JP3546644B2 - 不揮発性半導体記憶装置 - Google Patents
不揮発性半導体記憶装置 Download PDFInfo
- Publication number
- JP3546644B2 JP3546644B2 JP13896597A JP13896597A JP3546644B2 JP 3546644 B2 JP3546644 B2 JP 3546644B2 JP 13896597 A JP13896597 A JP 13896597A JP 13896597 A JP13896597 A JP 13896597A JP 3546644 B2 JP3546644 B2 JP 3546644B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- thickness
- tunnel
- memory device
- top oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 32
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 23
- 230000015572 biosynthetic process Effects 0.000 claims description 20
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 230000005641 tunneling Effects 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 6
- 239000000969 carrier Substances 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims description 5
- 230000005684 electric field Effects 0.000 description 22
- 230000014759 maintenance of location Effects 0.000 description 15
- 102100037807 GATOR complex protein MIOS Human genes 0.000 description 13
- 101000950705 Homo sapiens GATOR complex protein MIOS Proteins 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000003949 trap density measurement Methods 0.000 description 2
- LZIAMMQBHJIZAG-UHFFFAOYSA-N 2-[di(propan-2-yl)amino]ethyl carbamimidothioate Chemical compound CC(C)N(C(C)C)CCSC(N)=N LZIAMMQBHJIZAG-UHFFFAOYSA-N 0.000 description 1
- 229910003818 SiH2Cl2 Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Images
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Description
【発明の属する技術分野】
本発明は、不揮発性記憶装置に関し、特に半導体基板や、半導体基板表面に形成されたウェル等のチャネル形成領域上に、トンネル膜、絶縁膜、ゲート電極を下層から順に積層してなる不揮発性記憶装置に関する。
【0002】
【従来の技術】
MNOS(Metal−Nitride−Oxide Semiconductor) 型やMONOS(Metal−Oxide−Nitride−Oxide Semiconductor) 型の不揮発性記憶装置(以下、MIOS型ともいう)は、ゲート電極が単層であり、ゲート電極が2層構造であるフローティングゲート(以下、FGと記す)型の不揮発性記憶装置と比較して単純な素子構造を有している。
図11には、MONOS型の不揮発性記憶装置の断面図を示す。この図に示すように、MONOS型の不揮発性記憶装置6は、半導体基板11のチャネル形成領域11a上に、酸化シリコン膜または酸化窒化膜などからなるトンネル膜12、窒化シリコン膜13aとその上層の酸化シリコン膜13bとからなる絶縁膜13、ゲート電極14を下層から順に積層した構造になっている。本発明で「チャネル形成領域」とは、その表面側内部に、電子または正孔が導電するチャネルが形成される領域をいい、たとえば、半導体基板そのものの表面部分、半導体基板表面に形成されたウェルの表面部分等、各種の形態が存在する。
【0003】
上記MONOS型の不揮発性記憶装置におけるトンネル膜12は、その膜厚が記憶素子としての諸特性を決定する意味で重要であり、例えば一例を挙げるならば、Cheng Wang著「Hot Carrier Design Consideration for MOS Devices and Circuits 」p.219では、上記トンネル膜12の膜厚がT=1.5nm〜2.0nm程度の範囲内に設定されている。これは、上記絶縁膜13が窒化シリコン膜13aの単層からなるMNOS型の不揮発性記憶装置でも同様である。
そして、上記トンネル膜12の膜厚は、FG型の不揮発性記憶装置におけるトンネル酸化膜の膜厚と比較して、1/5程度の薄さである。
【0004】
また、これらMIOS型の不揮発性記憶装置は、上記のようにトンネル膜12が薄いため、FG型の不揮発性記憶装置と比較して低電圧での電荷注入が可能であり、書き込み特性に優れている。
【0005】
【発明が解決しようとする課題】
しかし、上記MIOS型の不揮発性記憶装置は、FG型の不揮発性記憶装置と比較してデータの保持特性が劣るものであった。一般に、FG型の不揮発性記憶装置におけるデータ保持の保証期間は、125℃で10年である。これに対して、MIOS型の不揮発性記憶装置におけるデータ保持の保証期間は、85℃で10年である。
【0006】
また、上記MIOS型の不揮発性記憶装置では、上述のように低電圧での書き込み特性が優れている反面、リードディスターブ、すなわち、読み出し時の低いゲート電圧で絶縁膜に電荷が蓄積され、これによって誤書き込みが発生するという問題があった。このため、各記憶素子ごとに選択トランジスタを個別に設けた2トランジスタ構成にすることによって、上記リードディスターブによる誤書き込みの発生を防止してきた。したがって、従来のMIOS型の不揮発性記憶装置は、各記憶素子ごとに選択トランジスタを設ける必要のないFG型の不揮発性記憶装置との比較において、セル面積が1.5倍以上にもなっていた。
【0007】
本発明は、かかる実情に鑑みてなされ、データ保持特性およびリードディスターブ耐性を向上させた不揮発性半導体記憶装置を提供することを目的とする。また、本発明の目的は、リードディスターブ耐性を向上させることにより、望ましくは更に記憶素子をエンハンスメント形とすることにより、選択トランジスタを設けない、いわゆる1トランジスタセル構成を実現することにある。
【0008】
【課題を解決するための手段】
前記した従来技術の問題点を解決し、上記目的を達成するために、本発明にかかる不揮発性半導体記憶装置は、メモリセルが1つのトランジスタから構成され、当該トランジスタが、半導体のチャネル形成領域上に、トンネル膜、窒化膜、トップ酸化膜、ゲート電極を下層から順に積層してなる不揮発性半導体記憶装置であって、前記トンネル膜が2.2nm以上で3.5nm以下の膜厚を有し、前記トップ酸化膜が4nmより薄い膜厚を有し、前記チャネル形成領域側から電荷をダイレクトトンネリングさせることにより、前記メモリセルにデータの書き込みを行う。
【0009】
上記不揮発性半導体記憶装置では、チャネル形成領域中の電荷がトンネル膜をダイレクトトンネリングする範囲に当該トンネル膜の膜厚が設定されていることから、従来と同様なModified F−N(Fowler-Nordheim)Tunnelingのメカニズムによって上記絶縁膜に電荷が注入される。また、トンネル膜の膜厚が2.2nm以上で3.5nm以下と従来のMIOS型不揮発性記憶装置と比較して厚いため、このトンネル膜がバリアになって絶縁膜に注入された電荷が半導体基板中にリークし難くなり、データ保持特性が向上する。これとともに、読み出しの際の低いゲート電圧では絶縁膜に電荷が注入されにくくなる。
また、トップ酸化膜を従来の4nmより薄くしていることから、トンネル膜を厚くしたことにより書き込み電圧の増加が抑制され、また、トンネル膜側とトップ酸化膜側の電界強度が近づくように最適化される。
【0010】
また、上記不揮発性記憶装置において、上記絶縁膜は化学量論比であるSi3 N4 (Si:N=3:4)よりもシリコンの含有比が多いことを特徴とする。
【0011】
上記のようなシリコンの含有比が多い窒化シリコンで絶縁膜を構成することによって、当該絶縁膜における電荷のトラップ密度が増加し、当該絶縁膜の導電性が高くなる。このため、ゲート電極に電圧を印加した際には、トンネル膜に対しより強い電界がかかるようになり、トンネル膜を従来より厚くすることによる書き込み/消去時の印加電圧の上昇を低く抑えることができる。
【0012】
本発明にかかる他の不揮発性半導体記憶装置は、メモリセルが1つのトランジスタから構成され、当該トランジスタが、半導体のチャネル形成領域上に、トンネル膜、窒化膜、トップ酸化膜、ゲート電極を下層から順に積層してなる不揮発性半導体記憶装置であって、前記トンネル膜が2.2nm以上で3.5nm以下の膜厚を有し、前記トップ酸化膜の膜厚は、そのトップ酸化膜を通過するキャリアの遷移量が前記トンネル膜を通過するキャリアの遷移量とほぼ等しいか多くなる膜厚に設定され、前記チャネル形成領域側から電荷をダイレクトトンネリングさせることにより、前記メモリセルにデータの書き込みを行う。
好ましくは、前記トップ酸化膜は、前記トンネル膜の膜厚より薄い膜厚に設定されている。
【0013】
上述したように、トンネル膜を厚くすると読み出しの際の低いゲート電圧では絶縁膜に電荷が注入され難くなる。これに加えて、トップ酸化膜を薄くすると、データ読み出し時の消去側のトンネル膜と書き込み側のトップ酸化膜とにかかる電界強度を均衡する方向に膜厚が調整され、リードディスターブが起こり難くなる。すなわち、注入された電荷が厚いトップ酸化膜でブロッキングされるようなことがなくなり、特に消去側のしきい値電圧上昇が抑えられ、読み出し時の誤書き込みが防止される。
これらの構成により、リードディスターブが改善されるので、読み出し時に選択トランジスタが不要となり、いわゆる1トランジスタセルが実現可能となる。さらに、トンネル膜を規定の値(3.4nm)以上に厚くすると、記憶素子についてエンハンスメント形の範囲で書き込み、消去動作が可能となり、1トランジスタセル構成に有利となる。
【0014】
【発明の実施の形態】
以下、本発明の不揮発性記憶装置の実施の形態を説明する。
ここでは、MIOS型の不揮発性記憶装置の一つであるMONOS型の不揮発性記憶装置を例に、本発明の実施形態を説明する。
【0015】
第1実施形態
図1は、MONOS型の不揮発性記憶装置の断面図である。図1に示すように、この不揮発性記憶装置1と、従来のMONOS型の不揮発性記憶装置とが異なるところは、半導体基板の一部をなすチャネル形成領域11a上のトンネル膜12の膜厚Tにある。なお、先に記述したチャネル形成領域の定義から明らかなように、チャネル形成領域11aはウェルまたはエピタキシャル成長層やSOIの半導体層等に形成される場合もあり得る。
【0016】
従来のMIOS型の不揮発性記憶装置では、上記トンネル酸化膜の膜厚が通常、1.5〜2.0nmに設定されていたのに対して、この不揮発性記憶装置1のトンネル膜12の膜厚Tは、チャネル形成領域11a中の電荷が当該トンネル膜12をダイレクトにトンネリングする範囲でかつ2.2nm以上に設定されている。具体的な一例としては、トンネル膜12は、これに10MV/cmの電界がかけられる条件下において、2.2nm〜3.5nmの範囲に設定され、好ましくは、例えば動作電圧の印加範囲でエンハンスメント形でのみ動作を可能にする膜厚に設定されている。エンハンスメント形のみでの動作を可能とするためには、トンネル膜12を3.4nm以上の膜厚とすることが望ましい。
なお、上記トンネル膜12は、熱酸化法、酸窒化法またはCVD法等によってチャネル形成領域11aの表面に生成した酸化シリコンや酸化窒化シリコンからなる。
【0017】
上記構成の不揮発性記憶装置1では、トンネル膜12の膜厚Tが、半導体基板11中の電荷が当該トンネル膜12をダイレクトにトンネリングする範囲に設定されていることから、書き込みの際に絶縁膜13には従来と同様のメカニズム、すなわち Modified F−N Tunnelingによって電荷が注入される。したがって、書き込み特性を従来と同様に維持できるとともに、従来と同様にトンネル膜12にダメージを及ぼすことなく書き込みを行うことができる。
【0018】
また、上記トンネル膜12の膜厚Tは、2.2nm以上と従来のMIOS型の不揮発性記憶装置と比較して厚いため、このトンネル膜12がバリアになって絶縁膜に注入された電荷が半導体基板11中にリークしにくくなる。
図2には、トンネル膜12の膜厚Tに対する不揮発性記憶装置1のデータ保持特性のグラフを示す。このグラフに示すように、トンネル膜12の膜厚Tが2.2nm以上の範囲では、データの保持時間はトンネル膜12の膜厚Tに依存して上昇することがわかる。このため、上述のように、トンネル膜12の膜厚Tが2.2nm以上に設定された不揮発性記憶装置1では、従来のトンネル酸化膜の膜厚が1.5〜2.0nmに設定されたMIOS型の不揮発性記憶装置よりもデータ保持特性が良好なものになる。
【0019】
また、上述のようにトンネル膜12の膜厚Tを厚くしたことによって、読み出しの際の低いゲート電圧では絶縁膜に電荷が注入されにくくなり、ディスターブによる誤書き込みが生じにくくなる。
これとともに、絶縁膜13中にホールが注入されにくくなることから、消去特性がデプレッションになりずらいメモリ特性が得られる。図3は、MONOS型の不揮発性記憶装置のヒステリシス特性をトンネル膜の膜厚ごとに示したグラフである。ただし、この測定時の不揮発性記憶装置は、窒化シリコン膜13aがアンモニアガスとジクロロシランガスとを22sccm:40sccmの流量に設定して14nmの膜厚で成膜され、トップ酸化膜13bが4.0nmの膜厚を有するものである。また、しきい値電圧Vthの測定は、プログラム電圧Vppの印加時間を1秒に設定して行っている。
【0020】
このグラフに示すように、消去側のしきい値電圧は、トンネル膜12の膜厚Tを厚くすると+側、すなわちエンハンスメント形の動作範囲にシフトしていく。そして、上記設定の不揮発性記憶装置におけるトンネル膜12の膜厚Tについて、図3の実験値を内挿して求めた3.4nm以上の範囲では、エンハンスメント側、すなわちしきい値電圧Vthがプラスになる範囲のみでのプログラム制御が可能になることが読み取れる。
【0021】
以上のことから、エンハンスメント形のみでの動作が可能になり、デプレッション形での動作を防止するための制御回路を設ける必要がなくなる。これとともに、各記憶素子ごとに選択トランジスタを個別に設けた回路構成にする必要はなく、NOR型、NAND型、DINOR型のような回路を構成することが可能になる。本発明では、1トランジスタセル構成と呼ぶことにする。1トランジスタセル構成では、選択トランジスタがないぶん従来よりもセル面積を縮小化することができる。
【0022】
また、絶縁膜13中にホールが注入されにくくなることから、トンネル膜12、窒化シリコン膜13aの劣化が防止され、書き込み消去の繰り返し特性が向上する。
【0023】
また、上記実施形態のMONOS型の不揮発性記憶装置1において、電荷の蓄積部になる絶縁膜13を構成する窒化シリコン膜13aを、化学量論比であるSi3 N4 (Si:N=3:4)よりもシリコンの含有比を多くしてもよい。
【0024】
このような構成にした場合、絶縁膜13における電荷のトラップ密度が増加して、絶縁膜13の導電性が向上する。このため、ゲートに印加した際にトンネル膜12により高い電界がかかるようになり、動作電圧を低電圧化することが可能になる。また、蓄積電荷量が多くなり、エンハンスメント形のみでの動作が、より容易になる。
【0025】
図4は、動作電圧として6Vの低電圧を印加した場合におけるMONOS型の不揮発性記憶装置の電圧印加時間に対するしきい値電圧Vthを、上記窒化シリコン膜からなる絶縁膜の成膜条件ごとに示すグラフである。図4(a)は書き込み、図4(b)は消去の場合である。
各絶縁膜13は、LP−CVD(Low−Pressure Chemical Vapor Deposition) 法によって成膜されたものであり、成膜の際の反応ガス(アンモニアガスNH3 とジクロロシランSiH2 Cl2 :DCS)の流量比を変化させている。この際、ジクロロシランの流量をほぼ一定にしてアンモニアガスの流量を変化させている。
なお、成膜時の基板温度は680℃に設定した。また、測定を行った不揮発性記憶装置においては、トンネル膜12は2.2nmの膜厚に設定され、トップ酸化膜13bの膜厚は4nmに設定されたものである。
【0026】
上記図中におけるグラフ▲1▼は、化学量論比であるSi3 N4 (Si:N=3:4)よりもシリコンの含有比が多い窒化シリコンが生成される反応ガスの流量比(NH3 :DCS=20:20)で窒化シリコン膜13aを成膜してなる不揮発性記憶装置に関するものである。また、グラフ▲2▼は、化学量論比であるSi3 N4 が生成される反応ガスの流量比(NH3 :DCS=150:22)で窒化シリコン膜13aを成膜してなる不揮発性記憶装置に関するものである。さらに、グラフ▲3▼は、化学量論比であるSi3 N4 よりも窒素の含有比が多い窒化シリコンが生成される反応ガスの流量比(NH3 :DCS=660:33)で窒化シリコン膜13aを成膜してなる不揮発性記憶装置に関するものである。
【0027】
これらのグラフ▲1▼〜▲3▼に示すように、書き込み動作においては、シリコンの含有比が多いほど、より短時間の電圧印加でしきい値電圧Vthが上昇し、消去動作においてはシリコンの含有比が多いほど、より短時間でしきい値電圧Vthが降下する。しかも、シリコンの含有比の増加にともない、急激なしきい値電圧Vthの増加がみられる。このことから、絶縁膜13を構成する窒化シリコン膜13aにおけるシリコンの含有比を化学量論比よりも多くすることで、より低電圧での動作が可能になることがわかる。
【0028】
また、上記のように動作電圧が低電圧化されることから、書き込み消去の際に用いるプログラム回路のトランジスタを、高耐圧トランジスタとして形成する必要がなくなる。このため、例えば読み出しの際に用いる論理回路のトランジスタと、上記プログラム回路のトランジスタとを同一工程で形成することが可能になる。これにともなって、工程削減ができ、同時にフォトマスクの枚数削減が可能となる。一例を挙げると、ゲートエッチング,しきい値電圧Vth調整用のイオン注入,ドレイン耐圧を上げるためのS/D形成用イオン注入に用いる各マスク等を減らすことができる。
【0029】
上記実施形態では、本発明をMONOS型の不揮発性記憶装置1に適用した場合を例にとって説明を行った。しかし、本発明は、図5に示すようなMNOS型の不揮発性記憶装置5にも適用可能であり、この場合も上記実施形態のMONOS型の不揮発性記憶装置1と同様に、チャネル形成領域11aと絶縁膜13との間のトンネル膜12の膜厚Tを設定することとする。
【0030】
第2実施形態
本実施形態は、第1実施形態でトンネル膜12を従来より厚くすることに対応して、トップ酸化膜13bを薄くし、リードディスターブ耐性を向上させたMONOS型の不揮発性記憶装置に関する。
図1に示すMONOS型の不揮発性記憶装置1は、絶縁膜13の厚みをMNOS型より薄くでき、プログラム電圧Vppを最小にしている。本実施形態では、プログラム電圧Vppを最小に保つために、必要な書き込み時のしきい値電圧Vthが得られる範囲内で、トンネル膜12とトップ酸化膜13bの膜厚の和を余り変化させずに、両者の膜厚を最適化する。
【0031】
以下では、トップ酸化膜13bが4nm程度と比較的に厚い従来に近い場合と、逆に薄い(ここでは、0nm)場合の問題点をそれぞれ指摘した後、トップ酸化膜13bをトンネル膜12に対し最適化する。
【0032】
図6は、トップ酸化膜が4nm程度と比較的に厚いときのリードディスターブ耐性を示すグラフである。ここでのトンネル膜12は、その膜厚が2.3nmと図2のデータ保持時間が上昇し始める変曲点付近である。電気的なストレス条件としては、ソースおよびドレインをGNDにし、ゲート電圧Vg を0V〜5Vまで変化させている。また、RTN(Rapid Thermal Nitrization) を行っており、条件的には厳しいものとなっている。この条件下、図6は、書き込み状態および消去状態のしきい値電圧Vthの変化を、ストレス印加時間の経過でプロットしたものである。
Vg =0Vがデータ保持時間の測定時(図2)と同じ条件であり、書き込み側で既に劣化が始まっている。また、実際の使われかたでは、電源電圧が3Vの場合はVg =2〜3V程度であり、このときの劣化はみられない。しかし、より差を明確にするためにVg =5Vとすると、消去側のしきい値電圧Vthが大幅に上昇し、リードディスターブ耐性が劣化していることがわかる。
【0033】
この消去側のしきい値電圧Vthの上昇は、トンネル膜12の膜厚に対して、トップ酸化膜13bが厚いことに起因する。すなわち、トンネル膜12が2.3nmと未だ薄くトップ酸化膜13bが4nmと厚すぎると、トンネル膜12にかかる電界が、蓄積されている正孔(ホール)の電荷量分だけトップ側よりきつくなる。消去時に、溜まっている電荷がホールの場合のしきい値電圧Vthが上昇するメカニズムは、まず蓄積されているホールがチャネル形成領域11aに抜けるが、厚いトップ酸化膜13b側からはホールが注入されにくい一方で基板側へは抜けやすく、膜中のホールの蓄積量が減少する結果、しきい値電圧Vthが上昇する。前記のように、トンネル膜12にかかる電界がトップ酸化膜13bにかかる電界より大きいと、このホールの放出が効率よく行われ、図6に示したようにリードディスターブ特性が早く劣化する。
【0034】
書き込み側の溜まっている電荷が電子の場合にも同様で、トンネル膜12にかかる電界は消去時にトンネル膜12にかかる電界より小さいが、蓄積電子は厚いトップ酸化膜13bにブロックされて抜けにくい一方で、膜厚が薄くてしかも電界がきついトンネル膜12を介して基板側から電子が効率よく注入される。この結果、絶縁膜13中の電子の蓄積量が増大し、しきい値電圧Vthが上昇する。
【0035】
先に説明した図3は、トンネル膜厚が異なるものを同一グラフにプロットしたヒステリシス特性であった。これに対し、図7には、トップ酸化膜厚を変化させたときのヒステリシス特性を示す。この測定時のトンネル膜12は3.0nmとやや厚く、トップ酸化膜13bを6.5nmから0nmまで変化させている。しきい値電圧Vthの測定は、図3と同様、プログラム電圧Vppの印加時間を1秒に設定して行っている。
このグラフからは、トップ酸化膜13bの膜厚を薄くすると、図3とは逆に書き込み時のヒステリシスカーブが下方シフトし、書き込み/消去でしきい値電圧差がとれなくなることがわかる。ただし、実用上、しきい値電圧差は、例えば0.5〜2Vは必要であることから、この図7からはトップ酸化膜13bを全く無くすとメモリ特性上問題であることがわかる。また、実用上のしきい値電圧差0.5〜2Vを確保するためには、トップ酸化膜13bの膜厚が従来の4nmより薄くてもよいことがわかり、しかも、その時のプログラム電圧Vppは同じしきい値電圧差を得るためには低下できることがわかる。なお、MNOS型の不揮発性記憶装置の場合は、窒化シリコン膜を更に厚くしてトップ酸化膜がなくてもメモリ特性がとれる構造としている。
【0036】
このトップ酸化膜13bの薄膜化に伴うプログラム時の最大しきい値電圧差の低下というメモリ特性の劣化は、トップ酸化膜13bが薄すぎるとトップ側にかかる電界がきつくなり、プログラム電圧Vppの上昇にともなって注入された電子がトップ側から抜けていくことから起こる。
また、リードディスターブ特性の点からは、トップ酸化膜13bの薄膜化によりトップ側の電界がきつくなると、トンネル膜12側の電界は緩和されて消去側のリードディスターブマージンは向上するが、今度は、この書き込み側のしきい値電圧Vthの低下によって、書き込み側のリードディスターブ特性は低下する。次の図8および図9でこの点を示す。
【0037】
図8および図9は、トンネル膜厚に対してトップ酸化膜厚が最適に近いときのリードディスターブ耐性を示すグラフである。ここで、図8は書き込み側、図9は消去側を示す。この測定時のトンネル膜12は3.03nmとやや厚くしている。この膜厚増加に応じて、トップ酸化膜13bを従来の4nmより薄く、さらにトンネル膜12よりも薄い2.64nmにしている。この両方の膜厚の和は、図6の場合よりやや薄いもののさほど大きくは変化させていないため、書き込み電圧の増加は起きていない。また、ストレス条件等は、図6の場合と同様である。
Vg =5Vで図6と比較すると、書き込み側のしきい値電圧Vthが低下傾向にある一方で、消去側のしきい値電圧Vth上昇が大幅に改善されている。また、トンネル膜12を図6の場合よりも厚くしたこと、及び書き込み側のしきい値電圧Vthを図6の場合よりも、実用的なしきい値電圧が得られる範囲で低くしたことによって、書き込み側のデータ保持(Vg =0V)が良くなっている。
【0038】
図10は、データ保持時と読み出し状態のエネルギーバンドを、書き込み側と消去側で対比させて模式的に示す説明図である。なお、ここでは便宜上、消去側の電荷を電子として説明する。
トンネル膜厚に対するトップ酸化膜の最適化は、図10の読み出し状態のエネルギーバンドに示すように、書き込み側のトップ酸化膜13bにかかる電界強度と消去側のトンネル膜12にかかる電界強度とを均衡させるように行なう。両者の電界強度を等しくするのが好ましいが、より電界強度を近づける方向であればゲートディスターブマージンがそれだけ大きくなる効果が得られる。
【0039】
このときの消去側は、トンネル膜12を厚くしたことによって、従来より電界が緩和され障壁電位の高さと膜厚できまるトンネリング効果が低下し、消去側の読み出し時の基板から窒化シリコン膜13aへの電子の注入量が抑制され、ディスターブが改善される。このとき、トップ酸化膜13bの膜厚を、電界がよりきついトンネル膜12より薄く設定すると、注入された電荷量とほぼ等しい量の電荷をゲート電極側に消失させることができる。
また、書き込み側は、トップ酸化膜13bを4nmより薄くしたことによって、従来より電界がきつくなり、電子がゲート電極側に多少抜けていく。図8のVg =5Vでの低下傾向は、この蓄積電荷がゲート電極側に抜けることを反映したものである。このしきい値電圧の低下と、ゲート電圧0Vでのデータ保持時の低下の何れか低くなった方の特性でデバイスの寿命が決まる。このため、書き込み値でのゲート電圧0Vでの特性と、実使用時のゲート電圧3V程度での特性劣化が一致するまで、トップ酸化膜13bは薄膜化できることとなる。
また、トンネル膜12とトップ酸化膜13bの膜厚合計を従来と余り変えないことで、プログラム電圧Vppの上昇は最小限に抑えられている。
【0040】
【発明の効果】
以上説明したように、本発明の不揮発性記憶装置によれば、MIOS型の不揮発性記憶装置においてトンネル膜を2.2nm以上で3.5nm以下の膜厚に設定し、かつ、トップ酸化膜を4nmより薄い膜厚にし、あるいは、トップ酸化膜の膜厚を、そのトップ酸化膜を通過するキャリアの遷移量がトンネル膜を通過するキャリアの遷移量とほぼ等しいか多くなる膜厚に設定して、チャネル形成領域側から電荷をダイレクトトンネリングさせることで、従来のMIOS型の不揮発性記憶装置よりもデータの保持特性が向上する。これとともに、読み出しの際の低いゲート電圧では絶縁膜に電荷が注入されにくくなることから、ディスターブの発生を抑えることができ、回路を単一トランジスタ構成にすることが可能になる。したがって、セル面積の縮小化を図ることができる。また、従来のModified F−N Tunnelingのメカニズムにより、書き込み特性の劣化を少なくできる。さらにホールの注入が抑えられるため、書き込み消去の繰り返し特性の向上が図られる。
【0041】
また、上記不揮発性記憶装置において、化学量論比であるSi3 N4 (Si:N=3:4)よりもシリコンの含有比が多い窒化シリコン膜を絶縁膜に用いた場合には、絶縁膜の導電性の向上を図ることが可能になり、動作電圧を低電圧化することができる。
【0042】
トンネル膜を厚くすることに対応して、トップ酸化膜を従来の4nmより薄くすると、両方の膜にかかる電界を均衡させることができ、特に消去側のしきい値電圧の上昇を抑え、リードディスターブに強いデバイスとすることができ、また、プログラム電圧を低下させることができる。このとき、トップ酸化膜は、ヒステリシス特性(しきい値電圧の変化幅)が十分に確保できる範囲で、かつ、書き込み側のゲート電圧0Vでのしきい値の低下と使用電圧をゲートに印加した際のしきい値の低下とが一致する範囲で薄膜化できる。
【0043】
以上より、データ保持特性およびリードディスターブ耐性を向上させた不揮発性半導体記憶装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかるMONOS型不揮発性記憶装置の概略断面図である。
【図2】トンネル膜の膜厚に対するデータの保持時間を示すグラフである。
【図3】トンネル膜厚を変えてプロットしたヒステリシスを示すグラフである。
【図4】窒化シリコン膜の組成を変えてプロットした電圧印加時間としきい値電圧との関係を示す図である。
【図5】本発明が適用可能な他の形態の不揮発性記憶装置(MNOS型)の概略断面図である。
【図6】トップ酸化膜が4nmと厚い場合のリードディスターブ耐性を示すグラフである。
【図7】トップ酸化膜厚を変えてプロットしたヒステリシスを示すグラフである。
【図8】トンネル膜厚に対してトップ酸化膜厚が最適に近いときの書き込み側のリードディスターブ耐性を示すグラフである。
【図9】トンネル膜厚に対してトップ酸化膜厚が最適に近いときの消去側のリードディスターブ耐性を示すグラフである。
【図10】データ保持時と読み出し状態のエネルギーバンドを、書き込み側と消去側で対比させて示す図である。
【図11】従来のMONOS型の不揮発性記憶装置の概略断面図である。
【符号の説明】
1,5…不揮発性記憶装置、11…半導体基板、11a…チャネル形成領域、12…トンネル膜、13…絶縁膜、13a…窒化シリコン膜(窒化膜)、13b…トップ酸化膜、14…ゲート電極、T…トンネル膜の膜厚。
Claims (5)
- メモリセルが1つのトランジスタから構成され、当該トランジスタが、半導体のチャネル形成領域上に、トンネル膜、窒化膜、トップ酸化膜、ゲート電極を下層から順に積層してなる不揮発性半導体記憶装置であって、
前記トンネル膜が2.2nm以上で3.5nm以下の膜厚を有し、
前記トップ酸化膜が4nmより薄い膜厚を有し、
前記チャネル形成領域側から電荷をダイレクトトンネリングさせることにより、前記メモリセルにデータの書き込みを行う
不揮発性半導体記憶装置。 - 前記絶縁膜は窒化シリコンからなり、当該窒化シリコンは、化学量論比であるSi3N4(Si:N=3:4)よりもシリコンの含有比が多い
請求項1に記載の不揮発性半導体記憶装置。 - 前記トンネル膜は、その膜厚が3.4nm以上である
請求項1に記載の不揮発性半導体記憶装置。 - メモリセルが1つのトランジスタから構成され、当該トランジスタが、半導体のチャネル形成領域上に、トンネル膜、窒化膜、トップ酸化膜、ゲート電極を下層から順に積層してなる不揮発性半導体記憶装置であって、
前記トンネル膜が2.2nm以上で3.5nm以下の膜厚を有し、
前記トップ酸化膜の膜厚は、そのトップ酸化膜を通過するキャリアの遷移量が前記トンネル膜を通過するキャリアの遷移量とほぼ等しいか多くなる膜厚に設定され、
前記チャネル形成領域側から電荷をダイレクトトンネリングさせることにより、前記メモリセルにデータの書き込みを行う
不揮発性半導体記憶装置。 - 前記トップ酸化膜は、前記トンネル膜の膜厚より薄い膜厚に設定されている
請求項3に記載の不揮発性半導体記憶装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13896597A JP3546644B2 (ja) | 1996-06-04 | 1997-05-28 | 不揮発性半導体記憶装置 |
US08/985,278 US6518617B1 (en) | 1996-12-31 | 1997-12-04 | Nonvolatile semiconductor memory device |
EP97403194A EP0851509A3 (en) | 1996-12-31 | 1997-12-31 | Nonvolatile semiconductor memory device |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14126896 | 1996-06-04 | ||
JP8-141268 | 1996-12-31 | ||
JP35756296 | 1996-12-31 | ||
JP8-357562 | 1996-12-31 | ||
JP13896597A JP3546644B2 (ja) | 1996-06-04 | 1997-05-28 | 不揮発性半導体記憶装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10247694A JPH10247694A (ja) | 1998-09-14 |
JP3546644B2 true JP3546644B2 (ja) | 2004-07-28 |
Family
ID=27317776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13896597A Expired - Fee Related JP3546644B2 (ja) | 1996-06-04 | 1997-05-28 | 不揮発性半導体記憶装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3546644B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4198903B2 (ja) * | 2001-08-31 | 2008-12-17 | 株式会社東芝 | 半導体記憶装置 |
JP4329293B2 (ja) * | 2002-01-10 | 2009-09-09 | ソニー株式会社 | 不揮発性半導体メモリ装置および電荷注入方法 |
-
1997
- 1997-05-28 JP JP13896597A patent/JP3546644B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10247694A (ja) | 1998-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8481388B2 (en) | Non-volatile memory device having a nitride-oxide dielectric layer | |
US7576386B2 (en) | Non-volatile memory semiconductor device having an oxide-nitride-oxide (ONO) top dielectric layer | |
US6717860B1 (en) | Method of erasing non-volatile semiconductor memory device and such non-volatile semiconductor memory device | |
US6084262A (en) | Etox cell programmed by band-to-band tunneling induced substrate hot electron and read by gate induced drain leakage current | |
US20040070020A1 (en) | Nonvolatile semiconductor memory device and method for operating the same | |
JP2005537662A (ja) | 高誘電率の上部誘電体を有する誘電体蓄積メモリセル(monos)およびそのための方法 | |
US7483308B2 (en) | Programming and erasing method for charge-trapping memory devices | |
JP5178318B2 (ja) | 高速消去式電荷捕捉メモリーセル | |
JP2008277530A (ja) | 不揮発性半導体記憶装置 | |
GB2207553A (en) | Nonvolatile semiconductor memory | |
US7773430B2 (en) | Method of identifying logical information in a programming and erasing cell by on-side reading scheme | |
US20050141266A1 (en) | Semiconductor device | |
US6288943B1 (en) | Method for programming and reading 2-bit p-channel ETOX-cells with non-connecting HSG islands as floating gate | |
JPWO2007064048A1 (ja) | 半導体記憶装置、その駆動方法およびその製造方法 | |
TWI473253B (zh) | 具有連續電荷儲存介電堆疊的非揮發記憶陣列 | |
US7130221B1 (en) | Dual gate multi-bit semiconductor memory | |
US20070087503A1 (en) | Improving NROM device characteristics using adjusted gate work function | |
US6518617B1 (en) | Nonvolatile semiconductor memory device | |
JP3546644B2 (ja) | 不揮発性半導体記憶装置 | |
JP2006523908A (ja) | セルごとに複数のデータ状態を記録するデュアルセルメモリデバイスをプログラミングする方法 | |
JP2000223598A (ja) | 不揮発性メモリ素子 | |
US6240015B1 (en) | Method for reading 2-bit ETOX cells using gate induced drain leakage current | |
JP2006196643A (ja) | 不揮発性半導体記憶装置 | |
US7737487B2 (en) | Nonvolatile memories with tunnel dielectric with chlorine | |
KR101149572B1 (ko) | 스태거 터널 배리어를 가지는 비휘발성 메모리 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040405 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |