JP3511906B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP3511906B2
JP3511906B2 JP24957898A JP24957898A JP3511906B2 JP 3511906 B2 JP3511906 B2 JP 3511906B2 JP 24957898 A JP24957898 A JP 24957898A JP 24957898 A JP24957898 A JP 24957898A JP 3511906 B2 JP3511906 B2 JP 3511906B2
Authority
JP
Japan
Prior art keywords
electrode material
positive electrode
negative electrode
material layer
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24957898A
Other languages
Japanese (ja)
Other versions
JP2000082471A (en
Inventor
靖 浦岡
祐一 ▲高▼塚
賢二 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP24957898A priority Critical patent/JP3511906B2/en
Publication of JP2000082471A publication Critical patent/JP2000082471A/en
Application granted granted Critical
Publication of JP3511906B2 publication Critical patent/JP3511906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、リチウムイオン二
次電池及びその製造方法に関するものである。 【0002】 【従来の技術】一般に、リチウムイオン二次電池は、リ
チウム含有複酸化物からなる正極材層と、リチウムイオ
ンを吸蔵、放出する炭素材からなる負極材層とが非水電
解質層を介して積層されて構成されている。このリチウ
ムイオン二次電池は、次のようにして製造する。まず、
リチウム含有複酸化物からなる正極材とバインダとN−
メチル−2−ピロリドン(NMP)等からなる有機溶媒
とを混練して正極材スラリーを作る。そして、この正極
材スラリーを正極集電体上に塗布した後、乾燥工程及び
プレス加工を経て正極剤層を備えた正極板を作る。ま
た、リチウムイオンを吸蔵、放出する炭素材からなる負
極材とバインダとNMP等からなる有機溶媒とを混練し
て負極材スラリーを作る。そして、この負極材スラリー
を負極集電体上に塗布した後、乾燥工程及びプレス加工
を経て負極材層を備えた負極板を作る。次に、正極板と
負極板とをセパレータを介して積層して極板群を作り、
この極板群を電槽に入れる。そして、この極板群に炭酸
エステル等の有機溶媒に六フッ化燐酸リチウム等のリチ
ウム塩を溶解した非水電解質を含浸させて電池を完成す
る。リチウムイオン二次電池は、高エネルギー密度を有
しており、自己放電が小さいため、小形化、軽量化され
た電子機器のポータブル電源として広く用いられてい
る。しかしながら、このリチウムイオン二次電池では、
正極材スラリー及び負極材スラリーを作る際に正極材及
び負極材の有機溶媒中への分散性が悪いという問題があ
る。また、非水電解質の正極材層及び負極材層に対する
ぬれ性が悪いという問題がある。特に、極板製造時に、
極板を厚み方向にロールプレス機で圧縮成形する場合に
は、濡れ性の低下が著しい。そこで、濡れ性改善のため
に特開平9−306501号公報に示されるように、正
極材層及び負極材層の少なくとも一方にオレイン酸アミ
ドからなるカチオン界面活性剤を添加することが提案さ
れた。オレイン酸アミドを添加すると、オレイン酸アミ
ドが極板内部の空隙内及び極板表面に溶出して、極板全
体の濡れ性が高くなる。 【0003】 【発明が解決しようとする課題】しかしながら、このよ
うに正極材層及び負極材層の少なくとも一方にオレイン
酸アミドを添加しても、極板内部の電解液の濡れ性を高
めることには限界があり、電池の高率放電特性及び寿命
サイクル数を大幅に高めることができなかった。特に、
正極材スラリーは、アルカリ性を示すため、オレイン酸
アミドのようなカチオン界面活性剤を入れても、正極材
の有機溶媒中への分散性を高めることはできなかった。 【0004】本発明の目的は、極材層内部の電解液の濡
れ性を十分に高めて、電池の高率放電特性及び寿命サイ
クル数を高めることができるリチウムイオン二次電池及
びその製造方法を提供することにある。 【0005】本発明の他の目的は、上記目的に加えて、
正極材スラリーを作る際の正極材の有機溶媒中への分散
性を高ることができるリチウムイオン二次電池の製造方
法を提供することにある。 【0006】 【課題を解決するための手段】本発明は、リチウム含有
複酸化物を主成分とする正極材層と、リチウムイオンを
吸蔵、放出する物質を主成分とする負極材層とが非水電
解質層を介して積層されてなるリチウムイオン二次電池
を改良の対象にする。そして、本発明では、正極材層,
負極材層及び非水電解質層の少なくとも一つに両性界面
活性剤を含有させる。ここでいう両性界面活性剤とは、
アニオン界面活性剤とカチオン界面活性剤の両方の性質
を備えた界面活性剤である。両性界面活性剤は、従来の
オレイン酸アミド等のカチオン界面活性剤に比べて、極
板内部への電解液の濡れ性を高めることができる。その
ため、カチオン界面活性剤を用いる場合よりもリチウム
イオン二次電池の高率放電特性及び寿命サイクル数を高
められる。 【0007】両性界面活性剤としては、カルボン酸塩
型、硫酸エステル塩型、スルホン酸塩型、リン酸エステ
ル塩型等がある。特にカルボン酸塩型両性界面活性剤
は、多く市販されており、他のものに比べて合成が容易
にできるという利点がある。カルボン酸塩型両性界面活
性剤としては、カチオン部分がアミン塩であるアミン
型、またはカチオン部分が第4級アンモニウム塩である
ベタイン型を用いることができる。 【0008】また、正極材として用いるリチウム含有複
酸化物としては、リチウムと遷移金属と含む酸化物を用
いることができる。遷移金属としては、Ti,V,C
r,Mn,Fe,Co,Ni,Mo,W,Cuから選ば
れる少なくとも一種を採用できる。 【0009】また、負極材として用いる物質としては、
黒鉛としては鱗片状天然黒鉛,メソフェーズピッチ系黒
鉛,塊状人造黒鉛等を用いることができる。また、非晶
質炭素材としては、メソカーボンマイクロビーズ,フル
フリルアルコール樹脂焼成体等を用いることができる。 【0010】また、非水電解質としては、リチウム塩か
らなる電解質を有機溶媒に溶解したものが用いられる。
有機溶媒としては、プロピレンカーボネート、エチレン
カーボネート、1,2−ジメキシエタン、1,2−ジエ
キシエタン、2−メチルテトラヒドロフラン、ジエチル
カーボネート、γ−ブチルラクトン、テトラヒドロフラ
ン、ジエチルエーテル、スルホラン、アセトニトリル等
から選ばれるもの、またはこれらを混合したものを用い
ることができる。また、リチウム塩としては、LiCl
4 、LiPF6 、LiBF4 、LiCl、LiBr、
CH3 SO3 Li、Li(CF3 SO2 2 N、Li
(C2 5 SO2 2 N、LiAsF6 等を用いること
ができる。 【0011】カルボン酸塩型両性界面活性剤を正極材層
に含有させる場合は、正極材層のリチウム含有複酸化物
に対して0.01〜0.2重量%含有させるのが好まし
い。0.01重量%を下回ると、正極板内部への電解液
の濡れ性が不十分になり、容量を高めることができな
い。また、0.2重量%を上回ると、正極材の充填量が
低下して容量が低下する問題がある。 【0012】また、カルボン酸塩型両性界面活性剤を負
極材層に含有させる場合は、負極材層の炭素材に対して
0.01〜0.2重量%含有させるのが好ましい。0.
01重量%を下回ると、負極板内部への電解液の濡れ性
が不十分になり、容量を高めることができない。また、
0.2重量%を上回ると、正極材の充填量が低下して容
量が低下する問題がある。 【0013】また、カルボン酸塩型両性界面活性剤を非
水電解質層に含有させる場合は、非水電解質層のリチウ
ム塩に対して0.01〜0.2重量%含有させるのが好
ましい。0.01重量%を下回ると、正極板及び負極板
内部への電解液の濡れ性が不十分になり、容量を高める
ことができない。また、0.2重量%を上回ると、非水
電解質層のリチウム伝導性が低下して容量が低下する問
題がある。 【0014】本発明のリチウムイオン二次電池を製造す
るには、まず、リチウム含有複酸化物と有機溶媒とを含
有する正極材スラリーを正極集電体上に塗布した後、乾
燥工程及びプレス加工を経て正極剤層を備えた正極板を
作る。また、リチウムイオンを吸蔵、放出する炭素材と
有機溶媒とを含有する負極材スラリーを負極集電体上に
塗布した後、乾燥工程及びプレス加工を経て負極材層を
備えた負極板を作る。次に、正極板と負極板とをセパレ
ータを介して積層して極板群を作り、この極板群に非水
電解質を含浸させてリチウムイオン二次電池を製造す
る。そして、正極材スラリー,負極材スラリー及び非水
電解質の少なくとも一つに両性界面活性剤を添加する。
このようにリチウムイオン二次電池を製造すれば、極板
内部への電解液の濡れ性を高められるリチウムイオン二
次電池を容易に製造できる。特に、正極材スラリーは、
アルカリ性を示すため、正極材スラリーに両性界面活性
剤を添加すると、正極材の有機溶媒中への分散性を高め
られる。また、正極材スラリーは導電粉末を含有するの
で、このように分散性が高められると、正極材層中に導
電粉末の導電ネットワークが均等に形成される。そのた
め、正極材層中における反応が均一化し、イオンの移動
が容易になる。その結果、電荷移動抵抗が低くなって、
電池の高率放電特性が向上する。 【0015】 【発明の実施の形態】(試験1)図1は試験1に用いた
各リチウムイオン二次電池の端面図である。本図に示す
ように、このリチウムイオン二次電池は、巻回式極板群
1が電池缶2内に収納された構造を有している。そし
て、巻回式極板群1は、正極板3と負極板4とが電解質
層(セパレータ)5を介して積層するように巻回された
構造を有している。本実施例では、次のようにしてリチ
ウムイオン二次電池を製造した。最初に正極板3を製造
した。まず、平均粒子径10μmのコバルト酸リチウム
(Lix CoO2 )からなる正極材と、平均粒子径3μ
mの炭素粉末からなる導電助剤と、ポリフッ化ビニリデ
ンからなるバインダと表1に示す各量(正極材のコバル
ト酸リチウムに対する重量)の両性界面活性剤とをN−
メチル−2−ピロリドン(NMP)からなる溶媒に分散
して正極スラリーを作った。ここで、表1に示す両性界
面活性剤において、レボン2000(液体)及びNSA
−2000(液体)は、三洋化成株式会社製のベタイン
型両性界面活性剤であり、レボン101−H(液体)及
びレボン105(液体)は、三洋化成株式会社製のイソ
ダゾリン型両性界面活性剤である。下記の化1にベタイ
ン型両性界面活性剤の基本的な構造を示し、下記の化2
にイソダゾリン型両性界面活性剤の基本的な構造を示
す。 【0016】 【化1】 【化2】 次に正極スラリーを厚み20μmのアルミニウム箔から
なる正極集電体6の両面に均一の厚みに塗布してから、
乾燥してNMPを取り除き、ロールプレス機で圧延を行
って正極材層7を形成して、長さ480mm,幅54m
m,厚み174μmの正極板3を作った。 【0017】次に負極板4を製造した。まず、平均粒子
径20μmの黒鉛の炭素材料からなる負極材と、ポリフ
ッ化ビニリデンからなるバインダとをN−メチル−2−
ピロリドン(NMP)からなる溶媒に分散して負極スラ
リーを作った。次に、負極スラリーを厚み10μmの銅
箔からなる負極集電体8の両面に均一の厚みに塗布して
から、乾燥してNMPを取り除き、ロールプレス機で圧
延を行って負極材層9を形成して、長さ500mm,幅
56mm,厚み174μmの負極板4を作った。 【0018】次に、正極板3と負極板4とを厚み24μ
mのポリエチレン微多孔膜からなる帯状のセパレータ5
を介して巻回して極板群1を作った。なお、帯状のセパ
レータ5は一対のセパレータ部により構成されている。
そして、電池缶2と隣接する巻回の径方向外側部分及び
径方向内側部分にセパレータが配置されるように、一対
のセパレータ部を負極板4の両面に配置して巻回した。
次に、極板群1をNiめっき鉄からなる円筒形の電池缶
2内に配置してから、予め負極集電体8に溶接してある
ニッケルタブ端子11を電池缶2の底部2aに溶接し
た。次にプロピレンカーボネートとジメチルカーボネー
トとを体積比1:1で混合した溶媒にLiPF6 からな
るリチウム塩を1モル/lの濃度で溶解した有機電解液
(非水電解液)を電池缶2内に5ml注入した。次に予
め正極集電体6に溶接してあるアルミニウムタブ端子1
0を圧力スイッチを備える電池蓋12に溶接した。そし
て、電池蓋12を絶縁性のポリプロピレンからなるガス
ケット13を介して電池缶2の上部に配置してから、こ
れをかしめて電池缶2内を密閉して直径18mm,高さ
65mm,の円筒形の各未充電リチウムイオン二次電池
を作った。 【0019】次に各未充電リチウムイオン二次電池を2
5℃において、設定電圧4.2V、制限電流1400m
Aで2.5時間充電した後に、1400mAで2.5V
まで放電した際の各電池の放電容量を求めた。また、前
述の充電及び放電を繰り返して、500サイクル後の放
電容量を測定し、この放電容量の初放電時の放電容量に
対する割合(充放電サイクル特性)を算出した。表1は
その結果を示している。なお、表1には、比較例とし
て、添加剤を添加しないもの(無添加)及び従来用いて
いたオレイン酸アミドを添加したものの結果も併せて示
す。 【0020】 【表1】 表1より、無添加及び従来用いていたオレイン酸アミド
を添加したものに比べて、両性界面活性剤を正極材層に
0.01〜0.2重量%含有させたリチウムイオン二次
電池では、放電容量を高め、しかも充放電サイクル特性
を向上できるのが分る。 【0021】(試験2)次に正極材スラリーの代りに負
極材スラリーに表2に示す各量(負極材の炭素材に対す
る重量)の両性界面活性剤を添加し、その他は試験1に
用いた電池と同様の電池を作成し、試験1と同様の試験
条件で各電池の放電容量と充放電サイクル特性とを求め
た。表2はその結果を示している。なお、表2にも、比
較例として、添加剤を添加しないもの(無添加)及び従
来用いていたオレイン酸アミドを添加したものの結果も
併せて示す。 【0022】 【表2】 表2より、無添加及び従来用いていたオレイン酸アミド
を添加したものに比べて、両性界面活性剤を負極材層に
0.01〜0.2重量%含有させたリチウムイオン二次
電池では、放電容量を高め、しかも充放電サイクル特性
を向上できるのが分る。 【0023】(試験3)次に正極材スラリーの代りに非
水電解質に表3に示す各量(非水電解質のリチウム塩に
対する重量)の両性界面活性剤を添加し、その他は試験
1に用いた電池と同様の電池を作成し、試験1と同様の
試験条件で各電池の放電容量と充放電サイクル特性とを
求めた。表3はその結果を示している。なお、表3に
も、比較例として、添加剤を添加しないもの(無添加)
及び従来用いていたオレイン酸アミドを添加したものの
結果も併せて示す。 【0024】 【表3】表3より、無添加及び従来用いていたオレイン酸アミド
を添加したものに比べて、両性界面活性剤を負極材層に
0.01〜0.2重量%含有させたリチウムイオン二次
電池では、放電容量を高め、しかも充放電サイクル特性
を向上できるのが分る。 【0025】また、表1〜3より、正極材層及び負極材
層に両性界面活性剤を添加すると、特に効果が高いのが
分る。 【0026】なお、上記実施例では、正極材層、負極材
層及び非水電解質層の各部にそれぞれ両性界面活性剤を
添加したが、正極材層、負極材層及び非水電解質層の少
なくとも一つに両性界面活性剤を添加すればよく、正極
材層及び負極材層、または正極材層、負極材層及び非水
電解質層の全てに両性界面活性剤を添加してもよいのは
勿論である。 【0027】また、上記実施例では、巻回した極板群及
び円筒形の電池缶を用いたが、板状の極板を単に積層し
て構成した極板群及び多角柱(三角柱、四角柱等)の電
池缶を用いた電池においても、同様の効果を得ることが
できる。 【0028】なお、本実施例では、負極材として非晶質
炭素材を用いたが、黒鉛を負極材として用いても構わな
いのは勿論である。 【0029】 【発明の効果】本発明によれば、正極材層,負極材層及
び非水電解質層の少なくとも一つに両性界面活性剤を含
有させるので、極板内部への電解液の濡れ性を高めるこ
とができ、リチウムイオン二次電池の高率放電特性及び
寿命サイクル数を高められる。特に、正極材スラリー
は、アルカリ性を示すため、正極材スラリーに両性界面
活性剤を添加すると、正極材の有機溶媒中への分散性を
高められる。また、正極材スラリーは導電粉末を含有す
るので、このように分散性が高められると、正極材層中
に導電粉末の導電ネットワークが均等に形成される。そ
のため、正極材層中における反応が均一化し、イオンの
移動が容易になる。その結果、電荷移動抵抗が低くなっ
て、電池の高率放電特性が向上する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery and a method for manufacturing the same. In general, in a lithium ion secondary battery, a positive electrode material layer made of a lithium-containing double oxide and a negative electrode material layer made of a carbon material that occludes and releases lithium ions comprise a nonaqueous electrolyte layer. It is configured to be laminated through the intermediary. This lithium ion secondary battery is manufactured as follows. First,
Positive electrode material composed of lithium-containing double oxide, binder and N-
A positive electrode material slurry is prepared by kneading an organic solvent such as methyl-2-pyrrolidone (NMP). Then, after applying this positive electrode material slurry onto the positive electrode current collector, a positive electrode plate provided with a positive electrode material layer is produced through a drying step and pressing. Further, a negative electrode material slurry is prepared by kneading a negative electrode material made of a carbon material that absorbs and releases lithium ions, a binder, and an organic solvent made of NMP or the like. Then, after applying this negative electrode material slurry onto the negative electrode current collector, a negative electrode plate provided with a negative electrode material layer is produced through a drying step and pressing. Next, a positive electrode plate and a negative electrode plate are laminated via a separator to form an electrode plate group,
This electrode group is placed in a battery case. Then, the electrode group is impregnated with a non-aqueous electrolyte in which a lithium salt such as lithium hexafluorophosphate is dissolved in an organic solvent such as a carbonate ester to complete a battery. Lithium ion secondary batteries have a high energy density and low self-discharge, and thus are widely used as portable power supplies for miniaturized and lightweight electronic devices. However, in this lithium ion secondary battery,
When preparing the positive electrode material slurry and the negative electrode material slurry, there is a problem that dispersibility of the positive electrode material and the negative electrode material in an organic solvent is poor. Further, there is a problem that the wettability of the nonaqueous electrolyte with respect to the positive electrode material layer and the negative electrode material layer is poor. In particular, when manufacturing electrode plates,
When the electrode plate is compression-molded in the thickness direction by a roll press machine, the wettability is significantly reduced. Therefore, it has been proposed to add a cationic surfactant composed of oleic amide to at least one of the positive electrode material layer and the negative electrode material layer as disclosed in JP-A-9-306501 to improve the wettability. When oleic acid amide is added, oleic acid amide is eluted in the space inside the electrode plate and on the electrode surface, and the wettability of the entire electrode plate is increased. [0003] However, even if oleic amide is added to at least one of the positive electrode material layer and the negative electrode material layer, the wettability of the electrolytic solution inside the electrode plate is increased. Has a limitation, and the high-rate discharge characteristics and the number of life cycles of the battery cannot be significantly increased. In particular,
Since the positive electrode material slurry shows alkalinity, the dispersibility of the positive electrode material in an organic solvent could not be increased even if a cationic surfactant such as oleic acid amide was added. An object of the present invention is to provide a lithium ion secondary battery capable of sufficiently increasing the wettability of an electrolytic solution inside an electrode material layer and improving the high rate discharge characteristics and the number of life cycles of the battery, and a method of manufacturing the same. To provide. Another object of the present invention is to provide, in addition to the above objects,
An object of the present invention is to provide a method for manufacturing a lithium ion secondary battery capable of increasing the dispersibility of a positive electrode material in an organic solvent when preparing a positive electrode material slurry. According to the present invention, a positive electrode material layer mainly composed of a lithium-containing composite oxide and a negative electrode material layer mainly composed of a substance that occludes and releases lithium ions are used. A lithium ion secondary battery laminated with a water electrolyte layer interposed therebetween is an object of improvement. In the present invention, the cathode material layer,
At least one of the negative electrode material layer and the non-aqueous electrolyte layer contains an amphoteric surfactant. Here, the amphoteric surfactant is
A surfactant having both properties of an anionic surfactant and a cationic surfactant. The amphoteric surfactant can increase the wettability of the electrolytic solution inside the electrode plate as compared with a conventional cationic surfactant such as oleic acid amide. Therefore, the high-rate discharge characteristics and the number of life cycles of the lithium ion secondary battery can be increased as compared with the case where a cationic surfactant is used. The amphoteric surfactants include carboxylate type, sulfate type, sulfonate type and phosphate type. In particular, many carboxylate-type amphoteric surfactants are commercially available, and have an advantage that they can be easily synthesized as compared with others. As the carboxylate type amphoteric surfactant, an amine type in which the cation part is an amine salt or a betaine type in which the cation part is a quaternary ammonium salt can be used. [0008] As the lithium-containing double oxide used as the positive electrode material, an oxide containing lithium and a transition metal can be used. As transition metals, Ti, V, C
At least one selected from r, Mn, Fe, Co, Ni, Mo, W, and Cu can be employed. Further, as a substance used as a negative electrode material,
As the graphite, flaky natural graphite, mesophase pitch graphite, massive artificial graphite and the like can be used. Further, as the amorphous carbon material, mesocarbon microbeads, fired furfuryl alcohol resin, and the like can be used. As the non-aqueous electrolyte, one obtained by dissolving an electrolyte composed of a lithium salt in an organic solvent is used.
As the organic solvent, propylene carbonate, ethylene carbonate, 1,2-dimexethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, diethyl carbonate, γ-butyl lactone, tetrahydrofuran, diethyl ether, sulfolane, acetonitrile, and the like, Alternatively, a mixture of these can be used. As the lithium salt, LiCl
O 4 , LiPF 6 , LiBF 4 , LiCl, LiBr,
CH 3 SO 3 Li, Li (CF 3 SO 2 ) 2 N, Li
(C 2 F 5 SO 2 ) 2 N, LiAsF 6 or the like can be used. When the carboxylate type amphoteric surfactant is contained in the positive electrode material layer, it is preferably contained in an amount of 0.01 to 0.2% by weight based on the lithium-containing double oxide of the positive electrode material layer. If the amount is less than 0.01% by weight, the wettability of the electrolyte solution into the inside of the positive electrode plate becomes insufficient, and the capacity cannot be increased. On the other hand, if it exceeds 0.2% by weight, there is a problem that the filling amount of the positive electrode material decreases and the capacity decreases. When the carboxylate type amphoteric surfactant is contained in the negative electrode material layer, it is preferably contained in an amount of 0.01 to 0.2% by weight based on the carbon material of the negative electrode material layer. 0.
When the content is less than 01% by weight, the wettability of the electrolyte solution inside the negative electrode plate becomes insufficient, and the capacity cannot be increased. Also,
If it exceeds 0.2% by weight, there is a problem that the filling amount of the positive electrode material decreases and the capacity decreases. When the carboxylate type amphoteric surfactant is contained in the nonaqueous electrolyte layer, it is preferably contained in an amount of 0.01 to 0.2% by weight based on the lithium salt of the nonaqueous electrolyte layer. If the content is less than 0.01% by weight, the wettability of the electrolytic solution inside the positive electrode plate and the negative electrode plate becomes insufficient, and the capacity cannot be increased. On the other hand, when the content exceeds 0.2% by weight, there is a problem that the lithium conductivity of the non-aqueous electrolyte layer decreases and the capacity decreases. To manufacture the lithium ion secondary battery of the present invention, first, a positive electrode material slurry containing a lithium-containing double oxide and an organic solvent is applied on a positive electrode current collector, followed by a drying step and a press working. To produce a positive electrode plate provided with a positive electrode agent layer. Further, after a negative electrode material slurry containing a carbon material that occludes and releases lithium ions and an organic solvent is applied on a negative electrode current collector, a negative electrode plate provided with a negative electrode material layer is produced through a drying step and pressing. Next, a positive electrode plate and a negative electrode plate are laminated via a separator to form an electrode plate group, and the electrode plate group is impregnated with a non-aqueous electrolyte to manufacture a lithium ion secondary battery. Then, an amphoteric surfactant is added to at least one of the positive electrode material slurry, the negative electrode material slurry and the non-aqueous electrolyte.
By manufacturing a lithium ion secondary battery in this way, it is possible to easily manufacture a lithium ion secondary battery capable of improving the wettability of the electrolytic solution inside the electrode plate. In particular, the cathode material slurry is
Since it exhibits alkalinity, the dispersibility of the cathode material in an organic solvent can be enhanced by adding an amphoteric surfactant to the cathode material slurry. Further, since the positive electrode material slurry contains the conductive powder, when the dispersibility is increased in this way, a conductive network of the conductive powder is uniformly formed in the positive electrode material layer. Therefore, the reaction in the positive electrode material layer becomes uniform, and the movement of ions becomes easy. As a result, the charge transfer resistance decreases,
The high rate discharge characteristics of the battery are improved. DESCRIPTION OF THE PREFERRED EMBODIMENTS (Test 1) FIG. 1 is an end view of each lithium ion secondary battery used in Test 1. As shown in this figure, this lithium ion secondary battery has a structure in which a wound electrode group 1 is housed in a battery can 2. The wound electrode plate group 1 has a structure in which the positive electrode plate 3 and the negative electrode plate 4 are wound so as to be stacked via an electrolyte layer (separator) 5. In this example, a lithium ion secondary battery was manufactured as follows. First, the positive electrode plate 3 was manufactured. First, a positive electrode material made of lithium cobalt oxide (Li x CoO 2 ) having an average particle diameter of 10 μm and an average particle diameter of 3 μm
m and a binder made of polyvinylidene fluoride and an amphoteric surfactant in the amounts shown in Table 1 (weight relative to lithium cobalt oxide of the positive electrode material), respectively.
A positive electrode slurry was prepared by dispersing in a solvent comprising methyl-2-pyrrolidone (NMP). Here, among the amphoteric surfactants shown in Table 1, Levon 2000 (liquid) and NSA
-2000 (liquid) is a betaine-type amphoteric surfactant manufactured by Sanyo Chemical Co., Ltd., and Levon 101-H (liquid) and Levon 105 (liquid) are isodazoline-type amphoteric surfactants manufactured by Sanyo Chemical Co., Ltd. is there. The basic structure of the betaine-type amphoteric surfactant is shown in the following chemical formula 1, and the following chemical formula 2
Shows the basic structure of an isodazoline-type amphoteric surfactant. ## STR1 ## Embedded image Next, a positive electrode slurry is applied to both surfaces of a positive electrode current collector 6 made of aluminum foil having a thickness of 20 μm to a uniform thickness,
The NMP was dried to remove NMP, and rolled by a roll press to form a positive electrode material layer 7 having a length of 480 mm and a width of 54 m.
m, and a positive electrode plate 3 having a thickness of 174 μm. Next, a negative electrode plate 4 was manufactured. First, a negative electrode material made of a graphite carbon material having an average particle diameter of 20 μm and a binder made of polyvinylidene fluoride were mixed with N-methyl-2-methyl-2-vinyl-2-nitride.
A negative electrode slurry was prepared by dispersing in a solvent comprising pyrrolidone (NMP). Next, the negative electrode slurry was applied to both surfaces of a negative electrode current collector 8 made of copper foil having a thickness of 10 μm to a uniform thickness, dried, NMP was removed, and rolled with a roll press to form a negative electrode material layer 9. The negative electrode plate 4 having a length of 500 mm, a width of 56 mm, and a thickness of 174 μm was formed. Next, the positive electrode plate 3 and the negative electrode plate 4 are
m-shaped separator 5 made of a polyethylene microporous membrane
And the electrode group 1 was formed. The strip-shaped separator 5 is constituted by a pair of separator portions.
Then, a pair of separator portions was arranged on both surfaces of the negative electrode plate 4 and wound so that the separators were arranged on the radially outer portion and the radially inner portion of the winding adjacent to the battery can 2.
Next, after disposing the electrode group 1 in the cylindrical battery can 2 made of Ni-plated iron, the nickel tab terminal 11 previously welded to the negative electrode current collector 8 is welded to the bottom 2 a of the battery can 2. did. Next, an organic electrolytic solution (non-aqueous electrolytic solution) in which a lithium salt composed of LiPF 6 was dissolved at a concentration of 1 mol / l in a solvent in which propylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 was placed in the battery can 2. 5 ml was injected. Next, the aluminum tab terminal 1 previously welded to the positive electrode current collector 6
0 was welded to the battery lid 12 equipped with a pressure switch. Then, the battery lid 12 is disposed on the upper portion of the battery can 2 via the gasket 13 made of insulating polypropylene, and then caulked to tightly seal the inside of the battery can 2 to form a cylindrical cylinder having a diameter of 18 mm and a height of 65 mm. Each uncharged lithium ion secondary battery was made. Next, each uncharged lithium ion secondary battery is
At 5 ° C, set voltage 4.2V, limited current 1400m
2.5 A at 1400 mA after charging for 2.5 hours at A
The discharge capacity of each battery at the time of discharging to the maximum was determined. Further, the charge and discharge described above were repeated, and the discharge capacity after 500 cycles was measured, and the ratio of this discharge capacity to the discharge capacity at the time of the first discharge (charge-discharge cycle characteristics) was calculated. Table 1 shows the results. Table 1 also shows, as a comparative example, the results of the case where the additive was not added (no addition) and the case where the oleic acid amide used conventionally was added. [Table 1] From Table 1, as compared with the case where no oleic acid amide was added and the case where no oleic acid amide was conventionally used, in the lithium ion secondary battery in which the amphoteric surfactant was contained in the cathode material layer in an amount of 0.01 to 0.2% by weight, It can be seen that the discharge capacity can be increased and the charge / discharge cycle characteristics can be improved. (Test 2) Next, instead of the positive electrode material slurry, the respective amounts (weight of the negative electrode material with respect to the carbon material) of the amphoteric surfactant shown in Table 2 were added to the negative electrode material slurry, and the others were used in Test 1. A battery similar to the battery was prepared, and the discharge capacity and charge / discharge cycle characteristics of each battery were determined under the same test conditions as in Test 1. Table 2 shows the results. Table 2 also shows, as a comparative example, the results of the case where no additive was added (no addition) and the case where the conventionally used oleic amide was added. [Table 2] From Table 2, as compared with those without addition and with oleic acid amide used conventionally, in the lithium ion secondary battery in which the amphoteric surfactant was contained in the negative electrode material layer at 0.01 to 0.2% by weight, It can be seen that the discharge capacity can be increased and the charge / discharge cycle characteristics can be improved. (Test 3) Next, instead of the positive electrode material slurry, an amphoteric surfactant in the amounts shown in Table 3 (weight relative to the lithium salt of the non-aqueous electrolyte) was added to the non-aqueous electrolyte, and the other components were used in Test 1. A battery similar to the battery that was used was prepared, and the discharge capacity and charge / discharge cycle characteristics of each battery were determined under the same test conditions as in Test 1. Table 3 shows the results. Table 3 also shows, as a comparative example, the case where no additive was added (no addition).
The results obtained by adding oleic acid amide, which has been conventionally used, are also shown. [Table 3] From Table 3, as compared with the case where no oleic acid amide was added and the case where no oleic acid amide was used conventionally, in the lithium ion secondary battery in which the amphoteric surfactant was contained in the negative electrode material layer in an amount of 0.01 to 0.2% by weight, It can be seen that the discharge capacity can be increased and the charge / discharge cycle characteristics can be improved. Tables 1 to 3 show that the addition of an amphoteric surfactant to the positive electrode material layer and the negative electrode material layer is particularly effective. In the above embodiment, the amphoteric surfactant was added to each of the positive electrode material layer, the negative electrode material layer and the non-aqueous electrolyte layer, but at least one of the positive electrode material layer, the negative electrode material layer and the non-aqueous electrolyte layer was added. It is only necessary to add an amphoteric surfactant to the positive electrode material layer and the negative electrode material layer, or to add the amphoteric surfactant to all of the positive electrode material layer, the negative electrode material layer and the non-aqueous electrolyte layer. is there. In the above embodiment, the wound electrode group and the cylindrical battery can were used. However, the electrode group and the polygonal prism (triangular prism, square prism) formed by simply laminating plate-shaped electrode plates were used. And the like, the same effect can be obtained in a battery using the battery can. In this embodiment, an amorphous carbon material is used as the negative electrode material. However, it goes without saying that graphite may be used as the negative electrode material. According to the present invention, since at least one of the positive electrode material layer, the negative electrode material layer and the non-aqueous electrolyte layer contains an amphoteric surfactant, the wettability of the electrolytic solution inside the electrode plate is improved. And the high-rate discharge characteristics and the number of life cycles of the lithium ion secondary battery can be increased. Particularly, since the positive electrode material slurry shows alkalinity, the dispersibility of the positive electrode material in an organic solvent can be enhanced by adding an amphoteric surfactant to the positive electrode material slurry. Further, since the positive electrode material slurry contains the conductive powder, when the dispersibility is increased in this way, a conductive network of the conductive powder is uniformly formed in the positive electrode material layer. Therefore, the reaction in the positive electrode material layer becomes uniform, and the movement of ions becomes easy. As a result, the charge transfer resistance is reduced, and the high rate discharge characteristics of the battery are improved.

【図面の簡単な説明】 【図1】本発明の実施例の方法で製造したリチウムイオ
ン二次電池の端面図である。 【符号の説明】 1 巻回式極板群 2 電池缶 3 正極板 4 負極板 5 電解質層(セパレータ) 6 正極集電体 7 正極材層 8 負極集電体 9 負極材層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an end view of a lithium ion secondary battery manufactured by a method according to an embodiment of the present invention. [Explanation of Symbols] 1 Winding electrode group 2 Battery can 3 Positive electrode plate 4 Negative electrode plate 5 Electrolyte layer (separator) 6 Positive current collector 7 Positive electrode material layer 8 Negative current collector 9 Negative electrode material layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−153467(JP,A) 特開 平7−37578(JP,A) 特開 平10−83837(JP,A) 特開 平8−213022(JP,A) 特開 平7−29605(JP,A) 特開 平10−92436(JP,A) 特開 平10−12273(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/00 - 4/62 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-7-153467 (JP, A) JP-A-7-37578 (JP, A) JP-A-10-83837 (JP, A) JP-A 8- 213022 (JP, A) JP-A-7-29605 (JP, A) JP-A-10-92436 (JP, A) JP-A-10-12273 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 4/00-4/62

Claims (1)

(57)【特許請求の範囲】 【請求項1】 リチウム含有複酸化物を主成分とする正
極材層と、リチウムイオンを吸蔵、放出する炭素材を主
成分とする負極材層とがリチウム塩を含有する非水電解
質層を介して積層されてなるリチウムイオン二次電池に
おいて、前記リチウム塩に対して0.01〜0.2重量%のカル
ボン酸塩型界面活性剤が前記非水電解質層に 含まれてい
ることを特徴とするリチウムイオン二次電池。
(57) [Claims 1] A positive electrode material layer mainly composed of a lithium-containing double oxide and a negative electrode material layer mainly composed of a carbon material that occludes and releases lithium ions are composed of a lithium salt. In a lithium ion secondary battery laminated via a non-aqueous electrolyte layer containing 0.01% to 0.2% by weight of lithium based on the lithium salt.
A lithium ion secondary battery, wherein a borate type surfactant is contained in the nonaqueous electrolyte layer .
JP24957898A 1998-09-03 1998-09-03 Lithium ion secondary battery Expired - Fee Related JP3511906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24957898A JP3511906B2 (en) 1998-09-03 1998-09-03 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24957898A JP3511906B2 (en) 1998-09-03 1998-09-03 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2000082471A JP2000082471A (en) 2000-03-21
JP3511906B2 true JP3511906B2 (en) 2004-03-29

Family

ID=17195099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24957898A Expired - Fee Related JP3511906B2 (en) 1998-09-03 1998-09-03 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3511906B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100756812B1 (en) * 2000-07-17 2007-09-07 마츠시타 덴끼 산교 가부시키가이샤 Non-aqueous electrochemical apparatus
JP2002270184A (en) * 2001-03-14 2002-09-20 Hitachi Maxell Ltd Non-aqueous secondary battery
US7923400B2 (en) 2004-12-14 2011-04-12 Nissan Motor Co., Ltd. Method of making an electrode for use in a battery
JP4857555B2 (en) * 2004-12-14 2012-01-18 日産自動車株式会社 Lithium ion secondary battery electrode and lithium ion secondary battery using the same
JP4984422B2 (en) * 2005-04-19 2012-07-25 日産自動車株式会社 Method for manufacturing electrode for secondary battery
KR100892048B1 (en) * 2006-09-18 2009-04-06 주식회사 엘지화학 Secondary Battery of Improved High-Rate Discharging Properties
JP5181632B2 (en) * 2007-11-15 2013-04-10 Jsr株式会社 Battery electrode binder composition, battery electrode binder composition manufacturing method, battery electrode paste, battery electrode, and battery electrode manufacturing method
JP2012204100A (en) * 2011-03-24 2012-10-22 Mitsubishi Chemicals Corp Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same
JP5891974B2 (en) * 2011-07-04 2016-03-23 東洋インキScホールディングス株式会社 Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
JP5760945B2 (en) * 2011-10-24 2015-08-12 東洋インキScホールディングス株式会社 Secondary battery electrode forming composition, secondary battery electrode, and secondary battery
CN103545552B (en) * 2013-10-14 2016-03-09 合肥国轩高科动力能源有限公司 Be suitable for the electrolyte of high-voltage lithium ion batteries
CN110444813B (en) * 2016-08-09 2021-02-26 安徽圣格能源科技有限公司 Electrolyte and lithium secondary battery comprising same
CN113013375A (en) * 2021-03-01 2021-06-22 浙江谷神能源科技股份有限公司 Coating process of thick film lithium battery and thick film lithium battery
CN113013374A (en) * 2021-03-01 2021-06-22 浙江谷神能源科技股份有限公司 Preparation method of thick film lithium battery and thick film lithium battery

Also Published As

Publication number Publication date
JP2000082471A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP5882516B2 (en) Lithium secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
EP2262037A1 (en) Lithium secondary battery using ionic liquid
JP2011081931A (en) Lithium ion secondary battery
JP3511906B2 (en) Lithium ion secondary battery
JP3491529B2 (en) Non-aqueous electrolyte secondary battery
JP2009123605A (en) Nonaqueous electrolyte battery
JP3589021B2 (en) Lithium ion secondary battery
JP2009176448A (en) Nonaqueous electrolyte secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
US6846593B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery employing the same
KR102244194B1 (en) Anode Active Maeterial including Graphene-Silicon Composite, Manufacturing method of the Same and Lithium Secondary Battery Comprising the Same
JP2001222995A (en) Lithium ion secondary battery
JP3786273B2 (en) Negative electrode material and battery using the same
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP4895625B2 (en) Lithium secondary battery
JP2002117845A (en) Lithium iron complex oxide for lithium secondary battery positive electrode active material
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
KR100277787B1 (en) Anode for Lithium Ion Secondary Battery
JP2001202999A (en) Charge and discharge method for nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031229

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees