JP3544019B2 - 光学顕微鏡及び光学顕微鏡の深度測定方法 - Google Patents

光学顕微鏡及び光学顕微鏡の深度測定方法 Download PDF

Info

Publication number
JP3544019B2
JP3544019B2 JP32941294A JP32941294A JP3544019B2 JP 3544019 B2 JP3544019 B2 JP 3544019B2 JP 32941294 A JP32941294 A JP 32941294A JP 32941294 A JP32941294 A JP 32941294A JP 3544019 B2 JP3544019 B2 JP 3544019B2
Authority
JP
Japan
Prior art keywords
sample
light
image sensor
sample stage
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32941294A
Other languages
English (en)
Other versions
JPH08160306A (ja
Inventor
陽一 岡本
智之 三木
武 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18221126&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3544019(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP32941294A priority Critical patent/JP3544019B2/ja
Publication of JPH08160306A publication Critical patent/JPH08160306A/ja
Application granted granted Critical
Publication of JP3544019B2 publication Critical patent/JP3544019B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Description

【0001】
【産業上の利用分野】
本発明は試料の深度の測定機能を備えた光学顕微鏡及びそれを用いた深度測定方法に関するものである。
【0002】
【従来の技術】
従来より、試料(被写体)の外観を観察するための観察用光学系と、レーザ光の反射光の強度を測定して、試料の深度に関する情報を検出する共焦点光学系とを備えた光学顕微鏡が知られている(たとえば、特開平1−123102号、同−277812号公報参照)。この種の顕微鏡は、試料の拡大像だけでなく、試料の深度も含めた三次元的なデータが得られ、半導体集積回路のような微細な構造を知る上で有用である。
【0003】
【発明が解決しようとする課題】
しかし、三次元的なデータを得るには、レーザ光ないし試料を二次元的(平面的)に走査し、一方、試料ステージをZ軸方向(深さ方向)に移動させる必要がある。したがって、3軸方向への駆動装置が必要になるばかりでなく、3軸方向の走査、駆動について同期を制御する必要があるので、機械的、電気的構造が複雑になる。その結果、顕微鏡が高価になるのは避けられない。
【0004】
本発明は上記従来の課題に鑑みてなされたもので、その目的は、試料の外観を観察することができると共に、深度に関する情報が得られ、かつ、比較的安価な光学顕微鏡を提供することである。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明の光学顕微鏡は、レーザ光を出射するレーザ光源と、上記レーザ光を試料付近に集光するための対物レンズと、共焦点位置に配置され、上記試料でのレーザ反射光を受光するための一次元イメージセンサと、上記試料でのレーザ光の集光位置を上記一次元イメージセンサの長手方向に対応する方向にのみ一次元的に走査するために、レーザ光を偏向する偏向手段と、上記試料を載置するための試料ステージを深さ方向にのみ上記偏向手段と同期して駆動するように制御するステージ制御手段と、上記試料ステージの深さ方向の情報とそれに対応する上記一次元イメージセンサの各素子での受光量の情報に基づいた各素子についての受光量のピーク位置を記憶することで、当該ピーク位置に基づく深度の情報を記憶する記憶部と、上記深度の情報から試料の断面の情報を求める演算手段と、上記試料に光を照射するための上記レーザ光源とは異なる観察用光源と、上記観察用光源からの上記試料での反射光を上記対物レンズを介して受光する撮像装置とを有することを特徴とする。
上記光学顕微鏡は、上記撮像装置で撮像された画像に、上記断面の情報を重ね合わせた画像信号を出力することを特徴とする。
さらに、上記撮像装置からの画像信号を記憶するフレームメモリと、このフレームメモリの画像信号または上記撮像装置からの出力を選択的に切り換えてモニタに出力するセレクタとを備えたことを特徴とする。
さらにまた、試料を載置した試料ステージをオートフォーカスモードにおいて上下動させ、上記一次元イメージセンサからの出力を取り込んで受光光量が最大となったときの試料ステージの高さを選択するオートフォーカス装置を備えたことを特徴とする。
さらにまた、本発明の光学顕微鏡の深度測定方法は、レーザ光により試料を 1 次元的に走査し、一次元イメージセンサにおいて受光した試料からレーザ反射光の受光量及び上記試料が載置された試料ステージの深さ方向の位置を記憶部に記憶する第1ステップと、上記試料ステージを一段階深さ方向に上昇または下降させる第2ステップと、レーザ光により試料表面を 1 次元的に走査し、一次元イメージセンサにおいて受光した受光量が上記記憶部に記憶された受光量よりも大きい場合に、上記記憶部に記憶された受光量と深さ方向の位置を書き換える第3ステップと、上記試料ステージが第2ステップにおいて上昇された場合には、上記試料ステージが上昇端になるまで上記第2ステップでの上昇と上記第3ステップを繰り返し、上記試料ステージが第2ステップにおいて下降された場合には、上記試料ステージが下降端になるまで上記第2ステップの下降と上記第3ステップを繰り返す第4ステップと、上記記憶部に記憶された深さ方向の位置の情報を断面情報として撮像装置で撮像された試料の画像と重ね合わせて出力する第5ステップとを有することを特徴とする。
【0006】
【作用】
本発明によれば、観察用光学系により試料の外観を観察することができると共に、共焦点光学系により試料の深度に関する情報が得られる。
ここで、本発明は一次元イメージセンサの長手方向に対応する方向にのみ試料への集光位置を一次元的に走査する。したがって、深度については、試料の一つの断面についてのみの情報しか得られない。しかし、半導体集積回路などにおいては、微細な溝に直交する方向についての断面情報が得られれば十分である場合があり、したがって、本発明の顕微鏡は有用である。その一方で、試料への集光位置を一次元的に走査するので、二次元的な走査を行う顕微鏡に比べ、機械的および電気的な構造が簡単になる。
【0007】
【実施例】
以下、本発明の実施例を図面にしたがって説明する。
図1ないし図4は、本発明の第1実施例を示す。
図1において、光学顕微鏡は、共焦点光学系1と観察用光学系2とを備えている。
【0008】
まず、共焦点光学系1について説明する。
共焦点光学系1は、試料wの深度(深さ,膜厚)に関する情報を検出するもので、たとえば赤色のレーザ光L1を出射するHe−Neレーザ10を光源としている。このレーザ10の光軸上には、ビームエキスパンダ11、ガルバノミラー(偏向手段)12およびfθレンズ13が設けられている。レーザ光L1はfθレンズ13により点光源となり、この点光源となったレーザ光L1の光軸上には、ビームスプリッタ14、1/4波長板15、第1のハーフミラー16、結像レンズ17および対物レンズ18が、順次配設されている。上記対物レンズ18は、レボルバ71(図7)により切換が可能で、複数種類の倍率を選択できるようになっている。
【0009】
対物レンズ18の焦点位置の付近には、試料ステージ30が配設されており、対物レンズ18はレーザ光L1を試料wの表面に集光させる。レーザ光L1は試料wで反射され、対物レンズ18、結像レンズ17を透過する。この結像レンズ17の焦点位置には、たとえばCCDラインセンサのような一次元イメージセンサ19が配設されており、結像レンズ17を透過したレーザ光L1は、第1のハーフミラー16およびビームスプリッタ14で反射されて、一次元イメージセンサ19の表面に集光する。前述のガルバノミラー12は、図示しない駆動装置により回転駆動され、レーザ光L1を偏向させることで、試料wへの集光位置を紙面に直角な方向Yに一次元的に走査する。この走査方向Yに対応する方向に一次元イメージセンサ19の長手方向Yが設定されている。
【0010】
つぎに、観察用光学系2について説明する。
観察用光学系2は、試料wの外観を拡大して観察するためのもので、たとえば白色光L2を出射するランプ20を光源(観察用光源)としている。ランプ20の光軸上には、集光レンズ21および第2のハーフミラー23が配設されており、第2のハーフミラー23において観察用光学系2の光軸と共焦点光学系1の光軸とが合致するように、観察用光学系2が配設されている。
【0011】
上記第2のハーフミラー23は対物レンズ18の光軸上にあり、白色光L2は試料wの表面の所定の領域に集光されて照射される。試料wで反射された白色光L21は、対物レンズ18、結像レンズ17および第1のハーフミラー16を通過して、CCDカメラ(撮像装置)24に入射する。CCDカメラ24で撮像された画像は、画像信号eとして図2のスーパーインポーザ31を介してモニタ32に出力されて表示される。
【0012】
つぎに、図1の共焦点光学系1の駆動回路等について説明する。
同期回路40は、ステージ制御回路41、ガルバノ駆動回路42およびCCD駆動回路43に同期信号を出力する。CCD駆動回路43は同期信号を受けた後、一次元イメージセンサ19の各素子に蓄積された電荷を読出し用クロックパルスに基づいて読み出し、図2のゲイン制御回路44およびA/Dコンバータ45を介して、光量信号aをマイコン50に出力する。マイコン50は、CPU51およびメモリ60を備えており、後述するように、一次元イメージセンサ19の受光光量に基づいて試料wの深度(高さ)に関する情報を求める。なお、52はキーボードである。
【0013】
上記メモリ60は、図3(a)に示すピーク光量記憶部61およびピーク位置記憶部62を備えている。上記各記憶部61,62は、それぞれ、一次元イメージセンサ19の素子の数に対応した記憶素子61〜61および62〜62を有している。
【0014】
つぎに、深さ測定の原理を簡単に説明する。
図1の共焦点光学系1において、前述の一次元イメージセンサ19は、結像レンズ17の焦点位置に配設されており、一方、一次元イメージセンサ19の各素子は極めて微小であるから、レーザ光L1が試料w上で焦点を結ぶと、その反射光L1が一次元イメージセンサ19上で結像し、一次元イメージセンサ19の1つの受光素子における受光光量が著しく大きくなり、逆に、レーザ光L1が試料w上で拡がっていると、その反射光L1も一次元イメージセンサ19上で拡がるので、当該素子の受光光量が著しく小さくなる。したがって、試料ステージ30を上下方向つまりZ軸方向に上下させると、その受光光量Iは、図3(b)のように変化して、ピントの合ったZ軸の位置で、つまりピーク位置Zpにおいて最大となる。このピーク位置Zpを一次元イメージセンサ19の各素子について求めることにより、図3(c)のように、紙面に垂直な方向Y(図1)についての深さの情報、つまり、断面形状を求めることができる。なお、図1の一次元イメージセンサ19にはランプ20の観察光L21が入射するが、本実施例では一次元イメージセンサ19が観察光L21を感じない時間(5msec) だけ、CCD駆動回路43が一次元イメージセンサ19に電荷を蓄積させることで、観察光L21によるノイズを除去している。
【0015】
つぎに、深さの測定方法について説明する。
図4において、まず、ステップS1でガルバノミラー12を駆動させて、レーザ光L1を走査し、ステップS2で、一次元イメージセンサ19において受光した光量およびZ軸の位置をメモリ60の各記憶部61,62に記憶させる。つづいて、ステップS3で試料ステージ30を1段階上昇させた後、ステップS4に進み、再び、レーザ光L1を走査して、ステップS5に進む。ステップS5では、今回測定した光量がピーク光量記憶部61の各記憶素子61に記憶されている光量よりも大きいか否かを各素子についてCPU51が判断し、大きければステップS6に進んで、測定光量とZ軸の位置を書き換える。一方、小さければステップS7に進む。ステップS7では、試料ステージ30が所定の上昇端まで上昇したか否かを判断し、上昇端でなければステップS3に戻り、一方、上昇端であれば測定を終了する。
【0016】
こうして、図3(a)の両記憶部61および62には、それぞれ、ピークの光量Iとピーク位置Zpが記憶される。この後、ピーク位置Zpの情報は図2のイメージRAMに転送され、マイコン50はイメージ(図3(c))をスーパーインポーザ31に出力する。スーパーインポーザ31は、CCDカメラ24の画像と上記断面情報を重ね合わせ、モニタ32に出力する。これにより、オペレータは試料wの拡大画像と共に一つの断面における断面情報を知ることができる。
【0017】
上記構成において、この光学顕微鏡は、図1のレーザ光L1を、たとえば1つのガルバノミラー12により一次元的にのみ走査するので、2枚のガルバノミラーでレーザ光L1を二次元的に走査したり、試料ステージ30をX,Y方向(二次元的)に駆動させて走査する従来の顕微鏡に比べ、機械的構造が簡単になる。特に、二次元的に走査するものに比べ、X,Y,Z方向に同期させる必要がなく、Y,Z方向にのみ同期させればよいので、顕微鏡の電気的な構造が著しく簡単になるから、大幅なコストダウンを図ることができる。
【0018】
なお、上記実施例では、ガルバノミラー12を駆動してレーザ光L1を走査したが、本発明では、ポリゴンミラーや音響光学素子などのレーザ光L1の方向を変化させる偏向手段を用いてもよく、あるいは、試料ステージ30をY方向に駆動してレーザ光L1の試料wへの集光位置を走査してもよい。
【0019】
ところで、この種の一般の顕微鏡では、集光レンズ21と第2のハーフミラー23との間に光学フィルタを設けて、観察光L2のうちのレーザ光L1と同一の波長の成分をカットして深さ測定の精度の低下を防止している。しかし、こうすると、試料wの映像の色味が、実際のものとは異なって見える。一方、光学フィルタを設けないで、ランプ20を消して深さ測定を行うことでノイズの発生を防止すると、深さ測定中には映像が真っ暗になってしまう。そこで、つぎの第2実施例では、かかる問題に鑑み、実際の試料wの色味と同じ色味の映像が得られ、かつ、深さ測定中においても、モニタに映像を映し出すことのできる顕微鏡を提供する。
【0020】
図5は第2実施例を示す。
なお、以下の実施例において、第1実施例と同一部分または相当部分には同一符号を付して、その詳しい説明および図示を省略し、異なる部分について主に説明する。
この第2実施例の顕微鏡は、図5(a)のフレームメモリ33、セレクタ34およびランプ制御回路46を備えている。本実施例では、キーボード52からの設定で、外観観察モードと深さ測定モードに切り換えられ、深さ測定モードにおいてはランプ20(図1)を自動的に消灯させる。上記フレームメモリ33は、深さ測定モードにおいて、マイコン50からのトリガ信号bを受けて、CCDカメラ24からの消灯前の出力を取り込んで画像信号eを記憶する。上記セレクタ34は、外観観察モードにおいては、図5(a)に示すように、CCDカメラ24の出力をスーパーインポーザ31に出力する一方で、深さ測定モードにおいては、マイコン50からの切換信号cを受けて、フレームメモリ33の画像信号eをスーパーインポーザ31に出力する。上記ランプ制御回路46は深さ測定モードにおいて、マイコン50からの消灯信号dを受けて、ランプ20(図1)を消灯する。
【0021】
つぎに、深さ測定モードのフローについて説明する。
図5(b)のステップS11において、フレームメモリ33はトリガ信号bを受けると、ランプ20が消える直前の画像を記憶する。つづいて、ステップS12に進み、切換信号cで、セレクタ34が切り換わり、モニタ32には、フレームメモリ33に記憶された画像が映し出される。その後、ステップS13に進み、消灯信号dによりランプ20(図1)が消灯し、ステップS14で深さの測定(図4のステップS1〜S7)がなされる。
【0022】
ここで、図1のランプ20は消えているので、光学フィルタがなくても、レーザ光L1による深さ測定の精度が低下するおそれはない。一方、図5(a)のモニタ32には、フレームメモリ33に記憶された画像が映し出されるので、測定中に映像が真っ暗になるという不都合も生じない。
【0023】
図6は第3実施例を示す。
図6(a)において、この第3実施例の光学顕微鏡は、オートフォーカス装置51aを備えている。オートフォーカス装置51aはマイコン50に内蔵されており、オートフォーカスモードにおいて、試料ステージ30を上下動させ、一次元イメージセンサ19からの出力を取り込んで受光光量が最大となったときの試料ステージ30の高さを選択するものである。
【0024】
上記オートフォーカスモードの動作について説明する。
キーボード52を操作して、顕微鏡のスイッチをONすると、オートフォーカスモードに設定され、図6(b)のステップS21において、一次元イメージセンサ19における中央の受光素子の受光光量が記憶される。つづいて、ステップS22に進み、試料ステージ30がステージ制御回路41によって1段階上昇され、ステップS23において上記中央の素子の受光光量が減少したか否かを判断し、減少していなければステップS22に戻って、再び試料ステージ30を1段階上昇させ、一方、減少していれば、ステップS24に進んで試料ステージ30を1段階上昇させる。つづいて、ステップS25に進み、上記中央の素子の受光光量が連続して減少したか否かを判断する。ここで、図3(b)から分かるように、受光光量が連続して減少しておればピーク位置(焦点の合った位置)を通過したと考えられるから、図6(b)のステップS26に進んで、試料ステージ30を2段階下降させることにより、ピーク位置、つまり、焦点の合った位置に試料ステージ30を自動的にセットすることができる。一方、ステップS25において受光光量が連続して減少しなかった場合はステップS22に戻る。
【0025】
なお、上記実施例では、一次元イメージセンサ19における中央の一つの受光素子についての受光光量に基づいて焦点が合ったか否かを判断したが、中央の数個の受光素子の受光光量の平均値や、一次元イメージセンサ19の全ての受光素子の受光光量に基づいて判断してもよい。また、深さ測定やオートフォーカスモードにおいて、試料ステージ30は、1段階ずつ上昇させたが、1段階ずつ下降させてもよい。
【0026】
つぎに、光学顕微鏡の外観について説明する。
図7(a)において、50Aはマイコン50などを内蔵した制御器本体、70は顕微鏡本体、72は手動操作部で、ピントの調節、視野の絞り、開口の絞りなどを操作するものである。この図に示すように、キーボード52を制御器本体50Aと別体にすれば、キーボード52を自由な位置に配置できるから、キーボード52の操作時に手が邪魔にならず、モニタ32が見易くなると共に、制御器本体50Aをテーブル80の下に配置することで、スペース効率が良くなる。
【0027】
図7(b)は他の例を示す。
この図において、手動操作部72は顕微鏡70の前面の下部に設けられている。ここで、この光学顕微鏡は、レーザ光を使用するので、試料ステージ30に試料wを置いた後はモニタ32を見ながら手動操作部72を操作する。したがって、モニタ32の正面に座った状態で、手動操作部72を操作できれば便利である。これに対し、本実施例では、手動操作部72を顕微鏡70の前面に配置しているので、モニタ32を見ながら手動操作部72を操作し易くなり、操作性が向上する。
【0028】
図7(c)は更に他の例を示す。
この図において、モニタ32は液晶モニタで、顕微鏡70の上部フレーム70aの前面に設けられている。一方、手動操作部72は顕微鏡70の側面に設けられている。この例においては、オペレータは顕微鏡70の前方に座り、モニタ32を見ながら、手動操作部72を操作することができ、通常の光学式顕微鏡と同様な操作ができるから、操作性が向上する。
【0029】
ところで、上記各実施例では、図1の共焦点光学系1および観察用光学系2に結像レンズ17を設けて無限補正系を採用したが、結像レンズ17を設けずに有限補正系を採用してもよい。また、本発明では集光レンズ21と第2のハーフミラー23との間に、レーザ光L1の波長とは異なる波長のみを透過させるバンドパス光学フィルタを設けてもよい。
【0030】
【発明の効果】
以上説明したように、本発明によれば、共焦点に配設した一次元イメージセンサの長手方向に対応する方向にのみ試料への集光位置を一次元的に走査するので、従来の二次元的な走査を行うものに比べ、機械的および電気的な構造が簡単になるので、コストダウンを図り得ると共に、一つの断面についての深さの情報でも十分に有用な光学顕微鏡を提供できる。
【0031】
また、フレームメモリとセレクタを設けて、観察用光源を消す直前の映像をモニタに映し出すこととすれば、観察用光源を消した状態で深さ測定ができるから、観察用光学系に光学フィルタを設ける必要がなくなる。したがって、モニタの映像の色味が実際のものと大きく変わることがなく、かつ、レーザ光による深さ測定の際には、観察用光源を消しても、直前の映像が映し出されるので、モニタが真っ暗になることもない。
【0032】
また、受光光量が最大となるピーク位置から焦点の合った位置を検出し得るので、ソフトウェアを変更するだけで、オートフォーカスの機能を付加することもできる。
【図面の簡単な説明】
【図1】本発明の第1実施例にかかる光学顕微鏡の光学系を示す概略構成図である。
【図2】同測定回路等を示す概略構成図である。
【図3】深さ測定の原理を説明するための概念図である。
【図4】測定方法を示すフローチャートである。
【図5】(a)は第2実施例を示す測定回路等の概略構成図、(b)は深さ測定モードを示すフローチャートである。
【図6】(a)は第3実施例を示す測定回路等の概略構成図、(b)は深さ測定モードを示すフローチャートである。
【図7】光学顕微鏡の外観を示す斜視図である。
【符号の説明】
1:共焦点光学系
12:ガルバノミラー(一次元走査機(構))
19:一次元イメージセンサ
2:観察用光学系
20:観察用光源
24:CCDカメラ(撮像装置)
32:モニタ
33:フレームメモリ
34:セレクタ
41:ステージ制御回路
51a:オートフォーカス装置
L1:レーザ光
L2:白色光

Claims (5)

  1. レーザ光を出射するレーザ光源と、
    上記レーザ光を試料付近に集光するための対物レンズと、
    共焦点位置に配置され、上記試料でのレーザ反射光を受光するための一次元イメージセンサと、
    上記試料でのレーザ光の集光位置を上記一次元イメージセンサの長手方向に対応する方向にのみ一次元的に走査するために、レーザ光を偏向する偏向手段と、
    上記試料を載置するための試料ステージを深さ方向にのみ上記偏向手段と同期して駆動するように制御するステージ制御手段と、
    上記試料ステージの深さ方向の情報とそれに対応する上記一次元イメージセンサの各素子での受光量の情報に基づいた各素子についての受光量のピーク位置を記憶することで、当該ピーク位置に基づく深度の情報を記憶する記憶部と、
    上記深度の情報から試料の断面の情報を求める演算手段と、
    上記試料に光を照射するための上記レーザ光源とは異なる観察用光源と、
    上記観察用光源からの上記試料での反射光を上記対物レンズを介して受光する撮像装置とを有することを特徴とする光学顕微鏡。
  2. 請求項1において、上記撮像装置で撮像された画像に、上記断面の情報を重ね合わせた画像信号を出力することを特徴とする光学顕微鏡。
  3. 請求項1または2において、上記撮像装置からの画像信号を記憶するフレームメモリと、このフレームメモリの画像信号または上記撮像装置からの出力を選択的に切り換えてモニタに出力するセレクタとを備えた光学顕微鏡。
  4. 請求項1〜3のいずれかにおいて、試料を載置した試料ステージをオートフォーカスモードにおいて上下動させ、上記一次元イメージセンサからの出力を取り込んで受光光量が最大となったときの試料ステージの高さを選択するオートフォーカス装置を備えた光学顕微鏡。
  5. レーザ光により試料を 1 次元的に走査し、一次元イメージセンサにおいて受光した試料からのレーザ反射光の受光量及び上記試料が載置された試料ステージの深さ方向の位置を記憶部に記憶する第1ステップと、
    上記試料ステージを一段階深さ方向に上昇または下降させる第2ステップと、
    レーザ光により試料表面を 1 次元的に走査し、一次元イメージセンサにおいて受光した受光量が上記記憶部に記憶された受光量よりも大きい場合に、上記記憶部に記憶された受光量と深さ方向の位置を書き換える第3ステップと、
    上記試料ステージが第2ステップにおいて上昇された場合には、上記試料ステージが上昇端になるまで上記第2ステップでの上昇と上記第3ステップを繰り返し、上記試料ステージが第2ステップにおいて下降された場合には、上記試料ステージが下降端になるまで上記第2ステップの下降と上記第3ステップを繰り返す第4ステップと、
    上記記憶部に記憶された深さ方向の位置の情報を断面の情報として撮像装置で撮像された試料の画像と重ね合わせて出力する第5ステップとを有することを特徴とする光学顕微鏡の深度測定方法。
JP32941294A 1994-12-02 1994-12-02 光学顕微鏡及び光学顕微鏡の深度測定方法 Expired - Lifetime JP3544019B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32941294A JP3544019B2 (ja) 1994-12-02 1994-12-02 光学顕微鏡及び光学顕微鏡の深度測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32941294A JP3544019B2 (ja) 1994-12-02 1994-12-02 光学顕微鏡及び光学顕微鏡の深度測定方法

Publications (2)

Publication Number Publication Date
JPH08160306A JPH08160306A (ja) 1996-06-21
JP3544019B2 true JP3544019B2 (ja) 2004-07-21

Family

ID=18221126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32941294A Expired - Lifetime JP3544019B2 (ja) 1994-12-02 1994-12-02 光学顕微鏡及び光学顕微鏡の深度測定方法

Country Status (1)

Country Link
JP (1) JP3544019B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226869A (ja) * 2005-02-18 2006-08-31 Sunx Ltd 光学測定装置、光学顕微鏡及び光学測定方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754291A (en) * 1996-09-19 1998-05-19 Molecular Dynamics, Inc. Micro-imaging system
ATE272224T1 (de) * 1997-11-17 2004-08-15 Max Planck Gesellschaft Konfokales spektroskopiesystem und -verfahren
AU1412000A (en) * 1998-11-30 2000-06-19 Olympus Optical Co., Ltd. Measuring instrument
KR20010081618A (ko) * 2000-02-17 2001-08-29 성규동 작업 표면의 실시간 관찰 기능을 가지는 레이저 가공 장치
US7420691B2 (en) 2005-12-22 2008-09-02 Matsushita Electric Industrial Co., Ltd. Method and apparatus for measuring interfacial positions, method and apparatus for measuring layer thickness, and method and apparatus for manufacturing optical discs
JP4884764B2 (ja) * 2005-12-26 2012-02-29 大倉インダストリー株式会社 レーザ顕微鏡
JP5732265B2 (ja) 2011-01-24 2015-06-10 株式会社キーエンス 顕微鏡システム、焦点位置検出方法および焦点位置検出プログラム
JP6997480B2 (ja) * 2020-05-12 2022-01-17 オーケーラボ有限会社 レーザー走査顕微鏡、レーザー走査顕微鏡システム及びレーザーアブレーションシステム
CN114660794A (zh) * 2022-05-19 2022-06-24 北京大学长三角光电科学研究院 基于光纤束的自动对焦显微成像系统及对焦方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298207A (ja) * 1985-10-25 1987-05-07 Hitachi Ltd パタ−ン断面形状検出法
JPH0373801A (ja) * 1989-08-14 1991-03-28 Nippon Telegr & Teleph Corp <Ntt> パターン検出法
JPH0560978A (ja) * 1991-09-03 1993-03-12 Sumitomo Electric Ind Ltd レーザ顕微鏡
JP3075315B2 (ja) * 1992-02-06 2000-08-14 オリンパス光学工業株式会社 顕微鏡システム
JP2589924Y2 (ja) * 1993-01-05 1999-02-03 横河電機株式会社 共焦点顕微鏡

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226869A (ja) * 2005-02-18 2006-08-31 Sunx Ltd 光学測定装置、光学顕微鏡及び光学測定方法

Also Published As

Publication number Publication date
JPH08160306A (ja) 1996-06-21

Similar Documents

Publication Publication Date Title
JP3544019B2 (ja) 光学顕微鏡及び光学顕微鏡の深度測定方法
JP2005284136A (ja) 観察装置および観察装置の焦点合わせ方法
JP5732265B2 (ja) 顕微鏡システム、焦点位置検出方法および焦点位置検出プログラム
KR100689319B1 (ko) 주사형 공초점현미경
JP6132650B2 (ja) 共焦点顕微鏡装置
JP2010101959A (ja) 顕微鏡装置
JP5053691B2 (ja) 標本スキャナ装置、該装置による標本位置検出方法
JPH08210818A (ja) 膜厚測定機能付光学顕微鏡
JP2007139884A (ja) 共焦点走査型顕微鏡
JP3579166B2 (ja) 走査型レーザ顕微鏡
JP2007140183A (ja) 共焦点走査型顕微鏡装置
JPH09251128A (ja) 光学顕微鏡
JP3789516B2 (ja) レーザ顕微鏡
JP4542302B2 (ja) 共焦点顕微鏡システム
JP5021233B2 (ja) レーザ走査型顕微鏡
JP4180322B2 (ja) 共焦点顕微鏡システム及びパラメータ設定用コンピュータプログラム
US7268344B2 (en) Scanning laser microscope apparatus
JP2000305021A (ja) 共焦点顕微鏡
JP4169647B2 (ja) 共焦点顕微鏡
JP7430597B2 (ja) 白色干渉顕微鏡
JPH1195119A (ja) 走査型顕微鏡
JPH11326778A (ja) 顕微鏡画像観察装置
JP4536845B2 (ja) 共焦点顕微鏡
JP2007286284A (ja) 共焦点走査型顕微鏡システム、及びそれを使用した観察方法
JP4290413B2 (ja) 測定反復モードを有する共焦点顕微鏡システム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RVTR Cancellation of determination of trial for invalidation
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4