JP3431033B2 - Semiconductor manufacturing method - Google Patents

Semiconductor manufacturing method

Info

Publication number
JP3431033B2
JP3431033B2 JP29463393A JP29463393A JP3431033B2 JP 3431033 B2 JP3431033 B2 JP 3431033B2 JP 29463393 A JP29463393 A JP 29463393A JP 29463393 A JP29463393 A JP 29463393A JP 3431033 B2 JP3431033 B2 JP 3431033B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29463393A
Other languages
Japanese (ja)
Other versions
JPH07130652A (en )
Inventor
久 大谷
昭治 宮永
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は結晶性を有する半導体の作製方法に関する。 BACKGROUND OF THE INVENTION [0001] Field of the Invention The present invention relates to a method for manufacturing a semiconductor having crystallinity. 【0002】 【従来の技術】薄膜半導体を用いた薄膜トランジスタ(以下TFT等)が知られている。 [0002] thin film transistor using the BACKGROUND ART thin film semiconductor (hereinafter TFT, etc.) are known. このTFTは、基板上に薄膜半導体を形成し、この薄膜半導体を用いて構成されるものである。 The TFT is a thin film semiconductor formed on a substrate and is formed by using the thin-film semiconductor. このTFTは、各種集積回路に利用されているが、特にアクティブマトリックス型の液晶表示装置の各画素の設けられたスイッチング素子、周辺回路部分に形成されるドライバー素子として注目されている。 This TFT has been used in various integrated circuits, in particular switching elements provided by each pixel of an active matrix type liquid crystal display device, attention as a driver element formed in the peripheral circuit portion. 【0003】TFTに利用される薄膜半導体としては、 [0003] as a thin film semiconductor to be used in the TFT,
非晶質珪素膜を用いることが簡便であるが、その電気的特性が低いという問題がある。 It is convenient to use an amorphous silicon film, the electrical characteristic is low. TFTの特性向上を得るためには、結晶性を有するシリコン薄膜を利用するばよい。 To obtain a characteristic improvement of the TFT, it utilizes a crystalline silicon thin film. 結晶性を有するシリコン膜は、多結晶シリコン、ポリシリコン、微結晶シリコン等と称されている。 Silicon film having crystallinity, polycrystalline silicon, polysilicon, are referred to as microcrystalline silicon or the like. この結晶性を有するシリコン膜を得るためには、まず非晶質珪素膜を形成し、しかる後に加熱によって結晶化さればよい。 To obtain a silicon film having crystallinity, an amorphous silicon film is first formed, it is crystallized by heating thereafter. 【0004】しかしながら、加熱による結晶化は、加熱温度が600℃以上の温度で10時間以上の時間を掛けることが必要であり、基板としてガラス基板を用いることが困難であるという問題がある。 However, crystallization by heating, it is necessary to heating temperature exerts an 10 or more hours at 600 ° C. or higher, there is a problem that it is difficult to use a glass substrate as the substrate. 例えばアクティブ型の液晶表示装置に用いられるコーニング7059ガラスはガラス歪点が593℃であり、基板の大面積化を考慮した場合、600℃以上の加熱には問題がある。 For example Corning 7059 glass used for an active-type liquid crystal display device is a glass strain point of 593 ° C., when considering a large area of ​​the substrate, the heating above 600 ° C. is a problem. 【0005】〔発明の背景〕本発明者らの研究によれば、非晶質珪素膜の表面にニッケルやパラジウム、さらには鉛等の元素を微量に堆積させ、しかる後に加熱することで、550℃、4時間程度の処理時間で結晶化を行なえることが判明している。 [0005] According to the present inventors' study Background of the Invention, nickel and palladium on the surface of the amorphous silicon film, and further depositing an element such as lead traces, by heating thereafter, 550 ° C., it has been found to be able to crystallize in about 4 hours of processing time. 【0006】上記のような微量な元素(結晶化を助長する触媒元素)を導入するには、プラズマ処理や蒸着、さらにはイオン注入を利用すればよい。 [0006] The introduction of small amount of elements (catalytic element which promotes crystallization) as described above, a plasma treatment or vapor deposition, and more may be utilized ion implantation. プラズマ処理とは、平行平板型のプラズマCVD装置において、電極として触媒元素を含んだ材料を用い、水素等の雰囲気でプラズマを生じさせることによって非晶質珪素膜に触媒元素の添加を行なう方法である。 And plasma processing, in a parallel plate type plasma CVD apparatus, using containing a catalytic element as an electrode material, in an atmosphere such as hydrogen at a method of performing the addition of the catalytic element to the amorphous silicon film by generating a plasma is there. 【0007】しかしながら、上記のような元素が半導体中に多量に存在していることは、これら半導体を用いた装置の信頼性や電気的安定性を阻害するものであり好ましいことではない。 However, the elements described above are present in large amounts in the semiconductor, is it not desirable that inhibit the reliability and electrical stability of a device using such semiconductor. 【0008】即ち、上記のニッケル等の結晶化を助長する元素(触媒元素)は、非晶質珪素を結晶化させる際には必要であるが、結晶化した珪素中には極力含まれないようにすることが望ましい。 Namely, an element for promoting crystallization such as the nickel (catalyst element) are necessary for when crystallizing the amorphous silicon, so that it is not included as much as possible in the silicon crystallized it is desirable to. この目的を達成するには、 To achieve this goal,
触媒元素として結晶性珪素中で不活性な傾向が強いものを選ぶと同時に、結晶化に必要な触媒元素の量を極力少なくし、最低限の量で結晶化を行なう必要がある。 At the same time in the crystalline silicon as a catalyst element choose the one inactive tendency is strong, the amount of the catalyst element necessary for crystallization was minimized, it is necessary to perform the crystallization in a minimum amount. そしてそのためには、上記触媒元素の添加量を精密に制御して導入する必要がある。 And therefore, it is necessary to introduce precisely controlling the amount of the catalytic element. 【0009】また、ニッケルを触媒元素とした場合、非晶質珪素膜を成膜し、ニッケル添加をプラズマ処理法によって行ない結晶性珪素膜を作製し、その結晶化過程等を詳細に検討したところ以下の事項が判明した。 Further, when the case where the nickel as a catalyst element, and forming an amorphous silicon film, nickel is added to prepare a crystalline silicon film is performed by a plasma treatment method, it was studied the crystallization process and the like in detail the following items were found. (1)プラズマ処理によってニッケルを非晶質珪素膜上に導入した場合、熱処理を行なう以前に既に、ニッケルは非晶質珪素膜中のかなりの深さの部分まで侵入している。 (1) When nickel by plasma treatment was introduced onto the amorphous silicon film, already before performing the heat treatment, nickel invading to the portion of the considerable depth of the amorphous silicon film. (2)結晶の初期核発生は、ニッケルを導入した表面から発生している。 (2) Initial nucleation of crystals are generated from the surface by introducing nickel. (3)蒸着法でニッケルを非晶質珪素膜上に成膜した場合であっても、プラズマ処理を行なった場合と同様に結晶化が起こる。 (3) even when the film formed on the amorphous silicon film of nickel by vapor deposition, similarly crystallization occurs in the case of performing the plasma treatment. 【0010】上記事項から、プラズマ処理によって導入されたニッケルが全て効果的に機能していないということが結論される。 [0010] From the above matters, nickel introduced by plasma treatment is that all not effectively function is concluded. そして、「必要なのは非晶質珪素膜の表面近傍に極微量のニッケルが導入されればよい」ということが結論される。 Then, the fact that "may be made very introduced small amount of nickel is in the vicinity of the surface of the amorphous silicon film needed" is concluded. 【0011】非晶質珪素膜の表面近傍のみに極微量のニッケルを導入する方法、言い換えるならば、非晶質珪素膜の表面近傍のみ結晶化を助長する触媒元素を極微量導入する方法としては、蒸着法を挙げることができるが、 [0011] The method of introducing only very small amount of nickel near the surface of the amorphous silicon film, in other words, a catalytic element for promoting crystallization only near the surface of the amorphous silicon film as a method for very small amount introduced , there may be mentioned an evaporation method,
蒸着法は制御性が悪く、触媒元素の導入量を厳密に制御することが困難であるという問題がある。 Deposition has poor controllability, there is a problem that it is difficult to strictly control the introduction amount of the catalytic element. 【発明が解決しようとする課題】本発明は、触媒元素を用いた600℃以下の熱処理による結晶性を有する薄膜珪素半導体の作製において、 (1)触媒元素の量を制御して導入する。 [0008] The present invention, in the preparation of thin-film silicon semiconductors with crystallinity by 600 ° C. The following heat treatment using a catalytic element is introduced by controlling the amount of (1) a catalyst element. (2)生産性の高い方法とする。 (2) a highly productive method. といった要求を満たすことを目的とする。 It aims to meet requirements such. 【0012】 【課題を解決するための手段】本発明は、上記目的を満足するために以下の構成を用いることを主要な構成とする。 [0012] Means for Solving the Problems The present invention is directed to a main structure to the use the following configurations in order to satisfy the above objectives. 「触媒元素を含む溶液を非晶質珪素膜表面に塗布し、このことによって、触媒元素の導入を行なう」 【0013】上記構成は以下の基本的な有意性を有する。 "Applying a solution containing a catalytic element to the amorphous silicon film surface, by this, the introduction of the catalytic element" [0013] The above arrangement has the fundamental significance of the following. (a)溶液中における触媒元素濃度は、予め厳密に制御することが可能である。 (A) solution catalyst element concentration in the is possible to advance strictly controlled. (b)溶液と非晶質珪素膜の表面とが接触していれば、 (B) if the contact with the surface of the solution and the amorphous silicon film,
触媒元素の非晶質珪素への導入量は、溶液中における触媒元素の濃度によって決まる。 Introduction amount of the amorphous silicon of the catalyst element is determined by the concentration of the catalyst element in the solution. (c)非晶質珪素膜の表面に吸着する触媒元素が主に結晶化に寄与することとなるので、必要最小限度の濃度で触媒元素を導入できる。 (C) the catalyst element adsorbed by the surface of the amorphous silicon film is to contribute mainly to crystallization can be introduced a catalytic element at a concentration of necessary minimum. 【0014】非晶質珪素膜上に結晶化を助長する元素を含有させた溶液を塗布する方法としては、溶液として硝酸塩、酢酸塩、硫酸塩の水溶液を用いる方法を挙げることができる。 [0014] As a method of coating a solution containing an element which promotes crystallization on the amorphous silicon film, nitrate as solutions, acetates, there may be employed a method of using an aqueous solution of sulfuric acid salt. この場合、非晶質珪素膜に直接上記溶液を塗布すると、溶液が弾かれてしまうので、100Å以下の薄い酸化膜をまず形成し、その上に触媒元素を含有させた溶液を塗布することで、均一に溶液を塗布することができる。 In this case, when applied directly above solution the amorphous silicon film, because the solution will be repelled by first forming the following thin oxide film 100 Å, by applying a solution containing a catalyst element thereon it can be applied uniformly solution. また、界面活性剤の如き材料を溶液中に添加する方法により濡れを改善する方法も有効である。 A method of improving the wettability by a method of adding materials such as surfactants in the solution is also effective. 【0015】また、溶液としてオクチル酸塩やトルエン溶液を用いることで、非晶質珪素膜表面に直接塗布することができる。 Further, by using the octyl acid salt and toluene as a solution, it can be applied directly to the surface of the amorphous silicon film. この場合にはレジスト塗布の際に使用されている密着剤の如き材料を予め塗布することは有効である。 It is effective to previously apply the materials such as adhesion agents used in the resist coating in this case. しかし塗布量が多過ぎる場合には逆に非晶質珪素中への触媒元素の添加を妨害してしまうために注意が必要である。 However, if the coating amount is too large it should be noted for would interfere with the addition of the catalyst element into the amorphous silicon reversed. 【0016】溶液に含ませる触媒元素の量は、その溶液の種類にも依存するが、概略の傾向としてはニッケル量として溶液に対して200ppm以下、好ましくは50 The amount of catalyst element to be included in the solution depends on the kind of the solution, 200 ppm or less with respect to the solution as a nickel content as trend schematic, preferably 50
ppm以下(重量換算)とすることが望ましい。 It is desirable that the ppm or less (weight basis). これは、結晶化終了後における膜中のニッケル濃度や耐フッ酸性に鑑みて決められる値である。 This is a value determined in consideration of the nickel concentration and the hydrofluoric acid resistance of the film after the crystallization finished. 【0017】また、触媒元素を含んだ溶液を選択的に塗布することにより、結晶成長を選択的に行なうことができる。 Further, by selectively applying a solution containing the catalyst element can be carried out selectively the crystal growth. 特にこの場合、溶液が塗布されなかった領域に向かって、溶液が塗布された領域から珪素膜の面に平行な方向に結晶成長を行なすことができる。 Particularly, in this case, the solution toward the not coated region, the solution can be made rows crystal growth in a direction parallel to the surface of the silicon film from the coated area. この珪素膜の面に平行な方向に結晶成長が行なわれた領域を本明細書中においては横方向に結晶成長した領域ということとする。 And that crystal-grown laterally region herein in a region where crystal growth is performed in a direction parallel to the surface of the silicon film. 【0018】またこの横方向に結晶成長が行なわれた領域は、触媒元素の濃度を低いことが確かめられている。 Further areas crystal growth was performed in the lateral direction, lower the concentration of the catalytic element it has been confirmed.
半導体装置の活性層領域として、結晶性珪素膜を利用することは有用であるが、活性層領域中における不純物の濃度は一般に低い方が好ましい。 As an active layer region of a semiconductor device, but it is useful to utilize a crystalline silicon film, the concentration of the impurity in the active layer region is generally preferably low. 従って、上記横方向に結晶成長が行なわれた領域を用いて半導体装置の活性層領域を形成することはデバイス作製上有用である。 Thus, forming the active layer region of the semiconductor device using the lateral crystal growth has been performed regions are useful on the device fabricated. 【0019】本発明においては、触媒元素としてニッケルを用いた場合に最も顕著な効果を得ることができるが、その他利用できる触媒元素の種類としては、好ましくはNi、Pd、Pt、Cu、Ag、Au、In、S In the present invention, it is possible to obtain a most remarkable effect when using nickel as a catalyst element, the type of the catalytic element can be other available, preferably Ni, Pd, Pt, Cu, Ag, au, In, S
、P 、As、Sbを利用することができる。 n, it is possible to use P, As, and Sb. また、VI In addition, VI
II族元素、IIIb、IVb、Vb元素から選ばれた一種または複数種類の元素を利用することもできる。 II group element may IIIb, IVb, also use one or more kinds of elements selected from Vb elements. 【0020】 【実施例】〔実施例1〕 【0021】本実施例では、ガラス基板上の結晶性を有する珪素膜を形成する例を示す。 [0020] [Embodiment] [Example 1] [0021] This embodiment shows an example of forming a silicon film having crystallinity on the glass substrate. まず図1を用いて、触媒元素(ここではニッケルを用いる)を導入するところまでを説明する。 First with reference to FIG. 1, the catalytic element (in this case nickel is used) describing far to introduce. 本実施例においては、基板としてコーニング7059ガラスを用いる。 In this embodiment, a Corning 7059 glass as the substrate. またその大きさは10 Also its size is 10
0mm×100mmとする。 And 0mm × 100mm. 【0022】まず、非晶質珪素膜をプラズマCVD法やLPCVD法によってアモルファス状のシリコン膜を1 [0022] First, an amorphous silicon film, an amorphous silicon film by plasma CVD or LPCVD 1
00〜1500Å形成する。 00~1500Å form. ここでは、プラズマCVD Here, plasma CVD
法によって非晶質珪素膜12を1000Åの厚さに成膜する。 The amorphous silicon film 12 is deposited to a thickness of 1000Å by law. (図1(A)) 【0023】そして、汚れ及び自然酸化膜を取り除くためにフッ酸処理を行い、その後酸化膜13を10〜50 (FIG. 1 (A)) [0023] Then, a hydrofluoric acid treatment to remove dirt and spontaneous oxide film, after which the oxide film 13 10-50
Åに成膜する。 Forming a film on Å. 汚れが無視できる場合には、この工程を省略しても良いことは言うまでもなく、酸化膜13の代わりに自然酸化膜をそのまま用いれば良い。 If the dirt is negligible, mention may be may be omitted this step, it may be used as a natural oxide film in place of the oxide film 13. なお、この酸化膜13は極薄のため正確な膜厚は不明であるが、2 Incidentally, the oxide film 13 but is is uncertain exact thickness for very thin, 2
0Å程度であると考えられる。 It is considered to be about 0Å. ここでは酸素雰囲気中でのUV光の照射により酸化膜13を成膜する。 Here the formation of the oxide film 13 by UV light irradiation in an oxygen atmosphere. 成膜条件は、酸素雰囲気中においてUVを5分間照射することにおって行なった。 Deposition conditions were performed Oh to irradiation with UV 5 minutes in an oxygen atmosphere. この酸化膜13の成膜方法としては、 As the film formation method of the oxide film 13,
熱酸化法を用いるのでもよい。 Thermal oxidation method may also use a. また過酸化水素による処理によるものでもよい。 Or it may be by treatment with hydrogen peroxide. 【0024】この酸化膜13は、後のニッケルを含んだ酢酸塩溶液を塗布する工程で、非晶質珪素膜の表面全体に酢酸塩溶液を行き渡らせるため、即ち濡れ性の改善の為のものである。 [0024] The oxide film 13 is a step of applying the acetate solution containing nickel after, for disseminating acetate solution on the entire surface of the amorphous silicon film, ie for wettability improvement it is. 例えば、非晶質珪素膜の表面に直接酢酸塩溶液を塗布した場合、非晶質珪素が酢酸塩溶液を弾いてしまうので、非晶質珪素膜の表面全体にニッケルを導入することができない。 For example, when applied directly acetate solution on the surface of the amorphous silicon film, because amorphous silicon repels the acetate solution, it is impossible to introduce a nickel on the entire surface of the amorphous silicon film. 即ち、均一な結晶化を行うことができない。 That is, it is impossible to perform uniform crystallization. 【0025】つぎに、酢酸塩溶液中にニッケルを添加した酢酸塩溶液を作る。 Next, make acetate solution was added nickel acetate solution. ニッケルの濃度は100ppmとする。 The concentration of nickel and 100ppm. そしてこの酢酸塩溶液を非晶質珪素膜12上の酸化膜13の表面に2ml滴下し、この状態を5分間保持する。 And then 2ml dropwise the acid salt solution to the surface of the oxide film 13 on the amorphous silicon film 12, this state is held for 5 minutes. そしてスピナーを用いてスピンドライ(2000 And spin dry (2000 using a spinner
rpm、60秒)を行う。 rpm, 60 seconds) is performed. (図1(C)、(D)) 【0026】酢酸溶液中におけるニッケルの濃度は、1 (FIG. 1 (C), (D)) [0026] The concentration of nickel in the acetate solution, 1
0ppm以上であれば実用になる。 If 0ppm more becomes practical. また溶液としては、 As the solution,
塩酸塩、硝酸塩、硫酸塩を用いることができる。 Hydrochloride, nitrate, it can be used sulfate. また、 Also,
有機系のオクチル酸塩やトルエン溶液を用いることもできる。 Octylates and toluene solution of the organic can also be used. この場合は、酸化膜13は不要であり、直接非晶質珪素膜上に触媒元素を導入することができる。 In this case, the oxide film 13 is not necessary, it is possible to introduce the catalyst element directly on the amorphous silicon film. 【0027】上記溶液の塗布の後、5分間その状態を保持させる。 [0027] After application of the solution, 5 minutes to hold its state. この保持させる時間によっても、最終的に珪素膜12中に含まれるニッケルの濃度を制御することができるが、最も大きな制御因子は溶液の濃度である。 By the time that this is held, but ultimately it is possible to control the concentration of nickel contained in the silicon film 12, the most significant control factor is the concentration of the solution. 【0028】そして、加熱炉において、窒素雰囲気中において550度、4時間の加熱処理を行う。 [0028] Then, performed in a heating furnace, 550 ° in a nitrogen atmosphere, the heat treatment of 4 hours. この結果、 As a result,
基板11上に形成された結晶性を有する珪素薄膜12を得ることができる。 It is possible to obtain a silicon film 12 having been formed on the substrate 11 crystalline. 【0029】上記の加熱処理は450度以上の温度で行うことができるが、温度が低いと加熱時間を長くしなけらばならず、生産効率が低下する。 [0029] The above heat treatment may be performed at 450 degrees or higher, it must kicked such longer when the temperature is low heating time, production efficiency is reduced. また、550度以上とすると基板として用いるガラス基板の耐熱性の問題が表面化してしまう。 Further, the heat resistance problem of the glass substrate resulting in surfaced used as the substrate when the 550 degrees or more. 【0030】〔実施例2〕本実施例は、実施例1に示す作製方法において、1200Åの酸化珪素膜を選択的に設け、この酸化珪素膜をマスクとして選択的にニッケルを導入する例である。 [0030] Example 2 This example, in the manufacturing method shown in Example 1, formed selectively a silicon oxide film of 1200 Å, there the silicon oxide film in Example selectively introducing nickel as a mask . 【0031】図2に本実施例における作製工程の概略を示す。 [0031] shows an outline of manufacturing process in this embodiment in FIG. まず、ガラス基板(コーニング7059、10c First, a glass substrate (Corning 7059,10c
m角)上にマスクとなる酸化珪素膜21を1000Å以上、ここでは1200Åの厚さに成膜する。 m square) silicon oxide film 21 serving as a mask on 1000Å or more, here, formed to a thickness of 1200 Å. この酸化珪素膜21の膜厚については、発明者等の実験によると5 The thickness of the silicon oxide film 21, according to experiments of the inventors 5
00Åでも問題がないことを確認しており、膜質が緻密であれば更に薄くても良いと思われる。 00Å even has confirmed that there are no problems, think that the film quality may be even thinner if it is dense. 【0032】そして通常のフォトリソパターニング工程によって、必要とするパターンに酸化珪素膜21をパーニングする。 [0032] Then by ordinary photolithography patterning process, Paningu silicon oxide film 21 in a pattern required. そして、酸素雰囲気中における紫外線の照射で薄い酸化珪素膜20を成膜する。 Then, to deposit a thin silicon oxide film 20 by the irradiation of ultraviolet rays in an oxygen atmosphere. この酸化珪素膜2 This silicon oxide film 2
0の作製は、酸素雰囲気中でUV光を5分間照射することによって行なわれる。 Preparation of 0 is performed by irradiating UV light for 5 minutes in an oxygen atmosphere. なおこの酸化珪素膜20の厚さは20〜50Å程度と考えられる(図2(B))。 Note the thickness of the silicon oxide film 20 is considered to be about 20~50A (Fig 2 (B)). 尚、 still,
この濡れ性を改善するための酸化珪素膜については、溶液とパターンのサイズが合致した場合には、マスクの酸化珪素膜の親水性のみによっても丁度よく添加される場合がある。 For the silicon oxide film for improving the wettability, if the size of the solution and the pattern is matched may be added just good by only the hydrophilicity of the silicon oxide film of the mask. しかしながらこの様な例は特殊であり、一般的には酸化珪素膜20を使用したほうが安全である。 However, such an example is special, is generally a safer using a silicon oxide film 20. 【0033】この状態において、実施例1と同様に10 [0033] In this state, in the same manner as in Example 1 10
0ppmのニッケルを含有した酢酸塩溶液を5ml滴下(10cm角基板の場合)する。 The acetate solution containing 0ppm of nickel (in the case of 10cm square substrate) 5 ml dropwise to. またこの際、スピナーで50rpmで10秒のスピンコートを行い、基板表面全体に均一な水膜を形成させる。 Also at this time, it performs spin coating for 10 seconds at 50rpm in a spinner to form a uniform water film on the entire surface of the substrate. さらにこの状態で、5 Furthermore, in this state, 5
分間保持した後スピナーを用いて2000rpm、60 Using a spinner was held minutes 2000 rpm, 60
秒のスピンドライを行う。 Performing a spin dry in seconds. なおこの保持は、スピナー上において0〜100rpmの回転をさせながら行なってもよい。 Note This holding may be performed while the causes rotation of 0~100rpm on the spinner. (図2(C)) 【0034】そして550度(窒素雰囲気)、4時間の加熱処理を施すことにより、非晶質珪素膜12の結晶化を行う。 (FIG. 2 (C)) [0034] Then 550 degrees (nitrogen atmosphere), by heat treatment of 4 hours, the crystallization of the amorphous silicon film 12. この際、ニッケルが導入された部分22の領域から23で示されるように、ニッケルが導入されなった領域へと横方向に結晶成長が行われる。 At this time, as nickel is shown in the region from 23 parts 22 introduced, lateral crystal growth is performed to nickel was introduced region. 【0035】この23で示される横方向への結晶成長の距離(μm)と、酢酸塩溶液中に含有されるニッケル濃度(ppm)との関係を図3に示す。 The distance of the crystal growth in the lateral direction indicated by the 23 (μm), showing the relationship between the nickel contained in the acetate salt solution concentration (ppm) in Figure 3. なお、図3に示されるデータにおいては、ニッケルを含有する酢酸塩を塗布した後の保持時間を5分間とした。 In the data shown in FIG. 3, and the retention time after the application of the acetic acid salt containing nickel and 5 minutes. 【0036】図3を見れば分かるように、ニッケル濃度を100ppm以上とすることによって、25μm以上の成長距離を得ることができる。 [0036] As can be seen in FIG. 3, by a nickel concentration more than 100 ppm, it can be obtained more growth distance 25 [mu] m. 【0037】また、酢酸溶液中に含まれるニッケルの濃度が10ppmであっても、10μm程度の横方向成長を得られることが予想される。 Further, the concentration of nickel contained in the acetic acid solution is even 10 ppm, are expected to be obtained lateral growth of about 10 [mu] m. 【0038】図3に示すのは、ニッケルを含有する酢酸塩を塗布した後の保持時間を5分間とした場合であるが、この保持時間によっても横成長距離は変化する。 [0038] Shown in FIG. 3 is a case where the retention time after the application of the acetic acid salt containing nickel and 5 minutes, also lateral growth distance is changed by the retention time. 【0039】例えば、ニッケル濃度が100ppmの場合において、保持時間を1分以下とした場合には、保持時間が長い程、横方向への結晶成長を長くすることができる。 [0039] For example, when the nickel concentration of 100 ppm, in the case where the retention time than 1 minute, the longer the retention time, it is possible to increase the crystal growth in the lateral direction. しかし、保持時間を1分以上とした場合には、僅かづつ成長距離が長くなるだけで、顕著な違いを得ることができない。 However, in the case where the retention time than 1 minute, only slightly increments growth distance is long, it is impossible to obtain a significant difference. 【0040】また、ニッケル濃度を50ppmとした場合においては、保持時間が5分までは、その時間が横方向への結晶成長距離に比例するが、5分以上では飽和する傾向が見られる。 Further, in the case of the nickel concentration and 50ppm, the retention time is up to 5 minutes, the time is is proportional to the crystal growth distance in the lateral direction, it tends to be saturated is observed at 5 minutes or more. 【0041】なお以上の条件において保持時間をさらに長くすると僅かづつであるが、さらに横方向への結晶成長距離を大きくすることができる。 [0041] Although a few at a time when further prolonging the retention time in the above conditions, it is possible to further increase the crystal growth distance in the lateral direction. 尚、これらの保持時間は温度が変化するとその平衡に到達する時間が大きく変わるため、温度を管理する必要があることを付加しておく。 Note that these retention times for the temperature changes time to reach the equilibrium is largely changed, keep adding the need to manage the temperature. また、熱処理時間の温度を高くする、あるいは熱処理時間を長くすることによっても全体として横方向への結晶成長を大きくすることができる。 Further, it is possible to increase the crystal growth in the lateral direction as a whole to increase the temperature of the heat treatment time, or by lengthening the heat treatment time. 【0042】図4と図5は、ニッケルを100ppm含有した酢酸塩溶液を用いてニッケルを導入し、550 [0042] Figures 4 and 5, introduces nickel with acetate solution containing 100ppm of nickel, 550
℃、4時間の熱処理において、結晶化を行った場合の結晶化後における珪素膜中のニッケル濃度をSIMS(2 ° C., in the heat treatment of 4 hours, the concentration of nickel in the silicon film after the crystallization in the case of performing crystallization SIMS (2
次イオン質量分析)によって調べたデータである。 Is data were examined by the following ion mass spectrometry). 【0043】図4は、図2の22の領域、即ちニッケルが直接導入された領域におけるニッケルの濃度を示す。 [0043] Figure 4 is a region of 22 2, i.e. shows the concentration of nickel in the nickel is directly introduced region.
また図5は、図2の23で示されるように22の領域から横方向に結晶成長した領域におけるニッケルの濃度である。 The 5 is the concentration of nickel in the regions crystals grown in the lateral direction from the region of 22 as shown at 23 in FIG. 2. 【0044】図4と図5を見れば分かるように、横方向成長した領域のニッケル濃度は、直接ニッケルを導入した領域に比較してその濃度が約1桁小さいことが分かる。 [0044] As can be seen from Figure 4 and Figure 5, the nickel concentration in the lateral growth regions, it is understood that concentration of about one order of magnitude smaller than the introduced nickel directly region. 【0045】また、直接ニッケルを導入した領域であっても、酢酸塩溶液中におけるニッケルの濃度を10pp Further, even in the introduction of nickel directly region, 10pp the concentration of nickel in the acetate solution
mとすれば、結晶化させた珪素膜中におけるニッケル濃度を10 18 cm -3レベルに抑えられることが分かる【0046】そしてこのことから、酢酸溶液中におけるニッケル濃度を10ppmとし、加熱処理温度を550 if m, from the apparent [0046] And this can be suppressed nickel concentration 10 18 cm -3 levels in the silicon film obtained by crystallizing, the nickel concentration in the acetate solution and 10 ppm, the heat treatment temperature 550
℃以上、加熱処理時間を4時間以上とした場合における結晶性珪素膜の横成長領域のニッケル濃度は10 17 cm ℃ above, the nickel concentration in the lateral growth region of the crystalline silicon film in the case where the heat treatment time of 4 hours or more is 10 17 cm
-3レベル以下に抑えられることが結論される。 It is concluded that suppressed to 3 levels below. 【0047】本実施例で示したような方法によって形成された結晶珪素膜は、耐フッ酸性が良好であるという特徴がある。 [0047] This example crystalline silicon film formed by the method as shown in a characteristic that is hydrofluoric acid resistance is good. 本発明者らによる知見によれば、ニッケルをプラズマ処理で導入し、結晶化させた結晶性珪素膜は、 According to findings by the present inventors, introduces a nickel plasma treatment, a crystalline silicon film crystallized is
耐フッ酸性が低い。 Hydrofluoric acid resistance is low. 【0048】例えば、結晶性珪素膜上にゲイト絶縁膜や層間絶縁膜として機能する酸化珪素膜を形成し、しかる後に電極の形成のために穴開け工程を経て、電極を形成をする作業が必要とされる場合がある。 [0048] For example, should the work of forming the silicon oxide film functioning as a gate insulating film and the interlayer insulating film on the crystalline silicon film, through a drilled hole for the formation of the electrode thereafter step, the formation of the electrode there is a case that is. このような場合、酸化珪素膜をバッファフッ酸によって除去する工程が普通採用される。 In this case, the step of removing the silicon oxide film by the buffer hydrofluoric acid is usually employed. しかしながら、結晶性珪素膜の耐フッ酸性が低い場合、酸化珪素膜のみを取り除くことは困難であり、結晶性珪素膜をもエッチングしてしまうという問題がある。 However, if the hydrofluoric acid resistance of the crystalline silicon film is low, it is difficult to remove only the silicon oxide film, there is a problem that the crystalline silicon film etches. 【0049】しかしながら、結晶性珪素膜が耐フッ酸性を有している場合、酸化珪素膜と結晶性珪素膜のエンチッングレートの違い(選択比)を大きくとることができるので、酸化珪素膜のみを選択的の除去でき、作製工程上極めて有意なものとなる。 [0049] However, if the crystalline silicon film has a hydrofluoric acid resistance, it is possible to increase the difference in end chip down Great silicon oxide film and the crystalline silicon film (selection ratio), a silicon oxide film can only selective removal becomes extremely significant the manufacturing process. 【0050】〔実施例3〕本実施例は、本発明の方法を利用して作製した結晶性珪素膜を用いて、アクティブマトリックス型の液晶表示装置の各画素部分に設けられるTFTを作製する例を示す。 [0050] Example 3 This example shows an example in which by using a crystalline silicon film formed by using the method of the present invention to produce a TFT provided in each pixel portion of an active matrix type liquid crystal display device It is shown. なお、TFTの応用範囲としては、液晶表示装置のみではなく、一般に言われる薄膜集積回路に利用できることはいうまでもない。 As the application range of the TFT, not only the liquid crystal display device, it is needless to say that available thin film integrated circuit, commonly referred to. 【0051】図6に本実施例の作製工程の概要を示す。 [0051] A summary of the manufacturing steps of this embodiment in FIG.
まずガラス基板上に下地の酸化珪素膜(図示せず)を2 First silicon oxide film underlying on a glass substrate (not shown) 2
000Åの厚さに成膜する。 It is formed to a thickness of 000Å. この酸化珪素膜は、ガラス基板からの不純物の拡散を防ぐために設けられる。 This silicon oxide film is provided to prevent the diffusion of impurities from the glass substrate. 【0052】そして、非晶質珪素膜を実施例1と同様な方法で1000Åの厚さに成膜する。 [0052] Then, formed to a thickness of 1000Å an amorphous silicon film in the same manner as in Example 1. そして、自然酸化膜を取り除くためのフッ酸処理の後、薄い酸化膜20を20Å程度の厚さに酸素雰囲気でのUV光の照射によって成膜する。 After the hydrofluoric acid treatment to remove the natural oxide film, forming a film by irradiation with UV light in an oxygen atmosphere a thin oxide film 20 to a thickness of about 20 Å. 【0053】そして10ppmのニッケルを含有した酢酸塩溶液を塗布し、5分間保持し、スピナーを用いてスピンドライを行う。 [0053] Then applying the acetate solution containing 10ppm of nickel, held for 5 minutes, performing spin drying using a spinner. その後バッファフッ酸によって酸化珪素膜20と21を取り除き、550度、4時間の加熱によって、珪素膜100を結晶化させる。 Thereafter removed by buffer hydrofluoric acid and the silicon oxide film 20 21, 550 degrees, by heating for 4 hours, to crystallize the silicon film 100. (ここまでは実施例1に示した作製方法と同じ) 【0054】次に、結晶化した珪素膜をパターニングして、島状の領域104を形成する。 Next (far same as the manufacturing method is shown in Example 1) [0054], by patterning the crystallized silicon film to form an island-like region 104. この島状の領域10 Area 10 of the island-like
4はTFTの活性層を構成する。 4 constitutes an active layer of a TFT. そして、厚さ200〜 Then, 200 thickness
1500Å、ここでは1000Åの酸化珪素105を形成する。 1500 Å, here a silicon oxide 105 of 1000 Å. この酸化珪素膜はゲイト絶縁膜としても機能する。 This silicon oxide film also functions as a gate insulating film. (図6(A)) 【0055】上記酸化珪素膜105の作製には注意が必要である。 (FIG. 6 (A)) [0055] The preparation of the silicon oxide film 105 is required to be careful. ここでは、TEOSを原料とし、酸素とともに基板温度150〜600℃、好ましくは300〜45 Here, the TEOS as a raw material, oxygen with the substrate temperature of 150 to 600 ° C., preferably from 300 to 45
0℃で、RFプラズマCVD法で分解・堆積した。 At 0 ° C., it was decomposed and deposited by RF plasma CVD. TE TE
OSと酸素の圧力比は1:1〜1:3、また、圧力は0.05〜0.5torr、RFパワーは100〜25 Pressure ratio of OS and oxygen is 1: 1 to 1: 3, and the pressure is 0.05~0.5Torr, RF power is 100 to 25
0Wとした。 It was 0W. あるいはTEOSを原料としてオゾンガスとともに減圧CVD法もしくは常圧CVD法によって、 The low pressure CVD method or normal pressure CVD method with ozone gas or as a raw material TEOS,
基板温度を350〜600℃、好ましくは400〜55 The substrate temperature 350 to 600 ° C., preferably from 400 to 55
0℃として形成した。 0 was formed as ℃. 成膜後、酸素もしくはオゾンの雰囲気で400〜600℃で30〜60分アニールした。 After the film formation was 30-60 minutes annealing at 400 to 600 ° C. in an oxygen or ozone atmosphere. 【0056】この状態でKrFエキシマーレーザー(波長248nm、パルス幅20nsec)あるいはそれと同等な強光を照射することで、シリコン領域104の結晶化を助長さえてもよい。 [0056] KrF excimer laser (wavelength 248 nm, pulse width 20 nsec) in this state or in it and by irradiating strong light equivalent, may even promote the crystallization of the silicon region 104. 特に、赤外光を用いたRTA In particular, RTA using infrared light
(ラピットサーマルアニール)は、ガラス基板を加熱せずに、珪素のみを選択的に加熱することができ、しかも珪素と酸化珪素膜との界面における界面準位を減少させることができるので、絶縁ゲイト型電界効果半導体装置の作製においては有用である。 (Rapid thermal annealing), without heating the glass substrate, only can be selectively heated silicon, and since it is possible to reduce the interface state at the interface between silicon and silicon oxide film, an insulated gate useful in the preparation of type field effect semiconductor device. 【0057】その後、厚さ2000Å〜1μmのアルミニウム膜を電子ビーム蒸着法によって形成して、これをパターニングし、ゲイト電極106を形成する。 [0057] Thereafter, an aluminum film having a thickness of 2000Å~1μm formed by electron beam evaporation, which was patterned to form a gate electrode 106. アルミニウムにはスカンジウム(Sc)を0.15〜0.2重量%ドーピングしておいてもよい。 Scandium (Sc) may be previously 0.15 to 0.2 wt% doping in aluminum. 次に基板をpH≒ Then pH ≒ the substrate
7、1〜3%の酒石酸のエチレングリコール溶液に浸し、白金を陰極、このアルミニウムのゲイト電極を陽極として、陽極酸化を行う。 Immersed in ethylene glycol solution of 7,1~3% of tartaric acid, the cathode platinum, the gate electrode of the aluminum as an anode, anodic oxidation. 陽極酸化は、最初一定電流で220Vまで電圧を上げ、その状態で1時間保持して終了させる。 Anodic oxidation, increases the voltage at the first constant current to 220V, and held 1 hour to terminate in that state. 本実施例では定電流状態では、電圧の上昇速度は2〜5V/分が適当である。 In this embodiment the constant current state, the rising speed of the voltage is suitably 2 to 5 V / min. このようにして、厚さ1500〜3500Å、例えば、2000Åの陽極酸化物109を形成する。 In this way, the thickness 1500~3500A, for example, to form an anodic oxide 109 of 2000 Å. (図6(B)) 【0058】その後、イオンドーピング法(プラズマドーピング法ともいう)によって、各TFTの島状シリコン膜中に、ゲイト電極部をマスクとして自己整合的に不純物(燐)を注入した。 (FIG. 6 (B)) [0058] Thereafter, by ion doping method (also called plasma doping), the island-like silicon film of each TFT, implanted in a self-aligning manner impurity (phosphorus) using the gate electrode portion as a mask did. ドーピングガスとしてはフォスフィン(PH 3 )を用いた。 The doping gas used phosphine (PH 3). ドーズ量は、1〜4×10 Dose, 1 to 4 × 10
15 cm -2とする。 And 15 cm -2. 【0059】さらに、図6(C)に示すようにKrFエキシマーレーザー(波長248nm、パルス幅20ns [0059] Further, KrF excimer laser (wavelength 248 nm, pulse width 20ns As shown in FIG. 6 (C)
ec)を照射して、上記不純物領域の導入によって結晶性の劣化した部分の結晶性を改善させる。 ec) by irradiating, thereby improving the crystallinity of the deteriorated portion of the crystalline by introduction of the impurity regions. レーザーのエネルギー密度は150〜400mJ/cm 2 、好ましくは200〜250mJ/cm 2である。 The energy density of the laser is 150~400mJ / cm 2, preferably 200~250mJ / cm 2. こうして、N型不純物(燐)領域108、109を形成する。 Thus, to form an N-type impurity (phosphorus) regions 108 and 109. これらの領域のシート抵抗は200〜800Ω/□であった。 The sheet resistance of these regions was 200~800Ω / □. 【0060】この工程において、レーザーを用いるかわりに、フラッシュランプを使用して短時間に1000〜 [0060] 1000 In this step, instead of using a laser, in a short time using a flash lamp
1200℃(シリコンモニターの温度)まで上昇させ、 1200 ℃ raised to (the temperature of the silicon monitor),
試料を加熱する、いわゆるRTA(ラピッド・サーマル・アニール)(RTP、ラピット・サーマル・プロセスともいう)を用いてもよい。 Heating the sample, a so-called RTA (rapid thermal annealing) (RTP, also called Rapid thermal process) may be used. 【0061】その後、全面に層間絶縁物110として、 [0061] Then, as an interlayer insulator 110 over the entire surface,
TEOSを原料として、これと酸素とのプラズマCVD Plasma CVD of TEOS as raw material, and this oxygen
法、もしくはオゾンとの減圧CVD法あるいは常圧CV Law or a low pressure CVD method or normal pressure CV with ozone,
D法によって酸化珪素膜を厚さ3000Å形成する。 The thickness is 3000Å ​​silicon oxide film by Method D. 基板温度は250〜450℃、例えば、350℃とする。 The substrate temperature is 250 to 450 ° C., for example, to 350 ° C..
成膜後、表面の平坦性を得るため、この酸化珪素膜を機械的に研磨する。 After the film formation, to obtain a flatness of the surface to polish the silicon oxide film mechanically. さらに、スパッタ法によってITO被膜を堆積し、これをパターニングして画素電極111とする。 Furthermore, by depositing an ITO film by sputtering, and the pixel electrode 111 by patterning the same. (図6(D)) 【0062】そして、層間絶縁物110をエッチングして、図1(E)に示すようにTFTのソース/ドレインにコンタクトホールを形成し、クロムもしくは窒化チタンの配線112、113を形成し、配線113は画素電極111に接続させる。 (FIG. 6 (D)) [0062] Then, by etching the interlayer insulator 110, a contact hole is formed in the source / drain of the TFT as shown in FIG. 1 (E), chromium or titanium nitride wirings 112, 113 is formed, the wiring 113 is connected to the pixel electrode 111. 【0063】プラズマ処理を用いてニッケルを導入した結晶性珪素膜は、酸化珪素膜に比較してバッファフッ酸に対する選択性が低いので、上記コンタクトホールの形成工程において、エッチングされてしまうことが多かった。 [0063] crystalline silicon film obtained by introducing nickel using a plasma treatment, because of the low selectivity to the buffer hydrofluoric acid as compared with the silicon oxide film, in the step of forming of the contact holes, that are etched many It was. 【0064】しかし、本実施例のように10ppmの低濃度で水溶液を用いてニッケルを導入した場合には、耐フッ酸性が高いので、上記コンタクトホールの形成が安定して再現性よく行なうことができる。 [0064] However, in the case of introducing a low concentration with an aqueous solution of nickel in 10ppm as in the present embodiment, since the hydrofluoric acid resistance is high, formation of the contact hole be performed with good reproducibility stably it can. 【0065】最後に、水素中で300〜400℃で0. [0065] Finally, in, 300~400 ℃ in hydrogen 0.
1〜2時間アニールして、シリコンの水素化を完了する。 And 1-2 hours annealed to complete the hydrogenation of the silicon. このようにして、TFTが完成する。 In this way, TFT is completed. そして、同時に作製した多数のTFTをマトリクス状に配列せしめてアクティブマトリクス型液晶表示装置として完成する。 Then, to complete the active matrix type liquid crystal display device caused to sequence a number of TFT manufactured at the same time in a matrix. 【0066】本実施例の構成を採用した場合、活性層中に存在するニッケルの濃度は、1×10 18 cm -3程度あるいはそれ以下であると考えられる。 [0066] When employing the configuration of this embodiment, the concentration of nickel present in the active layer is considered to be about 1 × 10 18 cm -3 or less. 【0067】本実施例においては、ニッケルを導入した部分を結晶化させた例を示したが、実施例2に示すようにニッケルを選択的に導入し、その部分から横方向(基板に平行な方向)に結晶成長した領域を用いて電子デバイスを形成してもよい。 [0067] In this embodiment, although a portion of introducing nickel shows an example in which was crystallized by selective introduction of nickel as shown in Example 2, parallel to the transverse direction (substrate from that portion it may form an electronic device by using the regions crystal growth direction). この場合、デバイスの活性層領域におけるニッケル濃度をさらに低くすることができ、 In this case, it is possible to further reduce the nickel concentration in the active layer region of the device,
デバイスの電気的安定性や信頼性の上から極めて好ましい構成とすることができる。 It can be very preferable structure from the top of the electrical stability and reliability of the device. 【0068】 【効果】ニッケルの導入方法として、溶液を用いることによって、ニッケルの濃度を精密に制御して添加できるようになり、結晶性珪素膜を用いた信頼性の高い電子デバイスを提供できる。 [0068] As a method of introducing EFFECT nickel, by using a solution, now can be added to precisely control the concentration of nickel, it is possible to provide a high electron device reliability using a crystalline silicon film.

【図面の簡単な説明】 【図1】 実施例の工程を示す【図2】 実施例の工程を示す。 BRIEF DESCRIPTION OF THE DRAWINGS shows the Figure 1 embodiment of the process Figure 2 shows the procedure of Example. 【図3】 溶液中のニッケル濃度と横方向への結晶成長距離との関係を示す。 3 shows a relationship between the crystal growth distance to the nickel concentration in the solution and the transverse direction. 【図4】 ニッケルが導入された領域のニッケル濃度を示す。 Figure 4 shows the nickel concentration of the nickel is introduced region. 【図5】 ニッケルが導入された領域から横方向に結晶した領域におけるニッケル濃度を示す。 Figure 5 shows the nickel concentration in the region crystallized laterally from the nickel was introduced region. 【図6】 実施例の作製工程を示す。 6 shows a manufacturing process of Example. 【符号の説明】 11・・・・ガラス基板12・・・・非晶質珪素膜13・・・・酸化珪素膜14・・・・ニッケルを含有した酢酸溶液膜15・・・・ズピナー21・・・・マスク用酸化珪素膜20・・・・酸化珪素膜11・・・・ガラス基板104・・・活性層105・・・酸化珪素膜106・・・ゲイト電極109・・・酸化物層108・・・ソース/ドレイン領域109・・・ドレイン/ソース領域110・・・層間絶縁膜(酸化珪素膜) 111・・・画素電極(ITO) 112・・・電極113・・・電極 [DESCRIPTION OF REFERENCE NUMERALS] 11 ... glass substrate 12 ... amorphous silicon film 13 ... silicon oxide film 14 .... a nickel acetate solution film 15 containing .... Zupina 21 - ... mask the silicon oxide film 20 ... silicon oxide film 11 ... glass substrate 104 ... active layer 105 ... silicon oxide film 106 ... gate electrode 109 ... oxide layer 108 ... source / drain regions 109 ... drain / source regions 110 ... interlayer insulating film (silicon oxide film) 111 ... pixel electrode (ITO) 112 ... electrode 113 ... electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−280420(JP,A) 特開 平2−140915(JP,A) 特開 平5−67635(JP,A) 特開 昭63−142807(JP,A) 特開 昭64−74754(JP,A) 特開 平2−20059(JP,A) 米国特許5147826(US,A) Appl. ────────────────────────────────────────────────── ─── of the front page continued (56) reference Patent flat 3-280420 (JP, a) JP flat 2-140915 (JP, a) JP flat 5-67635 (JP, a) JP Akira 63- 142807 (JP, A) JP Akira 64-74754 (JP, A) JP flat 2-20059 (JP, A) United States Patent 5147826 (US, A) Appl. Phys. Phys. Lett. Lett. ,55 (7),p. , 55 (7), p. 660−662 (58)調査した分野(Int.Cl. 7 ,DB名) H01L 21/20 660-662 (58) investigated the field (Int.Cl. 7, DB name) H01L 21/20

Claims (1)

  1. (57)【特許請求の範囲】 【請求項1】 非晶質珪素膜上に酸化膜を形成し、 前記酸化膜上に、非晶質珪素の結晶化を助長する元素を含有させた溶液を塗布し、 前記非晶質珪素膜を加熱処理することにより結晶化させることを特徴とする半導体作製方法。 (57) to form a [Claims 1 oxide film on the amorphous silicon film, on the oxide film, a solution containing an element for promoting crystallization of amorphous silicon the semiconductor manufacturing method characterized by crystallizing by coated, heat-treating the amorphous silicon film. 【請求項2】 非晶質珪素膜上に厚さ10 nm以下の酸化膜を形成し、 前記酸化膜上に、非晶質珪素の結晶化を助長する元素を含む溶液を塗布し、 前記非晶質珪素膜を加熱処理することにより結晶化させることを特徴とする半導体作製方法。 2. A form an oxide film equal to or less than a thickness of 10 nm on the amorphous silicon film, on the oxide film, applying a solution containing an element for promoting crystallization of amorphous silicon, the non the semiconductor manufacturing method characterized by crystallizing by heating the amorphous silicon film. 【請求項3】 非晶質珪素膜上に酸化膜を形成し、 前記酸化膜上に非晶質珪素の結晶化を助長する元素を含む溶液を滴下し、 スピナーを用いて不要な前記溶液を除去し、 前記非晶質珪素膜を加熱処理することにより結晶化させることを特徴とする半導体作製方法。 Wherein an oxide film is formed on the amorphous silicon film, it was added dropwise a solution containing an element which promotes crystallization of the amorphous silicon on the oxide film, unnecessary the solution using a spinner the semiconductor manufacturing method characterized by crystallizing by removing, heat treating the amorphous silicon film. 【請求項4】 請求項1乃至3のいずれか1項において、前記非晶質珪素膜表面をフッ酸で洗浄した後、前記酸化膜を形成することを特徴とする半導体作製方法。 4. A any one of claims 1 to 3, wherein after the amorphous silicon film surface was washed with hydrofluoric acid, the semiconductor manufacturing method characterized by forming the oxide film. 【請求項5】 請求項1乃至4のいずれか1項において、 前記非晶質珪素膜表面へ紫外光を照射することで、前記酸化膜を形成することを特徴とする半導体作製方法。 5. A any one of claims 1 to 4, wherein the amorphous silicon film surface by irradiating ultraviolet light, a semiconductor manufacturing method characterized by forming the oxide film. 【請求項6】 請求項1乃至4のいずれか1項において、 前記非晶質珪素の表面を過酸化水素水で処理することで、前記酸化膜を形成することを特徴とする半導体作製方法。 6. A any one of claims 1 to 4, wherein the surface of the amorphous silicon by treatment with hydrogen peroxide, the semiconductor manufacturing method characterized by forming the oxide film. 【請求項7】 非晶質珪素膜上に、開口を有するマスクを形成し、 前記マスクが存在する状態で、前記マスクの開口部分の前記非晶質珪素膜表面に、酸化膜を形成し、 前記マスク膜を介して、前記酸化膜表面に非晶質珪素の結晶化を助長する元素を含む溶液を塗布し、 前記非晶質珪素膜を加熱処理することにより、前記非晶質珪素膜を結晶化させることを特徴とする半導体作製方法。 7. A amorphous silicon film, forming a mask having an opening, in a state where the mask is present, the amorphous silicon film surface of the opening portion of the mask to form an oxide film, through the mask film, by the solution containing the element which promotes crystallization of the amorphous silicon oxide film surface is coated, heat-treating the amorphous silicon film, the amorphous silicon film the semiconductor manufacturing method characterized by crystallizing. 【請求項8】 請求項において、前記マスクは酸化珪素でなることを特徴とする半導体作製方法。 8. The method of claim 7, wherein the mask is a semiconductor manufacturing method characterized by comprising silicon oxide. 【請求項9】 請求項又はにおいて、 前記マスクを介して前記非晶質珪素膜表面へ紫外光を照射することで、前記酸化膜を形成することを特徴とする半導体作製方法。 9. The method of claim 7 or 8, by irradiating ultraviolet light to the amorphous silicon film surface through the mask, the semiconductor manufacturing method characterized by forming the oxide film. 【請求項10】 請求項乃至のいずれか1項において、 スピナーを用いて、前記溶液を塗布することを特徴とする半導体作製方法。 10. A any one of claims 7 to 9, using a spinner, a semiconductor manufacturing method characterized by applying the solution. 【請求項11】 請求項乃至10のいずれか1項において、 前記溶液を塗布し所定の時間経過した後、不要な前記溶液を除去し、前記非晶質珪素膜を加熱処理して結晶化することを特徴とする半導体作製方法。 11. The any one of claims 7 to 10, wherein after the solution has passed the coated predetermined time, removing unnecessary the solution, crystallization by heat treating the amorphous silicon film the semiconductor manufacturing method which is characterized in that. 【請求項12】 請求項1 において、 前記所定の時間を変化させることによって、結晶化された珪素膜に含まれる前記元素の濃度を制御することを特徴とする半導体作製方法。 12. The method of claim 1 1, by varying the predetermined time, the semiconductor manufacturing method characterized by controlling the concentration of the element contained in the crystallized silicon film. 【請求項13】 請求項1 又は1 において、 スピナーを用いて、不要な前記溶液を除去することを特徴とする半導体作製方法。 13. The method of claim 1 1 or 1 2, a semiconductor manufacturing method characterized by using a spinner, removing unnecessary the solution. 【請求項14】 請求項1乃至1 のいずれか1項において、 前記溶液中の前記元素の濃度は50ppm以下であることを特徴とする半導体作製方法。 14. The any one of claims 1 to 1 3, a semiconductor manufacturing method, wherein the concentration of the element in the solution is 50ppm or less. 【請求項15】 請求項1乃至1 のいずれか1項において、 前記溶液中の前記元素の濃度は10ppm以上であることを特徴とする半導体作製方法。 15. The any one of claims 1 to 1 4, the semiconductor manufacturing method, wherein the concentration of the element in the solution is 10ppm or more. 【請求項16】 請求項1乃至1 のいずれか1項において、 前記溶液中の前記元素の濃度を変化させることによって、結晶化された珪素膜に含まれる前記元素の濃度を制御することを特徴とする半導体作製方法。 16. The any one of claims 1 to 1 5, by varying the concentration of the element in the solution, to control the concentration of the element contained in the crystallized silicon film the semiconductor manufacturing method according to claim. 【請求項17】 請求項1乃至1 のいずれか1項において、 前記溶液は、前記元素としてNiを含む溶液であることを特徴とする半導体作製方法。 17. any one of claims 1 to 1 6, wherein the solution is a semiconductor manufacturing method which is a solution containing Ni as the element. 【請求項18】 請求項1乃至1 のいずれか1項において、 前記溶液は、前記元素としてNiを含むニッケル酢酸塩の水溶液であることを特徴とする半導体作製方法。 18. The any one of claims 1 to 1 6, wherein the solution is a semiconductor manufacturing method is characterized in that an aqueous solution of nickel acetate containing Ni as the element. 【請求項19】 請求項1乃至1 のいずれか1項において、 前記溶液は、前記元素としてNi、Pd、Ptから選ばれた一種または複数種類の元素を含む溶液であることを特徴とする半導体作製方法。 19. any one of claims 1 to 1 6, wherein the solution is characterized in that as the element Ni, Pd, a solution containing one or more kinds of elements selected from Pt semiconductor manufacturing method. 【請求項20】 請求項19において、 前記溶液は、前記元素の酢酸塩、硝酸塩又は硫酸塩の水溶液であることを特徴とする半導体作製方法。 20. The method of claim 19, wherein the solution is an acetate of the element, a semiconductor manufacturing method is characterized in that an aqueous solution of nitrate or sulfate.
JP29463393A 1993-10-29 1993-10-29 Semiconductor manufacturing method Expired - Lifetime JP3431033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29463393A JP3431033B2 (en) 1993-10-29 1993-10-29 Semiconductor manufacturing method

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
JP29463393A JP3431033B2 (en) 1993-10-29 1993-10-29 Semiconductor manufacturing method
US08329644 US5643826A (en) 1993-10-29 1994-10-25 Method for manufacturing a semiconductor device
CN 94112820 CN1054943C (en) 1993-10-29 1994-10-28 A method for manufacturing a semiconductor device
CN 99106954 CN1143362C (en) 1993-10-29 1994-10-28 Method for manufacturing semiconductor device
EP20010116025 EP1158580A3 (en) 1993-10-29 1994-10-31 Method of crystallizing a silicon layer
DE1994630097 DE69430097T2 (en) 1993-10-29 1994-10-31 A method of crystallizing a silicon layer
DE1994630097 DE69430097D1 (en) 1993-10-29 1994-10-31 A method of crystallizing a silicon layer
EP19940307986 EP0651431B1 (en) 1993-10-29 1994-10-31 Method of crystallizing a silicon layer
US08430623 US5923962A (en) 1993-10-29 1995-04-28 Method for manufacturing a semiconductor device
US08633307 US6335541B1 (en) 1993-10-29 1996-04-15 Semiconductor thin film transistor with crystal orientation
US08928514 US6285042B1 (en) 1993-10-29 1997-09-12 Active Matry Display
KR19970069468A KR100273831B1 (en) 1993-10-29 1997-12-17 Method for manufacturing semiconductor device
CN 98120978 CN1149639C (en) 1993-10-29 1998-10-12 Semiconductor device
KR20000013018A KR100273833B1 (en) 1993-10-29 2000-03-15 A semiconductor device
KR20000013017A KR100297315B1 (en) 1993-10-29 2000-03-15 A method for manufacturing a semiconductor device
US10026802 US6998639B2 (en) 1993-10-29 2001-12-27 Method for manufacturing a semiconductor device
US11322660 US20060131583A1 (en) 1993-10-29 2006-01-03 Method for manufacturing a semiconductor device
US12219026 US7998844B2 (en) 1993-10-29 2008-07-15 Method for manufacturing a semiconductor device
US13209861 US20120034766A1 (en) 1993-10-29 2011-08-15 Method for manufacturing a semiconductor device

Publications (2)

Publication Number Publication Date
JPH07130652A true JPH07130652A (en) 1995-05-19
JP3431033B2 true JP3431033B2 (en) 2003-07-28

Family

ID=17810294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29463393A Expired - Lifetime JP3431033B2 (en) 1993-10-29 1993-10-29 Semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP3431033B2 (en)

Families Citing this family (291)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135137A (en) * 1996-10-31 1998-05-22 Semiconductor Energy Lab Co Ltd Method of forming crystalline semiconductor
JPH10228248A (en) 1996-12-09 1998-08-25 Semiconductor Energy Lab Co Ltd Active matrix display device and its manufacture
US6140166A (en) * 1996-12-27 2000-10-31 Semicondutor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor and method for manufacturing semiconductor device
US6380560B1 (en) 1997-01-20 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device forming a pixel matrix circuit
JP3856889B2 (en) 1997-02-06 2006-12-13 株式会社半導体エネルギー研究所 Reflective display device and an electronic device
JP3976828B2 (en) 1997-02-17 2007-09-19 株式会社半導体エネルギー研究所 A method for manufacturing a crystalline silicon film
JP3844552B2 (en) 1997-02-26 2006-11-15 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6423585B1 (en) 1997-03-11 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Heating treatment device, heating treatment method and fabrication method of semiconductor device
US6133075A (en) 1997-04-25 2000-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6617648B1 (en) 1998-02-25 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Projection TV
US6307214B1 (en) * 1997-06-06 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
US6452211B1 (en) 1997-06-10 2002-09-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor thin film and semiconductor device
JP4036923B2 (en) 1997-07-17 2008-01-23 株式会社半導体エネルギー研究所 Display device and a driving circuit
JP4318768B2 (en) * 1997-07-23 2009-08-26 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JPH1145076A (en) 1997-07-24 1999-02-16 Semiconductor Energy Lab Co Ltd Active matrix display device
JP3844566B2 (en) 1997-07-30 2006-11-15 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6717179B1 (en) 1997-08-19 2004-04-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor display device
US6667494B1 (en) 1997-08-19 2003-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor display device
JP4601731B2 (en) 1997-08-26 2010-12-22 株式会社半導体エネルギー研究所 Semiconductor device, manufacturing method of an electronic device and a semiconductor device having a semiconductor device
JP2000031488A (en) 1997-08-26 2000-01-28 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
US6197624B1 (en) 1997-08-29 2001-03-06 Semiconductor Energy Laboratory Co., Ltd. Method of adjusting the threshold voltage in an SOI CMOS
JP3980178B2 (en) 1997-08-29 2007-09-26 株式会社半導体エネルギー研究所 Nonvolatile memory and a semiconductor device
JPH11143379A (en) 1997-09-03 1999-05-28 Semiconductor Energy Lab Co Ltd Semiconductor display device correcting system and its method
JP3943245B2 (en) 1997-09-20 2007-07-11 株式会社半導体エネルギー研究所 Semiconductor device
US6680223B1 (en) 1997-09-23 2004-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6121660A (en) * 1997-09-23 2000-09-19 Semiconductor Energy Laboratory Co., Ltd. Channel etch type bottom gate semiconductor device
US6013930A (en) 1997-09-24 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having laminated source and drain regions and method for producing the same
US6218219B1 (en) 1997-09-29 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
JPH11167373A (en) 1997-10-01 1999-06-22 Semiconductor Energy Lab Co Ltd Semiconductor display device and driving method thereof
JPH11112002A (en) 1997-10-07 1999-04-23 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture therefor
US6605497B2 (en) 1997-10-17 2003-08-12 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device over glass substrate having heat resistance
US7166500B2 (en) 1997-10-21 2007-01-23 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP4068219B2 (en) 1997-10-21 2008-03-26 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6686623B2 (en) 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
US6369410B1 (en) 1997-12-15 2002-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
JP3779052B2 (en) * 1997-12-17 2006-05-24 シャープ株式会社 A liquid crystal projector
US6678023B1 (en) 1997-12-17 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal projector
JP4376979B2 (en) 1998-01-12 2009-12-02 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JPH11214700A (en) 1998-01-23 1999-08-06 Semiconductor Energy Lab Co Ltd Semiconductor display device
JPH11338439A (en) 1998-03-27 1999-12-10 Semiconductor Energy Lab Co Ltd Driving circuit of semiconductor display device and semiconductor display device
US6482684B1 (en) 1998-03-27 2002-11-19 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a TFT with Ge seeded amorphous Si layer
US6268842B1 (en) 1998-04-13 2001-07-31 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor circuit and semiconductor display device using the same
JP3844613B2 (en) 1998-04-28 2006-11-15 株式会社半導体エネルギー研究所 TFT circuit and a display device using the same
US6396147B1 (en) 1998-05-16 2002-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with metal-oxide conductors
JP4223094B2 (en) 1998-06-12 2009-02-12 株式会社半導体エネルギー研究所 Electro-optical display devices
JP2000002872A (en) 1998-06-16 2000-01-07 Semiconductor Energy Lab Co Ltd Liquid crystal display device and its manufacture
US6246524B1 (en) 1998-07-13 2001-06-12 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, laser irradiation method, and method of manufacturing semiconductor device
JP4663047B2 (en) 1998-07-13 2011-03-30 株式会社半導体エネルギー研究所 The method for manufacturing a laser irradiation apparatus and a semiconductor device
US7153729B1 (en) 1998-07-15 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7294535B1 (en) 1998-07-15 2007-11-13 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
JP3592535B2 (en) 1998-07-16 2004-11-24 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4030193B2 (en) 1998-07-16 2008-01-09 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US7084016B1 (en) 1998-07-17 2006-08-01 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7282398B2 (en) 1998-07-17 2007-10-16 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device and method of fabricating the same
US6559036B1 (en) 1998-08-07 2003-05-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7190360B1 (en) 1998-08-31 2007-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and method of driving the same
JP4493741B2 (en) 1998-09-04 2010-06-30 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US7126161B2 (en) 1998-10-13 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having El layer and sealing material
US7317438B2 (en) 1998-10-30 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Field sequential liquid crystal display device and driving method thereof, and head mounted display
US6274887B1 (en) 1998-11-02 2001-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US6617644B1 (en) 1998-11-09 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7141821B1 (en) 1998-11-10 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity gradient in the impurity regions and method of manufacture
US7022556B1 (en) 1998-11-11 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Exposure device, exposure method and method of manufacturing semiconductor device
US6512271B1 (en) 1998-11-16 2003-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6518594B1 (en) 1998-11-16 2003-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor devices
US6909114B1 (en) 1998-11-17 2005-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having LDD regions
US6489952B1 (en) 1998-11-17 2002-12-03 Semiconductor Energy Laboratory Co., Ltd. Active matrix type semiconductor display device
US6420758B1 (en) 1998-11-17 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an impurity region overlapping a gate electrode
US6501098B2 (en) 1998-11-25 2002-12-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device
US6365917B1 (en) 1998-11-25 2002-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2000174282A (en) 1998-12-03 2000-06-23 Semiconductor Energy Lab Co Ltd Semiconductor device
EP1006589B1 (en) 1998-12-03 2012-04-11 Semiconductor Energy Laboratory Co., Ltd. MOS thin film transistor and method of fabricating same
US6420988B1 (en) 1998-12-03 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Digital analog converter and electronic device using the same
US6259138B1 (en) 1998-12-18 2001-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multilayered gate electrode and impurity regions overlapping therewith
US6545359B1 (en) 1998-12-18 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Wiring line and manufacture process thereof, and semiconductor device and manufacturing process thereof
US6469317B1 (en) 1998-12-18 2002-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6524895B2 (en) 1998-12-25 2003-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
JP4202502B2 (en) 1998-12-28 2008-12-24 株式会社半導体エネルギー研究所 Semiconductor device
US8158980B2 (en) 2001-04-19 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a pixel matrix circuit that includes a pixel TFT and a storage capacitor
US6380558B1 (en) 1998-12-29 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
EP1020839A3 (en) 1999-01-08 2002-11-27 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and driving circuit therefor
DE69942442D1 (en) 1999-01-11 2010-07-15 Semiconductor Energy Lab A semiconductor device comprising driver TFT and pixel TFT on a substrate
US6639244B1 (en) 1999-01-11 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6891236B1 (en) 1999-01-14 2005-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6590229B1 (en) 1999-01-21 2003-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for production thereof
KR100750522B1 (en) 1999-01-28 2007-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Serial-to-parallel conversion circuit, and semiconductor display device employing the same
US6593592B1 (en) 1999-01-29 2003-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having thin film transistors
US6199533B1 (en) 1999-02-01 2001-03-13 Cummins Engine Company, Inc. Pilot valve controlled three-way fuel injection control valve assembly
US6576924B1 (en) 1999-02-12 2003-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having at least a pixel unit and a driver circuit unit over a same substrate
US6535535B1 (en) 1999-02-12 2003-03-18 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method, laser irradiation apparatus, and semiconductor device
US6777716B1 (en) 1999-02-12 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and method of manufacturing therefor
US6506635B1 (en) 1999-02-12 2003-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and method of forming the same
EP1031873A3 (en) 1999-02-23 2005-02-23 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
JP4637315B2 (en) 1999-02-24 2011-02-23 株式会社半導体エネルギー研究所 Display device
US7821065B2 (en) 1999-03-02 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a thin film transistor comprising a semiconductor thin film and method of manufacturing the same
US6674136B1 (en) 1999-03-04 2004-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having driver circuit and pixel section provided over same substrate
US6306694B1 (en) 1999-03-12 2001-10-23 Semiconductor Energy Laboratory Co., Ltd. Process of fabricating a semiconductor device
US6614083B1 (en) 1999-03-17 2003-09-02 Semiconductor Energy Laboratory Co., Ltd. Wiring material and a semiconductor device having wiring using the material, and the manufacturing method
US7193594B1 (en) 1999-03-18 2007-03-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US6531713B1 (en) 1999-03-19 2003-03-11 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and manufacturing method thereof
US6281552B1 (en) 1999-03-23 2001-08-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having ldd regions
US6858898B1 (en) 1999-03-23 2005-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US7145536B1 (en) 1999-03-26 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US6399988B1 (en) 1999-03-26 2002-06-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having lightly doped regions
US6337235B1 (en) 1999-03-26 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
EP1041641B1 (en) 1999-03-26 2015-11-04 Semiconductor Energy Laboratory Co., Ltd. A method for manufacturing an electrooptical device
US6475836B1 (en) 1999-03-29 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6952194B1 (en) 1999-03-31 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US6861670B1 (en) 1999-04-01 2005-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having multi-layer wiring
US6346730B1 (en) 1999-04-06 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device having a pixel TFT formed in a display region and a drive circuit formed in the periphery of the display region on the same substrate
US7122835B1 (en) 1999-04-07 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and a method of manufacturing the same
US7456430B1 (en) 1999-04-12 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US6498369B1 (en) 1999-04-15 2002-12-24 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic equipment
US6362507B1 (en) 1999-04-20 2002-03-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical devices in which pixel section and the driver circuit are disposed over the same substrate
US6512504B1 (en) 1999-04-27 2003-01-28 Semiconductor Energy Laborayory Co., Ltd. Electronic device and electronic apparatus
US6753854B1 (en) 1999-04-28 2004-06-22 Semiconductor Energy Laboratory Co., Ltd. Display device
US6461899B1 (en) 1999-04-30 2002-10-08 Semiconductor Energy Laboratory, Co., Ltd. Oxynitride laminate “blocking layer” for thin film semiconductor devices
EP2256808A2 (en) 1999-04-30 2010-12-01 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method therof
US6590581B1 (en) 1999-05-07 2003-07-08 Semiconductor Energy Laboratory Co., Ltd. Display device
JP4298131B2 (en) 1999-05-14 2009-07-15 株式会社半導体エネルギー研究所 Method for manufacturing a liquid crystal display device
US6680487B1 (en) 1999-05-14 2004-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor comprising a TFT provided on a substrate having an insulating surface and method of fabricating the same
DE60025296T2 (en) 1999-05-14 2006-07-13 Semiconductor Energy Laboratory Co., Ltd., Atsugi The goggle type display device
US6545656B1 (en) 1999-05-14 2003-04-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device in which a black display is performed by a reset signal during one sub-frame
KR100736400B1 (en) 1999-05-15 2007-07-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor Device and Method for Its Fabrication
US6630977B1 (en) 1999-05-20 2003-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor formed around contact hole
EP2500941A3 (en) 1999-06-02 2017-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
EP1058484B1 (en) 1999-06-04 2015-12-23 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device with an insulating layer
US8853696B1 (en) 1999-06-04 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and electronic device
US7288420B1 (en) 1999-06-04 2007-10-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing an electro-optical device
US7245018B1 (en) 1999-06-22 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
JP4307635B2 (en) 1999-06-22 2009-08-05 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
EP1065724B1 (en) 1999-06-28 2007-04-18 Sel Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an electro-optical device
US6420200B1 (en) 1999-06-28 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an electro-optical device
US6661096B1 (en) 1999-06-29 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Wiring material semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
US6777254B1 (en) 1999-07-06 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6952020B1 (en) 1999-07-06 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6638781B1 (en) 1999-07-06 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6426245B1 (en) 1999-07-09 2002-07-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6784864B1 (en) 1999-07-12 2004-08-31 Semiconductor Energy Laboratory Co., Ltd. Digital driver and display device
US6563482B1 (en) 1999-07-21 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Display device
US6664145B1 (en) 1999-07-22 2003-12-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6541294B1 (en) 1999-07-22 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
EP1071124A3 (en) 1999-07-22 2001-10-24 Sel Semiconductor Energy Laboratory Co., Ltd. Dry etching method for forming tungsten wiring in a semiconductor device
US7242449B1 (en) 1999-07-23 2007-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and integral image recognition/display apparatus
US6909411B1 (en) 1999-07-23 2005-06-21 Semiconductor Energy Laboratory Co., Ltd. Display device and method for operating the same
US7160765B2 (en) 1999-08-13 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP4748836B2 (en) 1999-08-13 2011-08-17 株式会社半導体エネルギー研究所 Laser irradiation apparatus
US6567219B1 (en) 1999-08-13 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
US6486812B1 (en) 1999-08-16 2002-11-26 Semiconductor Energy Laboratory Co., Ltd. D/A conversion circuit having n switches, n capacitors and a coupling capacitor
JP2001051661A (en) 1999-08-16 2001-02-23 Semiconductor Energy Lab Co Ltd D-a conversion circuit and semiconductor device
US6476790B1 (en) 1999-08-18 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Display device and a driver circuit thereof
US6599788B1 (en) 1999-08-18 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US6515648B1 (en) 1999-08-31 2003-02-04 Semiconductor Energy Laboratory Co., Ltd. Shift register circuit, driving circuit of display device, and display device using the driving circuit
JP4472073B2 (en) 1999-09-03 2010-06-02 株式会社半導体エネルギー研究所 Display device and a manufacturing method thereof
JP3538084B2 (en) 1999-09-17 2004-06-14 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
DE60045361D1 (en) 1999-09-17 2011-01-27 Semiconductor Energy Lab An electroluminescent display device and manufacturing method
JP2001092413A (en) 1999-09-24 2001-04-06 Semiconductor Energy Lab Co Ltd El element display device and electronic device
US6885366B1 (en) 1999-09-30 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Display device
US6967633B1 (en) 1999-10-08 2005-11-22 Semiconductor Energy Laboratory Co., Ltd. Display device
US7473928B1 (en) 1999-10-12 2009-01-06 Semiconductor Energy Laboratory Co., Ltd. EL display device and a method of manufacturing the same
JP4827290B2 (en) 1999-10-13 2011-11-30 株式会社半導体エネルギー研究所 The thin film forming apparatus
US6410368B1 (en) 1999-10-26 2002-06-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device with TFT
US6384427B1 (en) 1999-10-29 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device
JP4562835B2 (en) 1999-11-05 2010-10-13 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6618115B1 (en) 1999-11-19 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Defective pixel compensation system and display device using the system
US6646287B1 (en) 1999-11-19 2003-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with tapered gate and insulating film
US7348953B1 (en) 1999-11-22 2008-03-25 Semiconductor Energy Laboratory Co., Ltd. Method of driving liquid crystal display device
JP4514861B2 (en) 1999-11-29 2010-07-28 株式会社半導体エネルギー研究所 The method for manufacturing a laser irradiation apparatus and a laser irradiation method and a semiconductor device
US7002659B1 (en) 1999-11-30 2006-02-21 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal panel and liquid crystal projector
US6653657B2 (en) 1999-12-10 2003-11-25 Semoconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
JP2001175198A (en) 1999-12-14 2001-06-29 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefor
US6593691B2 (en) 1999-12-15 2003-07-15 Semiconductor Energy Laboratory Co., Ltd. EL display device
US6632708B2 (en) 1999-12-20 2003-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6573162B2 (en) 1999-12-24 2003-06-03 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of fabricating a semiconductor device
US6590227B2 (en) 1999-12-27 2003-07-08 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device
US6750835B2 (en) 1999-12-27 2004-06-15 Semiconductor Energy Laboratory Co., Ltd. Image display device and driving method thereof
US6876339B2 (en) 1999-12-27 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US7071041B2 (en) 2000-01-20 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6639265B2 (en) 2000-01-26 2003-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US6780687B2 (en) 2000-01-28 2004-08-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device having a heat absorbing layer
JP4493779B2 (en) 2000-01-31 2010-06-30 シャープ株式会社 A semiconductor device and a manufacturing method thereof
US6702407B2 (en) 2000-01-31 2004-03-09 Semiconductor Energy Laboratory Co., Ltd. Color image display device, method of driving the same, and electronic equipment
US6856307B2 (en) 2000-02-01 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and method of driving the same
US6781152B2 (en) 2000-02-01 2004-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with light emitting elements and an adhesive layer holding color filters
US6856630B2 (en) 2000-02-02 2005-02-15 Semiconductor Energy Laboratory Co., Ltd. Beam homogenizer, laser irradiation apparatus, semiconductor device, and method of fabricating the semiconductor device
US7023021B2 (en) 2000-02-22 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6690033B2 (en) 2000-02-28 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Electronic device having a light-emitting element
US6583776B2 (en) 2000-02-29 2003-06-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US6759678B2 (en) 2000-03-06 2004-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6492681B2 (en) 2000-03-08 2002-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20020020840A1 (en) 2000-03-10 2002-02-21 Setsuo Nakajima Semiconductor device and manufacturing method thereof
US6872607B2 (en) 2000-03-21 2005-03-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7218361B2 (en) 2000-03-27 2007-05-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and manufacturing method thereof
US7301276B2 (en) 2000-03-27 2007-11-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of manufacturing the same
US6835986B2 (en) 2000-04-03 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method thereof
US6789910B2 (en) 2000-04-12 2004-09-14 Semiconductor Energy Laboratory, Co., Ltd. Illumination apparatus
US6936846B2 (en) 2000-04-17 2005-08-30 Semiconductor Energy Laboratory Co., Ltd. Self-luminous device and electric machine using the same
US6706544B2 (en) 2000-04-19 2004-03-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and fabricating method thereof
US7579203B2 (en) 2000-04-25 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP4588167B2 (en) 2000-05-12 2010-11-24 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6690068B2 (en) 2000-06-12 2004-02-10 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors and semiconductor device
KR100820248B1 (en) * 2000-06-12 2008-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor and semiconductor device
JP2002083974A (en) 2000-06-19 2002-03-22 Semiconductor Energy Lab Co Ltd Semiconductor device
US6828587B2 (en) 2000-06-19 2004-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6703265B2 (en) 2000-08-02 2004-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7078321B2 (en) 2000-06-19 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7503975B2 (en) 2000-06-27 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method therefor
EP1168435A3 (en) 2000-06-28 2009-09-16 Sel Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6875674B2 (en) 2000-07-10 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device with fluorine concentration
US7142203B2 (en) 2000-07-14 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and method of driving a semiconductor display device
US6613620B2 (en) 2000-07-31 2003-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US6542205B2 (en) 2000-08-04 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Display device
US6562671B2 (en) 2000-09-22 2003-05-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and manufacturing method thereof
US6727124B2 (en) * 2000-11-06 2004-04-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a TFT using a catalytic element to promote crystallization of a semiconductor film and gettering the catalytic element
US6831299B2 (en) 2000-11-09 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR100878850B1 (en) 2000-11-24 2009-01-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 D/A converter circuit, display device, semiconductor device, and driving method of the semiconductor device
JP4954366B2 (en) 2000-11-28 2012-06-13 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6759313B2 (en) 2000-12-05 2004-07-06 Semiconductor Energy Laboratory Co., Ltd Method of fabricating a semiconductor device
KR100880437B1 (en) 2000-12-11 2009-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, and manufacturing method thereof
KR100859567B1 (en) 2000-12-21 2008-09-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of manufacturing a light emitting device
US7534977B2 (en) 2000-12-28 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Heat treatment apparatus and method of manufacturing a semiconductor device
JP4939690B2 (en) 2001-01-30 2012-05-30 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US7535448B2 (en) 2001-02-08 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, and method of driving the same
US6599785B2 (en) 2001-02-28 2003-07-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6600436B2 (en) 2001-03-26 2003-07-29 Semiconductor Energy Laboratory Co., Ltd, D/A converter having capacitances, tone voltage lines, first switches, second switches and third switches
JP4926329B2 (en) 2001-03-27 2012-05-09 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof, appliances
US6740938B2 (en) 2001-04-16 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Transistor provided with first and second gate electrodes with channel region therebetween
JP4776801B2 (en) 2001-04-24 2011-09-21 株式会社半導体エネルギー研究所 Memory circuit
JP4854866B2 (en) * 2001-04-27 2012-01-18 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US7663613B2 (en) 2001-06-06 2010-02-16 Semiconductor Energy Laboratory Co., Ltd. Image display device and driving method thereof
US6707614B2 (en) 2001-06-15 2004-03-16 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation stage, laser irradiation optical system, laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
JP3961240B2 (en) 2001-06-28 2007-08-22 シャープ株式会社 A method for manufacturing a semiconductor device
US20030032221A1 (en) 2001-07-02 2003-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP4267266B2 (en) 2001-07-10 2009-05-27 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US6952023B2 (en) 2001-07-17 2005-10-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20030030144A1 (en) 2001-07-27 2003-02-13 Semiconductor Energy Laboratory Co., Ltd. Metal wiring and method of manufacturing the same, and metal wiring substrate and method of manufacturing the same
JP4618948B2 (en) 2001-08-24 2011-01-26 株式会社半導体エネルギー研究所 Evaluation method of a semiconductor device
US6700096B2 (en) 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US6962860B2 (en) 2001-11-09 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US7105048B2 (en) 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
EP1329946A3 (en) 2001-12-11 2005-04-06 Sel Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including a laser crystallization step
US7135389B2 (en) 2001-12-20 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Irradiation method of laser beam
JP3992976B2 (en) 2001-12-21 2007-10-17 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4141138B2 (en) 2001-12-21 2008-08-27 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4519400B2 (en) * 2001-12-27 2010-08-04 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP4011344B2 (en) 2001-12-28 2007-11-21 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
US7312473B2 (en) 2001-12-28 2007-12-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
US6933527B2 (en) 2001-12-28 2005-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device production system
JP4030758B2 (en) 2001-12-28 2008-01-09 株式会社半導体エネルギー研究所 A method for manufacturing a semiconductor device
JP2003273016A (en) * 2002-01-11 2003-09-26 Sharp Corp Semiconductor film, its manufacturing method, semiconductor device using the same, and display device
US6841797B2 (en) 2002-01-17 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device formed over a surface with a drepession portion and a projection portion
CN100409409C (en) 2002-01-28 2008-08-06 株式会社半导体能源研究所 Semiconductor device and manufacturing method thereof
US7148092B2 (en) 2002-01-28 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7749818B2 (en) 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP3961310B2 (en) 2002-02-21 2007-08-22 シャープ株式会社 A method for manufacturing a semiconductor device
US6884668B2 (en) 2002-02-22 2005-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US7330162B2 (en) 2002-02-28 2008-02-12 Semiconductor Energy Laboratory Co., Ltd. Method of driving a light emitting device and electronic equipment
CN101217150B (en) 2002-03-05 2011-04-06 株式会社半导体能源研究所 Semiconductor element and semiconductor device using the same
US6930326B2 (en) 2002-03-26 2005-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit and method of fabricating the same
US6841434B2 (en) 2002-03-26 2005-01-11 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US6906343B2 (en) 2002-03-26 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US6875998B2 (en) 2002-03-26 2005-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method of manufacturing the same, and method of designing the same
US6984573B2 (en) 2002-06-14 2006-01-10 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and apparatus
JP4326756B2 (en) 2002-07-04 2009-09-09 株式会社半導体エネルギー研究所 The control system of the doping methods, doping apparatus, and doping device
US7332431B2 (en) 2002-10-17 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
JP4744059B2 (en) * 2002-11-22 2011-08-10 シャープ株式会社 The semiconductor thin film, a method for forming a semiconductor thin film, semiconductor device and display device.
JP5046464B2 (en) 2002-12-18 2012-10-10 株式会社半導体エネルギー研究所 The method for manufacturing a semiconductor memory device
EP1437683B1 (en) 2002-12-27 2017-03-08 Semiconductor Energy Laboratory Co., Ltd. IC card and booking account system using the IC card
US7652359B2 (en) 2002-12-27 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Article having display device
EP1439410A3 (en) 2003-01-15 2005-01-19 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and manufacturing method of liquid crystal display device
JP4869601B2 (en) 2003-03-26 2012-02-08 株式会社半導体エネルギー研究所 The method for manufacturing a semiconductor device and a semiconductor device
US7161184B2 (en) 2003-06-16 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US7221095B2 (en) 2003-06-16 2007-05-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for fabricating light emitting device
US7224118B2 (en) 2003-06-17 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus having a wiring connected to a counter electrode via an opening portion in an insulating layer that surrounds a pixel electrode
US7566001B2 (en) 2003-08-29 2009-07-28 Semiconductor Energy Laboratory Co., Ltd. IC card
US7768405B2 (en) 2003-12-12 2010-08-03 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and manufacturing method thereof
US7508305B2 (en) 2003-12-26 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Packing material, tag, certificate, paper money, and securities
KR101354162B1 (en) 2004-10-20 2014-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Laser irradiation, laser irradiation apparatus and method for manufacturing semiconductor device
KR100712111B1 (en) 2004-12-14 2007-04-27 삼성에스디아이 주식회사 Organic Electroluminescence Display Device Having Auxiliary Electrode Line and Fabricating of the same
US7442631B2 (en) 2005-02-10 2008-10-28 Semiconductor Energy Laboratory Co., Ltd. Doping method and method of manufacturing field effect transistor
US7770535B2 (en) 2005-06-10 2010-08-10 Semiconductor Energy Laboratory Co., Ltd. Chemical solution application apparatus and chemical solution application method
US7863612B2 (en) 2006-07-21 2011-01-04 Semiconductor Energy Laboratory Co., Ltd. Display device and semiconductor device
KR100822216B1 (en) * 2007-04-09 2008-04-16 삼성에스디아이 주식회사 Thin film transitor substrate, organic light emitting display device comprising the same and manufacturing of the organic light emitting display device
US7960262B2 (en) 2007-05-18 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device by applying laser beam to single-crystal semiconductor layer and non-single-crystal semiconductor layer through cap film
US7745268B2 (en) 2007-06-01 2010-06-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device with irradiation of single crystal semiconductor layer in an inert atmosphere
KR20080111693A (en) * 2007-06-19 2008-12-24 삼성모바일디스플레이주식회사 Fabricating method of polycrystalline silicon, tft fabricated using the same, fabricating method of the tft, and organic lighting emitting diode(oled) display device comprising the same
US8236668B2 (en) 2007-10-10 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
JP5503876B2 (en) 2008-01-24 2014-05-28 株式会社半導体エネルギー研究所 A method of manufacturing a semiconductor substrate
US8313989B2 (en) 2008-10-22 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. SOI substrate and method for manufacturing the same
JP5859746B2 (en) 2010-05-28 2016-02-16 株式会社半導体エネルギー研究所 Power storage device and a manufacturing method thereof
US8455044B2 (en) 2010-11-26 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, method for manufacturing the same, and power storage device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.,55(7),p.660−662

Also Published As

Publication number Publication date Type
JPH07130652A (en) 1995-05-19 application

Similar Documents

Publication Publication Date Title
US5663077A (en) Method of manufacturing a thin film transistor in which the gate insulator comprises two oxide films
US5895933A (en) Semiconductor device and method for its preparation
US5696003A (en) Method for fabricating a semiconductor device using a catalyst introduction region
US5882960A (en) Method of preparing a semiconductor having a controlled crystal orientation
US5977559A (en) Thin-film transistor having a catalyst element in its active regions
US6730549B1 (en) Semiconductor device and method for its preparation
US6140165A (en) Semiconductor device forming method
US5843833A (en) Method for producing semiconductor device
US6335541B1 (en) Semiconductor thin film transistor with crystal orientation
US6693044B1 (en) Semiconductor device and method of manufacturing the same
US5837569A (en) Semiconductor device and method for producing the same
US6013544A (en) Method for fabricating a semiconductor device
US5612250A (en) Method for manufacturing a semiconductor device using a catalyst
US5693541A (en) Method for manufacturing a semiconductor device using a silicon nitride mask
US5854096A (en) Process for fabricating semiconductor device
US6326248B1 (en) Process for fabricating semiconductor device
US5585291A (en) Method for manufacturing a semiconductor device containing a crystallization promoting material
US5940690A (en) Production method for a thin film semiconductor device with an alignment marker made out of the same layer as the active region
US6541795B2 (en) Thin film semiconductor device and production method for the same
US6232156B1 (en) Method of manufacturing a semiconductor device
US5705829A (en) Semiconductor device formed using a catalyst element capable of promoting crystallization
US5543352A (en) Method for manufacturing a semiconductor device using a catalyst
US6156627A (en) Method of promoting crystallization of an amorphous semiconductor film using organic metal CVD
US5773847A (en) Semiconductor device having an active layer with separate layers where one of the layers acts as crystal nuclei for the other
US6162667A (en) Method for fabricating thin film transistors

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

EXPY Cancellation because of completion of term