JP3547812B2 - 粒子ビーム装置及びそれを用いた医療装置 - Google Patents

粒子ビーム装置及びそれを用いた医療装置 Download PDF

Info

Publication number
JP3547812B2
JP3547812B2 JP26378394A JP26378394A JP3547812B2 JP 3547812 B2 JP3547812 B2 JP 3547812B2 JP 26378394 A JP26378394 A JP 26378394A JP 26378394 A JP26378394 A JP 26378394A JP 3547812 B2 JP3547812 B2 JP 3547812B2
Authority
JP
Japan
Prior art keywords
particle beam
electromagnet
control system
particle
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26378394A
Other languages
English (en)
Other versions
JPH08117351A (ja
Inventor
和夫 平本
義文 北條
淳一 廣田
政嗣 西
広明 桜畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26378394A priority Critical patent/JP3547812B2/ja
Publication of JPH08117351A publication Critical patent/JPH08117351A/ja
Application granted granted Critical
Publication of JP3547812B2 publication Critical patent/JP3547812B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、荷電粒子ビームを目標に向けて輸送・照射するための粒子ビーム装置およびそれを用いた医療装置および粒子ビーム照射方法に関するものである。
【0002】
【従来の技術】
従来一般に採用されている荷電粒子ビーム装置を用いた医療装置は、図2にも示されているように、荷電粒子ビーム制御系を介して照射目標に照射するようにしている。すなわち加速器101で高エネルギーまで加速された荷電粒子ビームを各治療室103へ輸送し、治療室103内で治療,すなわち患者の患部に照射するようにしている。
【0003】
この場合の加速器101は、シンクロトロンで、前段加速器160からのビームを入射器150を使ってこのシンクロトロンへ入射し、シンクロトロンでは、偏向電磁石3および4極電磁石5,7、それに加速空洞8を使って粒子ビームを周回させるとともに、高エネルギーまで加速する。
【0004】
そして加速された粒子ビームは、治療室103へ輸送されるわけであるが、この輸送過程で真空ダクトに衝突しないように、4極電磁石104により粒子ビーム径を小さく抑えるとともに偏向電磁石105により粒子ビームが適切なコースを通るように調整される。
【0005】
図3には、この輸送された粒子ビームを患者に照射する照射装置が示されている。この装置は、最上流部に偏向電磁石11を備え、この偏向電磁石11を出た粒子ビームは、散乱体42の作用により、x方向、y方向(図中の方向記号参照)にそれぞれ広げられると同時に粒子ビームの粒子分布が平坦化される。なお、散乱体42より下の部分には、エネルギー調整器45が配置されている。
【0006】
粒子の分布が平坦化された粒子ビームは、さらにコリメーター43により粒子ビームの広がりおよびその形状が適切に調整され、その後患者44に照射されるように形成されている。なお、このような技術に関連するものとしては、原子力工業第32巻第3号(1986)第33頁「重粒子線治療装置」などが挙げられる。
【0007】
【発明が解決しようとする課題】
このように形成されている従来の粒子ビーム装置では、照射位置において、散乱体により粒子ビームを十分広げるとともに粒子数分布を平坦化させるために、散乱体から照射位置まで十分な距離が必要であり、この距離を確保するために粒子ビーム装置が大型化し、さらに粒子ビームを広げるために散乱体が使用されていることからビーム損失が大きい嫌いがあった。
【0008】
本発明はこれに鑑みなされたもので、その目的とするところは、小型にして粒子ビームが十分に広げられ、かつその粒子分布が充分に平坦化される荷電粒子ビーム装置およびそれを用いた医療装置を提供するにある。
【0009】
さらに本発明のもう一つの目的は、小型にして粒子ビーム損失を充分低減することが可能な荷電粒子ビーム装置およびそれを用いた医療装置を提供するにある。
【0010】
【課題を解決するための手段】
すなわち本発明は、荷電粒子ビームを、粒子ビーム制御系を介して目標の所定範囲に照射するように形成されている粒子ビーム装置において、前記粒子ビーム制御系の上流側に、粒子ビームを扁平状に拡大成形する粒子ビーム拡大手段と、該粒子ビーム拡大手段により扁平状に拡大された粒子ビームをその扁平面に直角方向に移動させる粒子ビーム移動手段とを設けるようになし所期の目的を達成するようにしたものである。
【0011】
【作用】
すなわちこのように形成された粒子ビーム装置であると、粒子ビーム制御系の上流側に粒子ビームを扁平状に拡大成形する粒子ビーム拡大手段装置が設けられていることから、粒子ビーム制御系の粒子ビームサイズは進行方向距離の増加とともに増加はするものの、扁平状,すなわちシート状をなしており、粒子ビーム制御系の偏向電磁石なども扁平な形状となり全体的に薄型のものとなり、またこの扁平状に拡大された粒子ビームが、粒子ビーム移動手段によりその扁平面に直角方向に移動させられるので、その照射範囲を充分覆うことが可能であり、したがって小型にして十分に拡大された粒子ビームの照射範囲とすることができるのである。
【0012】
【実施例】
以下図示した実施例に基づいて本発明を詳細に説明する。図1には、その粒子ビーム装置を用いた医療装置の例が示されている。図中20が照射目標(患者)で10がプロトンを輸送する粒子ビームダクトである。加速器でエネルギーおよそ250MeVまで加速されたプロトンは、粒子ビームダクト10内を流通し、収束4極電磁石13の前側,すなわち図中Aで示す箇所に到達する。
【0013】
この収束4極電磁石13の前側から照射目標20に至るまでの間には、収束4極電磁石13、発散4極電磁石14、粒子数分布平坦化用8極電磁石21、偏向電磁石11、さらに、粒子ビーム移動用の2極電磁石23などの粒子ビーム制御系が設置されている。
【0014】
収束4極電磁石13、発散4極電磁石14、粒子数分布平坦化用8極電磁石21、偏向電磁石11、さらに、粒子ビーム移動用の2極電磁石23は、それぞれ電源装置202、203、204、205、206に接続され、各電源装置は、制御装置201で制御される。この制御装置201は、照射範囲・形状設定装置200の出力信号に基づき、必要な範囲を正しくビームを照射できるように前記電源装置を制御する。
【0015】
前記4極電磁石(13、14)は、粒子ビームの収束、発散を行うように内部に電磁石を備えており、そのxy面内の磁極構造が図6に示されている。収束用4極電磁石13および発散用4極電磁石14の磁極構造は、いずれもこのようにコイルCを有する磁極PがS極N極交互に配置された構造になっているが、収束用4極電磁石13の場合には、磁極1と磁極3がS極、磁極2と磁極4がN極になるようにコイルに電流が流され、また発散用4極電磁石14の場合には、この逆の極性となるように電流が流される。
【0016】
前記収束用4極電磁石13は、磁石中心からx方向変位が大きくなるとx方向変位に比例した力で粒子ビームの軌道勾配を変えて、粒子ビームに収束する作用を与え、y方向についてはy方向変位に比例した力で発散する作用を与える。一方、発散用4極電磁石14の場合は、前記収束用4極電磁石13と反対の作用を粒子ビームに与える。
【0017】
この結果、プロトン粒子ビームは、発散用4極電磁石14と収束用4極電磁石13の強度を適切に選ぶ事により、偏向電磁石11の偏向面に垂直に収束作用を受け、また、前記の偏向面に平行に発散作用を受け、照射目標に近づくにつれ偏向面に平行方向に広がり、また偏向面に垂直方向には収束していく。
【0018】
図1に戻り、プロトン粒子ビームは8極電磁石21を通過することにより、照射目標20の位置で、偏向面内の粒子数分布が平坦化される。すなわち8極電磁石21はその磁極断面が図7に示されているように、磁極1がN極で磁極2がS極で磁極8まで同様の極性が繰り返され形成されている。8極電磁石では、y方向変位の3乘に比例した力で軌道勾配を変化させる。
【0019】
この軌道勾配の変化量が変位に比例する場合は、粒子ビームの粒子数分布の形状は相似形であるが、軌道勾配の変化量と変位との関係を非線形にすると、変位の大きな粒子の軌道勾配をより大きく変化させて、粒子ビームの粒子数分布の形状を変化させることができるようになる。この効果を用いて、8極電磁石21の磁石強度を適切に選択することにより、照射目標の位置で偏向面の粒子数分布を平坦化するのである。
【0020】
プロトン粒子ビームは8極電磁石21の作用を受けたあと、偏向電磁石11でx面内の軌道が曲げられる。偏向電磁石11で軌道を曲げるのに必要な電流は、偏向電磁石11のy方向のギャップサイズに比例するため、偏向電磁石のギャップはできるだけ小さく抑える事が望ましい。本発明では、収束用4極電磁石13と発散用4極電磁石14の作用により、y方向の粒子ビームサイズは小さく抑えたままでx方向の粒子ビームサイズを拡大するため、偏向電磁石11のギャップは小さく抑えられる。
【0021】
偏向電磁石11の作用を受けた後、プロトン粒子ビームは、2極電磁石23でy方向に移動させられる。2極電磁石23による作用と照射目標上での粒子ビームの様子が概念的に図4に示されている。2極電磁石の磁場強度を変化させることにより、プロトン粒子ビームは、図中y方向に移動する。なお、この場合2極電磁石を作用させる前に照射目標20の上で、x方向には広く、かつ平坦(扁平)な粒子ビームを得ることができており、2極電磁石23により、y方向に粒子ビームを移動させることにより、2次元的に広がりのある目標を照射できる。
【0022】
このビーム移動用の2極電磁石23には、図8に示されているように、大きさ、極性が正弦波状に変化する電流iが加えられ、これにより簡単に粒子ビームを移動させることができる。粒子ビームのy方向の移動範囲は、2極電磁石23の電流の大きさにより決まり、移動速さは2極電磁石23の電流の変化速さにより決まる。
【0023】
また、x方向の粒子ビームサイズ、平坦化度は、発散用4極電磁石14、収束用4極電磁石13、さらに粒子数分布平坦化用8極電磁石21の強度で決まるため、これらの強度についても、照射目標の大きさにより適切に選択する。
【0024】
すなわち照射範囲・形状設定装置200に入力する患者の患部情報に基づきこの装置200で自動的に算出し、これに基づき必要な範囲を照射できるように制御装置201では4極電磁石13、14の電源(202、203)の強度を設定するとともに、制御装置201でビームの強度分布を平坦化するための8極電磁石204の電流を求め、8極電磁石204を制御する。さらに、ビーム移動用の2極電磁石23についても、患部の情報を照射範囲・形状設定装置200から得て、必要な範囲を照射できる電流値を制御装置201で算出し、電源装置206を制御する。
【0025】
上記の実施例では、照射目標上の概ね長方形状の領域を照射する。複雑な形状を照射する場合については、最終的にコリメーターで粒子ビーム形状を整形するか、粒子ビームサイズ拡大手段である4極電磁石14の電源装置203とビーム平坦手段8極電磁石21の電源装置204とビーム移動用電磁石23の電源装置206を連係制御して、必要な形状を照射する。
【0026】
また、上記の実施例は、2極電磁石により、粒子ビームをy方向に移動させたが、粒子ビームのy方向位置は一定にしておき、照射目標をy方向に移動させても全く同様の作用を持たせることができる。
【0027】
次に、本発明の動作および作用について図を用いてもうすこし詳しく説明すると、図5は、加速器から出射した粒子ビームを輸送し目標に照射するための本発明の装置の概要を示す図である。この図のz軸は、粒子ビームの進行方向に沿って変化する軸とし、x、y軸はz軸に垂直であるとする。
【0028】
加速器から出射した粒子ビームは、粒子ビームダクト10内を通過して、偏向電磁石11により曲げられ目標12に照射される。この時、手段の第1で述べたように、粒子ビーム装置の上流側に粒子ビームサイズ拡大装置50を設け、偏向面内の粒子ビームサイズを進行方向距離の増加とともに増加させ、照射点では、偏向面に沿ったシート状にする。この時の粒子ビーム形状を図4に示す。
【0029】
図4のz=0は、照射目標上の面を示し、x方向、即ち、偏向面に沿った方向の粒子ビームサイズは、y方向、即ち、偏向面に垂直方向の粒子ビームサイズより大きい。ここで、最下流の偏向面内の粒子ビームサイズを増加させているが、偏向面に垂直方向の粒子ビームサイズを増加させた場合、粒子ビームを失うことなく輸送するためには、偏向電磁石のギャップを増加させる必要があり、その結果、電磁石のサイズや必要な電流が増加する等の問題が生じる。
【0030】
従って、偏向面に垂直方向の粒子ビームサイズの増加は最小限に留める。この粒子ビーム拡大には、具体的には、発散用4極電磁石を使用する。4極電磁石は、電磁石中心からの変位に比例した力で軌道勾配を変化させる。発散用4極電磁石は、偏向電磁石11の偏向面に一致する面内で粒子ビームを発散させる作用を持ち、偏向面内に垂直な面内で収束させる作用を持つ。
【0031】
次に、図5の装置15により粒子ビームを図2のy方向に移動させる、即ち、偏向電磁石の偏向面に垂直に移動させるか、あるいは、図5の照射目標12をy方向に移動させる。
【0032】
ここで、偏向面に垂直に、粒子ビームの移動もしくは照射目標の移動をするのは、前述のように、電磁石の小型化、低コスト化のために、偏向面に垂直方向には、粒子ビームサイズを小さく抑えておくことが必要だからである。前者の粒子ビームの移動は、電磁石で行ない、電磁石に流す電流の大きさを変化させて移動量、移動速さを制御する。
【0033】
以上のように粒子ビームの長軸方向に垂直、即ち、最下流の偏向面に垂直に、粒子ビームを移動させるか照射目標を移動させるかにより、広がりのある目標を照射することができる。即ち、照射範囲は、粒子ビームあるいは照射目標の移動距離と移動方向に垂直の粒子ビームサイズにより決まる。
【0034】
従って、粒子ビームの長軸方向のサイズを増加させておけば、長軸方向に垂直方向のみの移動により、広がりのある目標を照射できる。広い範囲を照射するためには、粒子ビームサイズは、およそ10mm以上にしておくことが必要である。いろいろなサイズの目標を照射する場合については、粒子ビームサイズ拡大手段、即ち、図5の粒子ビーム拡大装置50と粒子ビーム移動装置15を調整することにより、照射範囲を調整する。
【0035】
粒子分布については、粒子数分布平坦化装置16を、図5に示すように、輸送系の上流側に設ける。この装置16により、図2のx方向、即ち、粒子ビームの偏向面内の粒子数分布を平坦化させる。この粒子数分布平坦化装置16には、8極以上の多極電磁石を用いる。
【0036】
多極電磁石を用いた粒子数分布平坦化装置、例えば8極電磁石では、粒子ビーム中心からの距離の3乘に比例した力で軌道勾配を変えることができ、粒子ビーム中心からの距離が大きい粒子を中心部に集めることができ、粒子数分布を平坦化できる。さらに多極の電磁石を使用した場合にも同様の効果を持たせることができ、粒子数分布を平坦化できる。
【0037】
次に本発明の第2の実施例を図9に基づき説明する。本実施例では、ビーム拡大用に発散用4極電磁石14を使用し、また、粒子数分布平坦化用に12極電磁石24を使用する。12極電磁石では、y方向の変位の5乘に比例した力で軌道勾配を変化させる。したがって、実施例1と同様に粒子数分布を平坦化させることができる。
【0038】
これらにより、図9のy方向に粒子ビームを広げると同時にy方向の粒子数分布を平坦化する。さらに、2極電磁石23を用いて粒子ビームをx方向に移動させ、目標20を照射する。また、これらの電磁石の電源装置203、204、205は、照射範囲設定装置200からの情報に基づき、制御装置201で制御する。
【0039】
次に本発明の第3の実施例について説明する。図2と同様にシンクロトロン101でプロトン粒子ビームを加速し、出射器31からプロトン粒子ビームを輸送、治療室103へ出射する。出射器31から出射される粒子ビームは、患者の患部状況に応じて、粒子ビームエネルギーを変化させる。治療室103内の輸送・照射装置を図10に示す。輸送・照射装置は、図に示されているように患者の患部位置に応じて、回転軸RCの周りを回転できるようになっている。
【0040】
シンクロトロンから出射された粒子ビームは、偏向電磁石33で軌道を曲げられ、その後、粒子ビーム収束用4極電磁石13、発散用4極電磁石14で最終粒子ビーム偏向電磁石11の偏向面内の粒子ビームサイズを拡大させる。ただし、実施例1と同様に、偏向面に垂直方向の粒子ビームサイズは小さく抑えておく。また、偏向面内の粒子数分布は、粒子数分布平坦化用8極電磁石21により、平坦化する。その後、偏向電磁石22で軌道を曲げたあと、2極電磁石23により、偏向面に垂直方向に粒子ビームを移動させる。
【0041】
したがって、前述した実施例1と同様に照射範囲・形状設定装置200で自動的に算出し、これに基づき必要な範囲を照射できるように制御装置201で4極電磁石13、14の電源(202、203)の強度を設定する。制御装置201でビームの強度分布を平坦化するための8極電磁石の電流を求め、8極電磁石の電源を制御する。さらに、ビーム移動用の電磁石23についても、必要な範囲を照射できる電流値を制御装置201で算出し電源装置206を制御する。なお、患部の状況によっては、シンクロトロンからは、異なるエネルギーのビームを出射する。
【0042】
粒子ビームのエネルギーを変える場合についても収束用4極電磁石13、発散用4極電磁石14、偏向電磁石33、偏向電磁石22、2極電磁石23が同様の効果を持つように制御装置201で必要な電磁石の電流を求め、電源装置202、203、204、205、206を制御する。
【0043】
また、上記の実施例では、加速器にシンクロトロンを使用しているが、加速器をサイクロトロンにした場合でも図10の粒子ビーム装置をそのまま使用することができる。
【0044】
【発明の効果】
以上説明してきたように本発明によれば、粒子ビーム制御系の上流側に粒子ビームを扁平状に拡大成形する粒子ビーム拡大手段装置が設けられていることから、粒子ビームは扁平状をなしており、粒子ビーム制御系の偏向電磁石なども扁平な形状となり全体的に薄型のものとなり、またこの扁平状に拡大された粒子ビームが、粒子ビーム移動手段によりその扁平面に直角方向に移動するように形成されているので、その照射範囲を充分覆うことが可能であり、したがって小型にして十分に拡大された粒子ビームの照射範囲のこの種粒子ビーム装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の医療装置の一実施例を示す線図である。
【図2】本発明の医療装置の一実施例を示す線図である。
【図3】従来の粒子ビーム装置を示す縦断側面図である。
【図4】本発明の粒子ビーム形状と粒子ビーム移動の関連を示す図である。
【図5】本発明の医療装置の一実施例を示す線図である。
【図6】4極電磁石の断面図である。
【図7】8極電磁石の断面図である。
【図8】粒子ビーム移動用電磁石の電流の時間変化を示す図である。
【図9】本発明の医療装置の他の実施例を示す線図である。
【図10】本発明の医療装置の他の実施例を示す線図である。
【符号の説明】
10…粒子ビームダクト、101…荷電粒子加速器、105…偏向電磁石、103…治療室、104…4極電磁石、160…前段加速器、150…入射器、5,7,40…4極電磁石、8…加速空洞、42…散乱体、103…治療室103、15…粒子ビーム移動装置、50…粒子ビームサイズ拡大装置、16…粒子数分布平坦化装置、3,11,22,33,41…偏向電磁石、12,20…照射目標、23…粒子ビーム移動用2極電磁石、13…収束4極電磁石、14…発散4極電磁石、21…8極電磁石、24…12極電磁石24、30…シンクロトロン、31…出射器、32…照射装置。

Claims (7)

  1. 荷電粒子ビームを、粒子ビーム制御系を介して目標物の所定範囲に照射するようになした粒子ビーム装置において、
    前記粒子ビーム制御系の中の上流側に配置される電磁石装置であって、その磁石中心からの変位に比例した力で軌道勾配を変化して前記粒子ビームを偏向面に一致する面内で拡大させる電磁石装置と
    前記電磁石装置により扁平状に拡大された粒子ビームをその扁平面に直角方向に移動させる粒子ビーム移動手段とを備えていることを特徴とする粒子ビーム装置。
  2. 荷電粒子ビームを、粒子ビーム制御系を介して目標物の所定範囲に照射するようになした粒子ビーム装置において、
    前記粒子ビーム制御系の中の上流側に配置される電磁石装置であって、その磁石中心からの変位に比例した力で軌道勾配を変化して前記粒子ビームを偏向面に一致する面内で拡大させる電磁石装置を設け、
    かつ前記照射される目標物が乗置されている台が、前記扁平状をなした粒子ビームの扁平面に直角方向に移動するように形成されていることを特徴とする粒子ビーム装置。
  3. 荷電粒子ビームを、粒子ビーム制御系を介して目標物の所定範囲に照射するようになした粒子ビーム装置において、
    前記粒子ビーム制御系の中の上流側に配置される電磁石装置であって、その磁石中心からの変位に比例した力で軌道勾配を変化して前記粒子ビームを偏向面に一致する面内で拡大させる電磁石装置を設け、
    かつ前記電磁石装置の下流部に、扁平状に拡大された粒子ビームの粒子数分布を平坦化する粒子分布平坦化装置を設けるとともに、前記粒子ビーム制御系の最下流部に、前記扁平状の粒子ビームをその扁平面に直角方向に移動させる粒子ビーム移動用電磁装置を設けるようにしたことを特徴とする粒子ビーム装置。
  4. 加速された荷電粒子ビームを、粒子ビーム制御系を介して患者の所定範囲照射するようになした医療装置において、
    前記粒子ビーム制御系の中の上流側に配置される電磁石装置であって、その磁石中心からの変位に比例した力で軌道勾配を変化して前記粒子ビームを偏向面に一致する面内で拡大させる電磁石装置を設け、
    かつ前記電磁石装置の下流部に、扁平状に拡大された粒子ビームの粒子数分布を平坦化する粒子分布平坦化装置を設けるとともに、前記粒子ビーム輸送系の最下流部に、前記扁平状の粒子ビームをその扁平面に直角方向に移動させる粒子ビーム移動用電磁装置を設けるようにしたことを特徴とする医療装置。
  5. 加速された荷電粒子ビームを、粒子ビーム制御系を介して患者の所定範囲照射するようになした医療装置において、
    前記粒子ビーム制御系の中の上流側に配置される電磁石装置であって、その磁石中心からの変位に比例した力で軌道勾配を変化して前記粒子ビームを偏向面に一致する面内で拡大させる電磁石装置を設けるとともに、その下流部に、扁平状に拡大された粒子ビームの粒子数分布を平坦化する粒子分布平坦化装置を設け、かつ前記患者が乗せられている台を、前記扁平状をなした粒子ビームの扁平面に直角方向に移動するように形成したことを特徴とする医療装置。
  6. 荷電粒子ビームを、粒子ビーム制御系を介して目標物の所定範囲に照射するようになした粒子ビーム装置において、
    前記粒子ビーム制御系は偏向電磁石と発散4極電磁石を含み、前記発散4極電磁石は前 記偏向電磁石の上流側に配置され、前記発散4極電磁石の中心からの変位に比例した力で軌道勾配を変化して前記粒子ビームを偏向面に一致する面内で拡大させることを特徴とする粒子ビーム装置。
  7. 請求項6において、前記偏向電磁石の下流側に、前記拡大された粒子ビームをその扁平面に直角方向に移動させる粒子ビーム移動手段を備えていることを特徴とする粒子ビーム装置。
JP26378394A 1994-10-27 1994-10-27 粒子ビーム装置及びそれを用いた医療装置 Expired - Fee Related JP3547812B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26378394A JP3547812B2 (ja) 1994-10-27 1994-10-27 粒子ビーム装置及びそれを用いた医療装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26378394A JP3547812B2 (ja) 1994-10-27 1994-10-27 粒子ビーム装置及びそれを用いた医療装置

Publications (2)

Publication Number Publication Date
JPH08117351A JPH08117351A (ja) 1996-05-14
JP3547812B2 true JP3547812B2 (ja) 2004-07-28

Family

ID=17394211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26378394A Expired - Fee Related JP3547812B2 (ja) 1994-10-27 1994-10-27 粒子ビーム装置及びそれを用いた医療装置

Country Status (1)

Country Link
JP (1) JP3547812B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2841790A1 (fr) * 2002-07-02 2004-01-09 Commissariat Energie Atomique Dispositif d'irradiation d'une cible par un faisceau de hadrons charges, application a la hadrontherapie
JP5409521B2 (ja) * 2010-06-01 2014-02-05 株式会社日立製作所 粒子線治療装置

Also Published As

Publication number Publication date
JPH08117351A (ja) 1996-05-14

Similar Documents

Publication Publication Date Title
KR100226381B1 (ko) 자기이온빔 스캐닝 및 침착 시스템
US4736106A (en) Method and apparatus for uniform charged particle irradiation of a surface
JP3702885B2 (ja) 粒子線照射装置及び照射野形成装置の調整方法
JP3577201B2 (ja) 荷電粒子線照射装置、荷電粒子線回転照射装置、および荷電粒子線照射方法
JPH10233299A (ja) 荷電粒子ビームエキスパンダー
JP2596292B2 (ja) 円形加速器及びその運転方法並びに医療システム
JPH0440680B2 (ja)
JPH10118204A (ja) 荷電粒子ビーム装置およびその運転方法
WO2006134677A1 (ja) 照射野形成装置
JP2833602B2 (ja) 荷電粒子出射方法および荷電粒子出射装置
TW200807478A (en) Apparatus and method for ion beam implantation using ribbon and spot beams
WO2015029178A1 (ja) 粒子線治療システム
JPH08257148A (ja) 回転ガントリ
JPH10127792A (ja) 荷電粒子ビーム装置
JP3423675B2 (ja) 荷電粒子線照射装置、及び、これを用いた治療装置
JP3547812B2 (ja) 粒子ビーム装置及びそれを用いた医療装置
CN114501767B (zh) 一种激光加速质子束流均匀化方法及装置
JP2000202047A (ja) 荷電粒子ビ―ム照射方法及び装置
JP3857096B2 (ja) 荷電粒子ビームの出射装置及び円形加速器並びに円形加速器システム
JP2007175540A (ja) 粒子線照射装置の制御システム及びその制御方法
US11058894B2 (en) Particle beam therapy device and irradiation field forming method
JPH09265000A (ja) 荷電粒子ビーム輸送系
JP3052957B2 (ja) 荷電粒子ビーム出射方法及び円形加速器
JPH11176599A (ja) 荷電粒子照射装置
JP3964769B2 (ja) 医療用荷電粒子照射装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

LAPS Cancellation because of no payment of annual fees