JP2007032980A - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP2007032980A
JP2007032980A JP2005219112A JP2005219112A JP2007032980A JP 2007032980 A JP2007032980 A JP 2007032980A JP 2005219112 A JP2005219112 A JP 2005219112A JP 2005219112 A JP2005219112 A JP 2005219112A JP 2007032980 A JP2007032980 A JP 2007032980A
Authority
JP
Japan
Prior art keywords
orifice
expansion valve
needle
flow
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005219112A
Other languages
Japanese (ja)
Inventor
Satoru Hirakuni
悟 平國
Yoichi Shiomi
洋一 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Ryukoku University
Original Assignee
Mitsubishi Electric Corp
Ryukoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Ryukoku University filed Critical Mitsubishi Electric Corp
Priority to JP2005219112A priority Critical patent/JP2007032980A/en
Publication of JP2007032980A publication Critical patent/JP2007032980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Valves (AREA)
  • Lift Valve (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expansion valve suitable for refrigerant flow control, reducing refrigerant flow sound and having proof stress to plugging of foreign matter in a refrigerating cycle. <P>SOLUTION: A valve chamber 5 provided with a fluid inflow port 32 formed in a side face, and a valve seat 6 formed at a bottom face is formed inside an expansion valve body part 3 of the expansion valve 1, and a needle 2 that can advance to and retreat from the valve seat 6 is installed penetrating the top face of the valve chamber 5. A needle tip part 4 gradually reduced in diameter in a flow-out direction is formed at the tip of the needle 2. The valve seat 6 is formed with an orifice inlet part 7 gradually reduced in diameter in the flow-out direction, an orifice center part 8 of approximately cylindrical shape, and an orifice outlet part 9 gradually enlarged in diameter in the flow-out direction. A clearance passage 47 gradually narrowed in the flow-out direction is thereby formed by the needle tip part 4 and the orifice inlet part 7, and the separation of refrigerant flow is reduced in the start position of the orifice center part 8. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、流体の膨張弁、特に冷媒流動音の低減に好適な膨張弁に関するものである。   The present invention relates to an expansion valve for fluid, and more particularly to an expansion valve suitable for reducing refrigerant flow noise.

従来の空気調和装置の冷凍サイクル装置において、空調負荷の変動に対応するためにインバーターなどの容量可変型圧縮機が用いられている。そして、空調負荷の大小に応じて圧縮機の回転周波数が制御され、圧縮機の回転数に合わせ、蒸発器や凝縮器を有効に利用するために膨張弁の絞り量が調整されている。このとき、膨張弁に流入する冷媒は、蒸気単相、液単相あるいは気液二相の場合があり、それぞれの場合において、膨張弁で騒音が発生する問題があった。特に、気液二相で通過する場合は騒音の周波数が変動するため、耳障りであった。   In a conventional refrigeration cycle apparatus for an air conditioner, a variable capacity compressor such as an inverter is used in order to cope with a change in air conditioning load. The rotational frequency of the compressor is controlled according to the size of the air conditioning load, and the throttle amount of the expansion valve is adjusted in order to effectively use the evaporator and the condenser in accordance with the rotational speed of the compressor. At this time, the refrigerant flowing into the expansion valve may be a vapor single phase, a liquid single phase, or a gas-liquid two phase. In each case, there is a problem that noise occurs in the expansion valve. In particular, when passing in a gas-liquid two-phase, the noise frequency fluctuates, which is annoying.

かかる騒音を防止するため、たとえば、膨張弁の弁室の入口(流入管の終端部)および出口(流出管の始端部)にそれぞれ多孔体を設置する発明が開示されている。すなわち、膨張弁に流入する冷媒の流動状態が、気泡魂を伴う流れであるため、冷媒が前記多孔体を通過する際に、気相、液相がそれぞれ混ざり合った流動状態に移行され、絞り部における冷媒圧力脈動が連続的になるため、冷媒音及び、配管振動が低減するとしている(例えば、特許文献1参照)。   In order to prevent such noise, for example, an invention is disclosed in which a porous body is installed at each of an inlet (a terminal portion of an inflow pipe) and an outlet (a start end of an outflow pipe) of a valve chamber of an expansion valve. That is, since the flow state of the refrigerant flowing into the expansion valve is a flow accompanied by a bubble soul, when the refrigerant passes through the porous body, it is shifted to a flow state in which the gas phase and the liquid phase are mixed, Since the refrigerant pressure pulsation in the part becomes continuous, the refrigerant noise and the pipe vibration are reduced (see, for example, Patent Document 1).

さらに、たとえば、流入管の膨張弁に近い所定範囲および流出管の膨張弁に近い所定範囲に、それぞれ細径管を複数本束ねたハニカムパイプと円筒管とを交互に配置する発明が開示されている。すなわち、ハニカムパイプと円筒管とによって消音器が形成され、冷媒は消音器を通過する過程において、均質化と膨張を繰り返し、減圧時の発生騒音および圧力脈動の伝達が抑制されるとしている(例えば、特許文献2参照)。   Furthermore, for example, an invention is disclosed in which a honeycomb pipe and a cylindrical pipe in which a plurality of small diameter tubes are bundled are alternately arranged in a predetermined range close to the expansion valve of the inflow pipe and a predetermined range close to the expansion valve of the outflow pipe. Yes. That is, a silencer is formed by the honeycomb pipe and the cylindrical pipe, and the refrigerant repeats homogenization and expansion in the process of passing through the silencer, and transmission of generated noise and pressure pulsation during decompression is suppressed (for example, , See Patent Document 2).

特開平7−146032(第3−4頁、図1)JP-A-7-146032 (page 3-4, FIG. 1) 特開平11−325655(第4−6頁、図2)JP-A-11-325655 (page 4-6, FIG. 2)

しかしながら、前記特許文献1または2に開示された発明では、冷凍サイクル内の異物が多孔体またはハニカムパイプに補足されるため、異物詰まりを起こすおそれがあり、冷媒の流動不能によって本来の冷房性能や暖房性能を実現することができなくなるという問題があった。   However, in the invention disclosed in Patent Document 1 or 2, foreign matter in the refrigeration cycle is captured by the porous body or the honeycomb pipe, which may cause clogging of the foreign matter. There was a problem that heating performance could not be realized.

本発明は上記のような課題を解決するためになされたもので、冷媒の流動制御に好適で、冷媒流動音を低減させ、冷凍サイクル内の異物詰まりに対する耐力がある膨張弁を得ることを目的とする。   The present invention has been made to solve the above-described problems, and is intended to obtain an expansion valve that is suitable for refrigerant flow control, reduces refrigerant flow noise, and is resistant to clogging of foreign matters in the refrigeration cycle. And

本発明に係る膨張弁は、側面に形成された流体の流入口および底面に形成された流体の流出口を具備する弁室と、該弁室の天面を貫通して前記流出口に向かって進退自在なニードルとを有するものであって、
前記流出口に流出方向に向かって除々に径小になるオリフィス入口部と、該オリフィス入口部の流出側に略筒状のオリフィス中央部とが形成され、
前記ニードルの先端に流出方向に向かって除々に径小になるニードル先端部が形成され、
前記オリフィス入口部と前記ニードル先端部とによって、流出方向に向かって除々に狭くなる隙間流路が形成されることを特徴とする。
An expansion valve according to the present invention includes a valve chamber having a fluid inlet formed on a side surface and a fluid outlet formed on a bottom surface, and penetrating the top surface of the valve chamber toward the outlet. Having a needle that can be advanced and retracted,
An orifice inlet portion that gradually decreases in diameter toward the outflow direction at the outflow port, and a substantially cylindrical orifice central portion is formed on the outflow side of the orifice inlet portion,
A needle tip portion that gradually becomes smaller in diameter toward the outflow direction is formed at the tip of the needle,
A gap channel that gradually narrows in the outflow direction is formed by the orifice inlet and the needle tip.

以上のように、本発明によれば、ニードル先端部とオリフィス入口部とによって流出方向に向かって除々に狭くなる「テーパー状の隙間流路」が形成されるため、冷媒流動音の発生を防止して騒音を低減できると共に、かかる減圧弁が設置された冷凍サイクル内に異物がある場合であっても、異物詰まりのおそれがなく、本来の冷房性能や暖房性能を実現することができるという効果が得られる。また、流路中にハニカムパイプなどの多孔体を設ける必要がないため、製造コストや保全コストが安価になる。   As described above, according to the present invention, a “tapered gap channel” that gradually narrows in the outflow direction is formed by the needle tip and the orifice inlet, thereby preventing the generation of refrigerant flow noise. As a result, noise can be reduced, and even if there is a foreign substance in the refrigeration cycle in which such a pressure reducing valve is installed, there is no risk of foreign matter clogging, and the original cooling performance and heating performance can be realized. Is obtained. Moreover, since it is not necessary to provide a porous body such as a honeycomb pipe in the flow path, the manufacturing cost and the maintenance cost are reduced.

[実施形態1]
(電気式膨張弁)
図1および図2は本発明の実施形態1に係る膨張弁の一例を示す構成図および断面構成図である。図1および図2において、電気式膨張弁1(以下「膨張弁1」と称す)はニードル2と膨張弁本体3とから構成され、膨張弁本体3の内部に弁室5が形成されている。
[Embodiment 1]
(Electric expansion valve)
1 and 2 are a configuration diagram and a sectional configuration diagram showing an example of an expansion valve according to Embodiment 1 of the present invention. 1 and 2, an electric expansion valve 1 (hereinafter referred to as “expansion valve 1”) includes a needle 2 and an expansion valve body 3, and a valve chamber 5 is formed inside the expansion valve body 3. .

(ニードル)
膨張弁本体3の天面(弁室5の天面に同じ)にはニードル貫通穴31が形成され、ニードル貫通穴31にはニードル2が液密的に摺動自在に挿入されている。また、膨張弁本体3の上部にはステッピングモーター10が設置され、ステッピングモーター10の回転角度は、図示しない回転/並進変換機構によって並進距離に変換され、ニードル2の昇降動作に供される。なお、ニードル2の先端は径小になってニードル先端部4(図中、A−B−Cの範囲に同じ)が形成されている。なお、ニードル先端部4の形状は限定するものではなく、たとえば、直線的なテーパーである一段テーパや、多段階に角度が変化する多段テーパーでもって構成してもよい。
(needle)
A needle through hole 31 is formed in the top surface of the expansion valve body 3 (same as the top surface of the valve chamber 5), and the needle 2 is inserted into the needle through hole 31 in a fluid-tight manner so as to be slidable. Further, a stepping motor 10 is installed on the upper portion of the expansion valve main body 3, and the rotation angle of the stepping motor 10 is converted into a translation distance by a rotation / translation conversion mechanism (not shown) and used for the raising / lowering operation of the needle 2. Note that the tip of the needle 2 is reduced in diameter to form a needle tip 4 (the same as the range ABC in the figure). The shape of the needle tip 4 is not limited, and may be configured with, for example, a one-step taper that is a linear taper or a multi-step taper whose angle changes in multiple steps.

(弁座)
弁室5の底面には流出口を構成する弁座6が形成されている。弁座6は、流出方向(図中、下方向)に向かって除々に径小になるオリフィス入口部7(図中、D−Eの範囲に同じ)と、オリフィス入口部7の流出側に略筒状のオリフィス中央部8(図中、E−Fの範囲に同じ)と、オリフィス中央部8の流出側に流出方向に向かって除々に径大になるオリフィス出口部9(図中、F−Gの範囲に同じ)とから構成されている。
このとき、オリフィス入口部7の長さ(開始位置Dと終了位置Eとの上下方向距離に同じ)およびオリフィス出口部9の長さ(開始位置Fと終了位置Gとの上下方向距離に同じ)は、いずれもオリフィス入口部7の直径の5倍にしている。なお、オリフィス入口部7およびオリフィス出口部9の形状は限定するものではなく、たとえば、直線的なテーパーである一段テーパや、多段階に角度が変化する多段テーパーでもって構成してもよい。
(valve seat)
A valve seat 6 constituting an outlet is formed on the bottom surface of the valve chamber 5. The valve seat 6 has an orifice inlet portion 7 (same as the range DE in the drawing) that gradually decreases in diameter in the outflow direction (downward in the figure), and substantially on the outflow side of the orifice inlet portion 7. A cylindrical orifice central portion 8 (same as the range EF in the figure) and an orifice outlet portion 9 (F- in the figure) that gradually increases in diameter toward the outflow direction toward the outflow side of the orifice central portion 8. The same as the range of G).
At this time, the length of the orifice inlet portion 7 (same as the vertical distance between the start position D and the end position E) and the length of the orifice outlet portion 9 (same as the vertical distance between the start position F and the end position G) Are 5 times the diameter of the orifice inlet 7. The shapes of the orifice inlet portion 7 and the orifice outlet portion 9 are not limited. For example, the orifice inlet portion 7 and the orifice outlet portion 9 may be configured with a single-stage taper that is a linear taper or a multi-stage taper whose angle changes in multiple stages.

(隙間流路)
ニードル2のニードル先端部4はオリフィス入口部7に浸入して隙間流路47を形成している。このとき、ニードル先端部4とオリフィス入口部7となす角度αは60°としている。すなわち、ニードル2を形成している最終端部位置A(ニードル2の平行部の終端で、ニードル先端部4との交点に相当する)とニードル先端部4の先端位置Cとを結ぶ線と、オリフィス入口部7の開始位置Dとオリフィス入口部7の終了位置E(オリフィス中央部8の開始位置に同じ)とを結ぶ線とがなす角度が60°である。
また、オリフィス出口部9はテーパ状であって、テーパの角度βは60°である。すなわち、オリフィス出口部9の開始位置Fと終了位置Gとを結ぶ線と、これと対角位置にある開始位置Fと終了位置Gとを結ぶ線とがなす角度が60°である。
(Gap channel)
The needle tip 4 of the needle 2 enters the orifice inlet 7 to form a gap channel 47. At this time, the angle α formed between the needle tip 4 and the orifice inlet 7 is 60 °. That is, a line connecting the final end position A forming the needle 2 (corresponding to the intersection with the needle tip 4 at the end of the parallel part of the needle 2) and the tip position C of the needle tip 4; The angle formed by the line connecting the start position D of the orifice inlet portion 7 and the end position E of the orifice inlet portion 7 (same as the start position of the orifice central portion 8) is 60 °.
The orifice outlet portion 9 is tapered, and the taper angle β is 60 °. That is, the angle formed by the line connecting the start position F and the end position G of the orifice outlet 9 and the line connecting the start position F and the end position G at the diagonal positions is 60 °.

(流入管、流出管)
膨張弁本体3の側面(弁室5の側面に同じ)には冷媒の流入口32が形成され、流入口32には水平に接続配管20(以下「流入管20」と称す)が設置されている。
膨張弁本体3の底面(弁室5の底面に同じ)にはオリフィス出口部9を包囲するように、流出管設置溝33が形成され、流出管設置溝33に垂直に接続配管30(以下「流出管30」と称す)が設置されている。
なお、流入管20および流出管30は、銅製の配管であり、黄銅製の膨張弁本体3に溶接されているが、かかる部材を形成する材質は限定するものではない。
したがって、冷媒(図示しない)は、流入管20を経由して弁室5に流入し、ニードル先端部4とオリフィス入口部7とによって形成された隙間流路47と、筒状のオリフィス中央部8と、テーパ状のオリフィス出口部9とを通過して、流出管30内に流出される。
(Inflow pipe, outflow pipe)
A refrigerant inlet 32 is formed on the side surface of the expansion valve main body 3 (same as the side surface of the valve chamber 5), and a connecting pipe 20 (hereinafter referred to as “inflow pipe 20”) is horizontally installed in the inlet 32. Yes.
An outflow pipe installation groove 33 is formed on the bottom surface of the expansion valve body 3 (same as the bottom surface of the valve chamber 5) so as to surround the orifice outlet portion 9, and the connection pipe 30 (hereinafter “ An outflow pipe 30 ").
The inflow pipe 20 and the outflow pipe 30 are copper pipes and are welded to the expansion valve main body 3 made of brass, but the material forming the members is not limited.
Therefore, the refrigerant (not shown) flows into the valve chamber 5 via the inflow pipe 20, and the gap flow path 47 formed by the needle tip portion 4 and the orifice inlet portion 7 and the cylindrical orifice central portion 8. And then flows out into the outflow pipe 30 through the tapered orifice outlet 9.

(冷凍サイクル)
図3は、本発明の実施形態1に係る膨張弁が設置された冷凍サイクルの一例を示す冷媒回路図である。図3において、冷凍サイクル100は、圧縮機21と、凝縮器22と、絞り機構である膨張弁1と、蒸発器23と、これらは順次接続する配管24と、配管25(流入管20に相当する)と、配管26(流出管30に相当する)と、配管27とから構成されている。冷媒の質量流量は20Kg/hから200Kg/h程度である。
(Refrigeration cycle)
FIG. 3 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle in which the expansion valve according to Embodiment 1 of the present invention is installed. In FIG. 3, the refrigeration cycle 100 includes a compressor 21, a condenser 22, an expansion valve 1 that is a throttle mechanism, an evaporator 23, a pipe 24 that is sequentially connected, and a pipe 25 (corresponding to the inflow pipe 20). ), A pipe 26 (corresponding to the outflow pipe 30), and a pipe 27. The mass flow rate of the refrigerant is about 20 kg / h to 200 kg / h.

図4は、図3に示す冷凍サイクルのP−h線図の概念図である。図4中の位置「イ、ロ、ハ、ニ」は、それぞれ図3に示す冷凍サイクルの位置「イ、ロ、ハ、ニ」に対応している。
すなわち、膨張弁1において冷媒は等エンタルピ的(アイソエントロピック)に減圧されている。
4 is a conceptual diagram of a Ph diagram of the refrigeration cycle shown in FIG. The positions “I, B, C, and D” in FIG. 4 correspond to the positions “I, B, C, and D” of the refrigeration cycle shown in FIG.
That is, in the expansion valve 1, the refrigerant is decompressed in an isenthalpy (isoentropic) manner.

(冷媒の流れ)
図5は、本発明の実施形態1に係る膨張弁に流入する冷媒の状態を説明する部分模式図であって、(a)は本発明、(b)は比較のための従来の膨張弁である。
図5の(a)において、通常冷房運転は、絞り装置である膨張弁1のステッピングモーター10を駆動することにより、ニードル2のニードル先端部4がオリフィス入口部7に挿入され隙間流路47が形成される。すなわち、ステッピングモーター10を制御することにより、隙間面積が調整され、冷媒の流量が調整される。
たとえば、所定形状のニードル先端部4とオリフィス入口部7との構成において、ここを通過する冷媒の質量速度は400Kg/m2sから10000Kg/m3sとなるように隙間面積が調整される。
(Refrigerant flow)
FIGS. 5A and 5B are partial schematic diagrams for explaining the state of the refrigerant flowing into the expansion valve according to Embodiment 1 of the present invention, where FIG. 5A is the present invention, and FIG. 5B is a conventional expansion valve for comparison. is there.
In FIG. 5A, in the normal cooling operation, by driving the stepping motor 10 of the expansion valve 1 that is a throttle device, the needle tip 4 of the needle 2 is inserted into the orifice inlet 7 and the gap channel 47 is formed. It is formed. That is, by controlling the stepping motor 10, the gap area is adjusted and the flow rate of the refrigerant is adjusted.
For example, in the configuration of the needle tip portion 4 and the orifice inlet portion 7 having a predetermined shape, the clearance area is adjusted so that the mass velocity of the refrigerant passing through the needle tip portion 4 and the orifice inlet portion 7 is 400 kg / m 2 s to 10,000 kg / m 3 s.

この時、圧縮機21は空調負荷に応じた回転数で運転され、圧縮機21において高温高圧の蒸気冷媒になった冷媒(状態ロに同じ)は、凝縮器22(室外熱交換器に同じ)において凝縮液化され(状態ハに同じ)、さらに、膨張弁1において減圧されて低圧二相冷媒(状態ニに同じ)となる。そして、該低圧二相冷媒は蒸発器23に流入して蒸発気化し(状態イに同じ)、圧縮機21に戻って再度蒸気冷媒になる。   At this time, the compressor 21 is operated at the number of rotations corresponding to the air conditioning load, and the refrigerant that has become high-temperature and high-pressure vapor refrigerant in the compressor 21 (same as in state b) is the condenser 22 (same as in the outdoor heat exchanger). Is condensed and liquefied (same as in state c), and further decompressed at expansion valve 1 to become a low-pressure two-phase refrigerant (same as in state d). The low-pressure two-phase refrigerant flows into the evaporator 23 and evaporates (same as in the state A), returns to the compressor 21 and becomes vapor refrigerant again.

図5の(a)において、気液二相冷媒は水平設置された流入管20から弁室5流れ込む。そこで、ニードル先端部4とオリフィス入口部7で構成される隙間流路47に流入し、減圧しながら蒸気スラグを細分化し、液冷媒と蒸気冷媒とが混合された状態になる。そして、該混合状態の冷媒は従来よりもスムーズな流れになって、オリフィス中央部8(最小隙間部に同じ)で構成される主絞り部に流入するため、オリフィス中央部8における剥離流れを抑制する効果がある。したがって、不連続な圧力変動が発生せず、騒音が低下することになる。
すなわち、オリフィス中央部8の開始位置Eでの流れの剥離が発生しにくくなっている。騒音はこの剥離流れの発達と消滅の変動による騒音と剥離流れそのものが騒音の原因となっていると考えられるため、騒音低減対策として可能限り剥離を抑えることが好ましく、本発明はこの剥離を抑えている。
さらに、オリフィス出口部9では、オリフィス中央部8で構成される絞り部から流出する気液二相噴流を、流出側に拡大したテーパーにより整流することによって、噴流による圧力変動が低減でき、騒音を削減できるものである。
In FIG. 5A, the gas-liquid two-phase refrigerant flows into the valve chamber 5 from the inflow pipe 20 installed horizontally. Then, it flows into the gap flow path 47 constituted by the needle tip portion 4 and the orifice inlet portion 7, and subdivides the vapor slag while reducing the pressure, and the liquid refrigerant and the vapor refrigerant are mixed. Then, the refrigerant in the mixed state flows more smoothly than before, and flows into the main throttle portion composed of the orifice central portion 8 (the same as the smallest gap portion), so that the separation flow at the orifice central portion 8 is suppressed. There is an effect to. Therefore, discontinuous pressure fluctuations do not occur and noise is reduced.
That is, the flow separation at the start position E of the orifice central portion 8 is less likely to occur. Since noise is considered to be caused by fluctuations in the development and disappearance of this separation flow and the separation flow itself, it is preferable to suppress separation as much as possible as a noise reduction measure, and the present invention suppresses this separation. ing.
Further, the orifice outlet 9 rectifies the gas-liquid two-phase jet flowing out from the constricted portion formed by the orifice central portion 8 with a taper enlarged to the outflow side, thereby reducing pressure fluctuation due to the jet and reducing noise. It can be reduced.

図5の(b)において、従来、膨張弁には凝縮器で凝縮した冷媒が流れ込むが、冷媒の状態は使用環境条件や起動時などにより変動し、気液二相状態や液単相状態で流れ込むため、膨張弁において騒音が発生することは知られていた。特にスラグ流やプラグ流などのように、気液二相が断続した流動状態の気液二相冷媒で流れ込む場合には、膨張弁で不連続な騒音が発生する。
すなわち、従来のオリフィスでは、弁室50の底面が弁座60を形成しているため、弁座60の内周縁J(開始位置に同じ)とニードル40とによって隙間流路460が形成される。したがって、オリフィス入口では開始位置Jで流れの剥離が発生し、この剥離流れの発達と消滅との変動が、また、剥離流れそのものが、騒音の原因となっていると考えられる。このとき、剥離流れが発生した弁座60(絞り部、J−Kに同じ)では液冷媒が発泡を開始する部分(発泡点)が変動する。剥離流れ内部ではオリフィス入口部分(開始位置Jの近く)で渦が発生し、時間と共にこの渦が発達する。発達した渦は入口部分に止まることが出来なくなり、下流のほうに流されエネルギーが放出される。一連の渦の挙動により、発泡点が変動するため、冷媒の通過流速も変動する。その結果、圧力変動が生じ騒音が発生する。
In FIG. 5B, conventionally, the refrigerant condensed in the condenser flows into the expansion valve. However, the state of the refrigerant fluctuates depending on the use environment condition or at the time of start-up, and is in a gas-liquid two-phase state or liquid single-phase state. It has been known that noise occurs in the expansion valve due to the flow. In particular, when flowing in a gas-liquid two-phase refrigerant in a fluid state in which the gas-liquid two phases are intermittent, such as a slag flow or a plug flow, discontinuous noise is generated in the expansion valve.
That is, in the conventional orifice, since the bottom surface of the valve chamber 50 forms the valve seat 60, the clearance channel 460 is formed by the inner peripheral edge J (same as the start position) of the valve seat 60 and the needle 40. Therefore, flow separation occurs at the start position J at the orifice inlet, and the fluctuation between the development and disappearance of the separation flow, and the separation flow itself is considered to cause noise. At this time, the portion (foaming point) where the liquid refrigerant starts to foam fluctuates in the valve seat 60 (the same as the throttle portion and J-K) where the separation flow has occurred. Inside the separation flow, a vortex is generated at the orifice inlet portion (near start position J), and this vortex develops with time. The developed vortex can no longer stop at the entrance, and is flowed downstream to release energy. Due to the behavior of a series of vortices, the foaming point varies, so the flow rate of the refrigerant also varies. As a result, pressure fluctuation occurs and noise is generated.

(オリフィス形状)
図6および図7は、本発明の実施形態1に係る膨張弁の形状と騒音レベルとの関係を示す測定結果である。
図6において、ニードル先端部4とオリフィス入口部7とのなす角度αを便宜上「テーパー角度」と称し、該テーパー角度と騒音レベル差の関係を、テーパー角度30°の騒音レベルを0として規格化して示している。この騒音レベルは膨張弁1のオリフィス入口部7にテーパーを設け、気液二相流体を流して騒音を測定した結果である。テーパー角度60°以下で騒音レベルが小さくなることがわかる。
(Orifice shape)
6 and 7 are measurement results showing the relationship between the shape of the expansion valve and the noise level according to Embodiment 1 of the present invention.
In FIG. 6, the angle α formed between the needle tip 4 and the orifice inlet 7 is referred to as a “taper angle” for convenience, and the relationship between the taper angle and the noise level difference is normalized with the noise level at a taper angle of 30 ° being zero. It shows. This noise level is a result of measuring noise by providing a taper at the orifice inlet 7 of the expansion valve 1 and flowing a gas-liquid two-phase fluid. It can be seen that the noise level is reduced when the taper angle is 60 ° or less.

図7において、オリフィス中央部8の内径dで規格化したオリフィス入口部7の長さと膨張弁1の騒音レベル差の関係を示す。オリフィス入口部7の長さとはオリフィス入口部7の開始位置Dと終了位置Eとの垂直方向(図中、上下方向に同じ)の距離で定義する。騒音レベル差はオリフィス入口部7の長さ5dの騒音レベルを0とし、各長さに対して騒音レベルを示したものである。オリフィス入口部7の長さ5dで騒音レベルが最も低くなっている。   In FIG. 7, the relationship between the length of the orifice inlet portion 7 normalized by the inner diameter d of the orifice central portion 8 and the noise level difference of the expansion valve 1 is shown. The length of the orifice inlet portion 7 is defined by the distance between the start position D and the end position E of the orifice inlet portion 7 in the vertical direction (same in the vertical direction in the figure). The noise level difference represents the noise level with respect to each length, with the noise level of the length 5d of the orifice inlet 7 being 0. The noise level is the lowest at the length 5d of the orifice inlet 7.

(その他の実施形態)
以上は、冷媒が、流入管20を経由して弁室5に流入し、ニードル先端部4とオリフィス入口部7とによって形成された隙間流路47と、オリフィス中央部8と、テーパ状のオリフィス出口部9とを通過して、流出管30内に流出されるものを示しているが、本発明はこれに限定するものはなく、冷媒がこれと反対に流れるものであってもよい。
すなわち、膨張弁1の底面から冷媒が弁室5に流入し、側面から流出する場合や、四方弁によって冷房運転と暖房運転とが切り替わる冷凍サイクルにおいて、スラグ流やプラグ流のような断続した気液二相冷媒がオリフィス出口部9に流入した場合も同様に、オリフィス出口部9の出口側テーパーにより、蒸気冷媒は細分化され液冷媒と混合されると同時に整流化される。そして、オリフィス中央部8を経由して、オリフィス入口部7とニードル先端部4とで構成される隙間流路(絞り部)へ流入するため圧力変動が抑制され騒音が低減される効果がある。
(Other embodiments)
As described above, the refrigerant flows into the valve chamber 5 through the inflow pipe 20, and the gap channel 47 formed by the needle tip portion 4 and the orifice inlet portion 7, the orifice central portion 8, and the tapered orifice. Although what passes through the exit part 9 and flows out into the outflow pipe 30 is shown, the present invention is not limited to this, and the refrigerant may flow in the opposite direction.
That is, when refrigerant flows into the valve chamber 5 from the bottom surface of the expansion valve 1 and flows out from the side surface, or in a refrigeration cycle in which cooling operation and heating operation are switched by a four-way valve, intermittent air such as slag flow or plug flow is used. Similarly, when the liquid two-phase refrigerant flows into the orifice outlet portion 9, the vapor refrigerant is subdivided and mixed with the liquid refrigerant and simultaneously rectified by the outlet side taper of the orifice outlet portion 9. And since it flows into the clearance channel (throttle part) comprised by the orifice inlet part 7 and the needle front-end | tip part 4 via the orifice center part 8, it is effective in a pressure fluctuation being suppressed and noise being reduced.

本発明の実施形態1に係る膨張弁の一例を示す構成図。The block diagram which shows an example of the expansion valve which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る膨張弁の一例を示す断面構成図。The cross-sectional block diagram which shows an example of the expansion valve which concerns on Embodiment 1 of this invention. 図2に示す膨張弁が設置された冷凍サイクルの一例を示す冷媒回路図。The refrigerant circuit figure which shows an example of the refrigerating cycle in which the expansion valve shown in FIG. 2 was installed. 図3に示す冷凍サイクルのP−h線図の概念図。The conceptual diagram of the Ph diagram of the refrigerating cycle shown in FIG. 図2に示す膨張弁に流入する冷媒の状態を説明する部分模式図。The partial schematic diagram explaining the state of the refrigerant | coolant which flows in into the expansion valve shown in FIG. 図2に示す膨張弁の形状と騒音レベルとの関係を示す測定結果。The measurement result which shows the relationship between the shape of the expansion valve shown in FIG. 2, and a noise level. 図2に示す膨張弁の形状と騒音レベルとの関係を示す測定結果。The measurement result which shows the relationship between the shape of the expansion valve shown in FIG. 2, and a noise level.

符号の説明Explanation of symbols

1:電気式膨張弁、2:ニードル、3:膨張弁本体、4:ニードル先端部、5:弁室、6:弁座、7:オリフィス入口部、8:オリフィス中央部、9:オリフィス出口部、10:ステッピングモーター、20:流入管、21:圧縮機、22:凝縮器(室外熱交換器)、23:蒸発器、24:配管、25:配管、26:配管、27:配管、30:流出管、31:ニードル貫通穴、32:流入口、33:流出管設置溝、47:隙間流路、α:ニードル先端部とオリフィス入口部角とのなす角度、β:オリフィス出口部のテーパー角度、A:最終端部位置(ニードル)、C:先端位置(ニードル)、D:開始位置(オリフィス入口部)、E:終了位置(オリフィス入口部)、F:開始位置(オリフィス出口部)、G:終了位置(オリフィス出口部)、d:内径(オリフィス中央部)。
1: electric expansion valve, 2: needle, 3: expansion valve body, 4: needle tip, 5: valve chamber, 6: valve seat, 7: orifice inlet, 8: orifice central, 9: orifice outlet 10: stepping motor, 20: inflow pipe, 21: compressor, 22: condenser (outdoor heat exchanger), 23: evaporator, 24: pipe, 25: pipe, 26: pipe, 27: pipe, 30: Outflow pipe, 31: Needle through hole, 32: Inlet, 33: Outlet pipe installation groove, 47: Clearance channel, α: Angle formed by needle tip and orifice inlet angle, β: Taper angle of orifice outlet A: final end position (needle), C: tip position (needle), D: start position (orifice inlet section), E: end position (orifice inlet section), F: start position (orifice outlet section), G : End position (orifice outlet), d: Inner diameter (orifice center).

Claims (6)

側面に形成された流体の流入口および底面に形成された流体の流出口を具備する弁室と、
該弁室の天面を貫通して前記流出口に向かって進退自在なニードルとを有する膨張弁であって、
前記流出口に流出方向に向かって除々に径小になるオリフィス入口部と、該オリフィス入口部の流出側に略筒状のオリフィス中央部とが形成され、
前記ニードルの先端に流出方向に向かって除々に径小になるニードル先端部が形成され、
前記オリフィス入口部と前記ニードル先端部とによって、流出方向に向かって除々に狭くなる隙間流路が形成されることを特徴とする膨張弁。
A valve chamber having a fluid inlet formed on a side surface and a fluid outlet formed on a bottom surface;
An expansion valve having a needle that penetrates the top surface of the valve chamber and is movable forward and backward toward the outlet,
An orifice inlet portion that gradually decreases in diameter toward the outflow direction at the outflow port, and a substantially cylindrical orifice central portion is formed on the outflow side of the orifice inlet portion,
A needle tip portion that gradually becomes smaller in diameter toward the outflow direction is formed at the tip of the needle,
An expansion valve characterized in that a gap channel that gradually narrows toward the outflow direction is formed by the orifice inlet and the needle tip.
側面に形成された流体の流入口および底面に形成された流体の流出口を具備する弁室と、
該弁室の天面を貫通して前記流出口に向かって進退自在なニードルとを有する膨張弁であって、
前記流出口に、流出方向に向かって除々に径小になるオリフィス入口部と、該オリフィス入口部の流出側に略筒状のオリフィス中央部と、該オリフィス中央部の流出側に流出方向に向かって除々に径大になるオリフィス出口部とが形成され、
前記ニードルの先端に流出方向に向かって除々に径小になるニードル先端部が形成され、
前記オリフィス入口部と前記ニードル先端部とによって、流出方向に向かって除々に狭くなる隙間流路が形成されることを特徴とする膨張弁。
A valve chamber having a fluid inlet formed on a side surface and a fluid outlet formed on a bottom surface;
An expansion valve having a needle that penetrates the top surface of the valve chamber and is movable forward and backward toward the outlet,
An orifice inlet portion that gradually decreases in diameter toward the outflow direction, an approximately cylindrical orifice central portion on the outflow side of the orifice inlet portion, and an outflow side of the orifice central portion in the outflow direction. And an orifice outlet that gradually increases in diameter,
A needle tip portion that gradually becomes smaller in diameter toward the outflow direction is formed at the tip of the needle,
An expansion valve characterized in that a gap channel that gradually narrows toward the outflow direction is formed by the orifice inlet and the needle tip.
前記オリフィス入口部の内面と前記ニードル先端部の外面とのなす角度が60°以下であることを特徴とする請求項1または2記載の膨張弁。   The expansion valve according to claim 1 or 2, wherein an angle formed by an inner surface of the orifice inlet portion and an outer surface of the needle tip portion is 60 ° or less. 前記オリフィス出口部のテーパ角が60°以下であることを特徴とする請求項2または3記載の膨張弁。   The expansion valve according to claim 2 or 3, wherein the orifice outlet has a taper angle of 60 ° or less. 前記オリフィス入口部の長さが前記オリフィス中央部の直径の5倍以上であることを特徴とする請求項1乃至4の何れかに記載の膨張弁。   The expansion valve according to any one of claims 1 to 4, wherein a length of the orifice inlet portion is not less than five times a diameter of the orifice central portion. 前記オリフィス出口部の長さが前記オリフィス中央部の直径の5倍以上であることを特徴とする請求項2乃至5の何れかに記載の膨張弁。
The expansion valve according to any one of claims 2 to 5, wherein a length of the orifice outlet portion is not less than five times a diameter of the orifice central portion.
JP2005219112A 2005-07-28 2005-07-28 Expansion valve Pending JP2007032980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219112A JP2007032980A (en) 2005-07-28 2005-07-28 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219112A JP2007032980A (en) 2005-07-28 2005-07-28 Expansion valve

Publications (1)

Publication Number Publication Date
JP2007032980A true JP2007032980A (en) 2007-02-08

Family

ID=37792453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219112A Pending JP2007032980A (en) 2005-07-28 2005-07-28 Expansion valve

Country Status (1)

Country Link
JP (1) JP2007032980A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589206A (en) * 2011-01-14 2012-07-18 浙江三花股份有限公司 Refrigerating system and thermal expansion valve thereof
KR101313153B1 (en) * 2011-06-15 2013-09-30 한국기계연구원 Electric expansion valve according to the design of needle shape
WO2013153980A1 (en) * 2012-04-09 2013-10-17 ダイキン工業株式会社 Air-conditioning device
WO2013190768A1 (en) * 2012-06-22 2013-12-27 株式会社デンソー Decompression device
WO2015012047A1 (en) * 2013-07-23 2015-01-29 カヤバ工業株式会社 Control valve
WO2017217123A1 (en) * 2016-06-15 2017-12-21 株式会社テイエルブイ Valve mechanism
JP6435430B1 (en) * 2018-03-20 2018-12-05 株式会社テイエルブイ Valve mechanism
JP2021121758A (en) * 2017-06-15 2021-08-26 株式会社鷺宮製作所 Flow rate control valve and refrigeration cycle system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101938A (en) * 1992-08-27 1994-04-12 Hitachi Ltd Expansion valve
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JPH0942510A (en) * 1995-07-27 1997-02-14 Daikin Ind Ltd Electric expansion valve for refrigerator and refrigerator
JPH1137311A (en) * 1997-05-23 1999-02-12 Fuji Koki Corp Motor-operated valve
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP2000274544A (en) * 1999-03-25 2000-10-03 Pacific Ind Co Ltd Electric expansion valve
JP2005500484A (en) * 2001-08-17 2005-01-06 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー Flow control valve with low pressure drop ratio coefficient

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101938A (en) * 1992-08-27 1994-04-12 Hitachi Ltd Expansion valve
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JPH0942510A (en) * 1995-07-27 1997-02-14 Daikin Ind Ltd Electric expansion valve for refrigerator and refrigerator
JPH1137311A (en) * 1997-05-23 1999-02-12 Fuji Koki Corp Motor-operated valve
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP2000274544A (en) * 1999-03-25 2000-10-03 Pacific Ind Co Ltd Electric expansion valve
JP2005500484A (en) * 2001-08-17 2005-01-06 フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー Flow control valve with low pressure drop ratio coefficient

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589206A (en) * 2011-01-14 2012-07-18 浙江三花股份有限公司 Refrigerating system and thermal expansion valve thereof
KR101313153B1 (en) * 2011-06-15 2013-09-30 한국기계연구원 Electric expansion valve according to the design of needle shape
CN104220821A (en) * 2012-04-09 2014-12-17 大金工业株式会社 Air-conditioning device
WO2013153980A1 (en) * 2012-04-09 2013-10-17 ダイキン工業株式会社 Air-conditioning device
JP2013217577A (en) * 2012-04-09 2013-10-24 Daikin Industries Ltd Air conditioning device
CN104220821B (en) * 2012-04-09 2015-11-25 大金工业株式会社 Aircondition
JP2014005968A (en) * 2012-06-22 2014-01-16 Denso Corp Decompression device
US10047986B2 (en) 2012-06-22 2018-08-14 Denso Corporation Decompression device
CN104380012B (en) * 2012-06-22 2016-06-08 株式会社电装 Decompressor
CN104380012A (en) * 2012-06-22 2015-02-25 株式会社电装 Decompression device
WO2013190768A1 (en) * 2012-06-22 2013-12-27 株式会社デンソー Decompression device
KR20160013186A (en) * 2013-07-23 2016-02-03 케이와이비 가부시키가이샤 Control valve
JP2015021609A (en) * 2013-07-23 2015-02-02 カヤバ工業株式会社 Control valve
KR101885419B1 (en) * 2013-07-23 2018-08-03 케이와이비 가부시키가이샤 Control valve
WO2015012047A1 (en) * 2013-07-23 2015-01-29 カヤバ工業株式会社 Control valve
WO2017217123A1 (en) * 2016-06-15 2017-12-21 株式会社テイエルブイ Valve mechanism
JP6310623B1 (en) * 2016-06-15 2018-04-11 株式会社テイエルブイ Valve mechanism
US10738894B2 (en) 2016-06-15 2020-08-11 Tlv Co., Ltd. Valve mechanism for removing foreign matter at valve port
JP2021121758A (en) * 2017-06-15 2021-08-26 株式会社鷺宮製作所 Flow rate control valve and refrigeration cycle system
JP7256225B2 (en) 2017-06-15 2023-04-11 株式会社鷺宮製作所 Flow control valve and refrigeration cycle system
JP6435430B1 (en) * 2018-03-20 2018-12-05 株式会社テイエルブイ Valve mechanism
JP2019163810A (en) * 2018-03-20 2019-09-26 株式会社テイエルブイ Valve mechanism

Similar Documents

Publication Publication Date Title
JP2007032979A (en) Refrigerating cycle device
JP2007032980A (en) Expansion valve
JP2006275452A (en) Expansion valve
US8282025B2 (en) Ejector
JP5575225B2 (en) Ejector, driving fluid foaming method, and refrigeration cycle apparatus
JP5452367B2 (en) Gas-liquid separator and refrigeration cycle apparatus
WO2015015752A1 (en) Ejector
JP2015031184A (en) Ejector
US6604379B2 (en) Ejector for ejector cycle system
WO2015063854A1 (en) Expansion valve
JP2006336992A (en) Air conditioner
JP2009299609A (en) Ejector
JP3435626B2 (en) Air conditioner
JP5535098B2 (en) Refrigeration cycle equipment
JP2005351605A (en) Expansion valve and refrigeration device
JP2006266524A (en) Accumulator
JP2008145030A (en) Multi-chamber type air conditioner
JP2005221095A (en) Electronic expansion valve and air conditioner
JP2009162116A (en) Ejector and refrigeration cycle device using the same
JP2010139196A (en) Heat exchanger
JP2008128603A (en) Electric expansion valve
JP2006057998A (en) Heat exchanger
JP6138271B2 (en) Expansion valve and refrigeration cycle apparatus equipped with the same
JP2008107054A (en) Pressure reducing device and refrigerating cycle device
JP2006098020A (en) Air conditioner and strainer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100216