JP3464287B2 - A method for manufacturing a semiconductor device - Google Patents

A method for manufacturing a semiconductor device

Info

Publication number
JP3464287B2
JP3464287B2 JP23591994A JP23591994A JP3464287B2 JP 3464287 B2 JP3464287 B2 JP 3464287B2 JP 23591994 A JP23591994 A JP 23591994A JP 23591994 A JP23591994 A JP 23591994A JP 3464287 B2 JP3464287 B2 JP 3464287B2
Authority
JP
Japan
Prior art keywords
nickel
method
film
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23591994A
Other languages
Japanese (ja)
Other versions
JPH0878329A (en
Inventor
久 大谷
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP23591994A priority Critical patent/JP3464287B2/en
Publication of JPH0878329A publication Critical patent/JPH0878329A/en
Application granted granted Critical
Publication of JP3464287B2 publication Critical patent/JP3464287B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は結晶性を有する半導体を用いた半導体装置の作製方法に関する。 BACKGROUND OF THE INVENTION [0001] BACKGROUND OF THE INVENTION This invention relates to a method for manufacturing a semiconductor device using a semiconductor having crystallinity. 【0002】 【従来の技術】薄膜半導体を用いた薄膜トランジスタ(以下TFT等)が知られている。 [0002] thin film transistor using the BACKGROUND ART thin film semiconductor (hereinafter TFT, etc.) are known. このTFTは、基板上に薄膜半導体を形成し、この薄膜半導体を用いて活性領域が構成されるものである。 The TFT is a thin film semiconductor formed on a substrate, in which the active region is configured by using the thin-film semiconductor. このTFTは、各種集積回路に利用されているが、特に電気光学装置、特にアクティブマトリックス型の液晶表示装置の各画素に設けられたスイッチング素子、周辺回路部分に形成されるドライバー素子として注目されている。 This TFT has been used in various integrated circuits, in particular electro-optical device, in particular a switching element provided in each pixel of an active matrix type liquid crystal display device, attention as a driver element formed in the peripheral circuit portion there. 【0003】TFTに利用される薄膜半導体としては、 [0003] as a thin film semiconductor to be used in the TFT,
非晶質珪素膜を用いることが簡便であるが、その電気的特性が低いという問題がある。 It is convenient to use an amorphous silicon film, the electrical characteristic is low. TFTの特性向上を得るためには、結晶性を有するシリコン薄膜を利用するばよい。 To obtain a characteristic improvement of the TFT, it utilizes a crystalline silicon thin film. 結晶性を有するシリコン膜は、多結晶シリコン、ポリシリコン、微結晶シリコン等と称されている。 Silicon film having crystallinity, polycrystalline silicon, polysilicon, are referred to as microcrystalline silicon or the like. この結晶性を有するシリコン膜を得るためには、まず非晶質珪素膜を形成し、しかる後に加熱によって結晶化さればよい。 To obtain a silicon film having crystallinity, an amorphous silicon film is first formed, it is crystallized by heating thereafter. 【0004】しかしながら、加熱による結晶化は、加熱温度が600℃以上の温度で10時間以上の時間を掛けることが必要であり、基板としてガラス基板を用いることが困難であるという問題がある。 However, crystallization by heating, it is necessary to heating temperature exerts an 10 or more hours at 600 ° C. or higher, there is a problem that it is difficult to use a glass substrate as the substrate. 例えばアクティブ型の液晶表示装置に用いられるコーニング7059ガラスはガラス歪点が593℃であり、基板の大面積化を考慮した場合、600℃以上の加熱には問題がある。 For example Corning 7059 glass used for an active-type liquid crystal display device is a glass strain point of 593 ° C., when considering a large area of ​​the substrate, the heating above 600 ° C. is a problem. 【0005】〔発明の背景〕本発明者らの研究によれば、非晶質珪素膜の表面にニッケルやパラジウム、さらには鉛等の元素を微量に堆積させ、しかる後に加熱することで、550℃、4時間程度の処理時間で結晶化を行なえることが判明している。 [0005] According to the present inventors' study Background of the Invention, nickel and palladium on the surface of the amorphous silicon film, and further depositing an element such as lead traces, by heating thereafter, 550 ° C., it has been found to be able to crystallize in about 4 hours of processing time. 【0006】上記のような微量な元素(結晶化を助長する金属元素)を導入するには、プラズマ処理や蒸着、さらにはイオン注入を利用すればよい。 [0006] The introduction of small amount of elements (metal element which promotes crystallization) as described above, a plasma treatment or vapor deposition, and more may be utilized ion implantation. プラズマ処理とは、平行平板型あるいは陽光柱型のプラズマCVD装置において、電極として結晶化を助長する金属元素(例えばニッケル)を含んだ材料を用い、窒素または水素等の雰囲気でプラズマを生じさせることによって非晶質珪素膜に金属元素の添加を行なう方法である。 The plasma treatment, the plasma CVD apparatus of a parallel plate type or positive column type, a material including a metal element for promoting crystallization (for example, nickel) used as an electrode, causing a plasma in an atmosphere of nitrogen or hydrogen, etc. by a method of the amorphous silicon film performs addition of the metal element. 【0007】しかしながら、上記のような元素が半導体中に多量に存在していることは、これら半導体を用いた装置の信頼性や電気的安定性を阻害するものであり好ましいことではない。 However, the elements described above are present in large amounts in the semiconductor, is it not desirable that inhibit the reliability and electrical stability of a device using such semiconductor. 【0008】即ち、上記のニッケル等の結晶化を助長する元素(金属元素)は、非晶質珪素を結晶化させる際には必要であるが、結晶化した珪素中には極力含まれないようにすることが望ましい。 Namely, an element for promoting crystallization such as the nickel (metal element) are necessary for when crystallizing the amorphous silicon, so that it is not included as much as possible in the silicon crystallized it is desirable to. この目的を達成するには、 To achieve this goal,
金属元素として結晶性珪素中で不活性な傾向が強いものを選ぶと同時に、結晶化に必要な金属元素の量を極力少なくし、最低限の量で結晶化を行なう必要がある。 At the same time in the crystalline silicon as the metal element choose the one inactive tendency is strong, the amount of metal elements necessary for crystallization was minimized, it is necessary to perform the crystallization in a minimum amount. そしてそのためには、上記金属元素の添加量を精密に制御して導入する必要がある。 And therefore, it is necessary to introduce precisely controlling the amount of the metal element. 【0009】また、ニッケルを金属元素とした場合において、非晶質珪素膜を成膜し、ニッケル添加をプラズマ処理法によって行ない結晶性珪素膜を作製し、その結晶化過程等を詳細に検討したところ以下の事項が判明した。 Further, in the case of nickel metal element, and forming an amorphous silicon film, nickel is added to prepare a crystalline silicon film is performed by a plasma treatment method, was studied the crystallization process and the like in detail place the following items were found. (1)プラズマ処理によってニッケルを非晶質珪素膜上に導入した場合、熱処理を行なう以前に既に、ニッケルは非晶質珪素膜中のかなりの深さの部分まで侵入している。 (1) When nickel by plasma treatment was introduced onto the amorphous silicon film, already before performing the heat treatment, nickel invading to the portion of the considerable depth of the amorphous silicon film. (2)結晶の初期核発生は、ニッケルを導入した表面から発生している。 (2) Initial nucleation of crystals are generated from the surface by introducing nickel. (3)蒸着法でニッケルを非晶質珪素膜上に成膜した場合であっても、プラズマ処理を行なった場合と同様に結晶化が起こる。 (3) even when the film formed on the amorphous silicon film of nickel by vapor deposition, similarly crystallization occurs in the case of performing the plasma treatment. 【0010】上記事項から、プラズマ処理によって導入されたニッケルが全て効果的に機能していないということが結論される。 [0010] From the above matters, nickel introduced by plasma treatment is that all not effectively function is concluded. 即ち、多量のニッケルが導入されても十分に機能していないニッケルが存在していると考えられる。 That is believed that nickel is not functioning sufficiently be introduced a large amount of nickel is present. このことから、ニッケルと珪素が接している点(面)が低温結晶化の際に機能していると考えられる。 From this, it is considered that that the nickel and silicon are in contact (plane) is functioning during cold crystallization.
そして、可能な限りニッケルは微細に原子状に分散していることが必要であることが結論される。 Then, nickel as possible is concluded that it is necessary that the dispersed finely atomic. 即ち、「必要なのは非晶質珪素膜の表面近傍に低温結晶化が可能な範囲内で可能な限り低濃度のニッケルが原子状で分散して導入されればよい」ということが結論される。 That is, the fact that "may be made introduced low concentration of nickel as possible within a range capable of low-temperature crystallization in the vicinity of the surface of the amorphous silicon film is dispersed in atomic necessary" it is concluded. 【0011】非晶質珪素膜の表面近傍のみに極微量のニッケルを導入する方法、言い換えるならば、非晶質珪素膜の表面近傍のみ結晶化を助長する金属元素を極微量導入する方法としては、蒸着法を挙げることができるが、 [0011] The method of introducing only very small amount of nickel near the surface of the amorphous silicon film, in other words, a metal element that promotes crystallization only near the surface of the amorphous silicon film as a method for very small amount introduced , there may be mentioned an evaporation method,
蒸着法は制御性が悪く、金属元素の導入量を厳密に制御することが困難であるという問題がある。 Deposition has poor controllability, there is a problem that it is difficult to strictly control the introduction of the metal element. またイオン注入法やプラズマドーピング法を用いることも考えられるが、生産性の点で問題がある。 The is also possible to use an ion implantation method or a plasma doping method, but there is a problem in terms of productivity. 【0012】 【発明が解決しようとする課題】本発明は、金属元素を用いた600℃以下の熱処理による結晶性を有する薄膜珪素半導体の作製において、 (1)金属元素の量を制御して導入し、その量を最小限の量とする。 [0012] SUMMARY OF THE INVENTION The present invention, in the preparation of thin-film silicon semiconductors with crystallinity by 600 ° C. The following heat treatment using a metal element, introduced by controlling the amount of (1) metal elements and, to the amount and the minimum amount. (2)生産性の高い方法とする。 (2) a highly productive method. (3)デバイスに利用することを目的とした結晶性珪素薄膜を得る。 (3) a crystalline silicon thin film for the purpose of utilizing the device. といった要求を満たすことを目的とする。 It aims to meet requirements such. 【0013】 【課題を解決するための手段】本発明の構成の一つは、 [0013] Means for Solving the Problems One aspect of the invention,
非晶質珪素膜の表面に選択的にマスクを形成する工程と、前記非晶質珪素膜の表面に珪素の結晶化を助長する金属元素を接して保持させる工程と、加熱処理および/ Forming a selectively masked on the surface of the amorphous silicon film, a step of holding against a metal element which promotes crystallization of silicon on the surface of the amorphous silicon film, heat treatment and /
または光照射を行うことにより前記非晶質珪素膜を結晶化させる工程と、を有することを特徴とする。 Or characterized by having a, a step of crystallizing the amorphous silicon film by performing light irradiation. 【0014】他の発明の構成は、非晶質珪素膜の表面に選択的にマスクを形成する工程と、前記非晶質珪素膜の表面に珪素の結晶化を助長する金属元素を選択的に接して保持させる工程と、加熱処理および/または光照射を行うことにより前記金属元素が接して保持された領域から前記金属元素が接していない領域へと前記非晶質珪素膜の結晶成長を行わす工程と、を有することを特徴とする。 [0014] According to another aspect of the present invention, the step of selectively forming a mask on the surface of the amorphous silicon film, selectively a metal element which promotes crystallization of silicon on the surface of the amorphous silicon film performed a step of holding in contact, the crystal growth of the heat treatment and / or from the region held in contact said metal element by performing light irradiation to the metal element is not in contact area the amorphous silicon film and to process, and having a. 【0015】他の発明の構成は、絶縁表面を有する基板上に形成された非晶質珪素膜の表面に選択的にマスクを形成する工程と、前記非晶質珪素膜の表面に珪素の結晶化を助長する金属元素を選択的に接して保持させる工程と、加熱処理および/または光照射を行うことにより前記金属元素が接して保持された領域から基板に平行な方向に結晶成長を行わす工程と、を有することを特徴とする。 [0015] configuration of another invention, the step of selectively forming a mask on the surface of the amorphous silicon film formed on a substrate having an insulating surface, a silicon crystal on the surface of the amorphous silicon film a step of holding the metal element for promoting reduction selectively contact with, to perform crystal growth in a direction parallel to the substrate from the metal element is held in contact area by performing heat treatment and / or light irradiation and having a step. 【0016】本発明の構成を採用することによって以下に示すような基本的な有意性を得ることができる。 [0016] By adopting the configuration of the present invention can be obtained basic significance as described below. (a)溶液中における金属元素濃度は、予め厳密に制御し結晶性をより高めかつその元素の量をより少なくすることが可能である。 Metal element concentration in the (a) solution can be further reduce the amount of advance strictly controlled more enhanced and its elemental crystalline. (b)溶液と非晶質珪素膜の表面とが接触していれば、 (B) if the contact with the surface of the solution and the amorphous silicon film,
金属元素の非晶質珪素への導入量は、溶液中における金属元素の濃度によって決まる。 Introduction amount of the amorphous silicon metal elements is determined by the concentration of the metal element in the solution. (c)非晶質珪素膜の表面に吸着する金属元素が主に結晶化に寄与することとなるので、必要最小限度の濃度で金属元素を導入できる。 (C) the metal elements adsorbed on the surface of the amorphous silicon film is to contribute mainly to crystallization, it can be introduced metal element in a concentration of necessary minimum. (d)マスクを用いて、選択的に金属元素を導入することにより、金属元素を導入した領域から金属元素を導入しなかった領域へと、結晶成長を行わすことができる。 With (d) is a mask to selectively introducing the metal element, the area of ​​introducing a metal element into regions not introduced metal element, it is possible to perform crystal growth. 【0017】非晶質珪素膜上に結晶化を助長する元素を含有させた溶液を塗布する方法としては、溶液として水溶液、有機溶媒溶液等を用いることができる。 As a method for coating a solution containing an element which promotes crystallization on the amorphous silicon film may be an aqueous solution, an organic solvent solution such as a solution. ここで含有とは、化合物として含ませるという意味と、単に分散させることにより含ませるという意味との両方を含む。 Here, the content includes a means that is included as a compound, simply both the sense of include by dispersing. 【0018】金属元素を含む溶媒としては、極性溶媒である水、アルコール、酸、アンモニアから選ばれたものを用いることができる。 [0018] The solvent containing the metal element may be used a polar solvent as water, alcohol, acid, those selected from ammonia. 【0019】触媒としてニッケルを用い、このニッケルを極性溶媒に含ませる場合、ニッケルはニッケル化合物として導入される。 In the case where nickel is used as catalyst, to include the nickel in a polar solvent, nickel is introduced as a nickel compound. このニッケル化合物としては、代表的には臭化ニッケル、酢酸ニッケル、蓚酸ニッケル、炭酸ニッケル、塩化ニッケル、沃化ニッケル、硝酸ニッケル、硫酸ニッケル、蟻酸ニッケル、ニッケルアセチルアセトネ−ト、4−シクロヘキシル酪酸ニッケル、酸化ニッケル、水酸化ニッケルから選ばれたものが用いられる。 As the nickel compound, typically nickel bromide, nickel acetate, oxalate nickel, nickel carbonate, nickel chloride, iodide, nickel nitrate, nickel sulfate, nickel formate, nickel acetylacetonate - DOO, 4-cyclohexyl butyric acid nickel, nickel oxide, those selected from nickel hydroxide used. 【0020】また金属元素を含む溶媒として、無極性溶媒であるベンゼン、トルエン、キシレン、四塩化炭素、 [0020] As a solvent containing a metal element, benzene apolar solvent, toluene, xylene, carbon tetrachloride,
クロロホルム、エーテルから選ばれたものを用いることができる。 Chloroform, and it may be a selected from ethers. 【0021】この場合はニッケルはニッケル化合物として導入される。 [0021] In this case, nickel is introduced as a nickel compound. このニッケル化合物としては代表的には、ニッケルアセチルアセトネ−ト、2−エチルヘキサン酸ニッケルから選ばれたものを用いることができる。 As the nickel compound is typically nickel acetylacetonate - can be used DOO, those selected from 2-ethyl hexanoic acid nickel. 【0022】また金属元素を含有させた溶液に界面活性剤を添加することも有用である。 [0022] or a metal element wo-containing is not another solution similar surfactant Zai Wo addition to ancient capital of mourning useful out there. これは、被塗布面に対する密着性を高め吸着性を制御するためである。 This is to control the adsorptive enhance adhesion to the coated surface. この界面活性剤は予め被塗布面上に塗布するのでもよい。 The surfactants may be of being applied in advance on the coated surface. 【0023】金属元素としてニッケル単体を用いる場合には、酸に溶かして溶液とする必要がある。 [0023] In the case of using a pure nickel as the metal element is required to be a solution dissolved in acid. 【0024】以上述べたのは、金属元素であるニッケルが完全に溶解した溶液を用いる例であるが、ニッケルが完全に溶解していなくとも、ニッケル単体あるいはニッケルの化合物からなる粉末が分散媒中に均一に分散したエマルジョンの如き材料を用いてもよい。 [0024] The mentioned above is an example to use a solution of nickel is completely dissolved, which is a metal element, even nickel not completely dissolve the powder dispersion medium comprising a compound of nickel alone or nickel it may be used homogeneously dispersed emulsion of such materials. 【0025】なおこれらのことは、金属元素としてニッケル以外の材料を用いた場合であっても同様である。 It should be noted that these are the same even when a material other than nickel as the metal element. 【0026】結晶化を助長する金属元素としてニッケルを用い、このニッケルを含有させる溶液溶媒として水の如き極性溶媒を用いた場合において、非晶質珪素膜にこれら溶液を直接塗布すると、溶液が弾かれてしまうことがある。 [0026] using nickel as a metal element that promotes crystallization, in the case of using a such a polar solvent of water as a solution a solvent for containing the nickel, when applying these solutions directly to the amorphous silicon film, the solution bullet it may wither. この場合は、100Å以下の薄い酸化膜をまず形成し、その上に金属元素を含有させた溶液を塗布することで、均一に溶液を塗布することができる。 In this case, 100 Å to form first the following thin oxide film, by applying a solution containing a metal element thereon, can be applied uniformly solution. また、界面活性剤の如き材料を溶液中に添加する方法により濡れを改善する方法も有効である。 A method of improving the wettability by a method of adding materials such as surfactants in the solution is also effective. 【0027】また、溶液として2−エチルヘキサン酸ニッケルのトルエン溶液の如き無極性溶媒を用いることで、非晶質珪素膜表面に直接塗布することができる。 Further, by using a non-polar solvent such as toluene solution of nickel 2-ethylhexanoate as a solution, it can be applied directly to the surface of the amorphous silicon film. この場合にはレジスト塗布の際に使用されている密着剤の如き材料を予め塗布することは有効である。 It is effective to previously apply the materials such as adhesion agents used in the resist coating in this case. しかし塗布量が多過ぎる場合には逆に非晶質珪素中への金属元素の添加を妨害してしまうために注意が必要である。 However, if the coating amount is too large it should be noted for would interfere with the addition of the metal element into the amorphous silicon reversed. 【0028】溶液に含ませる金属元素の量は、その溶液の種類にも依存するが、概略の傾向としてはニッケル量として溶液に対して200ppm〜1ppm、好ましくは50ppm〜1ppm(重量換算)とすることが望ましい。 The amount of metal elements to be contained in the solution depends on the kind of the solution, 200Ppm~1ppm to a solution as nickel content as trend schematic, preferably at 50Ppm~1ppm (weight basis) it is desirable. これは、結晶化終了後における膜中のニッケル濃度や耐フッ酸性に鑑みて決められる値である。 This is a value determined in consideration of the nickel concentration and the hydrofluoric acid resistance of the film after the crystallization finished. 【0029】上記金属元素の溶液中における濃度は、非晶質珪素膜中に導入される金属元素の量(最終的に得られる結晶性珪素膜中におけるニッケル濃度で評価される)が1×10 16 〜5×10 19 atoms cm- 3となるように決定すればよい。 The concentration in the solution of the metal elements, (assessed by nickel concentration in the crystalline silicon film finally obtained) the amount of the metal element introduced in the amorphous silicon film is 1 × 10 16-5 may be determined so as × 10 19 atoms cm- 3. また、非晶質珪素膜中に導入される金属元素の濃度は、溶液の保持時間によっても制御可能である。 The concentration of the metal element introduced into the amorphous silicon film, by the retention time of the solution can be controlled. なお、本明細書中における金属元素の濃度はS The concentration of the metal element in this specification S
IMS(2次イオン分析法)で評価される最小値のことをいう。 It refers to a minimum value which is evaluated by IMS (2 ion spectrometry). 【0030】また、金属元素を含んだ溶液を選択的に塗布することにより、結晶成長を選択的に行なうことができる。 Further, by selectively applying a solution containing a metal element can be carried out selectively the crystal growth. 特にこの場合、溶液が塗布されなかった領域に向かって、溶液が塗布された領域から珪素膜の面に概略平行な方向(珪素膜が形成された基板と平行な方向)に結晶成長を行なわすことができる。 Particularly, in this case, towards the solution it has not been applied region, to perform solution crystal growth in a direction substantially parallel to the plane of the silicon film from a coating region (a direction parallel to the substrate on which the silicon film is formed) be able to. この珪素膜の面に概略平行な方向に結晶成長が行なわれた領域を本明細書中においては横方向に結晶成長した領域ということとする。 And that crystal-grown laterally region in a direction substantially parallel to herein crystal growth was performed regions on the surface of the silicon film. 【0031】またこの横方向に結晶成長が行なわれた領域は、金属元素の濃度が低いことが確かめられている。 Further areas crystal growth was performed in the lateral direction, lower concentration of the metal element has been confirmed.
半導体装置の活性層領域として、結晶性珪素膜を利用することは有用であるが、活性層領域中における不純物の濃度は一般に低い方が好ましい。 As an active layer region of a semiconductor device, but it is useful to utilize a crystalline silicon film, the concentration of the impurity in the active layer region is generally preferably low. 従って、上記横方向に結晶成長が行なわれた領域を用いて半導体装置の活性層領域を形成することはデバイス作製上有用である。 Thus, forming the active layer region of the semiconductor device using the lateral crystal growth has been performed regions are useful on the device fabricated. 【0032】またこの横方向に結晶成長した領域は、結晶性の成長方向に沿って結晶粒界が存在しているので、 Further regions grown in the lateral direction, the crystal grain boundary along the crystalline growth direction exists,
結晶成長に沿ってキャリアが移動するような構成とした場合、結晶粒界によるキャリアの散乱や捕獲を少なくすることができる。 If the carrier along the crystal growth has a structure such that movement, it is possible to reduce the scattering and capture of carriers due to the crystal grain boundary. 即ち、デバイスとしての特性をより高くすることができる。 That is, it is possible to increase the characteristics as the device. 【0033】本発明においては、金属元素としてニッケルを用いた場合に最も顕著な効果を得ることができるが、その他利用できる金属元素の種類としては、Fe、 [0033] In the present invention, it is possible to obtain a most remarkable effect when using nickel as a metal element, as the kind of metal element can be other available, Fe,
Co、Ru、Rh、Pd、Os、Ir、Pt、Cu、A Co, Ru, Rh, Pd, Os, Ir, Pt, Cu, A
uから選ばれた一種または複数種類の元素を用いることができる。 It can be used one or more kinds of elements selected from u. 【0034】また、金属元素の導入方法は、水溶液やアルコール等の溶液を用いることに限定されるものではなく、金属元素を含んだ物質を広く用いることができる。 Further, a method of introducing a metal element is not intended to be limited to the use of a solution such as an aqueous solution or alcohol, can be widely used laden material a metal element.
例えば、金属元素を含んだ金属化合物や酸化物を用いることができる。 For example, it is possible to use a metal compound containing a metal element or an oxide. 【0035】本発明によって得られた結晶性珪素膜を用いることによって、PN、PI、NIその他の電気的接合を少なくとも1つ有する活性領域を構成する半導体装置を得ることができる。 [0035] By using the obtained crystalline silicon film by the present invention, it is possible to obtain a semiconductor device constituting PN, PI, having at least one active region NI other electrical connection. このような半導体装置としては、薄膜トランジスタ(TFT)、ダイオード、光センサを挙げることができる。 Examples of such a semiconductor device, a thin film transistor (TFT), a diode, can be mentioned optical sensor. 【0036】 【実施例】 〔実施例1〕 【0037】本実施例では、結晶化を助長する金属元素を水溶液に含有させて、非晶質珪素膜上に塗布し、しかる後に加熱により結晶化させる例である。 [0036] [Embodiment] [Example 1] The present embodiment, a metal element that promotes crystallization be contained in the aqueous solution was coated on the amorphous silicon film, crystallized by heating thereafter it is an example to be. まず図1を用いて、金属元素(ここではニッケルを用いる)を導入するところまでを説明する。 First with reference to FIG. 1, the metal elements (in this case nickel is used) describing far to introduce. 本実施例においては、基板としてコーニング7059ガラスを用いる。 In this embodiment, a Corning 7059 glass as the substrate. またその大きさは100mm×100mmとする。 The size thereof is set to 100 mm × 100 mm. 【0038】まず、非晶質珪素膜をプラズマCVD法やLPCVD法によって非晶質珪素膜を100Å〜150 Firstly, an amorphous silicon film, an amorphous silicon film by plasma CVD or LPCVD 100Å~150
0Åの厚さに成膜する。 It is formed to a thickness of 0Å. ここでは、プラズマCVD法によって非晶質珪素膜12を1000Åの厚さに成膜する。 Here, an amorphous silicon film 12 to a thickness of 1000Å by plasma CVD. (図1(A)) 【0039】そして、汚れ及び自然酸化膜を取り除くためにフッ酸処理を行い、その後酸化膜13を10〜50 (FIG. 1 (A)) [0039] Then, a hydrofluoric acid treatment to remove dirt and spontaneous oxide film, after which the oxide film 13 10-50
Åに成膜する。 Forming a film on Å. 汚れが無視できる場合には、この工程を省略しても良いことは言うまでもなく、酸化膜13の代わりに自然酸化膜をそのまま用いれば良い。 If the dirt is negligible, mention may be may be omitted this step, it may be used as a natural oxide film in place of the oxide film 13. なお、この酸化膜13は極薄のため正確な膜厚は不明であるが、2 Incidentally, the oxide film 13 but is is uncertain exact thickness for very thin, 2
0Å程度であると考えられる。 It is considered to be about 0Å. ここでは酸素雰囲気中でのUV光の照射により酸化膜13を成膜する。 Here the formation of the oxide film 13 by UV light irradiation in an oxygen atmosphere. 成膜条件は、酸素雰囲気中においてUVを5分間照射することにおって行う。 Film forming conditions is performed Oh to irradiation with UV 5 minutes in an oxygen atmosphere. この酸化膜13の成膜方法としては、熱酸化法を用いるのでもよい。 As the film formation method of the oxide film 13 may be of using the thermal oxidation method. また過酸化水素による処理によるものでもよい。 Or it may be by treatment with hydrogen peroxide. 【0040】この酸化膜13は、後のニッケルを含んだ酢酸塩溶液を塗布する工程で、非晶質珪素膜の表面全体に酢酸塩溶液を行き渡らせるため、即ち濡れ性の改善の為のものである。 [0040] The oxide film 13 is a step of applying the acetate solution containing nickel after, for disseminating acetate solution on the entire surface of the amorphous silicon film, ie for wettability improvement it is. 例えば、非晶質珪素膜の表面に直接酢酸塩溶液を塗布した場合、非晶質珪素が酢酸塩溶液を弾いてしまうので、非晶質珪素膜の表面全体にニッケルを導入することができない。 For example, when applied directly acetate solution on the surface of the amorphous silicon film, because amorphous silicon repels the acetate solution, it is impossible to introduce a nickel on the entire surface of the amorphous silicon film. 即ち、均一な結晶化を行うことができない。 That is, it is impossible to perform uniform crystallization. 【0041】つぎに、酢酸塩溶液中にニッケルを添加した酢酸塩溶液を作る。 Next, make acetate solution was added nickel acetate solution. ニッケルの濃度は100ppmとする。 The concentration of nickel and 100ppm. そしてこの酢酸塩溶液を非晶質珪素膜12上の酸化膜13の表面に2ml滴下し、この状態を5分間保持する。 And then 2ml dropwise the acid salt solution to the surface of the oxide film 13 on the amorphous silicon film 12, this state is held for 5 minutes. そしてスピナーを用いてスピンドライ(2000 And spin dry (2000 using a spinner
rpm、60秒)を行う。 rpm, 60 seconds) is performed. (図1(C)、(D)) 【0042】酢酸溶液中におけるニッケルの濃度は、1 (FIG. 1 (C), (D)) [0042] The concentration of nickel in the acetate solution, 1
ppm以上好ましくは10ppm以上であれば実用になる。 Preferably becomes practical if 10ppm or more ppm. また、溶液として2−エチルヘキサン酸ニッケルのトルエン溶液の如き無極性溶媒を用いる場合、酸化膜1 In the case of using a non-polar solvent such as toluene solution of nickel 2-ethylhexanoate as a solution, the oxide film 1
3は不要であり、直接非晶質珪素膜上に金属元素を導入することができる。 3 is unnecessary, it is possible to introduce the metal element directly on the amorphous silicon film. 【0043】このニッケル溶液の塗布工程を、1回〜複数回行なうことにより、スピンドライ後の非晶質珪素膜12の表面に数Å〜数百Åの平均の膜厚を有するニッケルを含む層を形成することができる。 [0043] The step of applying the nickel solution by performing one to several times, a layer comprising nickel has a thickness average of several Å~ several hundred Å on the surface of the amorphous silicon film 12 after spin drying it can be formed. この場合、この層のニッケルがその後の加熱工程において、非晶質珪素膜に拡散し、結晶化を助長することとなる。 In this case, the nickel of the layer subsequent heating step, to diffuse into the amorphous silicon film, and thus for promoting crystallization. なお、この層というのは、完全な膜になっているとは限らない。 It should be noted that, because this layer is not necessarily a complete film. このようにして、ニッケル元素が非晶質珪素膜に対して導入される。 In this way, the nickel element is introduced against the amorphous silicon film. 【0044】上記溶液の塗布の後、5分間その状態を保持させる。 [0044] After application of the solution, 5 minutes to hold its state. この保持させる時間によっても、最終的に珪素膜12中に含まれるニッケルの濃度を制御することができるが、最も大きな制御因子は溶液の濃度である。 By the time that this is held, but ultimately it is possible to control the concentration of nickel contained in the silicon film 12, the most significant control factor is the concentration of the solution. 【0045】そして、加熱炉において、窒素雰囲気中において550度、4時間の加熱処理を行う。 [0045] Then, performed in a heating furnace, 550 ° in a nitrogen atmosphere, the heat treatment of 4 hours. この結果、 As a result,
基板11上に形成された結晶性を有する珪素薄膜12を得ることができる。 It is possible to obtain a silicon film 12 having been formed on the substrate 11 crystalline. 【0046】上記の加熱処理は450℃〜750℃の温度範囲において行うことができるが、温度が低いと加熱時間を長くしなけらばならず、生産効率が低下する。 [0046] The above heat treatment may be carried out in the temperature range of 450 ° C. to 750 ° C., it must kicked such longer when the temperature is low heating time, production efficiency is reduced. また、600度以上とすると基板として用いるガラス基板の耐熱性の問題が表面化してしまう。 Further, the heat resistance problem of the glass substrate resulting in surfaced used as the substrate when the 600 degrees or more. 従って、基板としてガラス基板を用いた場合には、上記加熱処理工程の温度は、450℃〜600℃の範囲で行うことが好ましい。 Shitagatte, board Toshite glass substrate wo using other case two leaf, the heat treatment process Roh temperature blade, 450 ℃ ~600 ℃ field range de perform ancient city moth preferred. 【0047】ここでは加熱処理を行う例を示したが、加熱処理に併用して、または加熱処理の代わりにレーザー光の照射や強光の照射を行うのでもよい。 [0047] Although an example in which the heat treatment in this case, in combination to the heat treatment, or heating may also perform irradiation of irradiation or intense light of a laser beam instead of the processing. 例えば、加熱処理の前または後にレーザー光または強光の照射を行う方法、レーザー光または強光の照射の後に加熱処理を行う方法、加熱処理の後にレーザー光または強光を照射し、さらに加熱処理を行う方法、レーザー光または強光の照射と同時に加熱を行う方法、等を挙げることができる。 For example, a method of performing irradiation of laser light or intense light before or after the heat treatment, a method of performing heat treatment after the irradiation of laser light or intense light, is irradiated with laser light or intense light after the heat treatment, further heat treatment it can be mentioned methods, a method of simultaneously heating and irradiation of the laser light or intense light, etc. to perform. なお、ここでいう加熱処理とは、450℃〜750 Note that the heat treatment referred to here, 450 ° C. to 750
℃、ガラス基板の耐熱性を考慮するならば450℃〜6 ° C., if considering the heat resistance of the glass substrate 450 ° C. to 6
00℃の温度で行うことが望ましい。 It is preferable carried out at a temperature of 00 ° C.. 【0048】本実施例においては、非晶質珪素膜上に金属元素を導入する方法を示したが、非晶質珪素膜下に金属元素を導入する方法を採用してもよい。 [0048] In this embodiment, the method of introducing a metal element on the amorphous silicon film, may be employed a method of introducing a metal element under the amorphous silicon film. この場合は、 in this case,
非晶質珪素膜の成膜前に金属元素を含有した溶液を用いて、下地膜上に金属元素を導入すればよい。 Using a solution containing a metal element before the formation of the amorphous silicon film, it may be introduced metal element over the base film. そして、金属元素が導入された下地膜上に非晶質珪素膜を成膜し、 Then, an amorphous silicon film is formed over the base film metal element is introduced,
しかる後に加熱処理やレーザー光の照射を行えばよい。 Thereafter the may be performed irradiation heat treatment or laser light. 【0049】〔実施例2〕本実施例は、実施例1に示す作製方法において、ニッケルを選択的に導入するためのマスクを設ける例に関する。 [0049] Example 2 This example, in the manufacturing method shown in Example 1, it relates to an example of providing a mask for selectively introducing nickel. 具体的には、1200Åの酸化珪素膜を選択的に設け、この酸化珪素膜をマスクとして選択的にニッケルを導入する例である。 Specifically, it formed selectively a silicon oxide film of 1200 Å, an example of selectively introducing nickel silicon oxide film as a mask. 【0050】図2に本実施例における作製工程の概略を示す。 [0050] shows an outline of manufacturing process in this embodiment in FIG. まず、ガラス基板(コーニング7059、10c First, a glass substrate (Corning 7059,10c
m角)上にマスクとなる酸化珪素膜21を1000Å以上、ここでは1200Åの厚さに成膜する。 m square) silicon oxide film 21 serving as a mask on 1000Å or more, here, formed to a thickness of 1200 Å. この酸化珪素膜21の膜厚については、発明者等の実験によると5 The thickness of the silicon oxide film 21, according to experiments of the inventors 5
00Åでも問題がないことを確認しており、膜質が緻密であれば更に薄くても良いと思われる。 00Å even has confirmed that there are no problems, think that the film quality may be even thinner if it is dense. 【0051】そして通常のフォトリソパターニング工程によって、必要とするパターンに酸化珪素膜21をパーニングする。 [0051] Then by ordinary photolithography patterning process, Paningu silicon oxide film 21 in a pattern required. そして、酸素雰囲気中における紫外線の照射で薄い酸化珪素膜20を成膜する。 Then, to deposit a thin silicon oxide film 20 by the irradiation of ultraviolet rays in an oxygen atmosphere. この酸化珪素膜2 This silicon oxide film 2
0の作製は、酸素雰囲気中でUV光を5分間照射することによって行なわれる。 Preparation of 0 is performed by irradiating UV light for 5 minutes in an oxygen atmosphere. なおこの酸化珪素膜20の厚さは20〜50Å程度と考えられる(図2(A))。 Note the thickness of the silicon oxide film 20 is considered to be about 20~50A (Fig 2 (A)). 尚、 still,
この濡れ性を改善するための酸化珪素膜については、溶液とパターンのサイズが合致した場合には、マスクの酸化珪素膜の親水性のみによっても丁度よく添加される場合がある。 For the silicon oxide film for improving the wettability, if the size of the solution and the pattern is matched may be added just good by only the hydrophilicity of the silicon oxide film of the mask. しかしながらこの様な例は特殊であり、一般的には酸化珪素膜20を使用したほうが安全である。 However, such an example is special, is generally a safer using a silicon oxide film 20. 【0052】この状態において、実施例1と同様に10 [0052] In this state, in the same manner as in Example 1 10
0ppmのニッケルを含有した酢酸塩溶液を5ml滴下(10cm角基板の場合)する。 The acetate solution containing 0ppm of nickel (in the case of 10cm square substrate) 5 ml dropwise to. またこの際、スピナーで50rpmで10秒のスピンコートを行い、基板表面全体に均一な水膜を形成させる。 Also at this time, it performs spin coating for 10 seconds at 50rpm in a spinner to form a uniform water film on the entire surface of the substrate. さらにこの状態を5分間保持した後スピナーを用いて2000rpm、60秒のスピンドライを行う。 Performing spin drying of 2000 rpm, 60 seconds with a spinner was further kept in this state for 5 minutes. なおこの保持は、スピナー上において0〜150rpmの回転をさせながら行なってもよい。 Note This holding may be performed while the causes rotation of 0~150rpm on the spinner. (図2(B)) 【0053】そして550度(窒素雰囲気)、4時間の加熱処理を施すことにより、非晶質珪素膜12の結晶化を行う。 (FIG. 2 (B)) [0053] Then 550 degrees (nitrogen atmosphere), by heat treatment of 4 hours, the crystallization of the amorphous silicon film 12. この際、ニッケルが導入された22で示される領域から矢印23で示されるように、ニッケルが導入されなった領域へと横方向に結晶成長が行われる。 At this time, as shown from the area indicated at 22 which nickel is introduced by the arrow 23, lateral crystal growth is performed to nickel was introduced region. 図2 Figure 2
(C)において、24がニッケルが直接導入され結晶化が行われた領域であり、25が横方向に結晶化が行われた領域である。 In (C), 24 and is a region where nickel has been performed directly introduced crystallization is 25 laterally crystallization is performed region. なお25の領域は、概略〈111〉軸方向に結晶成長が行われていることが確認されている。 Note 25 regions, that schematically <111> crystal growth in the axial direction is being performed has been confirmed. 【0054】本実施例において、溶液濃度、保持時間を変化させることにより、ニッケルが直接導入された領域におけるニッケルの濃度を任意の範囲で制御可能である。 [0054] In this example, solution concentration, by changing the retention time, can control the concentration of nickel in the nickel is directly introduced region in an arbitrary range. また同様に横成長領域の濃度をそれ以下に制御することが可能である。 Also it is possible to control the lower the concentration of the lateral growth region as well. 珪素膜中に残留する金属元素の濃度は、1×10 16 atoms cm -3 〜5×10 19 atoms cm -3 The concentration of the metal element remaining in the silicon film, 1 × 10 16 atoms cm -3 ~5 × 10 19 atoms cm -3
の範囲内とすることが好ましい。 It is preferably in the range of. これは、1×10 16 at This is, 1 × 10 16 at
oms cm -3以下の濃度であると、結晶化を助長する効果を得ることができず、5×10 19 atoms cm -3以上の濃度であると、金属元素の影響によって、半導体としての特性が阻害されてしまうからである。 When oms cm -3 or less concentration, can not be obtained an effect of promoting the crystallization, if it is a concentration of 5 × 10 19 atoms cm -3 or more, the influence of the metal element, the characteristics of the semiconductor This is because would be inhibited. 【0055】以上述べたように、横方向に結晶が成長した領域は金属元素の濃度が小さく、しかも結晶性が良好であるので、この領域を半導体装置の活性領域として用いることは有用である。 [0055] As described above, the region where the crystal is grown in the lateral direction is small concentration of a metal element, and since crystallinity is good, it is useful to use this region as an active region of a semiconductor device. 特に結晶成長方向にキャリアが移動するような構成とすることによって、例えば高移動度を有する薄膜トランジスタを得ることができる。 In particular by the carrier in the crystal growth direction is configured such that movement, it is possible to obtain a thin film transistor having, for example, high mobility. 【0056】本実施例においては、ニッケルを非晶質珪素膜に選択的に導入する際に利用するマスクとして、酸化珪素膜を用いる例を示した。 [0056] In this embodiment, as a mask to be used when selectively introducing nickel amorphous silicon film, an example of using silicon oxide film. しかしマスクとしては、 However, as a mask,
窒化珪素、酸化アルミニウム、窒化アルミニウム、レジスト等の樹脂材料、その他絶縁材料を用いることができる。 Silicon nitride, aluminum oxide, aluminum nitride, a resin material such as resist, it is possible to use other insulating materials. 勿論、金属元素を選択的に導入するためのマスク材料であるから、緻密でピンホールのない材質であることが必要とされる。 Of course, since it is the mask material for selectively introducing a metal element, it is necessary that the material not dense and pinhole. またマスクとしては、単層膜ではなく、例えば酸化膜と窒化珪素膜の多層膜や、膜の厚さ方向で成分を変化させた膜を用いてもよい。 As the mask, rather than a single-layer film, for example a multilayer film or the oxide film and the silicon nitride film, film may be used with varying ingredients in the thickness direction of the film. 【0057】〔実施例3〕本実施例は、金属元素であるニッケルを非水溶液であるアルコールに含有させ、非晶質珪素膜上に塗布する例である。 [0057] [Example 3] In the present embodiment blade, a metal element de Al-nickel wo non-aqueous solutions de Al-alcohol similar content is allowed, the amorphous silicon film on the two applied to Rey de there. 本実施例では、ニッケルの化合物としてニッケルアセチルアセトネートを用い、該化合物をアルコールに含有させる。 In this embodiment, nickel is used acetylacetonate as compounds of nickel, is contained the compound in an alcohol. ニッケルの濃度は必要とする濃度になるようにすればよい。 The concentration of nickel may be at a concentration that requires. 【0058】後の工程は、実施例1または実施例2に示したのと同様である。 [0058] After the process is similar to that shown in Example 1 or Example 2. また、このニッケルを含有したアルコール溶液は、非晶質珪素膜下に塗布するのでもよい。 Also, an alcohol solution containing nickel may than be applied under the amorphous silicon film. この場合、非晶質珪素膜の形成前にこの溶液をスピナーを用いて塗布すればよい。 In this case, it may be applied by using a spinner and the solution prior to formation of the amorphous silicon film. またアルコールを用いた場合、非晶質珪素膜上に直接塗布することが可能である。 In the case of using an alcohol, it is possible to apply directly on the amorphous silicon film. 【0059】以下具体的な条件を説明する。 [0059] described the following specific conditions. まず、ニッケル化合物として、ニッケルアセチルアセトネートを用意する。 First, a nickel compound, to prepare a nickel acetylacetonate. この物質は、アルコールに可溶であり、分解温度が低いため、結晶化工程における加熱の際に容易に分解させることができる。 This material is soluble in alcohol, has a low decomposition temperature, it can be easily decomposed upon heating in the crystallization step. 【0060】また、アルコールとしてはエタノールを用いる。 [0060] Further, as the alcohol ethanol is used. まずエタノールに前記のニッケルアセチルアセトネートをニッケルの量に換算して100ppmになるように調整し、ニッケルを含有した溶液を作製する。 First ethanol the nickel acetylacetonate adjusted to 100ppm in terms of the amount of nickel, to produce a solution containing nickel. 【0061】そしてこの溶液を非晶質珪素膜上に塗布する。 [0061] and applying the solution onto the amorphous silicon film. なお、非晶質珪素膜は、酸化珪素の下地膜(200 Incidentally, the amorphous silicon film, the base film of silicon oxide (200
0Å厚)が形成された100mm角のガラス基板上に1 0Å thick) 1 on a glass substrate 100mm angle is formed
000Åの厚さでプラズマCVD法で形成したものである。 Those formed by plasma CVD to a thickness of 000A. 【0062】上記非晶質珪素膜上への溶液の塗布は、実施例1や実施例2の水溶液を用いた場合より、少なくてすむ。 [0062] Application of the solution to the amorphous silicon film is than with an aqueous solution of Example 1 and Example 2, it requires less. これは、アルコールの接触角が水のそれよりも小さいことに起因する。 This is because the contact angle of the alcohol is smaller than that of water. ここでは、100mm角の面積に対し、2mlの滴下とする。 Here, with respect to the area of ​​100mm square, the dropwise addition of 2 ml. 【0063】そして、この状態で5分間保持する。 [0063] and, to retain in this state for 5 minutes. その後、スピナーを用い乾燥を行う。 Thereafter, the drying using a spinner. この際、スピナーは1 In this case, the spinner 1
500rpmで1分間回転させる。 500rpm in rotation per minute. この後は、550 After this, 550
℃、4時間の加熱を行ない結晶化を行う。 ° C., to crystallize performs heating for 4 hours. こうして結晶性を有する珪素膜を得る。 Thus, a silicon film having a crystallinity. 【0064】〔実施例4〕本実施例は、金属元素であるニッケル単体を酸に溶かし、このニッケル単体が溶けた酸を非晶質珪素膜上に塗布する例である。 [0064] Example 4 This example, dissolving elemental nickel, which is a metal element in acid are examples of applying the acid nickel alone was melted on the amorphous silicon film. 【0065】本実施例においては、酸として0.1mo [0065] In this embodiment, 0.1Mo as an acid
l/lの硝酸を用いる。 Using nitric acid of l / l. この硝酸の中にニッケルの濃度が50ppmとなるように、ニッケルの粉末を溶かし、 As the concentration of nickel in the nitrate becomes 50 ppm, dissolved powder nickel,
これを溶液として用いる。 Used as a solution. この後の工程は、実施例1の場合と同様である。 The subsequent steps are the same as in Example 1. 【0066】〔実施例5〕本実施例においては、実施例2に示すようにニッケルを選択的に導入し、その部分から横方向(基板に平行な方向)に結晶成長した領域を用いて電子デバイスを形成する例を示す。 [0066] In Example 5 In the present Example, the selective introduction of nickel as shown in Example 2, electrons with lateral regions grown on (direction parallel to the substrate) from the section an example of forming the device. このような構成を採用した場合、デバイスの活性層領域におけるニッケル濃度をさらに低くすることができ、デバイスの電気的安定性や信頼性の上から極めて好ましい構成とすることができる。 When employing such a configuration, it is possible to further reduce the nickel concentration in the active layer region of the device can be a highly preferred arrangement over the electrical stability and reliability of the device. また、結晶成長の方向をキャリアが移動する方向と一致または概略一致させることによって、キャリアの移動が結晶粒界の存在に影響されにくい構成とすることができ、高性能なデバイスを得ることができる。 Further, by matching or substantially aligned with the direction in which the direction of crystal growth carrier moves, the movement of carriers can be configured to hardly affected by the presence of grain boundaries, it is possible to obtain a high performance device . 【0067】本実施例は、アクティブマトリクスの画素の制御に用いられるTFTの作製工程に関するものである。 [0067] This example relates to a manufacturing process of a TFT used to control a pixel of an active matrix. 図3に本実施例の作製工程を示す。 It shows a manufacturing process according to this embodiment in FIG. まず、基板20 First, the substrate 20
1を洗浄し、TEOS(テトラ・エトキシ・シラン)と酸素を原料ガスとしてプラズマCVD法によって厚さ2 1 were washed, TEOS thickness by plasma CVD method (tetraethoxysilane) and oxygen as a source gas of 2
000Åの酸化珪素の下地膜202を形成する。 Forming a base film 202 of silicon oxide 000A. 【0068】そして、プラズマCVD法または減圧熱C [0068] Then, a plasma CVD method or a low-pressure thermal C
VD法によって、厚さ500〜1500Å、例えば10 The VD method, thickness 500~1500A, for example 10
00Åの真性(I型)の非晶質珪素膜203を成膜する。 An amorphous silicon film 203 of intrinsic Å (I type). 次に連続的に厚さ500〜2000Å、例えば10 Then continuously thickness 500 to 2000, for example 10
00Åの窒化珪素膜205をプラズマCVD法によって成膜する。 The silicon nitride film 205 of 00Å deposited by a plasma CVD method. ここで窒化珪素膜は後の結晶化を助長する金属元素(ニッケルを用いる)の導入の際にマスクとして機能する。 Here the silicon nitride film serves as a mask during the introduction of the metallic element (nickel is used) for promoting crystallization after. 【0069】そして、酸化珪素膜205を選択的にエッチングして、非晶質珪素の露出した領域206を形成する。 [0069] Then, by selectively etching the silicon oxide film 205, to form a region 206 exposed amorphous silicon. 即ちマスクを形成する。 That is to form a mask. 【0070】そして結晶化を助長する金属元素であるニッケル元素を含んだ溶液(ここでは酢酸塩溶液)を塗布する。 [0070] and applying the containing nickel element is a metal element for promoting crystallization solution (here an acetate solution). 酢酸溶液中におけるニッケルの濃度は100pp The concentration of nickel in the acetate solution 100pp
mである。 A m. その他、詳細な工程順序や条件は実施例2で示したものと同一である。 Other detailed process sequence and conditions were identical to those shown in Example 2. ニッケル酢酸塩溶液を塗布することにより、水膜207が得られる。 By applying a nickel acetate salt solution, the water film 207 is obtained. 【0071】この後、窒素雰囲気下で450〜600 [0071] After this, under a nitrogen atmosphere 450 to 600
℃、ここでは550℃、4時間の加熱アニールを行い、 ° C., where 550 ° C., subjected to heat annealing for 4 hours,
珪素膜303の結晶化を行う。 Silicon film 303 Roh crystal mosquito wo do. 結晶化は、ニッケルと珪素膜が接触した領域206を出発点として、矢印で示されるように基板に対して平行な方向に結晶成長が進行する。 Crystallization as the starting point region 206 nickel and silicon film are in contact, the crystal growth proceeds in a direction parallel to the substrate as indicated by the arrows. この横方向への結晶成長は、25μm程度である。 Crystal growth to this transverse direction is about 25 [mu] m.
またその結晶成長方向は概略〈111〉軸方向であることが確認されている。 The crystal growth direction that it has been confirmed is a schematic <111> axial direction. (図3(A)) 【0072】次に、マスクとして機能している窒化珪素膜205を除去する。 (FIG. 3 (A)) Next, to remove the silicon nitride film 205 functioning as a mask. この際、領域206の表面に形成される酸化膜も同時に除去する。 At this time, the oxide film formed on the surfaces of the regions 206 is also removed simultaneously. そして、珪素膜204 Then, the silicon film 204
をパターニング後、ドライエッチングして、島状の活性層領域208を形成する。 The later patterned and dry etched to form an island-shaped active layer region 208. 【0073】ここで、図3(A)の206で示された領域は、ニッケルが直接導入された領域であり、ニッケルが高濃度に存在する領域である。 [0073] Here, the area indicated by 206 in FIG. 3 (A) is a nickel was directly introduced region is a region in which nickel is present in high concentrations. また、結晶成長の先端にも、やはりニッケルが高濃度に存在することが確認されている。 Also, the crystal growth Roh tip similar algae, also nickel moth high concentration of two existing ancient city moth confirmed hand there. これらの領域では、その中間の領域に比較してニッケルの濃度が高いことが判明している。 In these areas, it has been found that high concentration of nickel as compared to its middle area. したがって、本実施例においては、活性層208において、これらのニッケル濃度の高い領域がチャネル形成領域と重ならないようにする。 Accordingly, in this embodiment, in the active layer 208, the area these high nickel concentration not overlap with the channel formation region. 【0074】その後、プラズマCVD法により、ゲイト絶縁膜として機能する酸化珪素膜209を1000Åの厚さに形成する。 [0074] Then, by the plasma CVD method, a silicon oxide film 209 which functions as a gate insulating film to a thickness of 1000 Å. (図3(B)) 【0075】引き続いて、スパッタリング法によって、 (FIG. 3 (B)) [0075] Subsequently, by sputtering,
厚さ3000〜8000Å、例えば6000Åのアルミニウム(0.01〜0.2%のスカンジウムを含む)を成膜する。 The thickness is 3000~8000Å, Tatoeba 6000Å Roh aluminum (0.01 to 0.2 percent Roh scandium wo including) wo deposition to. そして、アルミニウム膜をパターニングして、ゲイト電極210を形成する。 Then, the aluminum film is patterned to form the gate electrode 210. (図3(C)) 【0076】さらに、このアルミニウムの電極の表面を陽極酸化して、表面に酸化物層211を形成する。 (FIG. 3 (C)) [0076] Further, the surface of this aluminum electrode was anodically oxidized to form an oxide layer 211 on the surface. この陽極酸化は、酒石酸が1〜5%含まれたエチレングリコール溶液中でゲイト電極210を陽極として行う。 The anodic oxidation is performed using the gate electrode 210 as an anode in tartaric acid ethylene glycol solution containing 1-5%. 得られる酸化物層211の厚さは2000Åである。 The thickness of the resulting oxide layer 211 is 2000 Å. なお、 It should be noted that,
この酸化物211は、後のイオンドーピング工程において、オフセットゲイト領域を形成する厚さとなるので、 In this oxide 211 after the ion doping step, since the thickness forming the offset gate region,
オフセットゲイト領域の長さを上記陽極酸化工程で決めることができる。 The length of the offset gate region may be determined in the above anodization step. (図3(D)) 【0077】次に、イオンドーピング法(プラズマドーピング法とも言う)によって、活性層領域(ソース/ドレイン、チャネルを構成する)にゲイト電極部、すなわちゲイト電極210とその周囲の酸化層211をマスクとして、自己整合的にN導電型を付与する不純物(ここでは燐)を添加する。 (FIG. 3 (D)) [0077] Next, by ion doping method (also called plasma doping), active layer region (source / drain, forming a channel) gate electrode portion, i.e. the gate electrode 210 around the oxide layer 211 as a mask, (here phosphorous) impurity imparting self-alignment manner N conductivity type is added. ドーピングガスとして、フォスフィン(PH 3 )を用い、加速電圧を60〜90kV、例えば80kVとする。 Used as the doping gas, phosphine (PH 3), the acceleration voltage 60~90KV, eg, 80 kV. ドーズ量は1×10 15 〜8×10 Dose is 1 × 10 15 ~8 × 10
15 cm -2 、例えば、4×10 15 cm -2とする。 15 cm -2, for example, a 4 × 10 15 cm -2. この結果、N型の不純物領域212と213を形成される。 As a result, the form impurity regions 212 and 213 of the N-type. 図からも明らかなように不純物領域とゲイト電極とは距離xだけ放れたオフセット状態となる。 An offset state of Hore distance x from the impurity region and the gate electrode As is clear from FIG. このようなオフセット状態は、特にゲイト電極に逆電圧(NチャネルTF Such an offset state, particularly a reverse voltage to the gate electrode (N-channel TF
Tの場合はマイナス)を印加した際のリーク電流(オフ電流ともいう)を低減する上で有効である。 For T is effective in reducing the leakage current due to application of a negative) (also referred to as off current). 特に、本実施例のようにアクティブマトリクスの画素を制御するT In particular, T for controlling the pixels of an active matrix as in this embodiment
FTにおいては良好な画像を得るために画素電極に蓄積された電荷が逃げないようにリーク電流が低いことが望まれるので、オフセットを設けることは有効である。 Since the leakage current so that the charge does not escape accumulated in the pixel electrode in order to obtain a satisfactory image in FT lower is desired, it is effective to provide the offset. 【0078】その後、レーザー光の照射によってアニールを行う。 [0078] Thereafter, annealing by irradiation with laser light. レーザー光としては、KrFエキシマレーザー(波長248nm、パルス幅20nsec)を用いるが、他のレーザーであってもよい。 As the laser beam, KrF excimer laser (wavelength 248 nm, pulse width 20 nsec) is used, it may be another laser. レーザー光の照射条件は、エネルギー密度が200〜400mJ/cm 2 The laser light irradiation conditions, the energy density is 200 to 400 mJ / cm 2,
例えば250mJ/cm 2とし、一か所につき2〜10 For example, the 250mJ / cm 2, 2~10 per location
ショット、例えば2ショット照射する。 Shot, for example, 2 shots. このレーザー光の照射時に基板を200〜450℃程度に加熱することによって、効果を増大せしめてもよい。 By heating the substrate to about 200 to 450 ° C. at the time of irradiation of the laser beam may be made to increase the effect. (図3(E)) 【0079】続いて、厚さ6000Åの酸化珪素膜21 (FIG. 3 (E)) [0079] Then, silicon oxide having a thickness of 6000Å film 21
4を層間絶縁物としてプラズマCVD法によって形成する。 4 is formed by a plasma CVD method as an interlayer insulator. さらに、スピンコーティング法によって透明なポリイミド膜215を形成し、表面を平坦化する。 Further, to form a transparent polyimide film 215 by spin coating to planarize the surface. このようにして形成された平面上にスパッタ法によって厚さ80 Such thickness by sputtering on to formed plane of the of 80
0Åの透明導電性膜(ITO膜)を成膜し、これをパターニングして画素電極216を形成する。 To form a transparent conductive film (ITO film) of 0 Å, to form a pixel electrode 216 by patterning the same. 【0080】そして、層間絶縁物214、215にコンタクトホールを形成して、金属材料、例えば、窒化チタンとアルミニウムの多層膜によってTFTの電極・配線217、218を形成する。 [0080] Then, contact holes in the interlayer insulator 214 and 215, a metal material, for example, to form electrodes and wiring 217 and 218 of the TFT by a multilayered film of titanium nitride and aluminum. 最後に、1気圧の水素雰囲気で350℃、30分のアニールを行い、TFTを有するアクティブマトリクスの画素回路を完成する。 Finally, 350 ° C. in a hydrogen atmosphere of 1 atm, annealing is performed for 30 minutes to complete a pixel circuit of an active matrix having a TFT. (図3 (Fig. 3
(F)) 【0081】〔実施例6〕本実施例はアクティブマトリクス型の液晶表示装置に本発明を利用する場合の例を示す。 (F)) [0081] Example 6 This Example shows an example in the case of utilizing the present invention to an active matrix type liquid crystal display device. 図4のアクティブマトリクス型の液晶表示装置の一方の基板の概要を示した上面図を示す。 It shows a top view showing an outline of one substrate of an active matrix liquid crystal display device of FIG. 【0082】図において、61はガラス基板であり、6 [0082] In FIG, 61 is a glass substrate, 6
2はマトリクス状に構成された画素領域であり、画素領域には数百×数百の画素が形成されている。 2 is a pixel region configured in a matrix, the pixels hundreds × hundreds are formed in the pixel region. この画素の一つ一つにはスイッチング素子としてTFTが配置されている。 The every single pixel are arranged TFT as a switching element. この画素領域のTFTを駆動するためのドライバーTFTが配置されているのが周辺ドライバー領域6 Around the can driver TFT are arranged driver region 6 for driving the TFT of the pixel region
2である。 2. 画素領域63とドライバー領域62とは同一基板61上に一体化されて形成されている。 The pixel area 63 and the driver region 62 are formed integrally on the same substrate 61. 【0083】ドライバー領域62に配置されるTFTは大電流を流す必要があり、高い移動度が必要とされる。 [0083] TFT disposed in the driver region 62 need to flow a large current is required high mobility.
また、画素領域63に配置されるTFTは画素電極の電荷の保持率を高める必要があるので、オフ電流(リーク電流)が少ない特性が必要とされる。 Further, TFT provided in the pixel area 63 because it is necessary to increase the retention of charges of the pixel electrodes is required properties off current (leakage current) is small. 例えば、画素領域63に配置されるTFTは、図3に示すTFTを用いることができる。 For example, TFT provided in the pixel region 63 can be used TFT shown in FIG. 【0084】 【効果】金属元素を導入して低温で短時間で結晶化させた結晶性珪素膜を用いて、半導体装置を作製することで、生産性が高く、特性のよいデバイスを得ることができる。 [0084] Using the EFFECT crystalline silicon film by introducing a metal element was crystallized in a short time at a low temperature, by manufacturing a semiconductor device, has high productivity, to obtain a good device characteristics it can.

【図面の簡単な説明】 【図1】 実施例の工程を示す【図2】 実施例の工程を示す。 BRIEF DESCRIPTION OF THE DRAWINGS shows the Figure 1 embodiment of the process Figure 2 shows the procedure of Example. 【図3】 実施例の作製工程を示す。 3 shows a manufacturing process of Example. 【図4】 実施例の構成を示す。 4 shows a construction of the embodiment. 【符号の説明】 11・・・・ガラス基板12・・・・非晶質珪素膜13・・・・酸化珪素膜14・・・・ニッケルを含有した酢酸溶液膜15・・・・ズピナー21・・・・マスク用酸化珪素膜20・・・・酸化珪素膜201・・・ガラス基板202・・・下地膜203・・・活性層204・・・珪素膜205・・・マスク(窒化珪素膜) 207・・・水膜(ニッケン酢酸塩溶液) 208・・・活性層209・・・ゲイト絶縁膜210・・・ゲイト電極211・・・陽極酸化物層212・・・ソース/ドレイン領域213・・・ドレイン/ソース領域214・・・層間絶縁膜(酸化珪素膜) 215・・・ポリイミド膜216・・・画素電極(ITO) 217・・・電極218・・・電極 [DESCRIPTION OF REFERENCE NUMERALS] 11 ... glass substrate 12 ... amorphous silicon film 13 ... silicon oxide film 14 .... a nickel acetate solution film 15 containing .... Zupina 21 - ... mask the silicon oxide film 20 ... silicon oxide film 201 ... glass substrate 202 ... base film 203 ... active layer 204 ... silicon film 205 ... mask (silicon nitride film) 207 ... water film (Nikken acetate solution) 208 ... active layer 209 ... gate insulating film 210 ... gate electrode 211 ... anodic oxide layer 212 ... source / drain regions 213 .. drain / source region 214 ... interlayer insulating film (silicon oxide film) 215 ... polyimide film 216 ... pixel electrode (ITO) 217 ​​... electrode 218 ... electrode

フロントページの続き (56)参考文献 特開 平2−305475(JP,A) 特開 昭63−56912(JP,A) 特開 平6−244105(JP,A) 特開 平6−232059(JP,A) 特開 平5−67635(JP,A) 特開 平7−176479(JP,A) 特開 平7−192998(JP,A) 欧州特許出願公開612102(EP,A 1) 欧州特許出願公開609867(EP,A 1) Appl. Of the front page Continued (56) Reference Patent flat 2-305475 (JP, A) JP Akira 63-56912 (JP, A) JP flat 6-244105 (JP, A) JP flat 6-232059 (JP , A) Patent Rights 5-67635 (JP, A) Patent Rights 7-176479 (JP, A) Patent Rights 7-192998 (JP, A) European Patent application Publication 612102 (EP, A 1) European Patent application public 609867 (EP, A 1) Appl. Phys. Phys. Lett. Lett. ,55 (7),P. , 55 (7), P. 660−662 JAPANESE JOURNAL OF APPLIED PHYSIC S,29(12),p. 660-662 JAPANESE JOURNAL OF APPLIED PHYSIC S, 29 (12), p. 2698−2704 (58)調査した分野(Int.Cl. 7 ,DB名) H01L 21/20 H01L 21/336 H01L 27/12 H01L 29/786 2698-2704 (58) investigated the field (Int.Cl. 7, DB name) H01L 21/20 H01L 21/336 H01L 27/12 H01L 29/786

Claims (1)

  1. (57)【特許請求の範囲】 【請求項1】 非晶質珪素膜上にマスクを形成して前記非晶質珪素膜を選択的に露出させ、 前記露出させた部分の非晶質珪素膜上に酸化膜を形成し、 前記マスクおよび前記酸化膜を介して前記非晶質珪素膜上に珪素の結晶化を助長する金属元素を含む溶液を塗布し、 前記非晶質珪素膜に光照射を行い、前記酸化膜を介して前記溶液が塗布された領域から珪素膜の表面に平行な方向に前記非晶質珪素膜を結晶成長させ結晶性を有する珪素膜を形成し、 前記結晶性を有する珪素膜をパターニング後、エッチングして活性層を形成し、前記酸化膜を介して前記溶液が塗布された領域および前記結晶成長の先端には、前記活性層のチャネル形成領域を設けないようにする半導体装置の作製方法であって、 前記マスクは窒化アル (57) Patent Claims 1. A forming a mask on the amorphous silicon film is selectively expose the amorphous silicon film, amorphous silicon film of the exposed so portions the oxide film is formed on the above solution was applied containing a metal element which promotes crystallization of silicon on the amorphous silicon film through the mask and the oxide layer, the light irradiated on the amorphous silicon film was carried out, the oxide film using the solution causes crystal growth of the amorphous silicon film in a direction parallel to the surface of the silicon film from the coated region through forming a silicon film having crystallinity, the crystalline after patterning the silicon film having, formed by etching the active layer, wherein the said region solution has been applied and the crystal growth tip through the oxide film, so as not provided a channel forming region of the active layer to a method for manufacturing a semiconductor device, the mask nitride Al ミニウムでなる ことを特徴とする半導体装置の作製方法。 The method for manufacturing a semiconductor device characterized by comprising at Miniumu. 【請求項2】 非晶質珪素膜上にマスクを形成して前記 Wherein said forming a mask on the amorphous silicon film
    非晶質珪素膜を選択的に露出させ、 前記露出させた部分の非晶質珪素膜上に酸化膜を形成 Selectively exposing the amorphous silicon film, an oxide film is formed on the amorphous silicon film of the exposed so portions
    し、 前記マスクおよび前記酸化膜を介して前記非晶質珪素膜 And, wherein through the mask and the oxide film amorphous silicon film
    上に珪素の結晶化を助長する金属元素を含む溶液を塗布 Applying a solution containing a metal element for promoting crystallization of silicon on top
    し、 前記非晶質珪素膜に光照射を行い、前記酸化膜を介して And performs light irradiation to the amorphous silicon film, through the oxide film
    前記溶液が塗布された領域から珪素膜の表面に平行な方 Write parallel to the surface of the silicon film from the solution is coated region
    向に前記非晶質珪素膜を結晶成長させ結晶性を有する珪 Silicofluoride having a crystalline amorphous silicon film is crystal-grown on the direction
    素膜を形成し、 前記結晶性を有する珪素膜をパターニング後、エッチン Forming a Motomaku, after patterning the silicon film having a crystalline, etching
    グして活性層を形成し、 前記酸化膜を介して前記溶液が塗布された領域および前 Grayed to hand the active layer Wo formed, the oxide film wo via hand the solution moth coated other areas and before
    記結晶成長の先端には、前記活性層のチャネル形成領域 The distal end of serial crystal growth, the channel formation region of the active layer
    を設けないようにする半導体装置の作製方法であって、 前記マスクは酸化アルミニウムでなることを特徴とする A method for manufacturing a semiconductor device that is not provided, the mask is characterized by comprising aluminum oxide
    半導体装置の作製方法。 A method for manufacturing a semiconductor device. 【請求項3】 前記金属元素はニッケルであることを特徴とする請求項1 または請求項2に記載の半導体装置の作製方法。 Wherein said metal element method for manufacturing a semiconductor device according to claim 1 or claim 2, wherein the nickel. 【請求項4】 前記金属元素はFe、Co、Ni、R Wherein said metallic element is Fe, Co, Ni, R
    u、Rh、Pd、Os、Ir、Pt、CuまたはAuであることを特徴とする請求項1 または請求項2に記載の半導体装置の作製方法。 u, Rh, Pd, Os, Ir, Pt, a method for manufacturing a semiconductor device according to claim 1 or claim 2, characterized in that a Cu or Au. 【請求項5】 前記結晶性を有する珪素膜中の前記金属 Wherein said metal silicon film having a crystalline
    元素の濃度は1×10 16 atoms・cm -3 〜5×10 19 atoms The concentration of the element is 1 × 10 16 atoms · cm -3 ~5 × 10 19 atoms
    ・cm -3であることを特徴とする請求項1乃至のいずれか一に記載の半導体装置の作製方法。 - The method for manufacturing a semiconductor device according to any one of claims 1 to 4, characterized in that cm -3. 【請求項6】 前記光照射は強光の照射であることを特徴とする請求項1乃至のいずれか一に記載の半導体装置の作製方法。 6. The method for manufacturing a semiconductor device according to any one of claims 1 to 5, characterized in that the light irradiation is irradiation of intense light. 【請求項7】 前記光照射はレーザー光の照射であることを特徴とする請求項1乃至のいずれか一に記載の半導体装置の作製方法。 7. The method for manufacturing a semiconductor device according to any one of claims 1 to 5, characterized in that the light irradiation is a laser light irradiation. 【請求項8】 前記酸化膜の厚さは10 nm以下であることを特徴とする請求項1乃至のいずれか一に記載の半導体装置の作製方法。 8. The method for manufacturing a semiconductor device according to any one of claims 1 to 7, wherein the thickness of the oxide film is 10 nm or less. 【請求項9】 スピナーを用いて前記溶液を塗布することを特徴とする請求項1乃至のいずれか一に記載の半導体装置の作製方法。 9. The method for manufacturing a semiconductor device according to any one of claims 1 to 8, characterized in that applying the solution using a spinner. 【請求項10】 前記溶液の溶媒として極性溶媒を用いることを特徴とする請求項1乃至のいずれか一に記載の半導体装置の作製方法。 10. A method for manufacturing a semiconductor device according to any one of claims 1 to 9, characterized by using a polar solvent as the solvent of said solution. 【請求項11】 前記溶液中の前記金属元素の濃度は2 11. Concentration of the metal element in the solution 2
    00ppm〜1ppmであることを特徴とする請求項1 Claim, characterized in that a 00Ppm~1ppm 1
    乃至10のいずれか一に記載の半導体装置の作製方法。 To a method for manufacturing a semiconductor device according to any one of 10. 【請求項12】 前記溶液中の前記金属元素の濃度は5 12. Concentration of the metal element in the solution 5
    0ppm〜1ppmであることを特徴とする請求項1乃<br>至10のいずれか一に記載の半導体装置の作製方法。 The method for manufacturing a semiconductor device according to any one of claims 1乃<br> optimum 10, characterized in that the 0Ppm~1ppm. 【請求項13】 前記光照射の後に加熱処理を行うことを特徴とする請求項1乃至12のいずれか一に記載の半導体装置の作製方法。 According to claim 11, wherein the light-field post-secondary heat treatment wo do Koto wo feature door to claim 1 Naishi 12 field any mosquito twelve described Roh semiconductor device mounting method for manufacturing. 【請求項14】 前記光照射と同時に加熱処理を行うことを特徴とする請求項1乃至12のいずれか一に記載の半導体装置の作製方法。 14. The method for manufacturing a semiconductor device according to any one of claims 1 to 12, characterized in that at the same time heat treatment and the light irradiation. 【請求項15】 前記半導体装置は薄膜トランジスタ、 15. The semiconductor device TFT,
    ダイオードまたは光センサであることを特徴とする請求項1乃至14のいずれか一に記載の半導体装置の作製方法。 The method for manufacturing a semiconductor device according to any one of claims 1 to 14, characterized in that a diode or photosensor. 【請求項16】 請求項1乃至15のいずれか一に記載の作製方法により作製した半導体装置を有することを特徴とするアクティブマトリクス型の液晶表示装置。 16. A method according to claim 1 to 15 active-matrix liquid crystal display device, characterized in that it comprises a semiconductor device manufactured by the manufacturing method according to any one of.
JP23591994A 1994-09-05 1994-09-05 A method for manufacturing a semiconductor device Expired - Fee Related JP3464287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23591994A JP3464287B2 (en) 1994-09-05 1994-09-05 A method for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23591994A JP3464287B2 (en) 1994-09-05 1994-09-05 A method for manufacturing a semiconductor device

Publications (2)

Publication Number Publication Date
JPH0878329A JPH0878329A (en) 1996-03-22
JP3464287B2 true JP3464287B2 (en) 2003-11-05

Family

ID=16993189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23591994A Expired - Fee Related JP3464287B2 (en) 1994-09-05 1994-09-05 A method for manufacturing a semiconductor device

Country Status (1)

Country Link
JP (1) JP3464287B2 (en)

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10198292A (en) 1996-12-30 1998-07-31 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacture
TW386238B (en) 1997-01-20 2000-04-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
JP4401448B2 (en) 1997-02-24 2010-01-20 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6133075A (en) 1997-04-25 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6617648B1 (en) 1998-02-25 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Projection TV
US6307214B1 (en) * 1997-06-06 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US6452211B1 (en) 1997-06-10 2002-09-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
JP4036923B2 (en) 1997-07-17 2008-01-23 株式会社半導体エネルギー研究所 Display device and a driving circuit
JP4318768B2 (en) * 1997-07-23 2009-08-26 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JPH1145076A (en) 1997-07-24 1999-02-16 Semiconductor Energy Lab Co Ltd Active matrix display device
US6717179B1 (en) 1997-08-19 2004-04-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor display device
US6667494B1 (en) 1997-08-19 2003-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor display device
JP4601731B2 (en) 1997-08-26 2010-12-22 株式会社半導体エネルギー研究所 Semiconductor device, manufacturing method of an electronic device and a semiconductor device having a semiconductor device
JP2000031488A (en) 1997-08-26 2000-01-28 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
JP3980178B2 (en) 1997-08-29 2007-09-26 株式会社半導体エネルギー研究所 Nonvolatile memory and a semiconductor device
US6197624B1 (en) 1997-08-29 2001-03-06 Semiconductor Energy Laboratory Co., Ltd. Method of adjusting the threshold voltage in an SOI CMOS
JPH11143379A (en) 1997-09-03 1999-05-28 Semiconductor Energy Lab Co Ltd Semiconductor display device correcting system and its method
JP3943245B2 (en) 1997-09-20 2007-07-11 株式会社半導体エネルギー研究所 Semiconductor device
JPH11167373A (en) 1997-10-01 1999-06-22 Semiconductor Energy Lab Co Ltd Semiconductor display device and driving method thereof
TW408351B (en) 1997-10-17 2000-10-11 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US7166500B2 (en) 1997-10-21 2007-01-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP4068219B2 (en) 1997-10-21 2008-03-26 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6686623B2 (en) 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
JPH11160734A (en) 1997-11-28 1999-06-18 Semiconductor Energy Lab Co Ltd Liquid crystal electrooptical device
JP4090569B2 (en) 1997-12-08 2008-05-28 株式会社半導体エネルギー研究所 Semiconductor device, a liquid crystal display device and el display device
US6369410B1 (en) 1997-12-15 2002-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US6678023B1 (en) 1997-12-17 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal projector
JP3779052B2 (en) * 1997-12-17 2006-05-24 シャープ株式会社 A liquid crystal projector
JP4376979B2 (en) 1998-01-12 2009-12-02 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JPH11212047A (en) 1998-01-21 1999-08-06 Semiconductor Energy Lab Co Ltd Electronic equipment
JPH11214700A (en) 1998-01-23 1999-08-06 Semiconductor Energy Lab Co Ltd Semiconductor display device
JP4073533B2 (en) 1998-02-09 2008-04-09 株式会社半導体エネルギー研究所 The information processing apparatus
JPH11338439A (en) 1998-03-27 1999-12-10 Semiconductor Energy Lab Co Ltd Driving circuit of semiconductor display device and semiconductor display device
US6268842B1 (en) 1998-04-13 2001-07-31 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor circuit and semiconductor display device using the same
JPH11305743A (en) 1998-04-23 1999-11-05 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP3844613B2 (en) 1998-04-28 2006-11-15 株式会社半導体エネルギー研究所 TFT circuit and a display device using the same
US7153729B1 (en) 1998-07-15 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7294535B1 (en) 1998-07-15 2007-11-13 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7084016B1 (en) 1998-07-17 2006-08-01 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US6559036B1 (en) 1998-08-07 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
TW522354B (en) 1998-08-31 2003-03-01 Semiconductor Energy Lab Display device and method of driving the same
US7317438B2 (en) 1998-10-30 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Field sequential liquid crystal display device and driving method thereof, and head mounted display
US6274887B1 (en) 1998-11-02 2001-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US6617644B1 (en) 1998-11-09 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7141821B1 (en) 1998-11-10 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity gradient in the impurity regions and method of manufacture
US6518594B1 (en) 1998-11-16 2003-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices
US6512271B1 (en) 1998-11-16 2003-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6489952B1 (en) 1998-11-17 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Active matrix type semiconductor display device
US6420758B1 (en) 1998-11-17 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity region overlapping a gate electrode
US6909114B1 (en) 1998-11-17 2005-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having LDD regions
US6501098B2 (en) 1998-11-25 2002-12-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device
US6365917B1 (en) 1998-11-25 2002-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP1006589B1 (en) 1998-12-03 2012-04-11 Semiconductor Energy Laboratory Co., Ltd. MOS thin film transistor and method of fabricating same
US6420988B1 (en) 1998-12-03 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Digital analog converter and electronic device using the same
JP2000174282A (en) 1998-12-03 2000-06-23 Semiconductor Energy Lab Co Ltd Semiconductor device
US6545359B1 (en) 1998-12-18 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Wiring line and manufacture process thereof, and semiconductor device and manufacturing process thereof
US6469317B1 (en) 1998-12-18 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6259138B1 (en) 1998-12-18 2001-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multilayered gate electrode and impurity regions overlapping therewith
US6524895B2 (en) 1998-12-25 2003-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6380558B1 (en) 1998-12-29 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
EP1020839A3 (en) 1999-01-08 2002-11-27 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and driving circuit therefor
US6639244B1 (en) 1999-01-11 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6590229B1 (en) 1999-01-21 2003-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for production thereof
TW468269B (en) 1999-01-28 2001-12-11 Semiconductor Energy Lab Serial-to-parallel conversion circuit, and semiconductor display device employing the same
US6199533B1 (en) 1999-02-01 2001-03-13 Cummins Engine Company, Inc. Pilot valve controlled three-way fuel injection control valve assembly
JP4637315B2 (en) 1999-02-24 2011-02-23 株式会社半導体エネルギー研究所 Display device
US7193594B1 (en) 1999-03-18 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US6531713B1 (en) 1999-03-19 2003-03-11 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and manufacturing method thereof
US6858898B1 (en) 1999-03-23 2005-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7145536B1 (en) 1999-03-26 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US6952194B1 (en) 1999-03-31 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US6512504B1 (en) 1999-04-27 2003-01-28 Semiconductor Energy Laborayory Co., Ltd. Electronic device and electronic apparatus
US6461899B1 (en) 1999-04-30 2002-10-08 Semiconductor Energy Laboratory, Co., Ltd. Oxynitride laminate “blocking layer” for thin film semiconductor devices
TW483287B (en) 1999-06-21 2002-04-11 Semiconductor Energy Lab EL display device, driving method thereof, and electronic equipment provided with the EL display device
TW480554B (en) 1999-07-22 2002-03-21 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
US6541294B1 (en) 1999-07-22 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2001051661A (en) 1999-08-16 2001-02-23 Semiconductor Energy Lab Co Ltd D-a conversion circuit and semiconductor device
TW478014B (en) 1999-08-31 2002-03-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing thereof
JP4700156B2 (en) 1999-09-27 2011-06-15 株式会社半導体エネルギー研究所 Semiconductor device
US6384427B1 (en) 1999-10-29 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device
JP4562835B2 (en) 1999-11-05 2010-10-13 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6646287B1 (en) 1999-11-19 2003-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with tapered gate and insulating film
US7232742B1 (en) 1999-11-26 2007-06-19 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device that includes forming a material with a high tensile stress in contact with a semiconductor film to getter impurities from the semiconductor film
JP2001177101A (en) 1999-12-20 2001-06-29 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US6639265B2 (en) 2000-01-26 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US6702407B2 (en) 2000-01-31 2004-03-09 Semiconductor Energy Laboratory Co., Ltd. Color image display device, method of driving the same, and electronic equipment
JP4493779B2 (en) 2000-01-31 2010-06-30 シャープ株式会社 A semiconductor device and a manufacturing method thereof
US6856307B2 (en) 2000-02-01 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and method of driving the same
JP2001318627A (en) 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd Light emitting device
TW495854B (en) 2000-03-06 2002-07-21 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
TW513753B (en) 2000-03-27 2002-12-11 Semiconductor Energy Lab Semiconductor display device and manufacturing method thereof
DE20006642U1 (en) 2000-04-11 2000-08-17 Agilent Technologies Inc An optical device
JP4588167B2 (en) 2000-05-12 2010-11-24 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
TWI263336B (en) 2000-06-12 2006-10-01 Semiconductor Energy Lab Thin film transistors and semiconductor device
US6703265B2 (en) 2000-08-02 2004-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6828587B2 (en) 2000-06-19 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2002083974A (en) 2000-06-19 2002-03-22 Semiconductor Energy Lab Co Ltd Semiconductor device
US7503975B2 (en) 2000-06-27 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method therefor
TW504846B (en) 2000-06-28 2002-10-01 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
US6734924B2 (en) 2000-09-08 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US6562671B2 (en) 2000-09-22 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and manufacturing method thereof
US7167226B2 (en) 2000-11-02 2007-01-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device having particular configuration of pixel electrodes
US6831299B2 (en) 2000-11-09 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
SG138468A1 (en) 2001-02-28 2008-01-28 Semiconductor Energy Lab A method of manufacturing a semiconductor device
US6740938B2 (en) 2001-04-16 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Transistor provided with first and second gate electrodes with channel region therebetween
US7253032B2 (en) 2001-04-20 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Method of flattening a crystallized semiconductor film surface by using a plate
JP2002319679A (en) 2001-04-20 2002-10-31 Semiconductor Energy Lab Co Ltd Semiconductor device
JP4731718B2 (en) 2001-04-27 2011-07-27 株式会社半導体エネルギー研究所 Display device
JP5025057B2 (en) 2001-05-10 2012-09-12 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6906344B2 (en) 2001-05-24 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with plural channels and corresponding plural overlapping electrodes
TW541584B (en) 2001-06-01 2003-07-11 Semiconductor Energy Lab Semiconductor film, semiconductor device and method for manufacturing same
TW544938B (en) 2001-06-01 2003-08-01 Semiconductor Energy Lab Method of manufacturing a semiconductor device
US6897477B2 (en) 2001-06-01 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device
US6743700B2 (en) 2001-06-01 2004-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device and method of their production
TW550648B (en) 2001-07-02 2003-09-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
JP4267266B2 (en) 2001-07-10 2009-05-27 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US7199027B2 (en) 2001-07-10 2007-04-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor film by plasma CVD using a noble gas and nitrogen
US6952023B2 (en) 2001-07-17 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4618948B2 (en) 2001-08-24 2011-01-26 株式会社半導体エネルギー研究所 Evaluation method of a semiconductor device
JP4798907B2 (en) 2001-09-26 2011-10-19 株式会社半導体エネルギー研究所 Semiconductor device
JP5072157B2 (en) 2001-09-27 2012-11-14 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4256087B2 (en) 2001-09-27 2009-04-22 シャープ株式会社 A method for manufacturing a semiconductor device
JP4024508B2 (en) 2001-10-09 2007-12-19 シャープ株式会社 A method for manufacturing a semiconductor device
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US6962860B2 (en) 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
TWI289896B (en) 2001-11-09 2007-11-11 Semiconductor Energy Lab Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
US7238557B2 (en) 2001-11-14 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP2003163221A (en) 2001-11-28 2003-06-06 Semiconductor Energy Lab Co Ltd Manufacturing method for semiconductor device
US7105048B2 (en) 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
JP3949564B2 (en) 2001-11-30 2007-07-25 株式会社半導体エネルギー研究所 The method for manufacturing a laser irradiation apparatus and a semiconductor device
EP1329946A3 (en) 2001-12-11 2005-04-06 Sel Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including a laser crystallization step
US7135389B2 (en) 2001-12-20 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Irradiation method of laser beam
JP4141138B2 (en) 2001-12-21 2008-08-27 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP3992976B2 (en) 2001-12-21 2007-10-17 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4519400B2 (en) * 2001-12-27 2010-08-04 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4030758B2 (en) 2001-12-28 2008-01-09 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP2003204067A (en) 2001-12-28 2003-07-18 Semiconductor Energy Lab Co Ltd Display device and electronic equipment using the same
JP4011344B2 (en) 2001-12-28 2007-11-21 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
JP2003273016A (en) * 2002-01-11 2003-09-26 Sharp Corp Semiconductor film, its manufacturing method, semiconductor device using the same, and display device
US6841797B2 (en) 2002-01-17 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device formed over a surface with a drepession portion and a projection portion
TWI261358B (en) 2002-01-28 2006-09-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
TW200302511A (en) 2002-01-28 2003-08-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US6884668B2 (en) 2002-02-22 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
JP4101533B2 (en) 2002-03-01 2008-06-18 株式会社半導体エネルギー研究所 The method for manufacturing a transflective liquid crystal display device
JP4237442B2 (en) 2002-03-01 2009-03-11 株式会社半導体エネルギー研究所 Transflective liquid crystal display device
JP4087620B2 (en) 2002-03-01 2008-05-21 株式会社半導体エネルギー研究所 Method for manufacturing a liquid crystal display device
CN101217150B (en) 2002-03-05 2011-04-06 株式会社半导体能源研究所 Semiconductor element and semiconductor device using the same
US6841434B2 (en) 2002-03-26 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
TWI303882B (en) 2002-03-26 2008-12-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
US6906343B2 (en) 2002-03-26 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US7091110B2 (en) 2002-06-12 2006-08-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device by gettering using a anti-diffusion layer
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
JP4271413B2 (en) 2002-06-28 2009-06-03 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4744059B2 (en) * 2002-11-22 2011-08-10 シャープ株式会社 The semiconductor thin film, a method for forming a semiconductor thin film, semiconductor device and display device.
TWI351548B (en) 2003-01-15 2011-11-01 Semiconductor Energy Lab Manufacturing method of liquid crystal display dev
JP4170120B2 (en) 2003-03-19 2008-10-22 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4342826B2 (en) 2003-04-23 2009-10-14 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor element
JP4524774B2 (en) 2003-06-13 2010-08-18 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
EP1523043B1 (en) 2003-10-06 2011-12-28 Semiconductor Energy Laboratory Co., Ltd. Optical sensor and method for manufacturing the same
TWI367686B (en) 2004-04-07 2012-07-01 Semiconductor Energy Lab Light emitting device, electronic device, and television device
JP4698998B2 (en) * 2004-09-30 2011-06-08 株式会社半導体エネルギー研究所 Method for manufacturing a liquid crystal display device
KR101354162B1 (en) 2004-10-20 2014-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Laser irradiation, laser irradiation apparatus and method for manufacturing semiconductor device
TWI382455B (en) 2004-11-04 2013-01-11 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
US7575959B2 (en) 2004-11-26 2009-08-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US7989694B2 (en) 2004-12-06 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element, solar battery, and photo sensor
US7770535B2 (en) 2005-06-10 2010-08-10 Semiconductor Energy Laboratory Co., Ltd. Chemical solution application apparatus and chemical solution application method
US7638372B2 (en) 2005-06-22 2009-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7470621B2 (en) 2005-07-11 2008-12-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7524593B2 (en) 2005-08-12 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Exposure mask
EP1770443B1 (en) 2005-09-28 2016-01-20 Semiconductor Energy Laboratory Co., Ltd. Laser processing apparatus and exposure method
US7524713B2 (en) 2005-11-09 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
EP1843194A1 (en) 2006-04-06 2007-10-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
TWI633365B (en) 2006-05-16 2018-08-21 日商半導體能源研究所股份有限公司 The liquid crystal display device
JP5216204B2 (en) 2006-10-31 2013-06-19 株式会社半導体エネルギー研究所 The liquid crystal display device and a manufacturing method thereof
JP5352081B2 (en) 2006-12-20 2013-11-27 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US8207589B2 (en) 2007-02-15 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and electronic device, and method for manufacturing photoelectric conversion device
JP5256144B2 (en) * 2009-08-03 2013-08-07 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP2013058562A (en) 2011-09-07 2013-03-28 Semiconductor Energy Lab Co Ltd Photoelectric conversion device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.,55(7),P.660−662
JAPANESE JOURNAL OF APPLIED PHYSICS,29(12),p.2698−2704

Also Published As

Publication number Publication date
JPH0878329A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
KR100285864B1 (en) a method of manufacturing a semiconductor device
JP3675886B2 (en) The method for manufacturing a thin film semiconductor device
US7391051B2 (en) Semiconductor device forming method
KR100193144B1 (en) Semiconductor device and manufacture thereof
JP4267266B2 (en) A method for manufacturing a semiconductor device
US6232156B1 (en) Method of manufacturing a semiconductor device
CN1039464C (en) Semiconductordevice and method for mfg. the same
US5821562A (en) Semiconductor device formed within asymetrically-shaped seed crystal region
KR100376372B1 (en) A semiconductor device and method of manufacturing the same
CN1161831C (en) Semiconductor device and its producing method
JP3193803B2 (en) A method for manufacturing a semiconductor element
US7503975B2 (en) Semiconductor device and fabrication method therefor
JP2791858B2 (en) The semiconductor device manufacturing method
US5710050A (en) Method for fabricating a semiconductor device
US5605846A (en) Method for manufacturing semiconductor device
CN100379023C (en) Semiconductor circuit for electro-optical device
US6013544A (en) Method for fabricating a semiconductor device
EP0612102B1 (en) Process for the fabrication of a crystallised semiconductor layer
US5851860A (en) Semiconductor device and method for producing the same
US5789762A (en) Semiconductor active matrix circuit
US5940690A (en) Production method for a thin film semiconductor device with an alignment marker made out of the same layer as the active region
JP3464285B2 (en) A method for manufacturing a semiconductor device
US6924506B2 (en) Semiconductor device having channel formation region comprising silicon and containing a group IV element
US6337232B1 (en) Method of fabrication of a crystalline silicon thin film semiconductor with a thin channel region
JP3729955B2 (en) A method for manufacturing a semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees