JP2007140183A - 共焦点走査型顕微鏡装置 - Google Patents

共焦点走査型顕微鏡装置 Download PDF

Info

Publication number
JP2007140183A
JP2007140183A JP2005334399A JP2005334399A JP2007140183A JP 2007140183 A JP2007140183 A JP 2007140183A JP 2005334399 A JP2005334399 A JP 2005334399A JP 2005334399 A JP2005334399 A JP 2005334399A JP 2007140183 A JP2007140183 A JP 2007140183A
Authority
JP
Japan
Prior art keywords
sample
image
laser
confocal
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005334399A
Other languages
English (en)
Inventor
Wataru Nagata
渉 永田
Akihiro Kitahara
章広 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005334399A priority Critical patent/JP2007140183A/ja
Publication of JP2007140183A publication Critical patent/JP2007140183A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

【課題】試料に最適な検鏡法により取得したカラー情報を付加した3次元像を表示することができる共焦点走査型顕微鏡を提供する。
【解決手段】レーザ光を発生するレーザ光源4、レーザ光を対物レンズ12を介して試料2上で2次元走査するとともに、試料2からの検出光により共焦点画像を取得するレーザ光学系、白色光源19、白色光源19より発生する照明光を対物レンズ12を介して試料2に照射し、試料2からの検出光によりカラー画像を取得する光学顕微鏡光学系を有し、対物レンズ12と試料2の相対距離を変化しながら光学顕微鏡光学系より取得される複数のカラー画像から焦点合成画像を生成するとともに、レーザ光学系より取得される複数の共焦点画像から前記試料の高さ情報を含む3次元像を生成し、この3次元像に焦点合成画像を組み合わせて表示する。
【選択図】図1

Description

本発明は、試料表面の高さを観察する装置に係り、特に高さ情報を取得して3次元表示する共焦点走査型顕微鏡装置に関するものである。
従来、試料表面の高さ情報を取得し、3次元情報を表示するものとして共焦点走査型顕微鏡が知られている。この共焦点走査型顕微鏡は、光源からの光をスポット状にして試料面を2次元走査するとともに、試料面からの反射光のうち共焦点ピンホールを通過した光のみを光検出器により検出し、電気信号に変換して試料面の3次元情報を得るようにしている。すなわち、このような共焦点走査型顕微鏡では、共焦点ピンホールが対物レンズの集光位置と光学的に共役な位置に配置され、試料面上に焦点が合っている試料面からの光は共焦点ピンホールを通過し、焦点ずれがある試料面からの光は共焦点ピンホールをほとんど通過しないことから、この状態で試料面をZ軸方向に所定のピッチで移動させながら試料面をスポット光で2次元走査することで、試料の3次元表面形状が得られる。そして、このようにして得られた表面形状は、表示画面上では3次元像としてモニタに表示することができる。
ところで、このような3次元像表示は、そのままでは凹凸の状態認識が困難であり、このため、従来より高さ情報に対して疑似的に割当てたカラーや、高さに応じた輝度パターン等の情報を貼り付けて表面の情報認識をし易くすることが行われている。例えば、特許文献1に開示されるように測定対象物の高さ情報を含む3次元の表面形状の情報を取得するとともに、カラー撮像手段により測定対象物のカラー画像を取得し、このカラー撮像手段から得られる各画素ごとの色情報を表面形状の3次元画像に貼り付けて、試料部位と3次元表示部位の対応関係を分かり易くするようにしたものがある。このような特許文献1のものは、試料と対物レンズとの相対距離を変化させながら共焦点画像とカラー画像を交互に取得するため、共焦点画像とカラー画像の取得には、明視野による検鏡法が用いられている。
特開2001-82935号公報
ところが、一般に試料は、ウェハやガラスなどの平坦な表面に微小な凹凸を有するものなど様々であり、このような様々な特徴を有する試料に対して明視野による検鏡法のみを用いてカラー画像を取得しても、試料の表面状態の良好な画像を得るのが難しく、このため、このようなカラー画像を表面形状の3次元画像に組み合わせても、試料表面の特徴を強調した3次元像を表示することができないという問題があった。
本発明は上記事情に鑑みてなされたもので、試料に最適な検鏡法により取得したカラー情報を付加した3次元像を表示することができる共焦点走査型顕微鏡を提供することを目的とする。
請求項1記載の発明は、レーザ光を発生するレーザ光源と、前記レーザ光を対物レンズを介して試料上で2次元走査するとともに、前記試料からの検出光により共焦点画像を取得するレーザ光学系と、照明光を発生する照明用光源と、前記レーザ光源から前記試料までの光路又は前記照明用光源から前記試料までの光路に光学素子を挿脱して検鏡法を設定する検鏡法設定手段と、前記検鏡法設定手段により設定された検鏡法に基づいて前記照明用光源より発生する照明光を前記対物レンズを介して前記試料に照射し、前記試料からの検出光によりカラー画像を取得する光学顕微鏡光学系と、前記試料と対物レンズの相対距離を変化させる相対距離移動手段と、前記相対距離移動手段により変化される前記相対距離毎に前記光学顕微鏡光学系より取得される複数のカラー画像から焦点合成画像を生成する第1の画像処理手段と、前記相対距離移動手段により変化される前記相対距離毎に前記レーザ光学系より取得される複数の共焦点画像から前記試料の高さ情報を含む3次元像を生成する第2の画像処理手段と、を具備し、前記高さ情報に基づいた前記試料の3次元像に前記焦点合成画像を組み合わせて表示することを特徴としている。
請求項2記載の発明は、請求項1記載の発明において、光学顕微鏡光学系は、前記前記試料からの検出光を撮像してカラー画像を取得するカラー撮像手段を有することを特徴としている。
請求項3記載の発明は、請求項1記載の発明において、前記検鏡法設定手段による検鏡法の設定のガイダンスを表示可能にしたことを特徴としている。
請求項4記載の発明は、請求項3記載の発明において、前記ガイダンスは、前記検鏡法を切り換えるタイミングを表示するとともに、前記検鏡法を切り換える操作に必要な情報をイラスト表示することを特徴としている。
請求項5記載の発明は、請求項1記載の発明において、前記検鏡法設定手段の光路への前記光学素子の挿脱操作から、前記第1及び第2の画像処理手段での画像処理動作までを自動化したことを特徴としている。
請求項6記載の発明は、請求項1記載の発明において、前記検鏡法設定手段により設定される検鏡法は、微分干渉観察法、暗視野観察法、偏光観察法、落射蛍光観察法のうちの一つであることを特徴としている。
請求項7記載の発明は、請求項1記載の発明において、前記レーザ光学系は、微分干渉用プリズムを更に配置し、前記試料からの反射光によりレーザ微分干渉画像を取得することを特徴としている。
本発明によれば、試料に対し最適な検鏡法により取得したカラー情報を付加した3次元像を表示することができる共焦点走査型顕微鏡を提供できる。
以下、本発明の実施の形態を図面に従い説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る走査型共焦点レーザ顕微鐘の概略構成を示している。この場合、走査型共焦点レーザ顕微鐘は、レーザ画像(共焦点画像)を取得するレーザ光学系と、カラー画像を取得する光学顕微鏡光学系を有している。このうちのレーザ光学系は、レーザ光源4、コリメートレンズ5、偏光ビームスプリッタ6、光スキャナ7、瞳投影レンズ8、1/4波長板9、ビームスプリッタ10、結像レンズ11、対物レンズ12、共焦点ピンホール16、光検出器17により構成されている。ここで、レーザ光源4、コリメートレンズ5、偏光ビームスプリッタ6を通る光軸を第3の光軸L3とする。また、光学顕微鏡光学系は、白色光源19、レンズ21、22、対物レンズ12、結像レンズ11、フィールドレンズ27及びCCDカメラ28から構成されている。ここで、白色光源19、各レンズ21,22を通る光軸を第1の光軸L1とする。
また、対物レンズ12、結像レンズ11及びビームスプリッタ10は、レーザ光学系と光学顕微鏡光学系で共通に用いられる光学素子である。ここで、対物レンズ12、結像レンズ11、ビームスプリッタ10と、フィールドレンズ27及びCCDカメラ28を通る光軸を第2の光軸L2とする。
このような走査型共焦点レーザ顕微鐘をさらに説明すると、顕微鏡本体1内部に、レーザ光源4が設けられている。レーザ光源4は、例えば半導体レーザが用いられ、所定波長域のレーザビームが出力されるようになっている。レーザ光源4から出力されるレーザ光の光路上には、コリメートレンズ5、偏光ビームスプリッタ6、光スキャナ7、瞳投影レンズ8、1/4波長板9及びビームスプリッタ10が配置されている。
コリメートレンズ5は、レーザ光源4から出力されるレーザ光を平行光に変換する。偏光ビームスプリッタ6は、レーザ光源4からのレーザ光を透過し、後述する1/4波長板9で直線偏光の光に変換された試料2からの反射光を分離する。光スキャナ7は、直交する2方向に光を偏向するための不図示の2枚のガルバノミラーを有するもので、これらのミラーによりレーザ光を2次元方向、つまりXY方向に走査する。1/4波長板9は、レーザ光源4からのレーザ光(直線偏光)を円偏光に変換し、円偏光である試料2からの反射光を再び直線偏光の光に変換する。
ビームスプリッタ10の下方への反射方向の光路上には、結像レンズ11、対物レンズ12及び試料2が配置されている。対物レンズ12は、レボルバ13に設けられている。レボルバ13は、顕微鏡本体1に回転可能に設けられるもので、倍率の異なる複数の対物レンズ12が取り付けられ、レボルバ13を回転させることによって任意の倍率の対物レンズ12が選択されて光軸L2上に配置される。この場合、レボルバ13は、不図示の移動機構(相対距離移動手段)により光軸L2に沿ったZ軸方向に移動可能となっていて、対物レンズ12と試料2との相対距離を変化させることができるようになっている。また、試料2は試料台3上に載置されており、試料台3によって光軸L2(Z軸方向)と直交する面に沿ってX−Y方向に移動可能となっている。この試料台3は、必要に応じて光軸L2に沿ったZ軸方向の移動も可能にしている。
前記偏光ビームスプリッタ6の反射方向の光路上には結像レンズ14、共焦点ピンホール16、光検出器17が設けられている。共焦点ピンホール16は、対物レンズ12による集光位置と光学的に共役な位置に配置され、試料2面上に焦点が合っている試料2面からの光を通過し、焦点ずれがある試料2面からの光をほとんど通過しないようになっている。光検出器17は、共焦点ピンホール16を通過した光を検出し電気信号として出力するもので、例えば、フォトダイオードまたはフォトマルチプライヤなどが用いられる。
一方、顕微鏡本体1内部には、照明用光源として白色光源19が設けられている。白色光源19は、例えば顕微鏡本体1内部まで引き込まれた光ファイバ20の端部に設けられている。勿論、白色光源19は、LEDやハロゲンランプ等の光源自体を顕微鏡本体1内部に設けるようにしてもよい。
白色光源19から出射される照明光の光路上には、レンズ21、22を介して光学素子切換手段としての明・暗視野切換キューブ23が配置されている。明・暗視野切換キューブ23は、図示しない明視野用プリズムと暗視野用環状ミラーを具備している。
顕微鏡本体1には、微分干渉(Differential Interference Contrast:以下DIC)プリズム挿入穴41、アナライザ挿入穴43、ポラライザ挿入穴45がそれぞれ設けられている。このうちDICプリズム挿入穴41は、対物レンズ12と明・暗視野切換キューブ23との間の光軸L2上に設けられている。このDICプリズム挿入穴41には、不図示のDICプリズム用スライダに取付けられたDICプリズム40が挿脱可能になっていて、光軸L2上に配置可能になっている。また、アナライザ挿入穴43は、結像レンズ11と明・暗視野切換キューブ23との間の光軸L2上に設けられている。このアナライザ挿入穴43には、不図示のスライダに取り付けられたアナライザ42が挿脱可能になっていて、光軸L2上に配置可能になっている。ポラライザ挿入穴45は、レンズ22と明・暗視野切換キューブ23との間の光軸L1上に設けられている。このポラライザ挿入穴45には、不図示のスライダに取り付けられたポラライザ44が挿脱可能になっていて、光軸L1上に配置可能になっている。なお、アナライザ42のスライダとポラライザ44のスライダは、挿脱操作を容易にするため、連結されている。
ビームスプリッタ10の透過方向の光路(光軸L2)には、フィールドレンズ27を介してカラー撮像手段としてCCDカメラ28が配置されている。CCDカメラ28は、撮像面28aを有しており、この撮像面28a上に結像された試料2の像を撮像してカラー画像信号を出力する。
CCDカメラ28には、第1及び第2の画像処理手段としてのコントローラ29が接続されている。このコントローラ29には、レーザ光源4、光検出器17も接続されている。コントローラ29は、画像処理部29a、画像メモリ29bを有し、GUI(Graphic User Interface)を有するソフトウェアにより顕微鏡を制御する。画像処理部29aは、レーザ光源4から出力されるレーザ光が光スキャナ7により試料2上を走査されるタイミングで光検出器17の出力信号を画像処理して試料2の共焦点画像を取得し、これを画像メモリ29bに保存するとともに、画像表示部30に表示する。また、画像処理部29aは、CCDカメラ28により撮像されたカラー画像信号を処理して試料2のカラー画像を取得し、これを画像メモリ29bに保存するとともに、画像表示部30に表示する。
次に、このように構成した第1の実施の形態の作用を図2のフローチャートを用いて説明する。
まず、ステップ201で、3次元取込条件の設定を行う。具体的には、試料2と対物レンズ12の相対距離を変化させるための開始位置、終了位置、移動ピッチの設定及びカラー画像撮像のための検鏡法の設定を行なう。図3は、GUI設定画面の一例を示すもので、この設定画面は、画像表示部30上に表示される。ここでは、開始位置、つまりZ軸走査の下限位置を設定する下限位置設定ボタン301、終了位置を設定する終了位置設定ボタン302、観察倍率によって予め最適なピッチが設定される移動ピッチ設定部303、DICによるカラー撮像を指示するDIC指示スイッチ304、操作開始ボタン305などが表示されている。また、この場合、レボルバ13により対物レンズ12が光軸L2(Z軸)に沿って下から上方向に移動するものとしているが、試料台3が上下に移動するものであってもよい。
この状態から、操作者は、共焦点観察ライブ画像(共焦点画像取得を繰り返し行ない表示される画像)を見ながら対物レンズ12を下方に移動させ、観察画面内に焦点が合う部分が無くなるところで、下限位置設定ボタン301を押して開始位置、すなわちZ軸走査の下限位置を設定する。同様に、対物レンズ12を上方に移動させて観察画面内に焦点が合う部分が無くなるところで終了位置設定ボタン302を押して終了位置を設定する。この場合、移動ピッチ設定部303には、観察倍率によって予め最適なピッチが設定されている。勿論、観察者が任意のピッチを選択することもできる。また、DIC指示スイッチ304は、同図(b)に示すように押し込まれた状態で、ONであることを示している。
次に、ステップ202で3次元取込を開始する。この場合、GUI上で操作開始ボタン305を押すことにより開始される。
3次元取込処理が開始されると、ステップ203で、DIC指示スイッチ304がONであるかどうかの判定を行う。DIC指示スイッチ304がONであれば、ステップ204に進み、DIC指示スイッチ304がOFFであれば、明視野カラー撮像を行うものとしてステップ207まで進む。
ステップ204では、カラーライブ画像を表示させ、ステップ205では検鏡法切換えのガイダンスをGUI上に表示させる。図4(a)は、GUI上に表示されるガイダンスの例で、例えば図示(1)〜(4)に示すように検鏡法切換のタイミングを観察者に指示するとともに、操作に必要な情報がイラストで図示され、観察者に対し示される。ここでは、アナライザ挿入穴43にアナライザ42、ポラライザ挿入穴45にポラライザ44を挿入して、それぞれを光路上に位置させ、カラーライブ画像を見ながらアナライザ42を回転させて視野が最も暗くなるように調整する。次に、DICプリズム挿入穴41にDICプリズム40を挿入して光路上に配置させ、カラーライブ画像を見ながら、DICプリズム40の角度を調整して最もコントラストのよい干渉色に調整する。そして、これらの調整ができたら観察者は、図4(a)に示すガイダンス画面上のOKボタン401を押す。また、3次元取込を中止したい場合は、ガイダンス画面上のキャンセルボタン402を押して取込処理を終了させる。
ステップ206では、OKボタン401とキャンセルボタン402のどちらが選択されたかを判断して、次のステップヘ進める。
なお、アナライザ挿入穴43、ポラライザ挿入穴45及びDICプリズム挿入穴41にマイクロスイッチなどのセンサを設けて各々の挿脱状態をコントローラ29で判別できるようにしておき、アナライザ挿入穴43、ポラライザ挿入穴45及びDICプリズム挿入穴41に各別に対応するアナライザ42、ポラライザ44及びDICプリズム40がすべて挿入され、指定した検鏡法に必要な状態になったらOKボタン401を押せるようにしてもよい。また、マイクロスイッチなどのセンサで判別したアナライザ42、ポラライザ44及びDICプリズム40の挿脱状態をイラストで図示し、これらのうちで、さらに操作を必要とするものがあれば、操作を必要とするものを、例えば点灯や点滅などで強調表示をするようにすれば、観察者にとってさらに分かりやすくできる。また、図4(a)に示す(1)〜(4)の各操作指示に応じて1画面ずつウィザード形式でガイダンスを表示するようにしてもよい。
ステップ206でOKと判断された蝪合には、ステップ207で、対物レンズ12をZ軸上の所定の位置に移動し、ステップ208でCCDカメラ28により撮像したカラー画像をコントローラ29の画像メモリ29bに保存する。次に、ステップ209で対物レンズ12が終了位置まで到達したかどうかを判断し、まだであればステップ207に戻り対物レンズ12を所定ピッチだけ移動させてステップ208でのカラー画像の取得を繰り返し実施する。そして、ステップ209で対物レンズ12が終了位置まで到達したと判断されれば、ステップ210に進む。ステップ210では、再び検鏡法切換えのガイダンスをGUI上に表示させて、観察者に対しアナライザ42、ポラライザ44及びDICプリズム40光路から抜くように促す。図4(b)は、GUI上に表示されるガイダンスの例で、例えば図示(1)〜(2)に示すように作業手順が表示される。この場合も、ステップ205と同様にセンサで判別した情報をガイダンスに反映させるとよい。
次に、ステップ211で、明視野観察状態になっているかどうかを判断する。この状態になっていればステップ212に進む。ステップ212では、対物レンズ12をZ軸上の所定の位置へ移動し、ステップ213で画像処理部29aによりレーザ画像を取得してコントローラ29の画像メモリ29bに保存する。
この場合、図1において、レーザ光源4から出射したレーザ光が、コリメートレンズ5、偏光ビームスプリッタ6を透過し、光スキャナ7に入射する。光スキャナ7は、レーザ光を2次元に走査して出力する。2次元走査されたレーザ光は、瞳投影レンズ8、1/4波長板9を透過し、ビームスプリッタ10を反射され、結像レンズ11を介して対物レンズ12に導かれる。対物レンズ12へ入射したレーザ光は、試料2の表面上を2次元走査する。試料2の表面で反射した光は、再び対物レンズ12からビームスプリッタ10、1/4波長板9、瞳投影レンズ8、光スキャナ7を介して偏光ビームスプリッタ6に導入される。ここで、レーザ光源4から射出される光は直線偏光であり、この光は試料2表面に到達する途中で1/4波長板9を通過することにより円偏光に変換される。試料2で反射された光は、1/4波長板9を再び通過することにより、円偏光から直線偏光に変換される。この直線偏光は、レーザ光源4射出された直後の直線偏光に対して直交しているこのため、試料2表面からの反射光のビームは、偏光ビームスプリッタ6で反射される。偏光ビームスプリッタ6で反射した試料2表面からの反射光は、結像レンズ14によって共焦点ピンホール16上に集光する。この場合、共焦点ピンホール16は、対物レンズ12による集光位置と光学的に共役な位置にあるため、試料2面上に焦点が合っている試料2面からの光は共焦点ピンホール16を通過し、焦点ずれがある試料2面からの光は共焦点ピンホール16をほとんど通過しない。これにより、共焦点ピンホール16を通過した光だけが光検出器17によって検出され、この検出光の強度に応じた信号がコントローラ29の画像処理部29aに出力される。画像処理部29aは、レーザ光が光スキャナ7により試料2上で走査されるタイミングで光検出器17の出力信号を画像処理して試料2のレーザ画像(共焦点画像)を取得し、これを画像メモリ29bに保存する。
図2に戻って、ステップ214で対物レンズ12が終了位置まで到達したかどうかを判断し、まだであれば、ステップ212に戻り対物レンズ12を所定ピッチ移動させてステップ213でのレーザ画像取得を繰り返し実施する。
その後、ステップ214で対物レンズ12が終了位置まで到達したと判断されると、ステップ215に進む。ステップ215では、ステップ212から214の繰り返し動作で画像メモリ29bに保存された複数のレーザ画像から、各画素で最高輝度となる輝度とその時の高さ情報を抽出し、この高さ情報を含む3次元像を構築する。これをエクステンド画像と呼ぶ。
次に、ステップ216で、ステップ207から209の動作で画像メモリ29bに保存された複数のカラー画像から、各画素毎にコントラストが最大となる画素データを抽出して焦点合成を行なう。そして、ステップ217で、ステップ215で構築したエクステンド画像にステップ216で構築したカラー焦点合成画像を貼り付けて画像表示部30に表示する。
図5(a)は、カラー画像取得の検鏡法としてDICにより取得して焦点合成したカラー画像を3次元像であるエクステンド画像の表面に貼り付けた例である。同図(b)は、従来の明視野観察により取得して焦点合成したカラー画像を3次元像であるエクステンド画像の表面に貼り付けた例である。これらの例からも明らかなように、図5(b)のものと比べ、DICを採用した例の同図(a)のものでは、微小な凹凸の特徴を強調して表示観察することができる。
なお、画像表示部30での画像表示は3次元表示だけでなく、レーザ輝度画像、高さ画像又はカラー画像は2次元的に表示させたり、画像ファイルとして保存することもでき、視野内に焦点深度を超えるような段差がある試料でもボケの無いDICカラー画像を得ることができる。
したがって、このようにすれば試料と対物レンズの相対距離を変化させながら複数のカラー画像を取得し、その後、再度試料と対物レンズの相対距離を変化させながら複数の共焦点画像を取得し、これら複数のカラー画像及び共焦点画像から生成された焦点合成画像及び高さ情報を含む3次元像によりカラー表示された3次元像を表示するようにしたので、検鏡法として明視野に限らず、DICを用いることが可能となる。そして、このDICにより取得して焦点合成されたカラー画像を高さ情報を含む3次元像と組み合わせることにより、観察者に対し試料2の3次元的立体像に合わせて表面の凹凸状の特徴を強調したカラーの3次元像を画像表示部30に表示することができる。この場合、検鏡法としてDICを用いたことで、特にウェハ、ガラス、セラミックス、フィルムなどの平坦な表面の中に微小な凹凸を持つような試料について、表面状態のコントラストよく3次元観察をすることが可能になる。
(変形例)
上述の説明では、カラー画像取得の検鏡法としてDICの場合を説明したが、例えば暗視野観察であってもよい。この場合は、ステップ205及び210で、アナライザ42、ポラライザ44及びDICプリズム40を挿脱する代わりに、明・暗視野切換キューブ23の切替えを行なって、不図示の明視野用プリズムと暗視野用環状ミラーを光路に挿入する。このようにすれば、暗視野観察により試料2の欠陥部のみを抽出してカラー画像化することができ、また、暗視野のカラー焦点合成画像を3次元像であるエクステンド画像と組み合わせて表示することにより、欠陥を強調させた試料の立体形状表示を得ることができる。
さらに、カラー画像取得の検鏡法は、暗視野観察以外にも、アナライザ42とポラライザ44のみによる簡易偏光や落射蛍光観察としてもよい。さらに、上述の説明では、レーザ画像は、明視野により取得するとして説明したが、レーザ画像をレーザ微分干渉により取得するようにしてもよい。この場合には、ステップ210でアナライザ42を光路から外す。ポラライザ44は、光路から取外しても外さなくともよい。そして、DICプリズム40を光路上に残しておく。これにより、レーザにより得られる高さ情報にも微細な凹凸情報が得られる。
(第2の実施の形態)
次に、本発明の第2の実施の形態を説明する。
この場合、第2の実施の形態にかかる走査型共焦点レーザ顕微鐘の概略構成は、第1の実施の形態で述べた図1及び図3と同様なので、これら図面を援用するものとする。そして、このような走査型共焦点レーザ顕微鐘において、DICプリズム40、アナライザ42、ポラライザ44及び明・暗視野切換キューブ23は、それぞれに不図示の駆動用モータが設けられ、これら駆動用モータをコントローラ29の指示により駆動することにより、光路に対する挿脱が自動的に制御されるようになっている。
次に、このように構成した第2の実施の形態の作用を図6のフローチャートを用いて説明する。
この場合、DIC観察でのアナライザ42及びDICプリズム40の調整はあらかじめ行われているものとする。
この状態で、まず、第1の実施の形態と同様に、ステップ601で、3次元取込条件の設定を行い、ステップ602で3次元取込を開始する。次に、ステップ603で、DIC指示スイッチ304がONであるかどうかの判定を行う。DIC指示スイッチ304がONであれば、ステップ604に進み、DIC指示スイッチ304がOFFであれば、明視野カラー撮像を行うものとしてステップ205まで進む。
ステップ604では、検鏡法をDICに切換える。この場合、DICプリズム40、アナライザ42、ポラライザ44の各駆動モータがコントローラ29の指示により制御され、これらDICプリズム40、アナライザ42、ポラライザ44は、自動的に光路上に挿入される。
次に、ステップ605で対物レンズ12がZ軸上の所定の位置へ移動し、ステップ606でCCDカメラ28により撮像したカラー画像をコントローラ29の画像メモリ29bに保存する。次に、ステップ607で対物レンズ12が終了位置まで到達したかどうかを判断し、まだであればステップ605に戻り対物レンズ12を所定ピッチだけ移動させてステップ606でのカラー画像の取得を繰り返し実施する。そして、ステップ607で対物レンズ12が終了位置まで到達したと判断されれば、ステップ608に進む。
ステップ608では、検鏡法を明視野に切換える。この場合もDICプリズム40、アナライザ42、ポラライザ44の各駆動モータがコントローラ29の指示により制御され、これらDICプリズム40、アナライザ42、ポラライザ44は、自動的に光路上から抜き取られる。
次に、ステップ609で対物レンズ12をZ軸上の所定の位置へ移動し、ステップ610で画像処理部29aによりレーザ画像を取得してコントローラ29の画像メモリ29bに保存する。この場合、レーザ画像を取得するまでの動作は、第1の実施の形態で述べたと同様である。
次に、ステップ611で対物レンズ12が終了位置まで到達したかどうかを判断し、まだであればステップ609に戻り対物レンズ12を所定ピッチ移動させてステップ610でのレーザ画像取得を繰り返し実施する。
その後、ステップ611で対物レンズ12が終了位置まで到達したと判断されると、ステップ612に進む。ステップ612では、ステップ609から611の繰り返し動作で画像メモリ29bに保存された複数のレーザ画像から、各画素で最高輝度となる輝度とその時の高さ情報を抽出し、この高さ情報を含む3次元像を構築する。これをエクステンド画像と呼ぶ。
次に、ステップ613で、ステップ605から607の動作で画像メモリ29bに保存された複数のカラー画像から、各画素毎に周囲とのコントラストが最大となる画素データを抽出して焦点合成を行なう。そして、ステップ614で、ステップ612で構築したエクステンド画像にステップ613で構築したカラー焦点合成画像を貼り付けて画像表示部30に表示する。
したがって、このようにしても第1の実施の形態と同様な効果を得ることができ、さらに、コントローラ29により検鏡法の切換えにともなうDICプリズム40、アナライザ42、ポラライザ44の光路への挿脱から、カラー表示された3次元像の表示までの一連の動作を自動化することができるので、観察者は、簡易な操作によりDICで焦点合成したカラー画像と、レーザ画像による高さ情報を組み合わせた3次元像を得ることができる。また、このような簡易な操作を実現できることから、観察者の作業負担を大幅に緩和することもできる。
(変形例)
上述の説明では、コントローラ29の指示により各光学素子の光路への挿脱を始め、DICで焦点合成したカラー画像及びレーザ画像による高さ情報の取得などを自動実行させるものとして説明したが、第1の実施の形態で述べたようにガイダンスを表示させ、ガイダンスのGUIに検鏡法を切換える各種ボタンを設けてもよい。また、第1の実施の形態の変形例で述べたと同様に、他の検鏡法との組み合わせも可能であることは勿論である。
なお、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。例えば、第1の実施の形態、第2の実施の形態では、カラー画像を取得した後に、レーザ画像を取得するようにしているが、レーザ画像を取得後にカラー画像を取得しても良い。ここで、カラー画像取得の検鏡法としてDICの場合には、レーザ画像取得後にDICへの切替が行なわれる。
さらに、上記実施の形態には、種々の段階の発明が含まれており、開示されている複数の構成要件における適宜な組み合わせにより種々の発明が抽出できる。例えば、実施の形態に示されている全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題を解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出できる。
本発明の第1の実施の形態に係る走査型共焦点レーザ顕微鐘の概略構成を示す図。 第1の実施の形態の作用を説明するフローチャート。 第1の実施の形態のGUI設定画面の一例を示す図。 第1の実施の形態のGUIに表示されるガイダンスの一例を示す図。 第1の実施の形態のDICにより取得して焦点合成したカラー画像をエクステンド画像の表面に貼り付けた例を示す図。 本発明の第2の実施の形態の作用を説明するフローチャート。
符号の説明
1…顕微鏡本体、2…試料、3…試料台
4…レーザ光源、5…コリメートレンズ
6…偏向ビームスプリッタ、7…光スキャナ
8…瞳投影レンズ、9…1/4波長板
10…ビームスプリッタ、11…結像レンズ
12…対物レンズ、13…レボルバ
14…結像レンズ、16…共焦点ピンホール
17…光検出器、19…白色光源
20…光ファイバ、21.22…レンズ
23…明・暗視野切換キューブ
27…フィールドレンズ、28…CCDカメラ
28a…撮像面、29…コントローラ
29a…画像処理部、29b…画像メモリ
30…画像表示部、40…DICプリズム
41…DICプリズム挿入穴、42…アナライザ
43…アナライザ挿入穴、44…ポラライザ
45…ポラライザ挿入穴、301…下限位置設定ボタン
302…終了位置設定ボタン、303…移動ピッチ設定部
304…DIC指示スイッチ、305…操作開始ボタン
401…OKボタン、402…キャンセルボタン

Claims (7)

  1. レーザ光を発生するレーザ光源と、
    前記レーザ光を対物レンズを介して試料上で2次元走査するとともに、前記試料からの検出光により共焦点画像を取得するレーザ光学系と、
    照明光を発生する照明用光源と、
    前記レーザ光源から前記試料までの光路又は前記照明用光源から前記試料までの光路に光学素子を挿脱して検鏡法を設定する検鏡法設定手段と、
    前記検鏡法設定手段により設定された検鏡法に基づいて前記照明用光源より発生する照明光を前記対物レンズを介して前記試料に照射し、前記試料からの検出光によりカラー画像を取得する光学顕微鏡光学系と、
    前記試料と対物レンズの相対距離を変化させる相対距離移動手段と、
    前記相対距離移動手段により変化される前記相対距離毎に前記光学顕微鏡光学系より取得される複数のカラー画像から焦点合成画像を生成する第1の画像処理手段と、
    前記相対距離移動手段により変化される前記相対距離毎に前記レーザ光学系より取得される複数の共焦点画像から前記試料の高さ情報を含む3次元像を生成する第2の画像処理手段と、を具備し、
    前記高さ情報に基づいた前記試料の3次元像に前記焦点合成画像を組み合わせて表示することを特徴とする共焦点走査型顕微鏡装置。
  2. 前記光学顕微鏡光学系は、前記試料からの検出光を撮像してカラー画像を取得するカラー撮像手段を有することを特徴とする請求項1記載の共焦点走査型顕微鏡装置。
  3. 前記検鏡法設定手段による検鏡法の設定のガイダンスを表示可能にしたことを特徴とする請求項1記載の共焦点走査型顕微鏡装置。
  4. 前記ガイダンスは、前記検鏡法を切り換えるタイミングを表示するとともに、前記検鏡法を切り換える操作に必要な情報をイラスト表示することを特徴とする請求項3記載の共焦点走査型顕微鏡装置。
  5. 前記検鏡法設定手段の光路への前記光学素子の挿脱操作から、前記第1及び第2の画像処理手段での画像処理動作までを自動化したことを特徴とする請求項1記載の共焦点走査型顕微鏡装置。
  6. 前記検鏡法設定手段により設定される検鏡法は、微分干渉観察法、暗視野観察法、偏光観察法、落射蛍光観察法のうちの一つであることを特徴とする請求項1記載の共焦点走査型顕微鏡装置。
  7. 前記レーザ光学系は、微分干渉用プリズムを更に配置し、前記試料からの反射光によりレーザ微分干渉画像を取得することを特徴とする請求項1記載の共焦点走査型顕微鏡装置。
JP2005334399A 2005-11-18 2005-11-18 共焦点走査型顕微鏡装置 Pending JP2007140183A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334399A JP2007140183A (ja) 2005-11-18 2005-11-18 共焦点走査型顕微鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005334399A JP2007140183A (ja) 2005-11-18 2005-11-18 共焦点走査型顕微鏡装置

Publications (1)

Publication Number Publication Date
JP2007140183A true JP2007140183A (ja) 2007-06-07

Family

ID=38203113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334399A Pending JP2007140183A (ja) 2005-11-18 2005-11-18 共焦点走査型顕微鏡装置

Country Status (1)

Country Link
JP (1) JP2007140183A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080144A (ja) * 2008-09-25 2010-04-08 Lasertec Corp 複合型顕微鏡装置及び試料観察方法
JP2010262070A (ja) * 2009-04-30 2010-11-18 Olympus Corp 光学顕微鏡
JP2012022135A (ja) * 2010-07-14 2012-02-02 Olympus Corp 共焦点顕微鏡装置
JP2015084059A (ja) * 2013-10-25 2015-04-30 株式会社キーエンス 顕微鏡装置
CN104730048A (zh) * 2015-01-07 2015-06-24 鲁东大学 一种用于承载荧光样品的铜基石墨烯载物台机械调节系统
KR102036322B1 (ko) * 2018-05-04 2019-11-26 한국과학기술연구원 구조 조명광 신호를 검출하여 자기장을 측정하는 시스템 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316120A (ja) * 1999-03-03 2000-11-14 Denso Corp 全焦点撮像装置
JP2005173580A (ja) * 2003-11-21 2005-06-30 Olympus Corp 共焦点レーザスキャニング顕微鏡
JP2005173561A (ja) * 2003-11-21 2005-06-30 Olympus Corp カラー画像取得方法及び共焦点レーザ顕微鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000316120A (ja) * 1999-03-03 2000-11-14 Denso Corp 全焦点撮像装置
JP2005173580A (ja) * 2003-11-21 2005-06-30 Olympus Corp 共焦点レーザスキャニング顕微鏡
JP2005173561A (ja) * 2003-11-21 2005-06-30 Olympus Corp カラー画像取得方法及び共焦点レーザ顕微鏡

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080144A (ja) * 2008-09-25 2010-04-08 Lasertec Corp 複合型顕微鏡装置及び試料観察方法
JP2010262070A (ja) * 2009-04-30 2010-11-18 Olympus Corp 光学顕微鏡
JP2012022135A (ja) * 2010-07-14 2012-02-02 Olympus Corp 共焦点顕微鏡装置
JP2015084059A (ja) * 2013-10-25 2015-04-30 株式会社キーエンス 顕微鏡装置
CN104730048A (zh) * 2015-01-07 2015-06-24 鲁东大学 一种用于承载荧光样品的铜基石墨烯载物台机械调节系统
KR102036322B1 (ko) * 2018-05-04 2019-11-26 한국과학기술연구원 구조 조명광 신호를 검출하여 자기장을 측정하는 시스템 및 방법

Similar Documents

Publication Publication Date Title
US7304790B2 (en) Examination apparatus and focusing method of examination apparatus
JP5171977B2 (ja) 共焦点レーザスキャニング顕微鏡
US8072586B2 (en) Arrangement and method for focusing a multiplane image acquisition on a prober
JP4889375B2 (ja) 共焦点顕微鏡および多光子励起型顕微鏡
JP6132650B2 (ja) 共焦点顕微鏡装置
JP2007140183A (ja) 共焦点走査型顕微鏡装置
US20080158664A1 (en) Arrangement and method for image acquisition on a prober
JP5053691B2 (ja) 標本スキャナ装置、該装置による標本位置検出方法
JP2010080144A (ja) 複合型顕微鏡装置及び試料観察方法
JP4724411B2 (ja) 共焦点レーザスキャニング顕微鏡
JP5019279B2 (ja) 共焦点顕微鏡及び合焦カラー画像の生成方法
JP4410335B2 (ja) 共焦点顕微鏡
JP4963567B2 (ja) 微小高さ測定装置
JP7097168B2 (ja) 拡大観察装置
JP2005148584A (ja) 共焦点レーザ顕微鏡
JP4197898B2 (ja) 顕微鏡、三次元画像生成方法、三次元画像を生成する制御をコンピュータに行わせるプログラム、及びそのプログラムを記録した記録媒体
JP2007286284A (ja) 共焦点走査型顕微鏡システム、及びそれを使用した観察方法
JP2018194634A (ja) ライトフィールド顕微鏡
JP7032098B2 (ja) 拡大観察装置
JP4914567B2 (ja) 走査型共焦点顕微鏡
KR20110121497A (ko) Pzt 스테이지를 이용한 공초점 현미경 시스템 및 그 스캔방법
JP7021870B2 (ja) 顕微鏡装置
JP2004177732A (ja) 光学測定装置
JP3125124U (ja) 赤外顕微鏡
JP6255305B2 (ja) 光学顕微装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111101

Free format text: JAPANESE INTERMEDIATE CODE: A02