JP3549302B2 - 同相電圧安定度を有するオフセットコンパレータ - Google Patents

同相電圧安定度を有するオフセットコンパレータ Download PDF

Info

Publication number
JP3549302B2
JP3549302B2 JP23669295A JP23669295A JP3549302B2 JP 3549302 B2 JP3549302 B2 JP 3549302B2 JP 23669295 A JP23669295 A JP 23669295A JP 23669295 A JP23669295 A JP 23669295A JP 3549302 B2 JP3549302 B2 JP 3549302B2
Authority
JP
Japan
Prior art keywords
terminal
voltage
coupled
transistor
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23669295A
Other languages
English (en)
Other versions
JPH08116243A (ja
Inventor
エイ ヤクリン ダニエル
Original Assignee
テキサス インスツルメンツ インコーポレイテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テキサス インスツルメンツ インコーポレイテツド filed Critical テキサス インスツルメンツ インコーポレイテツド
Publication of JPH08116243A publication Critical patent/JPH08116243A/ja
Application granted granted Critical
Publication of JP3549302B2 publication Critical patent/JP3549302B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/2481Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors with at least one differential stage

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Manipulation Of Pulses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般的にはオフセットコンパレータに関し、より詳しくは変化する入力同相電圧入力信号に対して一定の差分オフセット電圧を発生する差分オフセットコンパレータに関する。
【0002】
【従来の技術】
コンパレータは、複数の回路入力端子にそれぞれ印加される電気信号の大きさの差の関数である出力電気信号を発生する電気回路である。典型的なコンパレータは例えば、出力端子、第1及び第2の入力端子、及び第1の入力端子の電圧が第2の入力端子の電圧に等しいか、もしくはそれを越えた場合に“高”または“低”電圧を出力端子に供給し、それ以外の全ての場合に“低”または“高”電圧を出力端子に供給するように上記出力端子と入力端子とを接続している電気回路からなることができる。“オフセットコンパレータ”とは、一方の入力電圧(もしくは電流)が他方の入力電圧(もしくは電流)に等しいか、もしくは他方の入力電圧(もしくは電流)を所定のしきい値基準電圧(もしくは電流)の大きさだけ越えた場合に“高”から“低”へ(もしくは“低”から“高”へ)の移行が発生するようになっている種類のコンパレータのことを言う。入力“同相(コモンモード)”電圧(もしくは電流)とは、入力端子に存在する電圧(もしくは電流)の平均のことである。入力電圧(もしくは電流)は意図的及び/または非意図的に変動するので、コンパレータはある与えられた範囲の同相電圧(もしくは電流)内で作動するように設計される。以下に、入力及び出力電圧に関連して使用する“電圧”とは、入力及び出力電圧、もしくは代替として入力及び出力電流を含むものであることを理解されたい。
【0003】
広範囲にわたって入力同相電圧に所望のオフセット電圧を維持させようとする普通のオフセット設計には、ある問題が存在している。これは、普通のオフセット基準電圧が、入力電圧自体に直接関連付けされずにセットされるからである。理想的にはオフセット値は入力同相電圧の変動に対して一定に保たれるべきである。しかしながら普通のオフセット電圧回路は非線形に挙動するので、入力同相電圧の変動に伴ってずれを生じるようになる。
【0004】
【発明の概要】
本発明の目的は、広い範囲にわたって入力同相電圧のオフセット電圧を安定させた差分オフセットコンパレータ電気回路を提供することである。
本発明のさらなる目的は、差分オフセットコンパレータ回路において、入力同相電圧の変化を補償するためにオフセット電圧を動的に、そして自動的に設定するオフセット電圧制御副回路を提供することである。
本発明によるコンパレータ回路は、第1及び第2の入力端子と、出力端子とを有し、これらの入力端子と出力端子とは、入力端子に印加された入力電圧の(オフセット電圧の大きさだけオフセットした)相対的な大きさを表す電気信号を出力端子に供給する回路手段によって接続されている。この回路手段は、印加された入力電圧の平均もしくは“同相”に依存して基準オフセット電圧を設定する手段を含んでいる。
詳細を後述する実施例においては、整合した1対の第1及び第2のトランジスタは、出力スイッチング副回路を通して第1の電源端子に結合されている第1の端子と、第1及び第2の入力端子にそれぞれ結合されている第2の端子と、共通電流源を通して第2の電源端子に結合されている第3の端子とを有している。整合した第2の対の第3及び第4のトランジスタは、第1及び第2のトランジスタの第1の端子にそれぞれ結合されている第1の端子と、第2の端子と、共通電流源を通して第2の電源端子に結合されている第3の端子とを有している。上記第1及び第2の入力端子に印加された入力同相電圧を決定するように結合され、そして基準電圧ノードにも結合されている電圧オフセット制御副回路は、オフセット電圧差を上記第3及び第4のトランジスタの第2の端子にまたがって供給するように機能する。オフセット電圧制御副回路は、基準電圧ノードに印加される電圧によって決定される値と、入力同相電圧によって決定される同相電圧とを有するオフセット電圧差を供給するように構成されている。
本発明によれば、第1及び第2の入力電圧信号をそれぞれ受ける第1及び第2の入力端子と、出力端子と、第1及び第2の電源端子と、基準電圧信号を受ける基準電圧端子と、上記第1の電源端子に結合されている第1の端子と、上記第1の入力端子に結合されている第2の端子と、第3の端子とを有する第1のトランジスタと、上記第1の電源端子に結合されている第1の端子と、上記第2の入力端子に結合されている第2の端子と、第3の端子とを有する第2のトランジスタとからなる第1の対のトランジスタと、上記第1及び第2のトランジスタの上記第3の端子と上記第2の電源端子との間に結合されている第1の電流源と、上記第1の電源端子に結合されている第1の端子と、第2の端子と、第3の端子とを有する第3のトランジスタと、上記第1の電源端子に結合されている第1の端子と、第2の端子と、第3の端子とを有する第4のトランジスタとからなる第2の対のトランジスタと、上記第3及び第4のトランジスタの上記第3の端子と上記第2の電源端子との間に結合されている第2の電流源と、上記第1及び第2の入力端子と上記基準電圧端子とに結合され、第1及び第2のオフセット電圧信号をそれぞれ上記第3及び第4のトランジスタの上記第2の端子に印加するオフセット電圧サブ回路であって、上記第1及び第2のオフセット電圧信号が上記基準電圧端子に印加された上記基準電圧信号によって設定される電圧差で印加され、且つ、上記第1及び第2のオフセット電圧信号が上記第1及び第2の入力電圧信号の平均電圧によって設定される平均電圧で印加されるオフセット電圧サブ回路と、上記第1及び第2のトランジスタ対と上記出力端子とに結合され、上記第1及び第2のオフセット電圧信号によって決定される大きさだけオフセットした上記第1及び第2の入力電圧信号の相対的な値を表す出力電圧信号を上記出力端子に生成する出力副回路と、を備えていることを特徴とするコンパレータ回路が提供される。
上記オフセット電圧副回路は、上記第1及び第2の入力端子に結合されていて第1のノードを有する第1の分圧回路と、上記第3及び第4のトランジスタの上記第2の端子に結合されていて第2のノードを有する第2の分圧回路と、上記第1及び第2のノードに結合されていて上記第2のノードの電圧を上記第1のノードの電圧によって設定せしめる電圧フォロアとを備えていてもよい。
上記電圧フォロアは演算増幅器を備え、上記演算増幅器の第1の入力端子は上記第1のノードに結合され、第2の入力端子は上記第2のノードに結合されていてもよい。
上記電圧フォロアはトランジスタをも備え、上記トランジスタの第1の端子は上記第1の電源端子に結合され、第2の端子は上記演算増幅器の出力端子に結合され、そして第3の端子は上記第2の分圧回路に結合されていてもよい。
上記第2の分圧回路は第1の抵抗と、第2の抵抗とを備え、上記第1の抵抗の第1の端は上記電圧フォロアのトランジスタの上記第3の端子と上記第3及び第4のトランジスタの一方の上記第2の端子とに接続され、上記第1の抵抗の第2の端は上記第2のノードに接続され、上記第2の抵抗の第1の端は上記第2のノードに接続され、上記第2の抵抗の第2の端は上記第3及び第4のトランジスタの他方の上記第2の端子に接続されていてもよい。
上記オフセット電圧副回路は、上記第3及び第4のトランジスタの上記他方の上記第2の端子と上記第2の電源端子とに結合されている第3の抵抗と、上記基準電圧入力端子と上記第3の抵抗とに結合されていて上記第3の抵抗にまたがって上記基準電圧を印加する回路要素をも備えていてもよい。
上記第3の抵抗にまたがって上記基準電圧を印加する回路要素は、上記基準電圧端子と上記第3の抵抗の一方の端との間に結合されている第2の電圧フォロアを備えていてもよい。
上記第2の電圧フォロアは第2の演算増幅器を備え、上記第2の演算増幅器の第1の入力端子は上記基準電圧入力端子に結合され、第2の入力端子は上記第3の抵抗の上記一方の端に結合されていてもよい。
上記第2の電圧フォロアはトランジスタをも備え、上記トランジスタの第1の端子は上記第2の抵抗の上記第2の端に結合され、第2の端子は上記第2の演算増幅器の出力端子に結合され、そして第3の端子は上記第3の抵抗の上記一方の端に接続されていてもよい。
上記第1の電流源は、バイアス電圧入力端子と、上記バイアス電圧入力端子と上記第2の電源端子との間に結合されているカレントミラー副回路とを備えていてもよい。
上記第2の電流源は、上記バイアス電圧入力端子と上記第2の電源端子との間に結合されている第2のカレントミラー副回路とを備えていてもよい。
【0005】
特定実施例では、電圧オフセット制御副回路は第1及び第2の演算増幅器を含む。第1の演算増幅器は、第3及び第4のトランジスタの第2の端子にまたがって直列接続された抵抗分圧回路の中心ノードが、第1及び第2の入力端子にまたがって直列接続された同じような抵抗分圧回路の中心ノードの電圧に追随するように設定するフィードバックループを有している。第2の演算増幅器は、第2の演算増幅器に印加されが基準電圧に従って、第3及び第4のトランジスタの第2の端子にまたがって印加されるオフセット電圧差を設定するフィードバックループを有している。整合した第2のトランジスタ対によってオフセットを印加することによって、そして入力同相電圧の変動を追随するオフセット同相電圧を有するオフセット電圧を供給することによって、本発明は、回路の非線形に起因するオフセットの不要な変動を最低にするようなオフセット差分コンパレータを提供する。
以下に添付図面に基づいて本発明の実施例を詳細に説明する。
【0006】
【発明の実施の形態】
以下に、図1及び2に示す定差分オフセット電圧コンパレータ10からなる半導体集積回路を例として本発明の原理を説明する。コンパレータ10は、高電圧電源端子(電圧源VDD)14と、低電圧電源端子(接地)15との間に並列に接続されている整合した第1及び第2のNMOSトランジスタの差動対を備えている。対11はトランジスタ16を含む。このトランジスタ16のドレインは出力スイッチング副回路17を通してVDD端子14に結合され、ソースは電流源(即ちシンク)19を通して接地端子15に結合され、そしてゲートは第1の入力端子(VIN1 )20から第1の入力電圧信号を受ける。対11は整合した第2のトランジスタ18をも含む。このトランジスタ18のドレインは副回路17を通してVDDに結合され、ソースは同じ電流源19を通して接地され、そしてゲートは第2の入力端子(VIN2 )22から第2の入力電圧信号を受ける。回路10は、トランジスタ16及び18のゲートに等しい電圧が印加された時、等しい電圧をドレインに発生させ、等しい電流を流すように機能する。
出力スイッチング副回路17は、VDDとトランジスタ16、18との間に接続されている。図2に示すように、出力スイッチング副回路17は、出力スイッチングの目的から等しいソース・ドレイン電流通路を与えるために、カレントミラー配列に接続されている2対のPMOSトランジスタと、1対のNMOSとを含むことができる。これらの対はそれぞれ、トランジスタ24と25、26と27、及び28と29からなる。各カレントミラー接続された対の一方のトランジスタ(24、27、28)のドレインは、ダイオードを形成するようにそのゲートに接続されている。PMOSトランジスタ24のソースはVDDに接続され、そのドレイン/ゲートはトランジスタ18のドレインに接続されている。PMOSトランジスタ25のソースはVDDに接続され、そのゲートはトランジスタ24のドレイン/ゲートに接続され、そしてそのドレインは第1段出力ノード30に接続されている。PMOSトランジスタ26のソースはVDDに接続されている。PMOSトランジスタ27のソースはVDDに接続され、そのドレイン/ゲートはトランジスタ26のゲートと、トランジスタ16のドレインとに接続されている。
【0007】
NMOSトランジスタ28のソースは接地され、そのドレイン/ゲートはトランジスタ26のドレインに接続されている。NMOSトランジスタ29のソースは接地され、そのゲートはトランジスタ28のドレイン/ゲートに接続され、そしてそのドレインは第1段出力ノード30に接続されている。整合トランジスタ対11の経路33、34に電流を供給する電流経路31、32を流れる電流が等しい時には、出力スイッチング副回路17の電流経路36、37にも等しい電流が流れる。しかしながら、経路32を流れる電流が経路31を流れる電流と異なる時には、カレントミラー接続されたトランジスタ対28と29、及び24と25は経路37を流れる電流を変化させるように機能する。これは、入力端子(VIN2 )22の電圧が、以下に説明するようにして決定される所与のオフセット量だけ入力端子(VIN1 )20の電圧とは異なる場合に発生する。経路31及び32内の電流の小さい方だけが経路37を流れるように電流の不一致が生じる。経路32内の電流が経路31内の電流を越えると、経路31内の電流が経路37を流れる。この場合、トランジスタ25は三極管領域で動作してトランジスタ25にまたがる抵抗が減少し、一方トランジスタ29は飽和領域で動作するのでノード30には“高”(VDDに近い)電圧が現れる。経路32内の電流が経路31内の電流よりも小さい場合には、経路32の電流が経路37を流れる。この場合には、トランジスタ29が三極管領域で動作してトランジスタ29にまたがる抵抗が減少し、一方トランジスタ25は飽和領域で動作するのでノード30には“低”(接地に近い)電圧が現れる。ノード30の電圧は、1もしくはそれ以上の出力段増幅器23によって増幅され、伝達関数が急峻にされ、そして最終段コンパレータ出力端子(VOUT )35に、対応する飽和した“高”もしくは“低”電圧が生成される。
【0008】
整合したトランジスタ対12は、整合したトランジスタ対11のコンパレータ動作に所望のオフセット電圧を与えるように機能する。整合したトランジスタ対12はNMOSトランジスタ38、39を含んでいる。これらのトランジスタのソースは両者に共通する電流源(即ちシンク)40を通して接地され、それらのドレインはトランジスタ16、18のドレインにそれぞれ結合され、そしてそれらのゲートはオフセット電圧制御副回路43の出力端子41、42にそれぞれ結合されている。電流経路31、32に等しい電流を流すために、整合したトランジスタ対12及びオフセット電圧制御副回路43は、コンパレータの入力端子20、22の一方に付加的な電圧を印加することを要求する。これは、この場合には電流経路31、32は、整合したトランジスタ対11の電流経路33、34に給電するだけではなく、整合したトランジスタ対12の電流経路44、45にも給電しているからである。従って、トランジスタ38、39のゲート間に(従ってノード41、42間に)発生した電圧オフセット差は、経路31、32を流れる電流を等しくするために、入力端子20、22に等しいが逆極性の電圧を印加することを要求するのである。
【0009】
トランジスタの非線形動作に起因して比較及び電圧オフセット印加プロセスに及ぼす不都合な効果を最小にするために、電流源19及び40の電流を整合させる他に、各対11及び12のトランジスタ16と18、及び38と39のトランジスタパラメタ(例えば構造形態(トポグラフィ)の長さ及び幅)を互いに整合させるだけではなく、他方の対のトランジスタとも整合させる。本発明においては、入力端子20、22に印加される同相電圧に追随してオフセット電圧を端子41、42に発生させることによって、これらの不都合な効果をさらに減少させている。
本発明によるオフセット電圧制御副回路43は、ノード20、22の入力同相電圧を広い範囲の入力同相電圧にわたって追随する所定の基準電圧を端子41、42にまたがって供給する。オフセット電圧制御副回路43は、所定の基準電圧に従って設定される値と、入力同相電圧に従って設定される同相電圧とを有する電圧差を、端子41、42にまたがって発生させる手段を備えている。
図2に示すオフセット電圧制御副回路43の実施例は、PMOSトランジスタ49、直列接続されている同一の抵抗51、52、NMOSトランジスタ53、及び抵抗54からなる分圧回路を、一定に維持するように機能する2つの演算増幅器47、48を含んでいる。要素49、51、52、53、及び54はこの順番に、VDDと接地との間に直列に接続されている。
【0010】
抵抗51、52は同じ値の抵抗であり、第1の端はそれぞれオフセット電圧印加端子41、42に接続され、第2の端は共通して中心ノード56に接続されている。演算増幅器47は電圧フォロアとして機能し、ノード56の電圧を入力端子20、22の同相電圧に維持するようにトランジスタ49のスイッチングを制御する。直列接続された同一の抵抗58、59からなる第2の分圧回路の中心ノード60は、入力同相電圧(端子20、22の電圧の平均)を演算増幅器47の反転(“−”)端子への入力として供給するように接続されている。演算増幅器47の非反転(“+”)端子はノード56に接続されている。演算増幅器47の出力はトランジスタ49のゲートに接続されている。このトランジスタ49のソースはVDDに接続され、そしてそのドレインは端子42において抵抗51に接続されている。演算増幅器48は抵抗54にまたがって基準電圧を印加し、それにより電流経路61を流れる電流を一定に維持する電圧フォロアとして機能する。所与の大きさ(例えば 0.5V)の所望基準電圧が、基準電圧端子62から演算増幅器48の非反転(“+”)入力へ印加されている。演算増幅器48の反転(“−”)入力は、ノード64において抵抗54の第1の端(即ち高電圧端)に接続されている。演算増幅器48の出力はトランジスタ53のゲートに接続されている。このトランジスタ53のソースはノード64において抵抗54の第1の端に接続され、またそのドレインはオフセット電圧端子41において抵抗52の第1の端に接続されている。抵抗54の第2の端は接地されている。
【0011】
演算増幅器48は、ノード64の電圧を端子62に印加される基準電圧に等しく維持するように機能するので、経路61には対応する所定の大きさ(例えば、IREF =VREF / 8R)の電流が維持される。この電流は端子41と42との間に直列に接続されている抵抗51、52を通って流れ、これらの抵抗にまたがって対応する電圧差が発生する(ΔVOFFSET=IREF ・2R)。従って、この電圧(ΔVOFFSET)は、抵抗54にまたがって発生する電圧と、抵抗51、52の合計抵抗値を抵抗54の抵抗値で除した比との積に等しくなる。抵抗54の抵抗値が抵抗51及び52の合計抵抗値の4倍になっている図示の例では、端子62に0.5Vの基準電圧を印加すると、端子41、42にまたがって発生するオフセット電圧差は 0.125Vになる〔ΔVOFFSET=VREF ・2R/ 8R=( 0.5 ) ・( 1/4 ) = 0.125〕。
演算増幅器47は、トランジスタ49のソース・ドレイン抵抗を増減するように、そして演算増幅器47の反転(“−”)端子への入力の変動を補償するように機能する。これにより、端子41、42に発生する同相電圧は、入力端子20、22へ印加される同相電圧を追随し続ける。一方、演算増幅器48は、抵抗54にまたがって(即ち、ノード64に)発生する電圧を基準電圧VREF に維持するようにトランジスタ53の実効抵抗を変化させることによって、演算増幅器47が遂行する修正とタンデムに動作する。これによって演算増幅器47、48は、システムの範囲外の入力同相電圧変動に起因する非線形の効果を除去するように機能する。各演算増幅器は他方の演算増幅器とは無関係に調整を行い、端子41、42にまたがる所望のオフセット電圧及び同相電圧と、端子20、22に印加される入力電圧との整合を維持する。演算増幅器48はトランジスタ53を制御して経路61を流れる電流を一定に保ち、演算増幅器47はトランジスタ49を制御してオフセット同相電圧を入力同相電圧と同一に保つ。
【0012】
図3に示すオフセット電圧制御副回路43の代替実施例43’では、直列経路61が2つの並列経路61a及び61bに分割されており、一方の経路が同相設定要素を含み、他方の経路がオフセット電圧差設定要素を含んでいる。2つの経路61a及び61bはトランジスタ66、67のカレントミラー配列によって結合され、経路61b内の抵抗54に基準電圧VREF を発生させる(演算増幅器48によって設定される)電流(IREF =VREF / 8R)と同一の電流が、抵抗51、52にも流れる。これらの抵抗のノード56の同相電圧は経路61a内の演算増幅器47によってセットされる。従ってこの実施例でも、端子41、42にまたがるオフセット電圧差の大きさは、演算増幅器48への入力として基準電圧端子62に印加される基準電圧VREF の値によって決定され、オフセット同相電圧の値は演算増幅器47への入力として分圧回路ノード60に印加される入力同相電圧によって決定される。
以上の実施例についてはMOSFET技術によって説明したが、これらの原理は、他の電界効果トランジスタ技術及びバイポーラトランジスタ技術を含む(これらに限定するものではない)他のトランジスタ及び等価成分技術にも等しく適用できることを理解されたい。“ソース”、“ドレイン”及び“ゲート”は、単に記載したトランジスタの端子を識別する目的で使用したに過ぎない。若干の電界効果トランジスタの“ソース”端子と“ドレイン”端子とは互換可能であり、これらの用語は他の技術の対応素子を適用した場合の“エミッタ”、“コレクタ”、“ベース”、及び“陰極”、“陽極”、“格子”等と同義であることも理解されたい。
【0013】
電流源19、40はどのような適当な形状であっても差し支えないが、図2に示すように固定された入力バイアス電流IBIASに結合された並列のカレントミラーによって実現すると有利である。図示の配列は負の源、即ち“シンク”であって、ソースが接地され、ドレイン及びゲートがIBIASに接続されているダイオード接続されたNMOSトランジスタ72によって確立された第1の電流経路71を有している。各対応経路73、74はそれぞれ、整合したトランジスタ対副回路11及び12を接地に結合する。即ち整合したNMOSトランジスタ76、77のソースはそれぞれ接地され、ゲートはトランジスタ72のゲート・ドレイン接続に接続され、そしてドレインはそれぞれ対をなしたトランジスタ16と18、及び38と39のソースに接続されている。整合したトランジスタ76、77をこのように接続すると同一の電流が電流経路73、74に流れ、VOUT 端子35に現れる出力電圧は、電流経路73、74内の電流がどのように経路33、34、及び44、45に分割されて経路31と32との間に電流差をもたらすかに依存するようになる。
DD、VREF 、接地等は例示に過ぎず、二電源を使用する実施例等も同じように実現可能であることも理解されたい。更に、基準電圧端子62は、外部から印加される基準電圧を受けるための端子として示したが、基準電圧は必ずしも外部から印加する必要はなく、内部で発生させた基準電圧でも十分である。
本発明が関連する分野に精通していれば、以下の実施の態様に記載されている本発明の思想及び範囲から逸脱することなく、上述した実施例に対する更に他の置換及び変更を考案することが可能であろう。
【図面の簡単な説明】
【図1】本発明によるコンパレータ電気回路のブロック線図である。
【図2】図1のコンパレータの実施例の一形状の回路図である。
【図3】図2のコンパレータのオフセット電圧制御副回路成分の代替形状を示す図である。
【符号の説明】
10 コンパレータ
11、12 トランジスタ対
14 高電圧電源端子(VDD
15 低電圧電源端子(接地)
17 出力スイッチング副回路
19 電流源
20、22 入力端子(VIN
35 出力ノード(VOUT
40 電流源
43 オフセット電圧制御副回路
47、48 演算増幅器

Claims (11)

  1. 第1及び第2の入力電圧信号をそれぞれ受ける第1及び第2の入力端子と、
    出力端子と、
    第1及び第2の電源端子と、
    基準電圧信号を受ける基準電圧端子と、
    上記第1の電源端子に結合されている第1の端子と、上記第1の入力端子に結合されている第2の端子と、第3の端子とを有する第1のトランジスタと、上記第1の電源端子に結合されている第1の端子と、上記第2の入力端子に結合されている第2の端子と、第3の端子とを有する第2のトランジスタとからなる第1の対のトランジスタと、
    上記第1及び第2のトランジスタの上記第3の端子と上記第2の電源端子との間に結合されている第1の電流源と、
    上記第1の電源端子に結合されている第1の端子と、第2の端子と、第3の端子とを有する第3のトランジスタと、上記第1の電源端子に結合されている第1の端子と、第2の端子と、第3の端子とを有する第4のトランジスタとからなる第2の対のトランジスタと、
    上記第3及び第4のトランジスタの上記第3の端子と上記第2の電源端子との間に結合されている第2の電流源と、
    上記第1及び第2の入力端子と上記基準電圧端子とに結合され、第1及び第2のオフセット電圧信号をそれぞれ上記第3及び第4のトランジスタの上記第2の端子に印加するオフセット電圧サブ回路であって、上記第1及び第2のオフセット電圧信号が上記基準電圧端子に印加された上記基準電圧信号によって設定される電圧差で印加され、且つ、上記第1及び第2のオフセット電圧信号が上記第1及び第2の入力電圧信号の平均電圧によって設定される平均電圧で印加されるオフセット電圧サブ回路と、
    上記第1及び第2のトランジスタ対と上記出力端子とに結合され、上記第1及び第2のオフセット電圧信号によって決定される大きさだけオフセットした上記第1及び第2の入力電圧信号の相対的な値を表す出力電圧信号を上記出力端子に生成する出力副回路と、
    を備えていることを特徴とするコンパレータ回路。
  2. 上記オフセット電圧副回路は、上記第1及び第2の入力端子に結合されていて第1のノードを有する第1の分圧回路と、上記第3及び第4のトランジスタの上記第2の端子に結合されていて第2のノードを有する第2の分圧回路と、上記第1及び第2のノードに結合されていて上記第2のノードの電圧を上記第1のノードの電圧によって設定せしめる電圧フォロアとを備えている請求項1に記載のコンパレータ回路。
  3. 上記電圧フォロアは演算増幅器を備え、上記演算増幅器の第1の入力端子は上記第1のノードに結合され、第2の入力端子は上記第2のノードに結合されている請求項2に記載のコンパレータ回路。
  4. 上記電圧フォロアはトランジスタをも備え、上記トランジスタの第1の端子は上記第1の電源端子に結合され、第2の端子は上記演算増幅器の出力端子に結合され、そして第3の端子は上記第2の分圧回路に結合されている請求項3に記載のコンパレータ回路。
  5. 上記第2の分圧回路は第1の抵抗と、第2の抵抗とを備え、上記第1の抵抗の第1の端は上記電圧フォロアのトランジスタの上記第3の端子と上記第3及び第4のトランジスタの一方の上記第2の端子とに接続され、上記第1の抵抗の第2の端は上記第2のノードに接続され、上記第2の抵抗の第1の端は上記第2のノードに接続され、上記第2の抵抗の第2の端は上記第3及び第4のトランジスタの他方の上記第2の端子に接続されている請求項4に記載のコンパレータ回路。
  6. 上記オフセット電圧副回路は、上記第3及び第4のトランジスタの上記他方の上記第2の端子と上記第2の電源端子とに結合されている第3の抵抗と、上記基準電圧入力端子と上記第3の抵抗とに結合されていて上記第3の抵抗にまたがって上記基準電圧を印加する回路要素をも備えている請求項5に記載のコンパレータ回路。
  7. 上記第3の抵抗にまたがって上記基準電圧を印加する回路要素は、上記基準電圧端子と上記第3の抵抗の一方の端との間に結合されている第2の電圧フォロアを備えている請求項6に記載のコンパレータ回路。
  8. 上記第2の電圧フォロアは第2の演算増幅器を備え、上記第2の演算増幅器の第1の入力端子は上記基準電圧入力端子に結合され、第2の入力端子は上記第3の抵抗の上記一方の端に結合されている請求項7に記載のコンパレータ回路。
  9. 上記第2の電圧フォロアはトランジスタをも備え、上記トランジスタの第1の端子は上記第2の抵抗の上記第2の端に結合され、第2の端子は上記第2の演算増幅器の出力端子に結合され、そして第3の端子は上記第3の抵抗の上記一方の端に接続されている請求項8に記載のコンパレータ回路。
  10. 上記第1の電流源は、バイアス電圧入力端子と、上記バイアス電圧入力端子と上記第2の電源端子との間に結合されているカレントミラー副回路とを備えている請求項9に記載のコンパレータ回路。
  11. 上記第2の電流源は、上記バイアス電圧入力端子と上記第2の電源端子との間に結合されている第2のカレントミラー副回路とを備えている請求項10に記載のコンパレータ回路。
JP23669295A 1994-09-16 1995-09-14 同相電圧安定度を有するオフセットコンパレータ Expired - Fee Related JP3549302B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/307140 1994-09-16
US08/307,140 US5517134A (en) 1994-09-16 1994-09-16 Offset comparator with common mode voltage stability

Publications (2)

Publication Number Publication Date
JPH08116243A JPH08116243A (ja) 1996-05-07
JP3549302B2 true JP3549302B2 (ja) 2004-08-04

Family

ID=23188414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23669295A Expired - Fee Related JP3549302B2 (ja) 1994-09-16 1995-09-14 同相電圧安定度を有するオフセットコンパレータ

Country Status (2)

Country Link
US (2) US5517134A (ja)
JP (1) JP3549302B2 (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997014210A1 (en) * 1995-10-06 1997-04-17 Philips Electronics N.V. A prescalar circuit
US5812005A (en) * 1996-07-30 1998-09-22 Dallas Semiconductor Corp. Auto zero circuitry and associated method
JP2900995B2 (ja) * 1996-08-19 1999-06-02 日本電気株式会社 電圧加算回路
JP3715066B2 (ja) * 1997-03-25 2005-11-09 三菱電機株式会社 電流モードロジック回路
WO1999012259A2 (en) * 1997-09-05 1999-03-11 Rambus Incorporated Duty cycle correction circuit using two differential amplifiers
DE69914652T2 (de) * 1998-03-27 2004-10-07 Zarlink Semiconductor Ab Jaerf Differentieller Impulsverstärker mit konstantem Tastverhältnis
CA2233527C (en) 1998-03-30 2002-01-22 Mitel Semiconductor Ab Pulse amplifier with low-duty cycle errors
US6034568A (en) * 1998-06-15 2000-03-07 International Business Machines Corporation Broadband dc amplifier technique with very low offset voltage
US6127854A (en) * 1998-07-20 2000-10-03 Philips Electronics North America Corporation Differential comparator with stable switching threshold
CN1159847C (zh) * 1998-12-16 2004-07-28 松下电器产业株式会社 带偏置的比较装置及比较电路
US6826390B1 (en) * 1999-07-14 2004-11-30 Fujitsu Limited Receiver, transceiver circuit, signal transmission method, and signal transmission system
US6459306B1 (en) * 1999-07-22 2002-10-01 Lucent Technologies Inc. Low power differential comparator with stable hysteresis
US6380777B1 (en) * 1999-08-20 2002-04-30 International Business Machinesc Corporation Output driver having controlled slew rate
US6275098B1 (en) * 1999-10-01 2001-08-14 Lsi Logic Corporation Digitally calibrated bandgap reference
US6392448B1 (en) 2000-02-03 2002-05-21 Teradyne, Inc. Common-mode detection circuit with cross-coupled compensation
US6300804B1 (en) 2000-02-09 2001-10-09 Teradyne, Inc. Differential comparator with dispersion reduction circuitry
US6785344B1 (en) * 2000-04-11 2004-08-31 Terawave Communications, Inc. Fast threshold determination for packet-multiplexed digital communication
KR100372633B1 (ko) 2000-07-20 2003-02-17 주식회사 하이닉스반도체 오프셋 전압을 갖는 비교기
US6348882B1 (en) 2000-07-25 2002-02-19 Philips Electronics North America Corporation 5-ary receiver utilizing common mode insensitive differential offset comparator
US6563382B1 (en) * 2000-10-10 2003-05-13 International Business Machines Corporation Linear variable gain amplifiers
JP4567177B2 (ja) * 2000-11-30 2010-10-20 ルネサスエレクトロニクス株式会社 広帯域プリアンプ
US6555934B2 (en) * 2000-12-18 2003-04-29 Ge Medical Systems Global Technology Company, Llc Method and apparatus for control of large-area ground plane potentials
FI113714B (fi) * 2000-12-28 2004-05-31 Ari Paasio Prosessori, piiri ja menetelmä kuvien käsittelemiseksi rinnakkaisprosessoriverkossa
US6433637B1 (en) 2001-03-23 2002-08-13 National Semiconductor Corporation Single cell rail-to-rail input/output operational amplifier
US7298130B2 (en) * 2001-05-17 2007-11-20 Matsushita Electric Industrial Co., Ltd. Signal detector
US6420932B1 (en) 2001-06-29 2002-07-16 Intel Corporation Variable offset amplifier circuit
US6617926B2 (en) * 2001-06-29 2003-09-09 Intel Corporation Tail current node equalization for a variable offset amplifier
GB2381971B (en) * 2001-11-08 2006-01-11 Micron Technology Inc Rail-to-rail CMOS comparator
US6563374B1 (en) 2002-03-15 2003-05-13 Intel Corporation Positive and negative current feedback to vary offset in variable-offset amplifier circuits
US6650184B2 (en) 2002-03-15 2003-11-18 Intel Corporation High gain amplifier circuits and their applications
US6756841B2 (en) 2002-03-15 2004-06-29 Intel Corporation Variable offset amplifier circuits and their applications
US6924696B2 (en) * 2002-07-25 2005-08-02 Honeywell International Inc. Method and apparatus for common-mode level shifting
US7400173B1 (en) 2003-09-19 2008-07-15 Cypress Semicondductor Corp. Differential receiver with wide input common mode range and low duty cycle distortion
FR2861230B1 (fr) * 2003-10-17 2006-01-21 Atmel Grenoble Sa Circuit de comparaison pour convertisseur analogique-numerique
US6965337B1 (en) * 2004-07-26 2005-11-15 Scintera Networks, Inc. Reference generator
US6970124B1 (en) * 2005-02-11 2005-11-29 Analog Devices, Inc. Inherent-offset comparator and converter systems
US7221190B2 (en) * 2005-03-14 2007-05-22 Texas Instruments Incorporated Differential comparator with extended common mode voltage range
TW200847599A (en) * 2007-05-29 2008-12-01 Novatek Microelectronics Corp Voltage regulator and voltage regulating method thereof and voltage producer with voltage regulator disclosed by the present invention
US7595676B2 (en) * 2007-07-23 2009-09-29 Texas Instruments Incorporated Comparator and method with controllable threshold and hysteresis
US7843264B2 (en) * 2008-01-29 2010-11-30 Qualcomm, Incorporated Differential amplifier with accurate input offset voltage
JP4956460B2 (ja) * 2008-02-14 2012-06-20 株式会社リコー 電圧比較回路、その電圧比較回路を有する半導体集積回路及び電子機器
US7576609B1 (en) * 2008-02-21 2009-08-18 Himax Technologies Limited Preamplifier for receiver and method thereof
EP2335352B1 (en) * 2008-09-10 2013-09-04 Nxp B.V. Electronic circuit
US7728632B1 (en) * 2008-09-16 2010-06-01 Integrated Device Technology, Inc. Integrated circuit comparators having improved input resolution and methods of operating same
US7902894B2 (en) * 2009-06-26 2011-03-08 Alpha and Omega Semiconductor Inc. Accurate hysteretic comparator and method
US8248107B2 (en) * 2010-03-11 2012-08-21 Altera Corporation High-speed differential comparator circuitry with accurately adjustable threshold
JP5607963B2 (ja) * 2010-03-19 2014-10-15 スパンション エルエルシー 基準電圧回路および半導体集積回路
IT1403945B1 (it) * 2011-02-17 2013-11-08 St Microelectronics Srl Comparatore di una differenza di tensioni di ingresso con almeno una soglia
JP6603457B2 (ja) * 2015-02-10 2019-11-06 ローム株式会社 差動回路
FR3047806B1 (fr) * 2016-02-15 2019-07-26 L-Acoustics Dispositif de mesure d'un courant electrique genere par un amplificateur acoustique pour actionner une enceinte acoustique
CN106788351B (zh) * 2016-12-23 2020-06-12 长沙景嘉微电子股份有限公司 一种带失调电压测试和校正的轨到轨参考电压比较器
TWI672002B (zh) * 2018-09-17 2019-09-11 創意電子股份有限公司 比較器電路系統
US10594308B1 (en) * 2018-12-31 2020-03-17 Qualcomm Incorporated Digitally assisted control over comparator input common mode

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103190A (en) * 1977-03-25 1978-07-25 Motorola, Inc. Complementary power saving comparator/inverter circuits
NL7801907A (nl) * 1978-02-21 1979-08-23 Philips Nv Detektor.
US4598215A (en) * 1983-11-03 1986-07-01 Motorola, Inc. Wide common mode range analog CMOS voltage comparator
US4602168A (en) * 1984-03-28 1986-07-22 National Semiconductor Corporation Low offset CMOS comparator circuit
US4717838A (en) * 1986-11-14 1988-01-05 National Semiconductor Corporation High input impedance, high gain CMOS strobed comparator
US4847519A (en) * 1987-10-14 1989-07-11 Vtc Incorporated Integrated, high speed, zero hold current and delay compensated charge pump
EP0360884A1 (de) * 1988-09-26 1990-04-04 Siemens Aktiengesellschaft CMOS-Differentialkomparator mit Offsetspannung
IT1225620B (it) * 1988-10-06 1990-11-22 Sgs Thomson Microelectronics Comparatore cmos interamente differenziale a grande risoluzione
US5115151A (en) * 1990-06-08 1992-05-19 Western Digital Corporation Triple comparator circuit
EP0509585A1 (en) * 1991-04-15 1992-10-21 Koninklijke Philips Electronics N.V. Clocked comparator with offset-voltage compensation
US5426386A (en) * 1992-04-21 1995-06-20 Benchmarq Microelectronics, Inc. Low-power semiconductor voltage comparator with hysteresis
US5386207A (en) * 1992-06-23 1995-01-31 Winbond Electronics North America Corporation Comparator with application in data communication
US5369319A (en) * 1992-12-21 1994-11-29 Delco Electronics Corporation Comparator having temperature and process compensated hysteresis characteristic
US5455535A (en) * 1994-03-03 1995-10-03 National Semiconductor Corporation Rail to rail operational amplifier intermediate stage

Also Published As

Publication number Publication date
JPH08116243A (ja) 1996-05-07
US5512848A (en) 1996-04-30
US5517134A (en) 1996-05-14

Similar Documents

Publication Publication Date Title
JP3549302B2 (ja) 同相電圧安定度を有するオフセットコンパレータ
US5726597A (en) Method and circuit for reducing offset voltages for a differential input stage
US9310825B2 (en) Stable voltage reference circuits with compensation for non-negligible input current and methods thereof
KR100781139B1 (ko) 출력 스테이지 및 증폭기 제어 루프
KR100324452B1 (ko) 조절된캐스코드이득증대를위한궤환증폭기
US20050127889A1 (en) Reference power supply circuit for semiconductor device
US6064267A (en) Current mirror utilizing amplifier to match operating voltages of input and output transconductance devices
US5475343A (en) Class AB complementary output stage
US5847556A (en) Precision current source
US6891433B2 (en) Low voltage high gain amplifier circuits
US5793194A (en) Bias circuit having process variation compensation and power supply variation compensation
US6362682B2 (en) Common-mode feedback circuit and method
US4628280A (en) Amplifier arrangement
US6124754A (en) Temperature compensated current and voltage reference circuit
US5457426A (en) Operational amplifier for low supply voltage applications
US6657496B2 (en) Amplifier circuit with regenerative biasing
US6480069B2 (en) Active load circuit, and operational amplifier and comparator having the same
US6965270B1 (en) Regulated cascode amplifier with controlled saturation
JPH02123822A (ja) 論理回路とその制御方法
US8884604B2 (en) Adaptive feedback cascode
US6031424A (en) Differential amplifier with improved voltage gain using operational amplifiers to eliminate diode voltage drops
KR100270581B1 (ko) 바이어스 안정화 회로
US6885220B2 (en) Current source circuit
US7015683B1 (en) JFET switch select circuit
KR20020002951A (ko) 기준전압 발생기

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees