JP3474595B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3474595B2
JP3474595B2 JP32474592A JP32474592A JP3474595B2 JP 3474595 B2 JP3474595 B2 JP 3474595B2 JP 32474592 A JP32474592 A JP 32474592A JP 32474592 A JP32474592 A JP 32474592A JP 3474595 B2 JP3474595 B2 JP 3474595B2
Authority
JP
Japan
Prior art keywords
type
region
layer
type region
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32474592A
Other languages
Japanese (ja)
Other versions
JPH06151450A (en
Inventor
眞喜男 飯田
貴是 杉坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32474592A priority Critical patent/JP3474595B2/en
Publication of JPH06151450A publication Critical patent/JPH06151450A/en
Application granted granted Critical
Publication of JP3474595B2 publication Critical patent/JP3474595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は絶縁物で分離された構造
を有する半導体装置に関し、特に横型PNP接合型トラ
ンジスタを有する半導体装置に関する。 【0002】 【従来の技術】従来、バイポーラICなどP伝導型半導
体基板内にPN接合分離法で形成された横型PNP接合
型トランジスタは、その構造上、寄生トランジスタが形
成される。従って、特性を良くするためP伝導型エミッ
タの回りをP型コレクタで取り囲む形状に構成すること
が必要であった。性能面で横型を上回る縦型PNP接合
型トランジスタはそのような構造とはならないが形成工
程が複雑であり、形成制御の面での難しさもあり、NP
N型トランジスタの製造工程で容易に形成できる横型P
NP接合型トランジスタが最も良く利用されている。 【0003】 【発明が解決しようとする課題】ところで、近年、集積
化の要求に伴い基板上に形成する各素子の微細化が益々
要求されてきているが、完全に絶縁分離を実現する集積
化技術が確立していなかったために、横型PNP接合型
トランジスタは小型の集積化素子が形成しにくいという
問題があった。 【0004】 【課題を解決するための手段】上記の問題を解決するた
発明の構成は、N伝導型の第1のシリコン基板と
2のシリコン基板とを絶縁膜を挟んで貼り合わせ、接
合させることにより、その内部に埋込み絶縁層が形成さ
れた半導体基板を用いる半導体装置において、N伝導型
の第1のシリコン基板面から埋込み絶縁層にまで至る、
島状にN伝導型領域を囲む溝を形成し、その溝を絶縁膜
の形成により絶縁部とし、絶縁部と、埋込み絶縁層とに
よって、半導体基板の他の領域から絶縁分離された島状
素子領域を形成し、島状の素子領域の表面近傍は、1
端側より順に第1P型領域、第1N型領域、第2P型領
域、第2N型領域及び第3N型領域が一列に整列するよ
うに5領域が形成され、第1P型領域、第2P型領域及
び第3N型領域を各々P型エミッタ活性層、P型コレク
タ活性層及びN型ベース層とするPNPトランジスタが
形成され、島状の素子領域の表面近傍において、P型
ミッタ活性層は絶縁部と第1N型領域とのみ接し、P型
コレクタ活性層は絶縁部と第1N型領域及び第2N型領
とのみ接し、N型ベース層は絶縁部と第2N型領域
のみ接しており、第1N型領域第2N型領域とは、
状の素子領域の表面近傍においては接続しておらず、
型コレクタ活性層下方の島状の素子領域内部を介して
続していることを特徴とする。 【0005】 【作用】PNP接合型トランジスタが基板の他の部分か
ら完全に絶縁分離されているので、寄生トランジスタが
形成されることがない。本発明の半導体装置は、SOI
(Silicon On Insulator)方式により埋込み絶縁層を形
成しているので、容易に作製することができる。 【0006】 【発明の効果】従って、今までの様なP伝導型エミッタ
の回りがP伝導型コレクタで取り囲まれた形状を構成す
る必要が無く、機能を損なうことなく素子を十分小さく
でき、集積化に役立てることができる。本発明の半導体
装置は、SOI(Silicon On Insulator)方式により埋
込み絶縁層を形成しているので、容易に作製することが
できる。 【0007】 【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は、本発明の一実施例を示す構成図で、図
1(a) は正面図、図1(b) は図1(a) の中央のX−X’
部分の断面図である。ここで、シリコン半導体基板10
1の上に埋込み絶縁層102が形成されており、基板表
面からトレンチ形状に絶縁部103が素子部104を基
板から絶縁している。この例では、トレンチ部に形成さ
れる空洞部には保護のため多結晶シリコン110が充填
されている。図中のE、C、Bは、それぞれエミッタ、
コレクタ、ベースの略記号である。最表面部はアルミな
どの金属電極で、電極は基板表面の保護絶縁層である酸
化膜105の電極形成部に設けられたコンタクト孔の上
に形成されている。E、およびC電極の下部領域に、N
- 層108内に形成されたP+ 型のエミッタ活性層10
6、コレクタ活性層107が形成されており、両活性層
の両端はトレンチで形成された絶縁部112に接触して
いる。また、このN- 層108はN+ 層109の上に形
成され、N+ 層109がベース電極につながっている。
従って電極をエミッタ、コレクタ、ベースの順に直線的
に配置した構造ともなっている。 【0008】この実施例の形成プロセスについて説明す
る。鏡面研磨されたN- シリコン基板の表面に気相拡散
法を用いてアンチモンを3μm拡散してN+ 層109を
形成する(図2)。また別にP- シリコン基板の片方の
主面に鏡面研磨を施した後、熱酸化を行い厚さ約1μm
の酸化膜102を形成する(図3)。この両基板を清浄
雰囲気中で貼り合わせ、約1100℃に加熱して接合さ
せる(図4)。そして研磨によりN- シリコン基板の側
を研磨し、酸化膜より約15μmの厚さにする(図
5)。この時点で酸化膜102の上に約3μmのN+
109があり、その上に約12μmのN- 層108が形
成され、いわゆるSOI(Silicon On Insulator)基板が
形成される。 【0009】次に、図6に示すように、従来よく利用さ
れるホトリソグラフ工程、拡散工程により、深いN+
111、コレクタ領域107、エミッタ領域106を形
成後、表面に熱酸化で約0.5μmのフィールド酸化膜
105を形成する。その上にLPCVD法により窒化膜
701を0.1μmほど形成する(図7)。この窒化膜
701にレジスト801を施し(図8)、フッ素系エッ
チングガスによるプラズマエッチング、フッ酸エッチン
グ、およびフッ素系エッチングガスによる反応性イオン
エッチングを用いて、図8に示すように素子の周囲の絶
縁部となる場所に埋込み絶縁層までトレンチ802を形
成する。このトレンチ802の表面を酸化して絶縁部を
形成し、残った空洞部分をLPCVD法で多結晶シリコ
ン110を充填する(図9)。多結晶シリコン上にも酸
化膜を形成した後、ドライエッチングで窒化膜を取り除
き、図9のような素子が形成される。 【0010】最後に、酸化膜105にコンタクト孔を形
成して電極配線を形成して、図1のバイポーラ集積回路
が得られる。 【0011】この構成による横型PNP接合型トランジ
スタでは、基板から完全に分離されているので、P型N
型どのタイプの基板でもよく、また今までの様なP伝導
型エミッタの回りがP伝導型コレクタで取り囲まれた形
状を構成する必要が無い。従来の横型トランジスタの大
きさは図10(a) であり、同一縮尺の図10(b) に示す
ように、本発明の構成は機能を損なうことなく素子を十
分小さくでき、集積化に役立てることができる。なお、
本実施例では従来のほぼ1/15にすることができた。 【0012】また、分離された同じ素子領域内にNPN
型トランジスタとPNP型トランジスタとを同時に一体
化して形成することがよく利用され、図1において、N
- 層108をコレクタに、P+ 型の活性層106をベー
スに、N+ 層をP+ 層107内に形成してエミッタとす
ることで一体化したNPN型トランジスタを形成でき
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a structure separated by an insulator, and more particularly to a semiconductor device having a lateral PNP junction transistor. 2. Description of the Related Art Conventionally, a parasitic transistor is formed in a lateral PNP junction type transistor formed by a PN junction isolation method in a P conduction type semiconductor substrate such as a bipolar IC. Therefore, in order to improve the characteristics, it is necessary to form a shape surrounding the P-conductivity type emitter with the P-type collector. A vertical PNP junction transistor that has a higher performance than a horizontal type does not have such a structure, but the formation process is complicated, and there is difficulty in formation control.
Horizontal P that can be easily formed in the manufacturing process of N-type transistor
NP junction transistors are most often used. [0003] In recent years, with the demand for integration, there has been an increasing demand for miniaturization of each element formed on a substrate. Since the technology has not been established, there is a problem that it is difficult to form a small-sized integrated device in the lateral PNP junction transistor. [0004] To solve the above-mentioned problems, the present invention provides a first silicon substrate of N-conductivity type ;
A second silicon substrate bonded across the insulating film, by bonding, the semiconductor device using a semiconductor substrate a buried insulating layer formed therein, N conductivity type
From the first silicon substrate surface to the buried insulating layer,
An island shape to form a groove surrounding the N conductivity type region, the groove and the insulating portion by forming the insulating film, and the insulating portion, by the buried insulating layer, islands that are insulated and separated from other regions of the semiconductor substrate
An element region is formed of, near the surface of the island-like element region, 1
A first P-type region, a first N-type region, and a second P-type region in this order from the end side.
Region, the second N-type region and the third N-type region are aligned in a line.
5 regions are formed, and a first P-type region, a second P-type region and
And the third N-type region are respectively a P-type emitter active layer and a P-type collector.
PNP transistor as active layer and N-type base layer
Is formed, in the vicinity of the surface of the island-like element region, P-type e <br/> emitter active layer is in contact only with the insulating portion and the 1N-type region, a 1N and P-type <br/> active collector layer insulating portion Mold region and second N-type region
Pass the contact only, N-type base layer is in contact only with the insulation part and the 2N-type region, and the third 1N type region and the 2N-type region, the island
No connection is made near the surface of the element region, and P
The semiconductor device is characterized in that it is connected via the inside of the island-shaped element region below the type collector active layer . Since the PNP junction type transistor is completely insulated from the rest of the substrate, no parasitic transistor is formed. The semiconductor device of the present invention has an SOI
(Silicon On Insulator) method to form buried insulating layer
Since it is formed, it can be easily manufactured. Accordingly, it is not necessary to form a shape in which the periphery of the P-conductivity type emitter is surrounded by the P-conductivity type collector as before, and the element can be made sufficiently small without impairing the function, and the integration is improved. Can be used for Semiconductor of the present invention
The device is embedded by SOI (Silicon On Insulator) method.
Since the embedded insulating layer is formed, it can be easily manufactured.
it can. Hereinafter, the present invention will be described with reference to specific examples. FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 1 (a) is a front view, and FIG. 1 (b) is a center XX 'in FIG. 1 (a).
It is sectional drawing of a part. Here, the silicon semiconductor substrate 10
1, a buried insulating layer 102 is formed, and an insulating part 103 insulates the element part 104 from the substrate in a trench shape from the substrate surface. In this example, the cavity formed in the trench is filled with polycrystalline silicon 110 for protection. E, C and B in the figure are emitters, respectively.
Collector, base abbreviation. The outermost surface is a metal electrode such as aluminum, and the electrode is formed on a contact hole provided in an electrode forming portion of an oxide film 105 which is a protective insulating layer on the substrate surface. In the lower region of the E and C electrodes, N
- emitter activity of the P + type formed in the layer 108 layer 10
6. A collector active layer 107 is formed, and both ends of both active layers are in contact with an insulating portion 112 formed by a trench. Further, the N - layer 108 is formed on the N + layer 109, N + layer 109 is connected to the base electrode.
Therefore, the structure is such that the electrodes are linearly arranged in the order of the emitter, the collector, and the base. The forming process of this embodiment will be described. Antimony is diffused by 3 μm on the mirror-polished surface of the N silicon substrate by a vapor phase diffusion method to form an N + layer 109 (FIG. 2). Separately, one principal surface of a P - silicon substrate is mirror-polished and then thermally oxidized to a thickness of about 1 μm.
Is formed (FIG. 3). The two substrates are bonded together in a clean atmosphere, and heated to about 1100 ° C. to join them (FIG. 4). The polished by N - polished side of the silicon substrate to a thickness of about 15μm from the oxide film (Fig. 5). At this point, an N + layer 109 having a thickness of about 3 μm is formed on the oxide film 102, and an N layer 108 having a thickness of about 12 μm is formed thereon. Thus, a so-called SOI (Silicon On Insulator) substrate is formed. Next, as shown in FIG. 6, after a deep N + layer 111, a collector region 107 and an emitter region 106 are formed by a photolithographic process and a diffusion process which are often used in the prior art, the surface is thermally oxidized to about 0 °. A field oxide film 105 of 0.5 μm is formed. A nitride film 701 is formed thereon by LPCVD to a thickness of about 0.1 μm (FIG. 7). A resist 801 is applied to the nitride film 701 (FIG. 8), and plasma etching using a fluorine-based etching gas, hydrofluoric acid etching, and reactive ion etching using a fluorine-based etching gas are used to form a region around the element as shown in FIG. A trench 802 is formed up to a buried insulating layer at a location to be an insulating portion. The surface of the trench 802 is oxidized to form an insulating portion, and the remaining cavity is filled with polycrystalline silicon 110 by LPCVD (FIG. 9). After forming an oxide film also on the polycrystalline silicon, the nitride film is removed by dry etching, and an element as shown in FIG. 9 is formed. [0010] Finally, a contact hole is formed in the oxide film 105 to form an electrode wiring, and the bipolar integrated circuit of FIG. 1 is obtained. In the lateral PNP junction type transistor having this configuration, since it is completely separated from the substrate, the P type N
Any type of substrate may be used, and it is not necessary to form a shape in which the periphery of the P-conduction type emitter is surrounded by the P-conduction type collector as in the past. The size of a conventional lateral transistor is shown in FIG. 10 (a), and as shown in FIG. 10 (b) of the same scale, the structure of the present invention makes it possible to reduce the size of the element sufficiently without impairing its function and to contribute to integration. Can be. In addition,
In this embodiment, it can be reduced to approximately 1/15 of the conventional value. In addition, NPN is provided in the same separated element region.
It is often used to integrally form a P-type transistor and a PNP-type transistor at the same time.
An NPN transistor can be integrally formed by forming an N + layer in the P + layer 107 and using it as an emitter, with the layer 108 as a collector and the P + type active layer 106 as a base.

【図面の簡単な説明】 【図1】本発明の実施例の半導体装置を示す構成図。 【図2】本発明の形成過程を示す断面図。 【図3】本発明の形成過程を示す断面図。 【図4】本発明の形成過程を示す断面図。 【図5】本発明の形成過程を示す断面図。 【図6】本発明の形成過程を示す断面図。 【図7】本発明の形成過程を示す断面図。 【図8】本発明の形成過程を示す断面図。 【図9】本発明の形成過程を示す断面図。 【図10】従来と本発明の実施例を比較する構成図。 【符号の説明】 101 半導体基板 102 埋込み絶縁 103 絶縁部 104 素子部 105 表面酸化膜 110 多結晶シリコン 111 深いN+ 層 701 窒化膜 801 レジスト 802 トレンチBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing a semiconductor device according to an embodiment of the present invention. FIG. 2 is a sectional view showing a forming process of the present invention. FIG. 3 is a sectional view showing a forming process of the present invention. FIG. 4 is a sectional view showing a forming process of the present invention. FIG. 5 is a sectional view showing a forming process of the present invention. FIG. 6 is a sectional view showing a forming process of the present invention. FIG. 7 is a sectional view showing a forming process of the present invention. FIG. 8 is a sectional view showing a forming process of the present invention. FIG. 9 is a sectional view showing a forming process of the present invention. FIG. 10 is a configuration diagram comparing a conventional example with the embodiment of the present invention. DESCRIPTION OF SYMBOLS 101 semiconductor substrate 102 buried insulation 103 insulating part 104 element part 105 surface oxide film 110 polycrystalline silicon 111 deep N + layer 701 nitride film 801 resist 802 trench

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−27734(JP,A) 特開 平3−110852(JP,A) 特開 昭50−152674(JP,A) 特開 昭58−170062(JP,A) 特開 平2−119229(JP,A) 生駒英明、市瀬多章 著「バイポーラ 集積回路」1989年3月20日、初版第2刷 発行 近代科学社、P.37,40   ────────────────────────────────────────────────── ─── Continuation of front page       (56) References JP-A-2-27734 (JP, A)                 JP-A-3-110852 (JP, A)                 Japanese Patent Laid-Open No. 50-152674 (JP, A)                 JP-A-58-170062 (JP, A)                 JP-A-2-119229 (JP, A)                 Hideaki Ikoma, Akira Ichiseta "Bipolar               Integrated Circuit "March 20, 1989, First Edition, Second Printing               Published by Modern Science, P.S. 37, 40

Claims (1)

(57)【特許請求の範囲】 【請求項1】N伝導型の第1のシリコン基板と、第2の
シリコン基板とを絶縁膜を挟んで貼り合わせ、接合させ
ることにより、その内部に埋込み絶縁層が形成された半
導体基板を用いる半導体装置において、 前記N伝導型の第1のシリコン基板面から前記埋込み絶
縁層にまで至る、島状にN伝導型領域を囲む溝を形成
し、その溝を絶縁膜の形成により絶縁部とし、 前記絶縁部と、前記埋込み絶縁層とによって、前記半導
体基板の他の領域から絶縁分離された島状の素子領域を
形成し、 前記島状の素子領域の表面近傍は、1端側より順に第1
P型領域、第1N型領域、第2P型領域、第2N型領域
及び第3N型領域が一列に整列するように5領域が形成
され、 前記第1P型領域、前記第2P型領域及び前記第3N型
領域を各々P型エミッタ活性層、P型コレクタ活性層及
びN型ベース層とするPNPトランジスタが形成され、 前記島状の素子領域の表面近傍において、前記P型エミ
ッタ活性層は前記絶縁部と前記第1N型領域とのみ接
し、前記P型コレクタ活性層は前記絶縁部と前記第1N
型領域及び前記第2N型領域とのみ接し、前記N型ベー
層は前記絶縁部と前記第2N型領域とのみ接してお
り、 前記第1N型領域と前記第2N型領域とは、前記島状の
素子領域の表面近傍においては接続しておらず、前記P
型コレクタ活性層下方の島状の素子領域内部を介して
続していることを特徴とする半導体装置。
(57) a first silicon substrate of the Claims 1] N conductivity type, and a second silicon substrate bonded across the insulating film, by bonding, embedding insulation therein In a semiconductor device using a semiconductor substrate on which a layer is formed, a groove surrounding an N-conductivity-type region from the surface of the N-conductivity-type first silicon substrate to the buried insulating layer is formed, and the groove is formed. Forming an insulating film to form an insulating portion; forming an island-shaped element region insulated and separated from another region of the semiconductor substrate by the insulating portion and the buried insulating layer; and a surface of the island-shaped element region. The neighborhood is the first from the one end side
P-type region, first N-type region, second P-type region, second N-type region
And five regions are formed such that the third N-type regions are aligned in a line.
The first P-type region, the second P-type region, and the third N-type region.
The regions are P-type emitter active layer, P-type collector active layer and
And a PNP transistor serving as an N-type base layer is formed , and near the surface of the island-shaped element region, the P-type emitter active layer is in contact only with the insulating portion and the first N-type region , The P-type collector active layer includes the insulating portion and the first N
Contact only -type region and the first 2N-type region, the N-type base <br/> scan layer at hotel in contact only with the said insulated portion first 2N-type region
Ri, wherein The first 1N type region and the first 2N-type region, not connected in the vicinity of the surface of the island-shaped <br/> element region, the P
A semiconductor device which is connected via an inside of an island-shaped element region below a type collector active layer .
JP32474592A 1992-11-09 1992-11-09 Semiconductor device Expired - Fee Related JP3474595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32474592A JP3474595B2 (en) 1992-11-09 1992-11-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32474592A JP3474595B2 (en) 1992-11-09 1992-11-09 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH06151450A JPH06151450A (en) 1994-05-31
JP3474595B2 true JP3474595B2 (en) 2003-12-08

Family

ID=18169214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32474592A Expired - Fee Related JP3474595B2 (en) 1992-11-09 1992-11-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3474595B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684523B2 (en) 2002-09-09 2011-05-18 株式会社デンソー Manufacturing method of semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
生駒英明、市瀬多章 著「バイポーラ集積回路」1989年3月20日、初版第2刷発行 近代科学社、P.37,40

Also Published As

Publication number Publication date
JPH06151450A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
EP0615286B1 (en) Semiconductor device provided with isolation region
JP3014012B2 (en) Method for manufacturing semiconductor device
JP3818673B2 (en) Semiconductor device
US4393573A (en) Method of manufacturing semiconductor device provided with complementary semiconductor elements
JPS6159852A (en) Manufacture of semiconductor device
JP2979554B2 (en) Method for manufacturing semiconductor device
US5763931A (en) Semiconductor device with SOI structure and fabrication method thereof
JP3474595B2 (en) Semiconductor device
JPS61172346A (en) Semiconductor integrated circuit device
JP2840488B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP3146582B2 (en) Vertical bipolar transistor having SOI structure and method of manufacturing the same
JP3237277B2 (en) Semiconductor device
JP3178400B2 (en) Bipolar transistor insulated by trench filled with silicon oxide
JP3264401B2 (en) Method of manufacturing insulator-isolated lateral bipolar transistor and lateral pnp bipolar transistor
JPH05166920A (en) Semiconductor device and manufacture thereof
JP2813518B2 (en) Transistor with built-in resistor
JP3194286B2 (en) Manufacturing method of bipolar transistor
JP2826405B2 (en) Semiconductor device
JP3175707B2 (en) Method for manufacturing semiconductor device
JP3207561B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPS58155739A (en) Semiconductor device
JPS58107645A (en) Manufacture of semiconductor device
JP2633374B2 (en) Semiconductor device and manufacturing method thereof
JPS60103640A (en) Semiconductor device
JPH0258367A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees