否かを判別する(ステップS43)。最初はこの答は否定(NO)となるので、タンク内圧PTANKが最小タンク内圧PTANKMINより低いか否かを判別する(ステップS45)。最小タンク内圧PTANKMINの初期値は、大気圧より高い値に設定されているため、最初はこの答は肯定(YES)となり、そのときのタンク内圧PTANKが最小タンク内圧PTANKMINに設定される(ステップS46)。ステップS45の答が否定(NO)であるときは、直ちに本処理を終了する。ステップS45及びS46により、第2判定モードにおける最小タンク内圧PTANKMINが得られる。
【0039】
ステップS43の答が肯定(YES)となったときは(図2,破線L3,時刻t6参照)、タンク内圧PTANKの減少が大きいので蒸発燃料処理装置41は正常(漏れは無い)と判定し(ステップS44)、故障診断を終了する。
第4アップカウントタイマTM4の値が第2判定時間TPHASE2に達すると(時刻t7)、バイパス弁36を閉弁するとともにベントシャット弁38を開弁する(ステップS47)。次いで最大タンク内圧PTANKMAXと最小タンク内圧PTANKMINとの圧力差ΔP(PTANKMAX−PTANKMIN)を算出し(ステップS48)、圧力差ΔPが判定閾値ΔPTHより大きいか否かを判別する(ステップS49)。その結果、ΔP>ΔPTHであるときは、蒸発燃料処理装置41は正常と判定して故障診断を終了し(ステップS50)、ΔP≦ΔPTHであるときは、蒸発燃料処理装置41は故障した(漏れが有る)と判定して故障診断を終了する(ステップS51)。
【0040】
図6は、異常検出フラグFCSの設定を行う処理のフローチャートである。この処理は、ECU5のCPUで所定時間(例えば100ミリ秒)毎に実行される。
ステップS61では、図4及び5の故障診断処理を実行しているか否かを判別し、実行してないときは直ちに本処理を終了する。故障診断処理を実行しているときは、ステップS62〜S81の処理を実行する。
【0041】
ステップS62では、圧力センサ15の断線・ショート検知処理を実行する。この処理では、圧力センサ15の出力電圧及び出力電流から、断線またはショートの発生が検出される。ステップS63では、バイパス弁36の断線・ショート検知処理を実行する。この処理では、バイパス弁36の入力電圧及び入力電流から、断線またはショートの発生が検出される。ステップS64では、ベントシャット弁38の断線・ショート検知処理を実行する。この処理では、ベントシャット弁38の入力電圧及び入力電流から、断線またはショートの発生が検出される。
【0042】
次いで圧力センサ15の断線が検出されたか否かを判別し(ステップS65)、検出されていないときは圧力センサ15のショートが検出されたか否かを判別する(ステップS66)。この答が否定(NO)であるときは、バイパス弁36の断線が検出されたか否かを判別し(ステップS67)、検出されていないときはバイパス弁36のショートが検出されたか否かを判別する(ステップS68)。この答が否定(NO)であるときは、ベントシャット弁38の断線が検出されたか否かを判別し(ステップS69)、検出されていないときはベントシャット弁38のショートが検出されたか否かを判別する(ステップS70)。
【0043】
そして、ステップS65〜S70のいずれかの答が肯定(YES)であるときは、異常検出フラグFCSを「1」に設定し(ステップS81)、ステップS65〜S70の全ての答が否定(NO)であるときは、異常検出フラグFCSを「0」に設定する(ステップS80)。
【0044】
このように、故障診断の実行に直接関わる圧力センサ15、バイパス弁36及びベントシャット弁38の断線またはショートが検出されたときは、異常検出フラグFCSが「1」に設定され、故障診断が禁止されるので、圧力センサ15、バイパス弁36またはベントシャット弁38の故障によって、誤判定が発生することを防止することができる。
【0045】
図7は、燃料レベルセンサ出力FLEVELに基づいて、センサ出力FLEVELのなまし値である第1燃料レベルFLEVELF及び第2燃料レベルFLEVELRを算出する処理のフローチャートである。この処理は、所定時間(例えば100ミリ秒)毎にECU5のCPUで実行される。
【0046】
ステップS110では、イグニッションスイッチがオフか否かを判別し、オフであるときは、ステップS111をスキップしてステップS112に進む。イグニッションスイッチがオンであるときは、エンジン1が始動モードにあるか、すなわちクランキング中であるか否かを判別する(ステップS111)。例えば、エンジン回転数NEが所定回転数(例えば500rpm)より低いとき、始動モードにあると判別される。エンジン1が始動モードにあるときは、燃料レベルの算出条件が成立していないと判定し、条件フラグFLVLCNDを「0」に設定して(ステップS113)、本処理を終了する。エンジン1が始動モードにないときは、ステップS112に進む。
【0047】
ステップS112では、バッテリ電圧VBが所定電圧VBX(例えば10.5)以下であるか否かを判別する。この答が肯定(YES)であるときは、燃料レベル算出条件不成立と判定し、前記ステップS113に進む。VB>VBXであるときは、燃料レベル算出条件が成立していると判定し、条件フラグFLVLCNDを「1」に設定する(ステップS114)。ステップS115では、前記異常検出フラグFCSが「1」であるか否かを判別し、FCS=1であるときは、初期フラグFLVLINITを「0」に設定するとともに、第1燃料レベルFLEVELF及び第2燃料レベルFLEVELRを、それぞれ所定値FLEVELDに設定する(ステップS116,S117,S118)。
【0048】
ステップS115でFCS=0であって、圧力センサ15などの異常が検出されていないときは、エンジン1の始動時からの経過時間を計時するアップカウントタイマTGPONの値が所定時間TMFLVLDY(例えば2秒)以上であるか否かを判別する(ステップS119)。この答が否定(NO)であるときは、第1燃料レベルFLEVELF及び第2燃料レベルFLEVELRをともに燃料レベルセンサ出力FLEVELに設定する(ステップS120,S121)。
【0049】
ステップS119の答が肯定(YES)、すなわちエンジン1の始動時から所定時間TMFLVLDYが経過したときは、初期フラグFLVLINITが「1」であるか否かを判別する(ステップS122)。最初はこの答は否定(NO)であるので、初期フラグFLVLINITを「1」に設定し(ステップS123)、前記ステップS120に進む。初期フラグFLVLINITが「1」に設定されると、ステップS122からステップS124に進み、下記式(1)により第1燃料レベルFLEVELFを算出する。
Figure 0003880926
【0050】
ここで、CFLFは0から1の間の値に設定される第1なまし係数、FLEVEL(k)は、燃料レベルセンサ出力の今回値、FLEVELF(k−1)は第1燃料レベルの前回算出値である。
【0051】
ステップS125では、下記式(2)により、第2燃料レベルFLEVELRを算出する。
Figure 0003880926
ここで、CFLRは0から1の間の値に設定され、且つ第1なまし係数CFLFより大きな値に設定される第2なまし係数、FLEVELR(k−1)は第2燃料レベルの前回算出値である。
【0052】
図8及び図9は、燃料レベルセンサの異常判定処理のフローチャートである。この処理は、所定時間(例えば100ミリ秒)毎にECU5のCPUで実行される。
【0053】
ステップS130では、イグニッションスイッチがオフであるか否かを判別し、この答が否定(NO)、すなわちイグニッションスイッチがオンであるときは、直ちに本処理を終了する。イグニッションスイッチがオフされると、ステップS131に進み、給油判定フラグFREFUELが「1」であるか否かを判別する。給油判定フラグFREFUELは、本処理において給油中と判定されたとき、「1」に設定される(ステップS145)。最初はこの答は否定(NO)であるので、ステップS132に進み、タンク内圧PTANKのなまし値(以下「なましタンク内圧」という)PEONVAVEを下記式(3)により算出する。
Figure 0003880926
ここで、CPTKは0から1の間の値に設定されるなまし係数、PTANK(k)は、圧力センサ15の出力の今回値、PEONVAVE(k−1)はなましタンク内圧の前回算出値である。
【0054】
ステップS133では、燃料レベルセンサ40の異常検知フラグFFSPFLVLが「1」であるか否かを判別する。この異常検知フラグFFSPFLVLは、図示しない処理により、燃料レベルセンサ40の断線、ショートまたは可動部の固着が検出されたとき、「1」に設定される。FFSPFLVL=1であるときは、ステップS134をスキップして、ステップS135に進む。
【0055】
FFSPFLVL=0であるときは、第2燃料レベルFLEVELRから初期燃料レベルFLVLE0を減算した値が、所定レベル変化量DFLRFUEL以上であるか否かを判別する(ステップS134)。ここで、初期燃料レベルFLVLE0は、イグニッションスイッチがオフされた時点の燃料レベルセンサ出力FLEVELに設定されている。ステップS134の答が肯定(YES)であって、現在の第2燃料レベルFLEVELRが初期燃料レベルFLVLE0から所定レベル変化量DFLRFUEL以上増加したときは、給油中と判定し、給油判定フラグFREFUELを「1」に設定する。ステップS134の答が否定(NO)であって第2燃料レベルFLEVELRが大きく増加していないときは、ステップS135に進む。
【0056】
ステップS135では、図4の処理で設定される大気開放フラグFPRESWTが「1」であるか否かを判別する。FPRESWT=1であって蒸発燃料処理装置が大気に開放されているときは、第1タンク内圧記憶値PTANKRF1及び第2タンク内圧記憶値PTANKRF2をともに、その時点のなましタンク内圧PEONVAVEに設定する(ステップS136,S137)。次いでカウンタCREFUELに所定カウント値CTREFUEL(例えば1秒に相当する値)を設定し(ステップS138)、本処理を終了する。
【0057】
ステップS135でFPRESWT=0であって蒸発燃料処理装置が大気に開放されていないときは、その時点のなましタンク内圧PEONVAVEと、第2タンク内圧記憶値PTANKRF2との差の絶対値が、所定圧力変化量DPREFUEL以上か否かを判別する(ステップS139)。最初はこの答は否定(NO)となるので、ステップS140に進み、カウンタCREFUELの値が、前記所定カウント値CTREFUEL以上か否かを判別する。カウンタCREFUELは、ステップS130において所定カウント値CTREFUELに設定されているので、最初はこの答は肯定(YES)となる。したがって、ステップS141に進み、第2タンク内圧記憶値PTANKRF2を第1タンク内圧記憶値PTANKRF1に設定する。次いで、第1タンク内圧記憶値PTANKRF1をその時点のなましタンク内圧PEONVAVEに設定する(ステップS142)とともに、カウンタCREFUELの値を「0」にリセットする(ステップS143)。
【0058】
ステップS143が実行されると、ステップS139の答が否定(NO)である間は、ステップS140からステップS144に進み、カウンタCREFUELを「1」だけインクリメントする。そしてその後は、カウンタCREFUELの値が所定カウント値CTREFUELに達する毎に、ステップS140からステップS141に進む。
【0059】
ステップS139の答が肯定(YES)となったとき、すなわちカウンタCREFUELの値が所定カウント値CTREFUELに達するまでの期間内に、なましタンク内圧PEONVAVEが第2タンク内圧記憶値PTANKRF2から大きく変化したときは、給油中であると判定し、前記ステップS145に進む。
【0060】
給油判定フラグFREFUELが「1」に設定されると、ステップS131からステップS151(図9)に進み、正常判定フラグFRFRATDNが「1」であるか否かを判別する(ステップS151)。最初はこの答は否定(NO)となるので、ステップS152に進み、経過時間カウンタCRFWAITの値がNG判定値CTRFWAIT(例えば180秒に相当する値)より大きいか否かを判別する。最初はこの答は否定(NO)であるので、ステップS153に進み、下記式(4)に第2燃料レベルFLEVELR、初期燃料レベルFLVLE0及び経過時間カウンタCRFWAITのカウント値を適用し、燃料レベル変化率DFLEVELを算出する。
Figure 0003880926
【0061】
ステップS154では、燃料レベル変化率DFLEVELが、所定下限値DFLRFLL(例えば15.14リットル(4ガロン)/分に相当する値)以上で、かつ所定上限値DFLRFLH(例えば45.42リットル(12ガロン)/分に相当する値)以下であるか否かを判別する。この答が否定(NO)であって燃料レベル変化率DFLEVELが所定上下限値の範囲内にないときは、OK判定カウンタCRFRATの値を「0」に設定し(ステップS155)、経過時間カウンタCRFWAITを「1」だけインクリメントして(ステップS159)、本処理を終了する。
【0062】
ステップS154の答が肯定(YES)であって、燃料レベル変化率DFLEVELが所定上下限値の範囲内にあるときは、OK判定カウンタCRFRATを「1」だけインクリメントし(ステップS156)、そのOK判定カウンタCRFRATの値がOK判定値CTRFRAT(例えば30秒に相当する値)より大きいか否かを判別する。最初はこの答は否定(NO)となるので、前記ステップS159に進み、経過時間カウンタCRFWAITを「1」だけインクリメントして、本処理を終了する。その後、ステップS154の答が肯定(YES)である状態が継続し、OK判定カウンタCRFRATの値がOK判定値CTRFRATを超えると、燃料レベルセンサ40は正常と判定し、ステップS157からステップS158に進んで正常判定フラグFRFRATDNを「1」に設定する。正常判定フラグFRFRATDNが「1」に設定されると、ステップS151の答が肯定(YES)となり、直ちに本処理を終了する。
【0063】
一方、正常判定がなされることなく、経過時間カウンタCRFWAITの値が、NG判定値CTRFWAITを超えると、燃料レベルセンサ40は異常と判定し、ステップS152からステップS160に進み、異常判定フラグFRFRATNGを「1」に設定する。
なお、異常判定がなされたときは、例えば警告ランプを点灯させることにより、当該車両の運転者に警告が発せられる。
【0064】
図8及び図9の処理によれば、先ず第2燃料レベルFLEVELR及びなましタンク内圧PEONVAVEに基づいて給油判定が行われ、給油中と判定されたときに、燃料レベル変化率DFLEVELに基づく燃料レベルセンサの異常判定が行われる。より具体的には、燃料レベル変化率DFLEVELが、図10に示すラインL12に相当する所定下限値DFLRFLL以上で、かつラインL11に相当する所定上限値DFLRFLH以下である正常範囲内に、所定正常判定時間(OK判定値CTRFRATに対応する時間)以上留まっているとき、燃料レベルセンサ40は正常であると判定される。また、正常判定がなされないまま、給油判定がなされた時点から所定異常判定時間(NG判定値CTRFWAITに対応する時間)が経過したとき、燃料レベルセンサ40は異常と判定される。
【0065】
なお、所定上下限値DFLRFLH及びDFLRFLLは、通常のガソリンスタンドに設けられた給油装置の給油速度に応じて、通常の給油速度、例えば15.14リットル/分〜45.42リットル/分の範囲内の給油速度で正常判定がなされるように設定されている。
給油判定を、第2燃料レベルFLEVELRだけでなく、なましタンク内圧PEONVAVEも用いて行うことにより、燃料レベルセンサの異常時において第2燃料レベルFLEVELRによって正確な給油判定が行えないときでも、正確な給油判定を行うことができる。また、燃料レベル変化率DFLEVELが、正常範囲から外れるときに異常と判定するようにしたので、給油時において燃料レベルセンサ出力が変化しない異常だけでなく、燃料レベルセンサ出力が過大に変化する異常も検出することができる。なお、いずれの場合も、燃料レベルセンサは正常で、ガソリンスタンドの給油装置が異常(給油速度が遅すぎる異常または速すぎる異常)である可能性もある。
【0066】
本実施形態では、エンジン停止直後に蒸発燃料処理装置の故障診断及び図8の処理による給油判定が行われ、給油中と判定されたときは、蒸発燃料処理装置の故障診断が中止されて(図3,ステップS19参照)、燃料レベルセンサの異常診断(図9の処理)が実行される。図11は、蒸発燃料処理装置の故障診断と、燃料レベルセンサの異常診断との関係を説明するためのタイムチャートであり、図中のVSVは、ベントシャット弁38の開閉状態を示す。
【0067】
同図(a)は、給油速度が高い例を示す。この例では、時刻t11にベントシャット弁38が閉弁され、その後給油が開始されると、タンク内圧PTANK(なましタンク内圧PEONVAVE,L21)が上昇する。なましタンク内圧PEONVAVEの上昇により、時刻t12に給油中であるとの判定がなされる(図8,ステップS139)。その時点で蒸発燃料処理装置の故障診断は中止され、ベントシャット弁38が開弁される。したがって、なましタンク内圧PEONVAVEは低下する。燃料レベルセンサ40が正常であれば、該センサの出力(第2燃料レベルFLEVELR,L22))は、実線L22で示すように上昇する。したがって、給油中と判定された時刻t12から、所定正常判定時間(OK判定値CTRFRATに対応する時間)経過後の時刻t13において正常判定がなされる。
【0068】
一方、図11(a)に破線L23で示すように燃料レベルセンサ出力が変化しないときは、正常判定がなされることなく、所定異常判定時間(NG判定値CTRFWAITに対応する時間)が経過した時刻t14において異常判定がなされる。
【0069】
図11(b)は、給油速度が低い例を示す。この例では、ベントシャット弁38が開弁される時刻t21より前に給油が開始され、第2燃料レベルFLEVELRに基づいて給油中であるとの判定が時刻t22になされる(図8,ステップS134参照)。その後、実線L24で示すように引き続いて第2燃料レベルFLEVELRが上昇を続けたときは、時刻t23に正常判定がなされる。一方、時刻t22以後において、第2燃料レベルFLEVELRが破線L25に示すように推移するときは、時刻t24において異常判定がなされる。
【0070】
本実施形態では、ECU5が異常診断手段を構成する。より具体的には、図8の処理が給油判定手段に相当し、図9の処理が異常診断手段に相当する。また圧力センサ15が圧力検出手段に相当する。
【0071】
なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、図9の処理は、図12に示す処理に代えてもよい。図12に示す処理は、図9のステップS151及びS153を削除し、ステップS154をステップS154aに変更したものである。
【0072】
ステップS154aでは、第2燃料レベルFLEVELRと、初期燃料レベルFLVLE0との差(FLEVELR−FLVLE0)が、所定レベル変化量DFLRFUEL以上であるか否かを判別する。この答が否定(NO)であるときは、ステップS155に進み、肯定(YES)であるときはステップS156に進む。
【0073】
したがって、図12の処理によれば、第2燃料レベルFLEVELRが初期燃料レベルFLVLE0より、所定レベル変化量DFLRFUEL以上大きい状態が、OK判定値CTRFRATに対応する時間だけ継続したとき、燃料レベルセンサ40は正常と判定される。また正常判定がなされない状態が、NG判定値CTRFWAITに対応する時間継続すると、燃料レベルセンサ40は異常と判定される。
【0074】
また上述した実施形態では、圧力センサ15はチャージ通路31に設けたが、燃料タンク9に設けるようにしてもよい。また本発明は、蒸発燃料処理装置が設けられていない場合にも適用可能であり、その場合には、圧力センサ15は燃料タンク9に設けられる。
【0075】
【発明の効果】
以上詳述したように請求項1に記載の発明によれば、燃料レベル検出器の出力に基づいて燃料タンクへの給油が判定されるとともに、圧力検出手段の出力に基づいて燃料タンクへの給油が判定され、いずれかの給油判定により給油中と判定されたときに、燃料レベル検出器の出力の変化度合に基づいて、燃料レベル検出器の異常が診断される。燃料レベル検出器の出力に基づく給油判定及び圧力検出手段の出力に基づく給油判定を実行し、いずれかの給油判定により燃料タンクへの給油を判定することにより、燃料レベル検出器の異常時においても正確な給油判定が可能となり、また給油中に異常診断を行うことにより、迅速に診断することが可能となる。
【0076】
請求項2に記載の発明によれば、機関が停止しているときに異常診断が実行されるので、燃料タンク内の燃料の変動の影響を排除し、正確な判定を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる燃料レベル検出器を含む蒸発燃料処理装置及び内燃機関の制御装置の構成を示す図である。
【図2】蒸発燃料処理装置の故障診断の概要を説明するためのタイムチャートである。
【図3】蒸発燃料処理装置の故障診断許可フラグ(FDET)の設定を行う処理のフローチャートである。
【図4】蒸発燃料処理装置の故障診断を実行する処理のフローチャートである。
【図5】蒸発燃料処理装置の故障診断を実行する処理のフローチャートである。
【図6】異常検出フラグ(FCS)の設定を行う処理のフローチャートである。
【図7】燃料レベルセンサの出力に応じて、異常診断用の燃料レベルを算出する処理のフローチャートである。
【図8】燃料レベルセンサの異常診断を行う処理のフローチャートである。
【図9】燃料レベルセンサの異常診断を行う処理のフローチャートである。
【図10】給油時における燃料レベルセンサ出力の増加速度の正常範囲を示す図である。
【図11】図8及び9に示す異常診断処理を説明するためのタイムチャートである。
【図12】図9に示す処理の変形例を示すフローチャートである。
【符号の説明】
1 内燃機関
5 電子コントロールユニット(給油判定手段、異常診断手段)
9 燃料タンク
15 圧力センサ(圧力検出手段)
40 燃料レベルセンサ(燃料レベル検出器)

Claims (2)

  1. 内燃機関に燃料を供給する燃料タンク内の燃料レベルを検出する燃料レベル検出器の出力の変化度合に基づいて、該燃料レベル検出器の異常診断を行う異常診断手段を備えた、燃料レベル検出器の異常診断装置において、
    前記燃料タンク内の圧力を検出する圧力検出手段と、
    前記燃料レベル検出器の出力に基づいて前記燃料タンクへの給油を判定する第1の給油判定手段と、
    前記圧力検出手段の出力に基づいて前記燃料タンクへの給油を判定する第2の給油判定手段とを備え、
    前記異常診断手段は、前記第1または第2の給油判定手段により給油中と判定されたときに、前記燃料レベル検出器の出力の変化度合に基づいて、前記燃料レベル検出器の異常を診断することを特徴とする燃料レベル検出器の異常診断装置。
  2. 前記異常診断手段は、前記機関が停止している期間において、前記異常診断を実行することを特徴とする請求項1に記載の燃料レベル検出器の異常診断装置。
JP2002373528A 2002-12-25 2002-12-25 燃料レベル検出器の異常診断装置 Expired - Fee Related JP3880926B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373528A JP3880926B2 (ja) 2002-12-25 2002-12-25 燃料レベル検出器の異常診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373528A JP3880926B2 (ja) 2002-12-25 2002-12-25 燃料レベル検出器の異常診断装置

Publications (2)

Publication Number Publication Date
JP2004205306A JP2004205306A (ja) 2004-07-22
JP3880926B2 true JP3880926B2 (ja) 2007-02-14

Family

ID=32811785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373528A Expired - Fee Related JP3880926B2 (ja) 2002-12-25 2002-12-25 燃料レベル検出器の異常診断装置

Country Status (1)

Country Link
JP (1) JP3880926B2 (ja)

Also Published As

Publication number Publication date
JP2004205306A (ja) 2004-07-22

Similar Documents

Publication Publication Date Title
JP3923473B2 (ja) 蒸発燃料処理装置の故障診断装置
JP3776344B2 (ja) 蒸発燃料処理装置の故障診断装置
JP2688674B2 (ja) 燃料タンク内圧センサの故障検出装置及び故障補償装置
KR100659995B1 (ko) 증발 연료 처리 장치의 고장 진단 장치
JP3167924B2 (ja) 蒸発燃料処理装置
JP3923279B2 (ja) 蒸発燃料処理装置の故障検出装置
JP3243413B2 (ja) 内燃エンジンの蒸発燃料処理装置
JP3544197B2 (ja) 内燃機関の電子制御装置
JP4004911B2 (ja) 内燃機関制御デバイスの故障診断装置
JP3880926B2 (ja) 燃料レベル検出器の異常診断装置
JP3808797B2 (ja) 蒸発燃料処理系のリークを判定する装置
JP2001329894A (ja) 内燃機関の燃料系異常診断装置
JP2001082261A (ja) 蒸発燃料放出防止装置の異常診断装置
JP2004132240A (ja) 蒸発燃料処理系のリークを判定する装置
JP4104848B2 (ja) 内燃機関の吸気系故障診断装置およびフェールセーフ装置
JP4660236B2 (ja) 蒸発燃料処理装置の故障診断装置
JP4075027B2 (ja) Egr制御装置
JP4173472B2 (ja) 蒸発燃料処理装置の故障診断装置
JP3892188B2 (ja) 内燃機関の燃料制御異常判定禁止方法
JP3669074B2 (ja) 内燃機関の排気還流制御装置
JP3272241B2 (ja) 蒸発燃料処理装置
JP2005163600A (ja) 蒸発燃料処理装置の漏れ診断装置
JP3377430B2 (ja) 蒸発燃料処理装置
JP2005163601A (ja) 蒸発燃料処理装置の漏れ診断装置
JP3825362B2 (ja) 蒸発燃料処理系の故障判定装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees