JP3435626B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3435626B2
JP3435626B2 JP17693897A JP17693897A JP3435626B2 JP 3435626 B2 JP3435626 B2 JP 3435626B2 JP 17693897 A JP17693897 A JP 17693897A JP 17693897 A JP17693897 A JP 17693897A JP 3435626 B2 JP3435626 B2 JP 3435626B2
Authority
JP
Japan
Prior art keywords
orifice
pipe
refrigerant
flow
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17693897A
Other languages
Japanese (ja)
Other versions
JPH1123104A (en
Inventor
哲矢 小材
研作 小国
孝 佐野
敦泰 小林
秀樹 奥園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17693897A priority Critical patent/JP3435626B2/en
Publication of JPH1123104A publication Critical patent/JPH1123104A/en
Application granted granted Critical
Publication of JP3435626B2 publication Critical patent/JP3435626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)
  • Lift Valve (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機、凝縮器、
膨張弁、蒸発器を冷媒配管で連結した冷凍サイクルを形
成する空気調和機に係り、特に膨張弁で発生する冷媒流
動音を低減するのに好適な空気調和機に関する。
TECHNICAL FIELD The present invention relates to a compressor, a condenser,
The present invention relates to an air conditioner that forms a refrigeration cycle in which an expansion valve and an evaporator are connected by a refrigerant pipe, and particularly relates to an air conditioner that is suitable for reducing refrigerant flow noise generated in the expansion valve.

【0002】[0002]

【従来の技術】膨張弁は冷媒を断熱膨張させるため、弁
体内に小径の冷媒通路とこの冷媒通路の開口面積を絞り
調節する弁を持つ。絞られた開口面積は非常に狭く、こ
の狭い開口部分に気泡混じりの液冷媒が流入した場合、
その気泡によって冷媒の流れが一時的に阻止されるが、
その気泡が開口を通過した後、気泡が存在しない液冷媒
が開口に流入することで冷媒の流れが円滑化される。
2. Description of the Related Art An expansion valve has a small-diameter refrigerant passage and a valve for restricting and adjusting the opening area of the refrigerant passage in order to adiabatically expand the refrigerant. The narrowed opening area is very narrow, and when liquid refrigerant mixed with bubbles flows into this narrow opening,
The bubbles temporarily block the flow of refrigerant,
After the bubbles pass through the opening, the liquid refrigerant without the bubbles flows into the opening, thereby smoothing the flow of the refrigerant.

【0003】このような場合、冷媒の流れに急激な圧力
脈動を伴う圧力変化が生じ、冷媒流動音が発生する。ま
た冷媒の流れが、気泡混じりの状態を気液二相流とよぶ
が、気液二相流において発生する冷媒流動音を低減すべ
く、次のような提案が特開平7−146032号公報に
示されている。
In such a case, a pressure change accompanied by a sudden pressure pulsation occurs in the flow of the refrigerant, and a refrigerant flowing sound is generated. The flow of the refrigerant is referred to as a gas-liquid two-phase flow in a state in which bubbles are mixed, but in order to reduce the refrigerant flow noise generated in the gas-liquid two-phase flow, the following proposal is disclosed in Japanese Patent Laid-Open No. 7-146032. It is shown.

【0004】冷凍サイクル内に配置され、冷媒通路を絞
ることによって冷媒流量を調節する膨張弁において、次
の5つの膨張弁を提案している。
The following five expansion valves have been proposed as expansion valves which are arranged in the refrigeration cycle and which regulate the refrigerant flow rate by narrowing the refrigerant passage.

【0005】(1)膨張弁前後に出入りする冷媒流動状
態を、微小な気泡に細分化状態にする手段を設けること
を特徴とする膨張弁。
(1) An expansion valve which is provided with means for dividing the flow state of the refrigerant flowing in and out of the expansion valve into minute bubbles.

【0006】(2)膨張弁前後に並列に配置した極細の
管を数本通して配した膨張弁。
(2) An expansion valve in which several ultra-fine tubes are arranged in parallel before and after the expansion valve.

【0007】(3)膨張弁前後のオリフィス部の内径
を、段階的に変えて階段形状としたオリフィスを配した
膨張弁。
(3) An expansion valve in which the inner diameters of the orifices before and after the expansion valve are changed stepwise so as to have a stepped orifice.

【0008】(4)膨張弁前後に円錐形状のオリフィス
を配置し、また円錐形状のオリフィスの内周にネジ切り
溝を配した膨張弁。
(4) An expansion valve in which a conical orifice is arranged in front of and behind the expansion valve, and a thread groove is arranged on the inner circumference of the conical orifice.

【0009】(5)膨張弁を多層構造のオリフィスと
し、多層構造のオリフィスに防振材を配してなる膨張
弁。
(5) An expansion valve in which the expansion valve is a multi-layered orifice and a vibration damping material is arranged in the multi-layered orifice.

【0010】[0010]

【発明が解決しようとする課題】上記特開平7−146
032号公報に開示された技術では、膨張弁前後にオリ
フィス等を配置することで膨張弁に流入する冷媒の流れ
を改善し、急激な圧力脈動を伴う圧力変化を減衰させ、
圧力脈動により発生する冷媒流動音の低減が見込まれ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the technology disclosed in Japanese Patent Publication No. 032, the flow of the refrigerant flowing into the expansion valve is improved by arranging the orifices and the like before and after the expansion valve, and the pressure change accompanied by the rapid pressure pulsation is attenuated.
It is expected that the refrigerant flow noise generated by the pressure pulsation will be reduced.

【0011】しかしながら、いずれの場合も膨張弁の接
続配管側のオリフィス形状を円錐にしたり、膨張弁の接
続配管側に多孔体および極細の管などを配置しているだ
けであって、膨張弁の絞り部側のオリフィスの形状が改
善されていない。そのため膨張弁の絞り部を通過し下流
側のオリフィスへ流出する冷媒が、直接オリフィス等の
端面に衝突してしまい冷媒の流れが乱れ、冷媒流動音
(衝突音)が発生する問題がある。
However, in either case, the shape of the orifice on the connecting pipe side of the expansion valve is made conical, or only the porous body and the ultrafine pipe are arranged on the connecting pipe side of the expansion valve. The shape of the orifice on the throttle side is not improved. Therefore, there is a problem that the refrigerant that passes through the throttle portion of the expansion valve and flows out to the orifice on the downstream side directly collides with the end surface of the orifice or the like, and the flow of the refrigerant is disturbed, and refrigerant flow noise (collision noise) is generated.

【0012】さらに、オリフィス等は膨張弁の絞り部
(弁棒)と非常に距離が近く、冷媒通路の内径を絞った
場合には冷媒の流速が急激に上がるために、直接冷媒が
膨張弁の弁棒に大きな力で衝突する。これにより弁棒を
振動させ異音が発生する問題がある。特に膨張弁の弁棒
に対して冷媒が水平に流入する場合には大きな振動とな
ることが多く、弁棒の損傷等も懸念される。
Further, the orifice or the like is very close to the throttle portion (valve rod) of the expansion valve, and when the inner diameter of the refrigerant passage is narrowed, the flow velocity of the refrigerant rapidly increases, so that the refrigerant directly flows into the expansion valve. It collides with the valve stem with great force. As a result, there is a problem that the valve rod is vibrated and abnormal noise is generated. In particular, when the refrigerant horizontally flows into the valve rod of the expansion valve, large vibrations often occur, and there is a concern that the valve rod may be damaged.

【0013】またいずれも、オリフィスの内径は一定も
しくは段階的に変えているだけで、膨張弁の弁棒に対す
る冷媒の流入方向および冷媒の流速と乾き度等を考慮し
ていない。これでは冷媒が気液二相流の、気体と液体の
混合比(乾き度)、流れ方向、気体と液体の流速によって
大きく流動状態が異なる場合に対応できない。例えば空
気調和機の流量範囲において冷媒循環量が変化し、乾き
度が小さく、気体と液体の流速が低い場合には、気体と
液体が分離して流れるため大きな気泡が存在するチャー
ンフローやプラグフローといった流動形態となり間欠的
な冷媒流動音が発生する問題がある。
In all cases, the inner diameter of the orifice is only constant or is changed stepwise, and no consideration is given to the inflow direction of the refrigerant with respect to the valve rod of the expansion valve, the flow velocity of the refrigerant and the dryness. This cannot cope with the case where the refrigerant is a gas-liquid two-phase flow and the flow state greatly differs depending on the mixing ratio (dryness) of gas and liquid, the flow direction, and the flow velocity of gas and liquid. For example, when the refrigerant circulation amount changes in the flow range of the air conditioner, the dryness is low, and the gas and liquid flow velocities are low, gas and liquid separate and flow, so there are large bubbles. However, there is a problem that intermittent refrigerant flow noise occurs.

【0014】この他に各々、次の問題が挙げられる。上
記(1)の膨張弁では、膨張弁前後に出入りする冷媒流
動状態を、微小な気泡に細分化状態にする手段として多
孔体を設けるているが、その多孔体自体が冷媒の流れを
阻止するため、かなり大きな抵抗となり理想的な冷凍サ
イクル状態にならずに、冷媒の流動状態の悪化が懸念さ
れる。また多孔体を設けることで冷凍サイクル内にゴミ
等の不純物が混入した場合、多孔体では不純物が詰まり
やすく、冷媒の流れを阻止する恐れがある。
In addition to these, the following problems are listed. In the expansion valve of the above (1), the porous body is provided as a means for making the flow state of the refrigerant flowing in and out of the expansion valve before and after the expansion valve into fine bubbles, but the porous body itself blocks the flow of the refrigerant. Therefore, the resistance becomes considerably large, and the refrigerant is not in an ideal refrigeration cycle state, and there is concern that the flow state of the refrigerant deteriorates. Further, by providing the porous body, when impurities such as dust are mixed in the refrigeration cycle, the porous body is likely to be clogged with the impurities and there is a risk that the flow of the refrigerant is blocked.

【0015】上記(2)の膨張弁では、膨張弁前後に並
列に配置した極細の管を数本通して配置しているが、極
細の管では上記(1)の多孔体と同様の問題が考えられ
る。さらに極細の管の設置が困難であり、設置のバラツ
キや固定不足による振動および異音の発生も懸念され
る。
In the expansion valve of the above (2), several ultrafine tubes arranged in parallel before and after the expansion valve are arranged to pass through, but the ultrafine tube has the same problem as the porous body of the above (1). Conceivable. Furthermore, it is difficult to install ultra-fine pipes, and there is concern that vibration and noise may occur due to variations in installation and insufficient fixing.

【0016】上記(3)の膨張弁では、膨張弁前後のオ
リフィス部の内径を、段階的に小さくして階段形状とし
たオリフィスを配置しているが、オリフィス部の内径を
段階的に変えた場合、オリフィスの接続配管側内径と接
続配管の内径差が小さいため、冷媒通路内のエッジ(各
段の面)が小さくなる。このため冷媒通路内の小さなエ
ッジでは、気液二相流の冷媒状態に存在する気泡が壊さ
れることなく微細化されずに通過してしまう。すなわち
冷媒中の気泡が段階形状としたオリフィスの中心部の孔
をそのまま通過することが多く、流れの改善効果が低
い。
In the expansion valve of the above (3), the inner diameter of the orifice portion before and after the expansion valve is reduced stepwise to arrange the stepped orifice, but the inner diameter of the orifice portion is changed stepwise. In this case, since the difference between the inner diameter of the orifice on the connection pipe side and the inner diameter of the connection pipe is small, the edge (the surface of each step) in the refrigerant passage becomes small. For this reason, at the small edge in the refrigerant passage, the bubbles existing in the refrigerant state of the gas-liquid two-phase flow pass without being broken and are not miniaturized. That is, air bubbles in the refrigerant often pass through the hole in the center of the orifice having a stepped shape as they are, and the effect of improving the flow is low.

【0017】上記(4)の膨張弁では、膨張弁前後に円
錐形状のオリフィスを配置し、また前記円錐形状のオリ
フィスの内周にネジ切り溝を配置しているが、冷媒の流
れの中に大きな気泡が断続的に存在しているチャーンフ
ローやプラグフローとよばれる流動形態では、ネジ切り
溝に沿って冷媒をスムーズに導くことは困難であり、逆
にネジ切り溝によって冷媒の流れを乱すことが懸念され
る。
In the expansion valve of the above (4), a conical orifice is arranged before and after the expansion valve, and a threaded groove is arranged on the inner circumference of the conical orifice. In a flow mode called churn flow or plug flow in which large bubbles are present intermittently, it is difficult to smoothly guide the refrigerant along the thread groove, and conversely the thread groove disturbs the refrigerant flow. Is concerned.

【0018】上記(5)の膨張弁では、膨張弁を多層構
造のオリフィスとし、多層構造のオリフィスに防振材を
配置しているが、膨張弁の接続配管と多層構造のオリフ
ィスの接する部分に防振材があるため、膨張弁と接続配
管との剛性が大きく低下して、膨張弁自体を振動させる
恐れがあり、また振動の固有値により配管振動が大きく
なるという問題がある。
In the expansion valve of the above (5), the expansion valve is a multi-layered orifice, and the vibration damping material is arranged in the multi-layered orifice. However, in the portion where the connection pipe of the expansion valve and the multi-layered orifice are in contact with each other. Since there is a vibration isolator, the rigidity between the expansion valve and the connecting pipe is greatly reduced, and the expansion valve itself may vibrate, and there is a problem that the vibration of the pipe becomes large due to the eigenvalue of the vibration.

【0019】このように冷媒流動音は、気液二相流の冷
媒状態に密接に関係しており、特に冷媒の流れの中に大
きな気泡が断続的に存在しているチャーンフローやプラ
グフローが膨張弁に流入する場合、急激な圧力脈動を伴
う圧力変化も大きいため、間欠的に大きな冷媒流動音が
発生する。
As described above, the refrigerant flow noise is closely related to the refrigerant state of the gas-liquid two-phase flow, and particularly churn flow and plug flow in which large air bubbles are intermittently present in the refrigerant flow. When flowing into the expansion valve, the pressure change accompanied by a sudden pressure pulsation is large, so that a loud refrigerant flow noise is intermittently generated.

【0020】そこで本発明の目的とするところは、冷媒
の気液二相流の冷媒状態が原因で膨張弁から間欠的に発
生する冷媒流動音を低減する空気調和機を提供すること
にある。
Therefore, an object of the present invention is to provide an air conditioner which reduces the refrigerant flow noise intermittently generated from the expansion valve due to the refrigerant state of the gas-liquid two-phase flow of the refrigerant.

【0021】[0021]

【課題を解決するための手段】上記目的を達成するため
に、本発明の空気調和機は、圧縮機、凝縮器、膨張弁、
蒸発器を冷媒配管で連結して、気液二相流の冷媒を用い
る冷凍サイクルを形成する空気調和機において、(1)膨
張弁は、弁体と、この弁体内で上下に摺動可能な弁棒
と、弁体側面に形成された入口から弁棒までこの弁棒に
直交して延びる水平流路と、弁棒先端に対向する弁座
と、弁座から弁体面に形成された出口に至る垂直流路
と、水平流路入口に接続された入り側継ぎ手管と、垂直
流路出口に接続された出側継ぎ手管とから構成し、(2)
入り側継ぎ手管にオリフィスとオリフィスから末広がり
のテーパ穴を有する入り側オリフィス管をテーパ穴が膨
張弁側に位置するように接続し、出側継ぎ手管にオリフ
ィスとオリフィスから末広がりのテーパ穴を有する入り
側オリフィス管をテーパ穴が膨張弁側に位置するように
接続して入り側オリフィス管及び出側オリフィス管と弁
棒との距離をとり、入り側オリフィス管には冷房サイク
ル時に上流側となる冷媒配管を、出側オリフィス管には
下流側となる冷媒配管をそれぞれ接続し、かつ(3)入り
側オリフィス管のオリフィス径を出側オリフィス管のオ
リフィス径より大きくして弁棒に直交して流入する冷媒
の流速を落とすようにしたことを特徴とする。
In order to achieve the above object, the air conditioner of the present invention comprises a compressor, a condenser, an expansion valve,
In an air conditioner in which an evaporator is connected by a refrigerant pipe to form a refrigeration cycle using a gas-liquid two-phase refrigerant, (1) an expansion valve is a valve body and can slide up and down in the valve body. A valve rod, a horizontal flow passage extending from the inlet formed on the side surface of the valve disc to the valve rod at right angles to the valve rod, a valve seat facing the tip of the valve rod, and an outlet formed on the valve body face from the valve seat. It consists of a vertical flow path leading to it, an inlet side joint pipe connected to the horizontal flow channel inlet, and an outlet side joint pipe connected to the vertical flow channel outlet, (2)
The inlet side joint pipe has an orifice and a tapered hole that diverges from the orifice.The inlet side orifice pipe is connected so that the taper hole is located on the expansion valve side, and the outlet side joint pipe has a tapered hole that diverges from the orifice and the orifice. Connect the inlet orifice pipe so that the taper hole is located on the expansion valve side, and connect the inlet orifice pipe and outlet orifice pipe to the valve.
Keep a distance from the rod, connect the inlet-side orifice pipe with the refrigerant pipe on the upstream side during the cooling cycle, connect the outlet-side orifice pipe with the refrigerant pipe on the downstream side, and (3) connect the inlet-side orifice pipe. Refrigerant flowing in at right angles to the valve stem with an orifice diameter larger than that of the outlet orifice pipe
It is characterized in that the flow velocity of is reduced .

【0022】そして、入り側オリフィス管のオリフィス
径は、空気調和機おける流量範囲内で存在する気液二相
流のガス流速と液流速の比率により規定されるアニュラ
ーフローまたはバブルフローになるように選定すること
が好ましい。
The orifice diameter of the inlet-side orifice pipe is adjusted so as to be an annular flow or bubble flow defined by the ratio of the gas flow velocity and the liquid flow velocity of the gas-liquid two-phase flow existing within the flow range of the air conditioner. It is preferable to select it.

【0023】また、入り側オリフィス管のテーパ穴側を
継ぎ手管内に嵌入し、上流側冷媒配管をオリフィス管の
オリフィス側から継ぎ手管にわたって覆うように取り付
けて接合継ぎ手を構成してこの接合継ぎ手部をろう付け
し、また出側オリフィス管と出側継ぎ手管と下流側冷媒
配管の間に同様の接合継ぎ手を構成しろう付けすること
により、オリフィス管を配管内に固定することが好まし
い。
Further, the taper hole side of the inlet side orifice pipe is fitted into the joint pipe, and the upstream side refrigerant pipe is attached so as to cover the joint pipe from the orifice side of the orifice pipe to construct the joint joint portion. It is preferable to fix the orifice pipe in the pipe by brazing, or by brazing a similar joint joint between the outlet side orifice pipe, the outlet side joint pipe and the downstream side refrigerant pipe.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施の形態を、
図面を参照して説明する。まず、本発明にかかる空気調
和機の冷凍サイクルについて図2を用いて説明する。冷
凍サイクルは、圧縮機1、四方弁2、室外熱交換器3、
膨張弁4、分流合流器8および室内熱交換器5を配管
6、7、11a、11b、11c、11d、分流管9
a、9b、9c、9d、で接続して構成されている。な
お、本実施の形態では膨張弁4と分流合流器8との間の
配管7は、ストレーナとオリフィス管を配管内に有する
ものである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below.
A description will be given with reference to the drawings. First, the refrigeration cycle of the air conditioner according to the present invention will be described with reference to FIG. The refrigeration cycle includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3,
The expansion valve 4, the diversion / combiner 8 and the indoor heat exchanger 5 are connected to the pipes 6, 7, 11a, 11b, 11c, 11d and the diversion pipe 9.
a, 9b, 9c, 9d are connected. In this embodiment, the pipe 7 between the expansion valve 4 and the diversion / merger 8 has a strainer and an orifice pipe in the pipe.

【0025】冷房運転時には、圧縮機1から吐出された
高温高圧のガス冷媒は、四方弁2を介して室外熱交換器
3に供給され、室外熱交換器3にてファン10aで送ら
れる空気によって冷却されて凝縮し、高圧の液冷媒とな
る。この液冷媒が膨張弁4に流入し、室内熱交換器5に
てファン10bで送られる室内空気から熱を奪い蒸発し
てガス冷媒となる。このガス冷媒は、四方弁を介して再
び圧縮機1に戻る。一方、暖房運転時には四方弁2で冷
媒の流れを逆方向にする。すなわち、冷媒は圧縮機1、
四方弁2、室内熱交換器5、膨張弁4、室外熱交換器
3、四方弁2、圧縮機1の順に流れる。
During the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is supplied to the outdoor heat exchanger 3 via the four-way valve 2 and is supplied to the outdoor heat exchanger 3 by the air sent by the fan 10a. It is cooled and condensed to become a high-pressure liquid refrigerant. This liquid refrigerant flows into the expansion valve 4, takes heat from the indoor air sent by the fan 10b in the indoor heat exchanger 5, and evaporates to become a gas refrigerant. This gas refrigerant returns to the compressor 1 again via the four-way valve. On the other hand, during the heating operation, the four-way valve 2 reverses the flow of the refrigerant. That is, the refrigerant is the compressor 1,
The four-way valve 2, the indoor heat exchanger 5, the expansion valve 4, the outdoor heat exchanger 3, the four-way valve 2, and the compressor 1 flow in this order.

【0026】このように膨張弁4には、通常、液冷媒が
流入するが、空気調和機の運転条件や室内外の空気温度
条件により、また室内機と室外機との接続配管が長い場
合その圧力損失により、冷房運転時では室外熱交換器3
で、暖房運転時では室内熱交換器5で完全に凝縮しきれ
ずに、気液二相流状態の冷媒になる場合がある。さらに
室内熱交換器5の大きさ等により、分流合流器8と室内
熱交換器5を結ぶ分流管9の本数が多くなる場合、各分
流管9の冷媒流動状態および乾き度等が均一になりにく
く、冷媒分配の悪化がみられる。
As described above, the liquid refrigerant normally flows into the expansion valve 4, but depending on the operating conditions of the air conditioner and the indoor and outdoor air temperature conditions, and when the connecting pipe between the indoor unit and the outdoor unit is long, Due to pressure loss, the outdoor heat exchanger 3 during cooling operation
In the heating operation, the indoor heat exchanger 5 may not be completely condensed, and the refrigerant may be in a gas-liquid two-phase flow state. Further, when the number of the diversion pipes 9 connecting the diversion / merging unit 8 and the indoor heat exchanger 5 increases due to the size of the indoor heat exchanger 5, the refrigerant flow state and dryness of each diversion pipe 9 become uniform. It is difficult and the distribution of the refrigerant is deteriorated.

【0027】冷媒流動音は、この気液二相流の冷媒状態
に密接に関係しており、特に冷媒の流れの中に大きな気
泡が断続的に存在しているチャーンフローやプラグフロ
ーが膨張弁4に流入する場合、急激な圧力脈動を伴う圧
力変化も大きいため、間欠的に大きな冷媒流動音が発生
する。
The refrigerant flow sound is closely related to the refrigerant state of the gas-liquid two-phase flow, and in particular, churn flow and plug flow in which large bubbles are intermittently present in the refrigerant flow are expansion valves. When flowing into No. 4, since the pressure change accompanied by a sudden pressure pulsation is large, a large refrigerant flow noise is intermittently generated.

【0028】この冷媒流動音を低減する手段を施した部
分が、図2の破線で囲んだ部分12であり、図1にその
詳細を示す。図1は本発明の空気調和機を特徴づけるオ
リフィス管を備えた、膨張弁回りの流路構造を示す図で
ある。図1中の破線で囲んだ部分が膨張弁4である。膨
張弁4は、弁体16と、弁体16内で上下に摺動する弁
棒17と、弁体16上に設置され弁棒17を駆動するモ
ータ15と、弁体16の側面に形成された入口から弁棒
17までこの弁棒17に直交して延びる水平流路16a
と、水平流路16aとつながり弁棒17先端に対向する
弁座16bと、弁座16bから降下して弁体16下面の
出口に至る垂直流路16cと、水平流路16a入口に入
り側継ぎ手管としての継ぎ手管13を介して接続された
入り側オリフィス管としてのオリフィス管20と、垂直
流路16c出口に出側継ぎ手管としての継ぎ手管14を
介して接続された出側オリフィス管としてのオリフィス
管21と、から構成されている。オリフィス管20には
上流側の配管6が接続され、オリフィス管21には下流
側の冷媒配管7が接続されている。なお、上記の上下流
及び出入口は冷房サイクルにおける冷媒流れに対応する
ものである。暖房サイクルでは冷媒流れは逆方向となる
ので、上下流および出入口はそれぞれ互いに反対とな
る。図1において、冷媒は、冷房運転時には配管6側か
ら流入し、暖房運転時には配管7側から膨張弁4に流入
している。また、配管7には冷媒流動音の低減効果を向
上させるため、ストレーナ22、オリフィス部材18、
19を設置している。
The portion provided with the means for reducing the flow noise of the refrigerant is a portion 12 surrounded by a broken line in FIG. 2, the details of which are shown in FIG. FIG. 1 is a diagram showing a flow passage structure around an expansion valve, which is provided with an orifice pipe that characterizes the air conditioner of the present invention. The portion surrounded by the broken line in FIG. 1 is the expansion valve 4. The expansion valve 4 is formed on the valve body 16, a valve rod 17 that slides up and down in the valve body 16, a motor 15 that is installed on the valve body 16 and drives the valve rod 17, and a side surface of the valve body 16. Horizontal flow path 16a extending from the inlet to the valve rod 17 at right angles to the valve rod 17
A valve seat 16b that is connected to the horizontal flow path 16a and faces the tip of the valve rod 17, a vertical flow path 16c that descends from the valve seat 16b and reaches the outlet on the lower surface of the valve element 16, and a horizontal channel 16a inlet inlet side joint An orifice pipe 20 as an inlet-side orifice pipe connected via a joint pipe 13 as a pipe, and an outlet-side orifice pipe connected to an outlet of the vertical flow channel 16c via a joint pipe 14 as an outlet-side joint pipe. It is composed of an orifice pipe 21. The upstream pipe 6 is connected to the orifice pipe 20, and the downstream refrigerant pipe 7 is connected to the orifice pipe 21. The above-mentioned upstream and downstream and the inlet and outlet correspond to the refrigerant flow in the cooling cycle. In the heating cycle, the refrigerant flows in opposite directions, so that the upstream and downstream sides and the inlet and outlet are opposite to each other. In FIG. 1, the refrigerant flows in from the pipe 6 side during the cooling operation and flows into the expansion valve 4 from the pipe 7 side during the heating operation. In order to improve the effect of reducing the flow noise of the refrigerant in the pipe 7, a strainer 22, an orifice member 18,
19 are installed.

【0029】ここで実際の空気調和機において、膨張弁
4に接続されている配管は、図1に示すように、配管の
曲がり部分が必ず存在する。また配管の設置スペース上
の制約から配管の曲がり部分の曲率半径が非常に小さい
場合がある。この時、配管の曲がり部分で流れる冷媒の
流動形態が変化して、特に気液二相流では曲がり部分に
気泡が滞留する。また配管の曲がり部分の曲率半径が非
常に小さい場合には冷媒の流れを阻害しやすくなり、曲
がり部分に滞留した気泡が大きくなり、それが液冷媒に
より押し出され圧力変動および流量変動を生じさせる。
この圧力変動および流量変動を受けた乱れた冷媒が、膨
張弁4の弁座16b/弁棒17間の絞り部に流入する
と、間欠的な冷媒流動音が発生する。そのため配管の曲
がり部分の曲率半径を大きくするか、曲がり部分後の直
線配管を長くして、流れを改善することが望ましいがス
ペース上不可能な場合が多い。
Here, in an actual air conditioner, the pipe connected to the expansion valve 4 always has a bent portion as shown in FIG. In addition, the radius of curvature of the bent portion of the pipe may be very small due to restrictions on the installation space of the pipe. At this time, the flow form of the refrigerant flowing in the bent portion of the pipe changes, and in particular in the gas-liquid two-phase flow, bubbles stay in the bent portion. Further, when the radius of curvature of the bent portion of the pipe is very small, the flow of the refrigerant is likely to be obstructed, and the bubbles accumulated in the bent portion become large, which is pushed out by the liquid refrigerant and causes pressure fluctuation and flow rate fluctuation.
When the disturbed refrigerant that has undergone the pressure fluctuation and the flow rate fluctuation flows into the throttle portion between the valve seat 16b / valve rod 17 of the expansion valve 4, an intermittent refrigerant flow noise is generated. Therefore, it is desirable to increase the radius of curvature of the bent portion of the pipe or to lengthen the straight pipe after the bent portion to improve the flow, but it is often impossible in terms of space.

【0030】そこで本発明では、膨張弁4入口に接続さ
れる継ぎ手管13と冷媒配管6との間にオリフィス管2
0を、また膨張弁4出口に接続される継ぎ手管14と冷
媒配管7の間にオリフィス管21を設置する。オリフィ
ス管20は、接続されている配管6、7の内径より一段
と絞られたオリフィス20aと、それに続くテーパ穴2
0bを有している。オリフィス管21も同様にオリフィ
ス21aおよびテーパ穴21bを有している。そしてオ
リフィス管20、21は、テーパ穴が膨張弁4の弁座1
6b/弁棒17間の絞り部側になるように、配置され
る。
Therefore, in the present invention, the orifice pipe 2 is provided between the refrigerant pipe 6 and the joint pipe 13 connected to the inlet of the expansion valve 4.
0 and an orifice pipe 21 between the joint pipe 14 connected to the outlet of the expansion valve 4 and the refrigerant pipe 7. The orifice pipe 20 includes an orifice 20a further narrowed from the inner diameters of the connected pipes 6 and 7, and a taper hole 2 following the orifice 20a.
It has 0b. The orifice pipe 21 similarly has an orifice 21a and a tapered hole 21b. The orifice pipes 20 and 21 have tapered holes for the valve seat 1 of the expansion valve 4.
6b / valve rod 17 is arranged so as to be on the side of the throttle portion.

【0031】気液二相流状態の冷媒中の大きな気泡がオ
リフィス管20を通過する際に、冷媒通路を管6内径か
ら一段絞ったオリフィス20aの口をのぞかせ、大きな
表面積をもつ先端面により、気泡が壊され微細化する。
さらに、オリフィス20aにおいて冷媒流路の断面積を
減少させることにより冷媒の流速を上げ、管内壁側に液
相が、そして管中心付近に気相が存在するアニュラーフ
ローの形態に移行することができ、気泡の均一化を促進
する。これは冷媒の流れの中に大きな気泡が断続的に存
在しているチャーンフローやプラグフローとは異なり、
微細な気泡が均一に連続的に存在しているため、圧力変
動が小さくなり膨張弁4を通過する際の間欠的な冷媒流
動音を低減することができる。またオリフィス20aで
改善された冷媒の流れが乱れぬ内に、オリフィス20a
に続くテーパ孔20bによってスムーズに膨張弁4の弁
座16b/弁棒17間の絞り部へ供給することができ効
果が大きい。逆に、膨張弁4の絞り部から下流側のオリ
フィス21へ流出する冷媒は、オリフィス管21の端面
に衝突することなく、入口面積の大きいテーパ孔21b
により導かれるため、冷媒の衝突音を緩和することがで
きる。
When large bubbles in the refrigerant in a gas-liquid two-phase flow state pass through the orifice tube 20, the orifice of the orifice 20a narrowed down from the inner diameter of the tube 6 by one step is removed except for the tip surface having a large surface area. Bubbles are broken and miniaturized.
Further, by reducing the cross-sectional area of the refrigerant flow path at the orifice 20a, the flow velocity of the refrigerant can be increased, and the liquid phase can be transferred to the inner wall side of the tube and the gas phase near the center of the tube can be changed to an annular flow mode. , Promote the homogenization of bubbles. This is different from churn flow or plug flow in which large bubbles are present intermittently in the flow of refrigerant,
Since the fine bubbles are uniformly and continuously present, the pressure fluctuation is reduced and the intermittent refrigerant flow noise when passing through the expansion valve 4 can be reduced. Further, while the flow of the refrigerant improved by the orifice 20a is not disturbed, the orifice 20a
By the taper hole 20b following the above, it can be smoothly supplied to the throttle portion between the valve seat 16b of the expansion valve 4 and the valve rod 17, and the effect is great. On the contrary, the refrigerant flowing out from the throttle portion of the expansion valve 4 to the orifice 21 on the downstream side does not collide with the end surface of the orifice pipe 21, and the tapered hole 21b having a large inlet area.
Since it is guided by, the collision noise of the refrigerant can be reduced.

【0032】さらに、オリフィス管20、21を膨張弁
4に接続されている冷媒配管6、7と膨張弁の継ぎ手管
13、14の間に設置することにより、オリフィス20
a、21aと膨張弁4の絞り部(弁棒17)との距離が
とれ、「冷媒通路の内径を絞った場合、急激な冷媒の流
速アップにより、直接冷媒が膨張弁4の弁棒17に大き
な力で衝突する」という問題を解決することができ、弁
棒17からの振動および異音をなくすことができる。
Further, by installing the orifice pipes 20 and 21 between the refrigerant pipes 6 and 7 connected to the expansion valve 4 and the joint pipes 13 and 14 of the expansion valve, the orifice 20
a, 21a and the throttle portion (valve rod 17) of the expansion valve 4 are separated from each other, and "When the inner diameter of the refrigerant passage is narrowed, a rapid increase in the flow velocity of the refrigerant causes the refrigerant to directly reach the valve rod 17 of the expansion valve 4. The problem of “collision with a large force” can be solved, and vibration and abnormal noise from the valve rod 17 can be eliminated.

【0033】また図1は、オリフィス管20、21のオ
リフィス径を、膨張弁4への冷媒の流入方向により変え
たことを示す。前述のように、膨張弁4の弁棒17に対
して冷媒が水平に流入する場合には大きな振動となるこ
とが多いため、膨張弁4の弁棒17に対して冷媒が水平
に流入する(本実施の形態では冷房時の冷媒の流れ)場
合は、膨張弁4の弁棒17に対して冷媒が垂直に流入す
る(同暖房時の冷媒の流れ)場合よりも、冷媒の流速を
落とすように、オリフィス管20のオリフィス径(d1)
をオリフィス管21のそれ(d2)より大きくして、弁棒
17への負担を緩和する。
FIG. 1 shows that the orifice diameters of the orifice pipes 20 and 21 are changed depending on the direction of the refrigerant flowing into the expansion valve 4. As described above, when the refrigerant horizontally flows into the valve rod 17 of the expansion valve 4, a large vibration often occurs, so that the refrigerant horizontally flows into the valve rod 17 of the expansion valve 4 ( In the present embodiment, in the case of the flow of the refrigerant during cooling), the flow velocity of the refrigerant is made lower than that in the case where the refrigerant flows vertically into the valve rod 17 of the expansion valve 4 (flow of the refrigerant during heating). The orifice diameter of the orifice tube 20 (d 1 )
Is made larger than that of the orifice pipe 21 (d 2 ) to alleviate the load on the valve rod 17.

【0034】図3は、空気調和機における冷媒流量範囲
で存在する気液二相流のガス流速と液流速の比率により
規定されるアニュラーフロー、バブルフローになるよう
にオリフィス径を選定した図である。定性的には、アニ
ュラーフローは、液流速が小さくガス流速が大きい場合
で、中心に多数の小さい気泡が存在し、周囲(管内面側)
に液が存在する流動形態である。バブルフローは、液流
速が大きくガス流速が小さい場合に、小さい気泡が多く
全体的に均一に存在する流動形態である。
FIG. 3 is a diagram in which the orifice diameter is selected so as to provide an annular flow or a bubble flow defined by the ratio of the gas flow velocity and the liquid flow velocity of the gas-liquid two-phase flow existing in the refrigerant flow rate range in the air conditioner. is there. Qualitatively, in the annular flow, when the liquid flow velocity is small and the gas flow velocity is large, there are many small bubbles in the center and the surrounding (inner surface of the pipe)
It is in a fluidized form in which liquid is present. The bubble flow is a flow form in which a large number of small bubbles are present uniformly evenly when the liquid flow velocity is high and the gas flow velocity is low.

【0035】空気調和機の流量範囲において存在する気
液二相流のガス流速と液流速の比率により規定される、
間欠的な冷媒流動音発生領域(液流速、ガス流速共に小
さい場合に、大きな気泡が断続的に存在するチャーンフ
ロー、プラグフロー)を避け、冷媒流動音が発生しない
領域(アニュラーフロー、バブルフロー)の状態になる
ようにオリフィス径を選定することにより、空気調和機
の流量範囲の相違による冷媒流動音発生を防ぐことがで
きる。
It is defined by the ratio of the gas flow velocity and the liquid flow velocity of the gas-liquid two-phase flow existing in the flow range of the air conditioner,
Area where intermittent refrigerant flow noise is generated (churn flow, plug flow where large bubbles are intermittently present when liquid flow velocity and gas flow velocity are both small) and region where no refrigerant flow noise is generated (annular flow, bubble flow) By selecting the orifice diameter so as to satisfy the above condition, it is possible to prevent the refrigerant flow noise from being generated due to the difference in the flow rate range of the air conditioner.

【0036】図4は本発明の一実施の形態であるロー付
性を向上したオリフィス管(19、20)の形状および
設置を示した図である。オリフィス管の材質が、膨張弁
に接続されている冷媒配管6、7および膨張弁の継ぎ手
管13、14の材質と異なる場合、例えばオリフィス管
の材質が真鍮で、冷媒配管および継ぎ手管の材質がそれ
ぞれ銅である場合、熱伝導率の相違からろう付け性が悪
い。このためオリフィス管を膨張弁に接続されている冷
媒配管6、7と膨張弁の継ぎ手管13、14で完全に覆
い、配管内部に固定できる形状とした。すなわち、図4
に示すように、オリフィスとそれに続くテーパ穴を有す
るオリフィス管の長手方向の中央部外周につばを設け、
該つばに当接しテーパ穴側の外周を覆うように継ぎ手管
を取付け、さらにオリフィス側にはオリフィス管からつ
ばを経て継ぎ手管を覆うように先端を拡管した冷媒配管
を取付け、三者をろう付け(23)する。あるいはつばを
設ける代わりに、オリフィス管を、オリフィス側を太く
テーパ穴側を細く加工して段付きとし、テーパ穴側に継
ぎ手管を取付け、オリフィス側にはオリフィス管から継
ぎ手管まで覆うように拡管した冷媒配管を取付け、そし
て三者をろう付けしてもよい。これによりオリフィス管
の材質に関係なくろう付け性を向上でき、ろう付け不良
による冷媒漏れ等もなくすことができる。
FIG. 4 is a view showing the shape and installation of the orifice pipes (19, 20) having an improved brazing property, which is an embodiment of the present invention. When the material of the orifice pipe is different from the material of the refrigerant pipes 6 and 7 connected to the expansion valve and the joint pipes 13 and 14 of the expansion valve, for example, the material of the orifice pipe is brass and the material of the refrigerant pipe and the joint pipe is When each is copper, the brazing property is poor due to the difference in thermal conductivity. Therefore, the orifice pipe is completely covered with the refrigerant pipes 6 and 7 connected to the expansion valve and the joint pipes 13 and 14 of the expansion valve so that the orifice pipe can be fixed inside the pipe. That is, FIG.
As shown in, a collar is provided on the outer periphery of the central portion in the longitudinal direction of an orifice tube having an orifice and a tapered hole following the orifice.
Attach a joint pipe so as to contact the collar and cover the outer periphery of the taper hole side.Further, on the orifice side, attach a refrigerant pipe with an expanded tip to cover the joint pipe from the orifice pipe through the collar, and braze the three. (23) Do. Alternatively, instead of providing a collar, the orifice pipe is stepped by thickening the orifice side and thinning the taper hole side, and attaching a joint pipe to the taper hole side and expanding the orifice side from the orifice pipe to the joint pipe. The attached refrigerant pipes may be attached and the three brazed. As a result, the brazing property can be improved regardless of the material of the orifice pipe, and the leakage of refrigerant due to defective brazing can be eliminated.

【0037】[0037]

【発明の効果】本発明の空気調和機によれば、膨張弁に
接続されている冷媒配管より内径を一段絞り、膨張弁の
絞り部側にテーパ孔を設けたオリフィス管を、膨張弁に
接続されている冷媒配管と膨張弁の継ぎ手管の間に設置
することで冷媒通路内にオリフィス管のオリフィス側端
面で大きな面積の端面を形成し、気液二相流状態の、特
に冷媒の流れの中の大きな気泡を壊し微細化する。さら
に、オリフィスにより冷媒通路の断面積を減少させるこ
とにより冷媒の流速を上げ、管壁に液相、管中心付近に
気相が存在する環状流の流動形態に移行することがで
き、気泡の均一化を促進する。これにより圧力変動が小
さくなり、膨張弁を通過する際の間欠的な冷媒流動音の
低減に著しい効果を上げることができる。また、オリフ
ィス管で改善された冷媒の流れが乱れぬ内に、オリフィ
ス管のテーパ孔によってスムーズに膨張弁の絞り部へ供
給することができ効果が大きい。逆に膨張弁の絞り部か
ら下流側のオリフィス管へ流出される際に発生する冷媒
の衝突音は、オリフィス管のテーパ孔によって緩和する
ことができる。また、オリフィス管を膨張弁に接続され
ている冷媒配管と膨張弁の継ぎ手管の間に設置すること
で、オリフィス管と膨張弁の絞り部(弁棒)との距離が
とれ、急激な冷媒の流速アップによる弁棒からの振動お
よび異音がなくなる。これらの効果により膨張弁部の圧
力変動が大幅に低減され、膨張弁に接続されている冷媒
配管の振動を防ぐことで、他の配管部から発生する冷媒
流動音も低減することが可能となる。また膨張弁の弁棒
に対する冷媒の流入方向および空気調和機の流量範囲に
おいて存在する気液二相流のガス流速と液流速の比率に
より規定される、間欠的な冷媒流動音発生領域(チャー
ンフロー・プラグフロー)を避け、冷媒流動音が発生し
ない領域(アニュラーフロー、バブルフロー)の状態に
なるようにオリフィス管の内径を選定することで、冷媒
流動音の低減効果をより一層上げ、空気調和機における
静音性、快適性を向上することができる。
According to the air conditioner of the present invention, the orifice pipe having the inner diameter reduced by one step from the refrigerant pipe connected to the expansion valve and the tapered hole provided on the throttle portion side of the expansion valve is connected to the expansion valve. By installing it between the refrigerant pipe and the joint pipe of the expansion valve, an end face having a large area is formed at the orifice side end face of the orifice pipe in the refrigerant passage, and in the gas-liquid two-phase flow state, especially the flow of the refrigerant. Breaks large air bubbles inside and miniaturizes them. Furthermore, by reducing the cross-sectional area of the refrigerant passage with the orifice, the flow velocity of the refrigerant can be increased, and it can be transferred to the annular flow mode in which the liquid phase is present on the tube wall and the gas phase is present near the center of the tube. Promote the transformation. As a result, the pressure fluctuation is reduced, and it is possible to remarkably improve the intermittent reduction of refrigerant flow noise when passing through the expansion valve. Further, while the improved refrigerant flow in the orifice pipe is not disturbed, the tapered hole of the orifice pipe allows smooth supply to the throttle portion of the expansion valve, which is a great effect. On the contrary, the collision noise of the refrigerant generated when flowing out from the throttle portion of the expansion valve to the downstream orifice pipe can be mitigated by the tapered hole of the orifice pipe. In addition, by installing the orifice pipe between the refrigerant pipe connected to the expansion valve and the joint pipe of the expansion valve, the distance between the orifice pipe and the throttle portion (valve rod) of the expansion valve can be maintained, and the sudden refrigerant Vibration and abnormal noise from the valve stem due to increased flow velocity are eliminated. By these effects, the pressure fluctuation of the expansion valve section is significantly reduced, and by preventing the vibration of the refrigerant pipe connected to the expansion valve, it is possible to reduce the refrigerant flow noise generated from other piping sections. . In addition, the intermittent refrigerant flow noise generation region (churn flow) is defined by the ratio of the gas flow velocity and the liquid flow velocity of the gas-liquid two-phase flow existing in the direction of the refrigerant flow into the valve stem of the expansion valve and the flow range of the air conditioner.・ By selecting the inner diameter of the orifice pipe so that the refrigerant flow noise is avoided and the region (annular flow, bubble flow) is avoided, the effect of reducing the refrigerant flow noise is further enhanced and air conditioning is achieved. The quietness and comfort of the machine can be improved.

【0038】以上の冷媒流動音の低減によって、従来の
ブチルシート等の防振材や防音材の貼付が不要とでき、
コスト低減および作業性向上をさせる。
Due to the above-described reduction of the refrigerant flow noise, it is possible to eliminate the need to attach a conventional anti-vibration material such as a butyl sheet or a sound insulation material,
Reduce costs and improve workability.

【0039】また、オリフィス管の材質が、膨張弁に接
続されている冷媒配管および膨張弁の継ぎ手管の材質と
異なる場合にも、オリフィス管を膨張弁に接続されてい
る冷媒配管と膨張弁の継ぎ手管で完全に覆い、配管内部
に固定できる形状とし、オリフィス管の材質に関係なく
ろう付け性を向上でき、ろう付け不良による冷媒漏れ等
もなくすことができる。
Further, even when the material of the orifice pipe is different from that of the refrigerant pipe connected to the expansion valve and the joint pipe of the expansion valve, the orifice pipe is connected to the expansion valve and the expansion pipe is connected to the refrigerant pipe. The shape is such that it can be completely covered with a joint pipe and can be fixed inside the pipe, the brazing property can be improved regardless of the material of the orifice pipe, and the leakage of refrigerant due to defective brazing can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態の空気調和機における膨
張弁回りの冷媒流路構造を示す図である。
FIG. 1 is a diagram showing a refrigerant flow path structure around an expansion valve in an air conditioner according to an embodiment of the present invention.

【図2】本発明の一実施の形態の空気調和機の冷凍サイ
クルを示すブロック図である。
FIG. 2 is a block diagram showing a refrigeration cycle of the air conditioner according to the embodiment of the present invention.

【図3】本発明の一実施の形態でのオリフィス径と、気
液二相流のガス流速と液流速の比率で規定されるアニュ
ラーフロー、バブルフローとの関係を示す図である。
FIG. 3 is a diagram showing a relationship between an orifice diameter, an annular flow and a bubble flow defined by a ratio of a gas flow velocity and a liquid flow velocity of a gas-liquid two-phase flow in an embodiment of the present invention.

【図4】本発明の一実施の形態におけるオリフィス管の
ろう付け接合部の形状を示す図である。
FIG. 4 is a diagram showing a shape of a brazing joint portion of an orifice tube according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 膨張弁 5 室内熱交換器 6,7 接続配管 8 分流合流管 9a,9b,9c, 9d 分岐管 10a,10b ファン 11a,11b,11c,11d 配管 13,14 継ぎ手管 15 モータ 16 弁体 17 弁棒 18, 19 オリフィス部材 20,21 オリフィス管 22 ストレーナ 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 expansion valve 5 Indoor heat exchanger 6,7 Connection piping 8-way merging pipe 9a, 9b, 9c, 9d Branch pipe 10a, 10b fan 11a, 11b, 11c, 11d Piping 13,14 fitting pipe 15 motor 16 valve body 17 valve rod 18, 19 Orifice member 20,21 Orifice tube 22 Strainer

フロントページの続き (72)発明者 佐野 孝 静岡県清水市村松390番地 株式会社 日立製作所 空調システム事業部内 (72)発明者 小林 敦泰 静岡県清水市村松390番地 日立清水エ ンジニアリング株式会社内 (72)発明者 奥園 秀樹 静岡県清水市村松390番地 株式会社 日立製作所 空調システム事業部内 (56)参考文献 特開 平4−366375(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 41/00 F25B 41/06 Front Page Continuation (72) Inventor Takashi Sano 390 Muramatsu, Shimizu City, Shizuoka Prefecture, Hitachi Ltd., Air Conditioning Systems Division (72) Inventor Atsushi Kobayashi 390 Muramatsu, Shimizu City, Shizuoka Hitachi Shimizu Engineering Co., Ltd. 72) Inventor Hideki Okuzono 390 Muramatsu, Shimizu City, Shizuoka Prefecture, Hitachi, Ltd., Air Conditioning Systems Division (56) Reference JP-A-4-366375 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 41/00 F25B 41/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、膨張弁、蒸発器を冷媒
配管で連結して、気液二相流の冷媒を用いる冷凍サイク
ルを形成する空気調和機において、膨張弁は、弁体と、
該弁体内で上下に摺動可能な弁棒と、弁体側面に形成さ
れた入口から弁棒まで該弁棒に直交して延びる水平流路
と、弁棒先端に対向する弁座と、該弁座から弁体下面に
形成された出口に至る垂直流路と、水平流路入口に接続
された入り側継ぎ手管と、垂直流路出口に接続された出
側継ぎ手管とから構成し、前記 入り側継ぎ手管にオリフィスとオリフィスから末広
がりのテーパ穴を有する入り側オリフィス管をテーパ穴
が膨張弁側に位置するように接続し、前記出側継ぎ手管
にオリフィスとオリフィスから末広がりのテーパ穴を有
する入り側オリフィス管をテーパ穴が膨張弁側に位置す
るように接続して、前記入り側オリフィス管及び出側オ
リフィス管と前記弁棒との距離をとり、 前記 入り側オリフィス管には冷房サイクルでは上流側と
なる冷媒配管を接続し、前記出側オリフィス管には下流
側となる冷媒配管を接続し、前記入り側オリフィス管の
オリフィス径を前記出側オリフィス管のオリフィス径よ
りも大きくして前記弁棒に直交して流入する前記冷媒の
流速を落とすようにしたことを特徴とする空気調和機。
1. An air conditioner in which a compressor, a condenser, an expansion valve, and an evaporator are connected by a refrigerant pipe to form a refrigeration cycle using a refrigerant of gas-liquid two-phase flow. ,
A valve rod slidable up and down in the valve body, a horizontal flow passage extending from the inlet formed on the side surface of the valve body to the valve rod at right angles to the valve rod, a valve seat facing the valve rod tip, consist of a valve seat and a vertical flow path to the outlet formed in the valve body lower surface, and the entrance side joint pipe connected to the inlet horizontal flow path, connected to the vertical flow path outlet and the outlet side joint pipe, the connect the inlet side orifice tube having a diverging taper hole inlet side joint pipe from the orifice and the orifice to the tapered hole is located at the expansion valve side, it has a flared tapered hole from the orifice and the orifice to the outlet side joint pipe Connect the inlet-side orifice pipe so that the taper hole is located on the expansion valve side, and connect the inlet-side orifice pipe and outlet-side orifice pipe.
Take the orifice tube the distance between the valve stem connects the refrigerant pipe on the upstream side in the cooling cycle in the entry side orifice tube, connecting the refrigerant pipe on the downstream side in the outlet side orifice tube, said Inlet side orifice pipe
The orifice diameter should be the same as the orifice diameter of the outlet orifice pipe.
Of the refrigerant flowing in at right angles to the valve stem
An air conditioner characterized by reducing the flow velocity .
【請求項2】 入り側オリフィス管のオリフィス径は、
空気調和機おける流量範囲内で存在する気液二相流のガ
ス流速と液流速の比率により規定されるアニュラーフロ
ーまたはバブルフローになるように選定したことを特徴
とする請求項1記載の空気調和機。
2. The orifice diameter of the inlet side orifice pipe is
The air conditioner according to claim 1, wherein the air conditioner is selected so as to have an annular flow or a bubble flow defined by a ratio of a gas flow velocity and a liquid flow velocity of a gas-liquid two-phase flow existing within a flow range of the air conditioner. Machine.
【請求項3】 入り側オリフィス管のテーパ穴側を継ぎ
手管内に嵌入し、上流側冷媒配管をオリフィス管のオリ
フィス側から継ぎ手管にわたって覆うように取り付けて
接合継ぎ手を構成して該接合継ぎ手部をろう付けし、ま
た出側オリフィス管と出側継ぎ手管と下流側冷媒配管の
間に入り側オリフィス管側と同様の接合継ぎ手を構成し
てろう付けしたことを特徴とする請求項1または2に記
載の空気調和機。
3. A taper hole side of the inlet side orifice pipe is fitted into the joint pipe, and an upstream side refrigerant pipe is attached so as to cover the joint pipe from the orifice side of the orifice pipe, thereby forming a joint joint to form the joint joint portion. The brazing, or the joining joint similar to that on the inlet side orifice pipe side is brazed between the outlet side orifice pipe, the outlet side joint pipe, and the downstream side refrigerant pipe. Air conditioner described.
JP17693897A 1997-07-02 1997-07-02 Air conditioner Expired - Fee Related JP3435626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17693897A JP3435626B2 (en) 1997-07-02 1997-07-02 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17693897A JP3435626B2 (en) 1997-07-02 1997-07-02 Air conditioner

Publications (2)

Publication Number Publication Date
JPH1123104A JPH1123104A (en) 1999-01-26
JP3435626B2 true JP3435626B2 (en) 2003-08-11

Family

ID=16022373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17693897A Expired - Fee Related JP3435626B2 (en) 1997-07-02 1997-07-02 Air conditioner

Country Status (1)

Country Link
JP (1) JP3435626B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454779B2 (en) * 2000-03-31 2010-04-21 株式会社日阪製作所 Plate heat exchanger
JP3757784B2 (en) * 2000-04-06 2006-03-22 株式会社デンソー Pressure reducing device and refrigeration cycle device using the same
JP4062988B2 (en) * 2002-06-27 2008-03-19 株式会社デンソー Valve device used in refrigeration cycle equipment
JP2004069166A (en) * 2002-08-06 2004-03-04 Daikin Ind Ltd Rectifying device for two-phase refrigerant flow and freezer
JP2006097947A (en) * 2004-09-29 2006-04-13 Fuji Koki Corp Motor operated valve
JP2006200844A (en) * 2005-01-21 2006-08-03 Denso Corp Vapor compression type refrigeration device
JP4925638B2 (en) * 2005-10-14 2012-05-09 株式会社不二工機 Motorized valve
JP2009014292A (en) * 2007-07-06 2009-01-22 Zhejiang Chunhui Intelligent Control Co Ltd Two throttle two-way expansion valve with filtering structure
KR101182186B1 (en) * 2009-12-04 2012-09-13 한라공조주식회사 Refrigerant cycle of air conditioner for vehicles
US8978412B2 (en) 2009-12-04 2015-03-17 Halla Visteon Climate Control Corporation Air conditioner for vehicles
JP7215819B2 (en) * 2017-01-11 2023-01-31 ダイキン工業株式会社 Air conditioner and indoor unit
JP7029169B2 (en) * 2018-07-25 2022-03-03 株式会社不二工機 Solenoid valve
JP7199335B2 (en) * 2019-10-25 2023-01-05 株式会社鷺宮製作所 Electric valve and refrigeration cycle system

Also Published As

Publication number Publication date
JPH1123104A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
JP3435626B2 (en) Air conditioner
US6148631A (en) Silencer and air conditioner
US6484797B2 (en) Laminated type heat exchanger
JPH07146032A (en) Expansion valve
JP2006266667A (en) Expansion valve and freezing apparatus
JPH0861809A (en) Refrigerant distributor, refrigerant distributing mechanism and air conditioner
JP4294680B2 (en) Refrigerant distributor and air conditioner equipped with refrigerant distributor
JPH07120104A (en) Air conditioner
CN205747604U (en) Short-tube throttle valve and there is its air-conditioner
WO2014068687A1 (en) Parallel flow heat exchanger and air conditioner using same
JP2001116396A (en) Refrigerant distributor, refrigeration cycle and air conditioner using it
JP2007032979A (en) Refrigerating cycle device
JP2007032980A (en) Expansion valve
JPH0626738A (en) Air conditioning apparatus
CN106440316A (en) Noise reduction device and air conditioner provided with same
JPH10111046A (en) Air conditioner
JP4560939B2 (en) Refrigerant shunt and air conditioner using the same
JP2003004343A (en) Vapor-liquid separator, and air conditioner using it
JP2006266563A (en) Air conditioner
JPH09292166A (en) Air conditioner
JP2003214727A (en) Fluid distributor and air conditioner with the same
CN112856588B (en) Air conditioner indoor unit and air conditioner
JP5193630B2 (en) Heat exchanger
KR100441058B1 (en) Two-way direction expansion valve with accumulated thin plate
JP2006317098A (en) Flow divider

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees