JPH0626738A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH0626738A
JPH0626738A JP4180708A JP18070892A JPH0626738A JP H0626738 A JPH0626738 A JP H0626738A JP 4180708 A JP4180708 A JP 4180708A JP 18070892 A JP18070892 A JP 18070892A JP H0626738 A JPH0626738 A JP H0626738A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
pipe
flow
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4180708A
Other languages
Japanese (ja)
Inventor
Ryoji Sato
良次 佐藤
Naoto Katsumata
直登 勝又
Shinichi Shimoide
新一 下出
Tomomi Umeda
知巳 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4180708A priority Critical patent/JPH0626738A/en
Publication of JPH0626738A publication Critical patent/JPH0626738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)

Abstract

PURPOSE:To reduce the generation of refrigerant noise and vibration noise during the passage of the refrigerant by providing a refrigerant flow form control pipe having a suction pipe and a delivery pipe arranged on the high pressure side of an expansion valve and providing a in the middle of the control pipe with porous plate having a plurality of refrigerant flow holes. CONSTITUTION:A refrigerant flow form control pipe 13 is arranged as nearer the expansion valve 5 side as possible in a piping 8 for interconnecting an expansion valve 5 and a condenser 3. The mechanism of the refrigerant flow form control pipe 13 comprises a suction pipe 15 and a delivery pipe 19, expanded and contracted at a constant angle being below 10 deg. at which a flow does not peel, and a porous plate 18 located therebetween and having a plurality of refrigerant flow holes 17 having an area equal to the line sectional areas of a refrigerant piping 8 on the condenser 3 side and a refrigerant piping 20 on the expansion valve 5 side. By damping energy in a way that air bubbles flowing to the orifice of the expansion valve 5 are previously separated into fine pieces, the generation of refrigerant noise during the generation of a slug flow where the flow of a refrigerant is formed in the shape of a cannonball is reduced and the generation of noise on the low frequency side owing to collision with the expansion valve 5 can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和装置の冷凍サ
イクルから発生する冷媒音の低減用として、冷媒の流動
制御により騒音低減を可能とする装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus capable of reducing noise by controlling a flow of a refrigerant for reducing a refrigerant noise generated from a refrigeration cycle of an air conditioner.

【0002】[0002]

【従来の技術】従来、空調機用冷凍サイクルでは、蒸発
器,凝縮器及び減圧部(膨張弁またはキャピラリ管)で
構成し、各機器は、順次、配管で接続されて閉回路とな
り、このなかに冷媒が封入されて動作する。このような
装置で、近年、冷媒が流れる際に生じる間欠的な騒音
(以後、冷媒音と称す)に対して、快適性向上の要求の
高まりのなかで、低騒音化を求める声が強まっている。
なかでも、きめこまかい冷媒の流量制御が可能なため、
近年、使用が増えている膨張弁から発生する冷媒音に対
して、従来から幾つかの騒音を防止する方法が試みられ
ている。例えば実開平3−38599号公報では、膨張弁のオ
リフィス上流側に、高圧側の圧力を受けて移動するスプ
リング付きの複数の連通孔から形成された摺動板を設
け、摺動板の移動によって連通孔の一部が開閉されるよ
うにしたものがある。この方法によれば、サイクル運転
時には、摺動板が高圧の冷媒圧力によって弁本体の段部
に移動し、連通孔が絞られて騒音の発生を防止するとと
もに、定常運転時には、摺動板が冷媒圧力の低下に応じ
て弁本体の段部から離れて、連通孔の連通面積が広げら
れて抵抗を減少させる方法等が提案されている。
2. Description of the Related Art Conventionally, a refrigerating cycle for an air conditioner is composed of an evaporator, a condenser and a decompression section (expansion valve or capillary tube), and each device is sequentially connected by piping to form a closed circuit. The refrigerant is enclosed in the operation. In recent years, with such a device, there has been an increasing demand for noise reduction in response to an increasing demand for improvement in comfort with respect to intermittent noise generated when the refrigerant flows (hereinafter referred to as refrigerant noise). There is.
Above all, because it is possible to control the flow rate of the refrigerant,
In recent years, there have been attempts to prevent some noises from the refrigerant noises generated from the expansion valve, which has been used more and more. For example, in Japanese Utility Model Laid-Open No. 3-38599, a sliding plate formed of a plurality of communication holes with springs that move by receiving pressure on the high pressure side is provided on the upstream side of the orifice of the expansion valve, and the sliding plate moves There is one in which a part of the communication hole is opened and closed. According to this method, during the cycle operation, the sliding plate moves to the step portion of the valve body due to the high pressure of the refrigerant, and the communication hole is throttled to prevent the generation of noise. There has been proposed a method of separating from the stepped portion of the valve body in accordance with the decrease of the refrigerant pressure to widen the communication area of the communication hole to reduce the resistance.

【0003】[0003]

【発明が解決しようとする課題】膨張弁から発生する冷
媒音の大きさは、上流側高圧室21に流入する冷媒の流
動状態に影響される。特に液と蒸気の2相流動状態でな
かでも砲弾形をした気泡と液が交互に現われるスラグ流
時に最も騒音が、大きくなることを本発明者らの実験的
研究から明らかになっている。従来の膨張弁では、円錐
形上をした弁体25の先端と円筒状の弁座22から形成
されるオリフィス23で、高圧の液冷媒を急激に減圧し
て冷凍サイクルを構成している。ここで、密度差の大き
い蒸気液の2相流体が、交互に一定開度のオリフィス2
3に流入する際に大きな圧力脈動が生じる。一方、開放
口26では、円錐状の弁体25や弁座22の間で冷媒が
周方向に急激に縮流し、その際減圧されて拡散し噴流と
なる。その噴流が、弁本体24の壁に衝突することで圧
力パルスを発生し、特定周期の渦を放出するため冷媒音
が増大する。更に、噴流の流れ方向が強制的に直角方向
に変えられるため、その圧力損失により開放口26の直
後に冷媒噴流による渦が生じて弁体25や弁座22を振
動させ音の増大をもたらす。
The loudness of the refrigerant noise generated from the expansion valve is influenced by the flow state of the refrigerant flowing into the upstream high pressure chamber 21. In particular, it has been clarified from the experimental studies by the present inventors that the noise becomes the largest in the slag flow in which the bullet-shaped bubbles and the liquid alternately appear even in the two-phase flow state of the liquid and the vapor. In the conventional expansion valve, the orifice 23 formed by the tip of the conical valve body 25 and the cylindrical valve seat 22 sharply depressurizes the high-pressure liquid refrigerant to form a refrigeration cycle. Here, the two-phase fluid of the vapor liquid having a large density difference is alternately applied to the orifices 2 having a constant opening degree.
Large pressure pulsations occur when flowing into 3. On the other hand, at the opening 26, the refrigerant sharply contracts in the circumferential direction between the conical valve body 25 and the valve seat 22, and at that time, the refrigerant is decompressed and diffused to form a jet flow. The jet flow collides with the wall of the valve body 24 to generate a pressure pulse, and a vortex with a specific cycle is emitted, so that the refrigerant noise increases. Furthermore, since the flow direction of the jet flow is forcibly changed to the right angle direction, a vortex due to the refrigerant jet flow is generated immediately after the opening 26 due to the pressure loss, and the valve body 25 and the valve seat 22 are vibrated to increase the sound.

【0004】本発明の目的は、冷媒音及び冷媒が通過す
る際に生じる振動音の発生を低減しえる膨張弁対応の空
調機用騒音防止装置を提供することにある。
An object of the present invention is to provide a noise suppression device for an air conditioner corresponding to an expansion valve, which can reduce the generation of refrigerant noise and vibration noise generated when the refrigerant passes through.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は冷凍サイクルで冷媒流量を任意に可変な膨
張弁を備えた空気調和装置において、膨張弁5の高圧側
上流に10度以内の一定角度で拡大及び縮小する吸入管
15及び吐出管19を有する冷媒流動様式制御管13を
備え、この制御管13の中間に吸入管15及び吐出管1
9に接続した凝縮器3側の冷媒配管8及び膨張弁5側の
冷媒配管20の管断面積と等しい複数の冷媒流通孔17
を有する多孔板18を備えた。
In order to solve the above-mentioned problems, the present invention is an air conditioner equipped with an expansion valve in which a refrigerant flow rate can be arbitrarily changed in a refrigeration cycle, and is 10 degrees upstream of the expansion valve 5 on the high pressure side. A refrigerant flow mode control pipe 13 having a suction pipe 15 and a discharge pipe 19 that expand and contract at a fixed angle within is provided, and the suction pipe 15 and the discharge pipe 1 are provided in the middle of the control pipe 13.
A plurality of refrigerant circulation holes 17 having the same cross-sectional area as the refrigerant pipe 8 on the condenser 3 side and the refrigerant pipe 20 on the expansion valve 5 side connected to the pipe 9.
The perforated plate 18 having

【0006】[0006]

【作用】膨張弁を用いた空気調和装置において、サイク
ル運転時に特に音の大きい冷媒の流れが砲弾形をしたス
ラグ流時に発生する冷媒音を低減するには、膨張弁5に
流入する気泡を事前に複数の冷媒流通孔17を有する多
孔板18で細かくすることである。この際、この部分で
減圧したり抵抗増大をもたらしたりすることを防ぐため
に、10度以内の一定角度で拡大及び縮小する吸入管1
5及び吐出管19からなる冷媒流動様式制御管13の中
に多孔板18を設けている。
In the air conditioner using the expansion valve, in order to reduce the refrigerant noise generated when the noisy refrigerant flow is a bullet-shaped slag flow during cycle operation, the bubbles flowing into the expansion valve 5 are preliminarily set. In other words, the perforated plate 18 having a plurality of refrigerant circulation holes 17 is used to make it fine. At this time, in order to prevent decompression or increase in resistance at this portion, the suction pipe 1 that expands and contracts at a constant angle within 10 degrees.
The perforated plate 18 is provided in the refrigerant flow mode control pipe 13 including the discharge pipe 5 and the discharge pipe 19.

【0007】[0007]

【実施例】以下、本発明を空調装置の冷凍サイクルに適
用した一実施例を図1から図7に基づいて詳細に説明す
る。図2は、従来の冷凍サイクルのシステム構成であ
り、図1は本発明を適用したシステムの系統図である。
ここで、簡単にそのサイクル(冷房時)を図2で説明す
る。図中の圧縮機1の吐き出し側には、凝縮器3が接続
されており、この凝縮器3は圧縮機1から吐出された蒸
気冷媒を、冷却ファン4によって送風される冷却空気に
より凝縮する(高圧の液冷媒)。次に凝縮した液冷媒
は、本発明の対象である膨張弁5に流入し、ここで入っ
てきた液冷媒を減圧膨張する。膨張弁5で減圧膨張した
気液2相冷媒は、その下流に接続された蒸発器6で送風
ファン12で送風される室内空気と熱交換して液冷媒を
蒸発させる。その後、蒸発器6で蒸発して蒸気となった
冷媒は、圧縮機1に流入し再度圧縮される。この冷凍サ
イクルにおいて、運転時に膨張弁5の上流側は、基本的
には液流の高圧冷媒だけが流れているのが望ましいが、
配管設置の過程で曲ったり、長配管による抵抗増加によ
り、液冷媒中に図3に示すような砲弾形をした気泡29
と液14が交互に流れるスラグ流が発生することがあ
る。特にスラグ流が、図3のように垂直管の中を、矢印
29のように下から上へと膨張弁5に向かって流れる場
合に特に騒音が大きくなることが筆者らの実験で分かっ
ている。そこで、本実施例のサイクル構成を図1に、ま
た、図4,図5,図6には具体的な説明図を、さらに図
7には、その効果を示す。本発明では、図1に示すよう
に膨張弁5と凝縮器3を接続している配管8の間になる
べく膨張弁5側に近い所に冷媒流動様式の制御管13を
備えた。この冷媒流動様式の制御管13の機構は、図4
に示すように、流れが剥離しない10度以内の一定角度
で拡大及び縮小する吸入管15及び吐出管19と、その
中間に凝縮器3側の冷媒配管8及び膨張弁5側の冷媒配
管20の管路断面積と等しい複数の冷媒流通孔17を有
する多孔板18からなっている。図5は、膨張弁5の弁
座22と冷媒流動様式制御管13の吐出管19を直接接
続したものである。この場合の複数の冷媒流通孔17の
合計面積は冷媒配管8管路断面積と等しくし、また、図
6は、複数の冷媒流通孔17を有する多孔板18の断面
積を示した一例であるが、何れも孔の合計面積は冷媒配
管8及び膨張弁5側の冷媒配管20の管路断面積と等し
くなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a refrigerating cycle of an air conditioner will be described in detail below with reference to FIGS. 2 is a system configuration of a conventional refrigeration cycle, and FIG. 1 is a system diagram of a system to which the present invention is applied.
Here, the cycle (during cooling) will be briefly described with reference to FIG. A condenser 3 is connected to the discharge side of the compressor 1 in the figure, and the condenser 3 condenses the vapor refrigerant discharged from the compressor 1 with cooling air blown by a cooling fan 4 ( High pressure liquid refrigerant). Next, the condensed liquid refrigerant flows into the expansion valve 5 which is the object of the present invention, and the liquid refrigerant that has entered here is decompressed and expanded. The gas-liquid two-phase refrigerant decompressed and expanded by the expansion valve 5 exchanges heat with the room air blown by the blower fan 12 in the evaporator 6 connected to the downstream side thereof to evaporate the liquid refrigerant. After that, the refrigerant that has been vaporized in the evaporator 6 to become vapor flows into the compressor 1 and is compressed again. In this refrigeration cycle, it is basically desirable that only the high-pressure refrigerant in the liquid flow flows on the upstream side of the expansion valve 5 during operation,
Due to bending in the process of installing the pipes and increase in resistance due to long pipes, cannonball-shaped bubbles 29 in the liquid refrigerant as shown in FIG.
A slag flow in which the liquid 14 and the liquid 14 alternately flow may occur. It has been known from the experiments by the authors that the noise becomes particularly loud when the slag flow flows in the vertical pipe from the bottom to the top as shown by the arrow 29 toward the expansion valve 5 as shown in FIG. . Therefore, FIG. 1 shows the cycle configuration of the present embodiment, FIGS. 4, 5 and 6 show concrete explanation diagrams, and FIG. 7 shows its effect. In the present invention, as shown in FIG. 1, the control pipe 13 of the refrigerant flow mode is provided between the expansion valve 5 and the pipe 8 connecting the condenser 3 and as close to the expansion valve 5 side as possible. The mechanism of the control pipe 13 of this refrigerant flow mode is shown in FIG.
As shown in FIG. 3, the suction pipe 15 and the discharge pipe 19 that expand and contract at a constant angle within 10 degrees without separation of the flow, and the refrigerant pipe 8 on the condenser 3 side and the refrigerant pipe 20 on the expansion valve 5 side in the middle thereof It is composed of a perforated plate 18 having a plurality of refrigerant flow holes 17 having the same cross-sectional area as the pipeline. In FIG. 5, the valve seat 22 of the expansion valve 5 and the discharge pipe 19 of the refrigerant flow mode control pipe 13 are directly connected. In this case, the total area of the plurality of refrigerant circulation holes 17 is equal to the sectional area of the refrigerant pipe 8 and FIG. 6 is an example showing the sectional area of the perforated plate 18 having the plurality of refrigerant circulation holes 17. However, in all cases, the total area of the holes is equal to the sectional area of the pipelines of the refrigerant pipe 8 and the refrigerant pipe 20 on the expansion valve 5 side.

【0008】次に、本実施例における複数の冷媒流通孔
17を有する多孔板18からなる冷媒流動様式の制御管
13の作用について説明する。図3に示したような冷媒
の流れが砲弾形をしたスラグ流時に発生する冷媒音は、
大きな気泡30が直接膨張弁5の弁座22や本体24等
に衝突して生じるので、膨張弁5に流入する気泡をあら
かじめ細かくしてエネルギを減衰し、その後、膨張弁5
のオリフィス23に流入させることである。そこで、本
発明が生まれたが、この冷媒流動様式の制御管13によ
って流れ抵抗が増大したり、また、ここで減圧したりす
ると冷凍サイクルの効率を低下させることにつながるの
で、これらを防止するために多孔板18の前後を結ぶ配
管は、図5に示すθが10度以内の一定角度で拡大及び
縮小する吸入管15及び吐出管19からなり、多孔板1
8に設けた冷媒流通孔17の合計面積が、冷媒配管8及
び膨張弁5側の冷媒配管20の管路断面積と等しくした
ものである。図7は、従来の膨張弁5だけを用いた場合
と、図1に示す本実施例における騒音を周波数領域で比
較した測定結果を示す。ただし、この時の実験条件は、
スラグ流を意識的に発生させて行った。この図から明ら
かなように、本実施例を用いることで従来の膨張弁5だ
けに比べ、冷媒音で問題となる低周波数側の250から
800Hzにかけて5から15dB低減している。これ
より本発明の冷媒流動様式制御管13と膨張弁5を組み
合わせた方法は、冷媒音の低減に効果が大きいことが分
かる。
Next, the operation of the control pipe 13 of the refrigerant flow mode, which is composed of the perforated plate 18 having the plurality of refrigerant circulation holes 17 in this embodiment, will be described. The refrigerant noise generated when the refrigerant flow as shown in FIG. 3 is a bullet-shaped slag flow is
Since the large bubbles 30 directly collide with the valve seat 22 and the main body 24 of the expansion valve 5, the bubbles flowing into the expansion valve 5 are finely divided in advance to attenuate the energy, and then the expansion valve 5
Flow into the orifice 23 of Therefore, the present invention was born. However, if the flow resistance is increased by the control pipe 13 of the refrigerant flow mode or if the pressure is reduced here, the efficiency of the refrigeration cycle is reduced, and therefore, in order to prevent these. The pipe connecting the front and rear of the perforated plate 18 is composed of a suction pipe 15 and a discharge pipe 19 that expand and contract at a constant angle θ shown in FIG.
The total area of the refrigerant circulation holes 17 provided in 8 is equal to the sectional area of the refrigerant pipe 8 and the refrigerant pipe 20 on the expansion valve 5 side. FIG. 7 shows a measurement result comparing noise in the frequency domain in the case where only the conventional expansion valve 5 is used and in the present embodiment shown in FIG. However, the experimental conditions at this time are
The slag flow was intentionally generated. As is clear from this figure, by using this embodiment, it is reduced by 5 to 15 dB from 250 to 800 Hz on the low frequency side, which is a problem with the refrigerant noise, compared to the conventional expansion valve 5 alone. From this, it can be seen that the method of combining the refrigerant flow mode control pipe 13 and the expansion valve 5 of the present invention is highly effective in reducing the refrigerant noise.

【0009】[0009]

【発明の効果】本発明によれば、冷媒の流れが砲弾形を
したスラグ流時に発生する冷媒音の低減を可能とするた
めに、膨張弁のオリフィスに流入する気泡をあらかじめ
細かくしてエネルギを減衰させるようにしたので、膨張
弁に衝突して発生する低周波数側の音を低減できる。
According to the present invention, in order to make it possible to reduce the refrigerant noise generated when the refrigerant flow is a bullet-shaped slag flow, the air bubbles flowing into the orifice of the expansion valve are previously finely divided to save energy. Since the sound is damped, it is possible to reduce the sound on the low frequency side generated by the collision with the expansion valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例を用いた場合の系統図。FIG. 1 is a system diagram when this embodiment is used.

【図2】従来の膨張弁だけの場合の系統図。FIG. 2 is a system diagram of a conventional expansion valve only.

【図3】冷媒音が最も大きいスラグ流の流動の説明図。FIG. 3 is an explanatory view of the flow of a slag flow having the largest refrigerant noise.

【図4】本実施例の具体的な断面図。FIG. 4 is a specific cross-sectional view of this embodiment.

【図5】本実施例の具体的な断面図。FIG. 5 is a specific cross-sectional view of this embodiment.

【図6】図5のA−A断面図。6 is a cross-sectional view taken along the line AA of FIG.

【図7】膨張弁だけの従来と本実施例における冷媒音の
騒音を比較した結果を示す説明図。
FIG. 7 is an explanatory diagram showing the results of comparing the noise of the refrigerant sound in the conventional embodiment with only the expansion valve and in the present embodiment.

【符号の説明】[Explanation of symbols]

5…膨張弁、13…冷媒流動様式制御管、17…冷媒流
通孔、18…多孔板、23…オリフィス、30…気泡。
5 ... Expansion valve, 13 ... Refrigerant flow mode control tube, 17 ... Refrigerant flow hole, 18 ... Perforated plate, 23 ... Orifice, 30 ... Bubbles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅田 知巳 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomomi Umeda 502 Jinritsucho, Tsuchiura-shi, Ibaraki Prefecture Hiritsu Seisakusho Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷凍サイクルで冷媒流量を任意に可変可能
な膨張弁を備えた空気調和機において、前記膨張弁の高
圧側上流に吸入管及び吐出管を有する冷媒流動様式制御
管を備え、前記制御管の中間に複数の冷媒流通孔を有す
る多孔板を備えたことを特徴とする空気調和装置。
1. An air conditioner provided with an expansion valve capable of arbitrarily changing a refrigerant flow rate in a refrigeration cycle, comprising a refrigerant flow mode control pipe having a suction pipe and a discharge pipe upstream of a high pressure side of the expansion valve, An air conditioner comprising a perforated plate having a plurality of refrigerant circulation holes in the middle of a control pipe.
JP4180708A 1992-07-08 1992-07-08 Air conditioning apparatus Pending JPH0626738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4180708A JPH0626738A (en) 1992-07-08 1992-07-08 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4180708A JPH0626738A (en) 1992-07-08 1992-07-08 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH0626738A true JPH0626738A (en) 1994-02-04

Family

ID=16087927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4180708A Pending JPH0626738A (en) 1992-07-08 1992-07-08 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH0626738A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019419A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
KR100334886B1 (en) * 1999-11-20 2002-05-02 권문구 An expansion valve for centrifugal chillers
JP2007016958A (en) * 2005-07-11 2007-01-25 Fuji Koki Corp Motor-operated valve
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
JP2007162851A (en) * 2005-12-14 2007-06-28 Fuji Koki Corp Motor operated valve
US7849705B2 (en) 2006-04-05 2010-12-14 Lg Electronics Inc. Noise reduction device and air conditioner having the same
KR101108029B1 (en) * 2009-09-21 2012-01-25 주식회사 이지플러스원 Heat Pump
CN108426390A (en) * 2018-06-11 2018-08-21 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108731308A (en) * 2018-06-11 2018-11-02 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759188A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759190A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759191A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
WO2019017388A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Air conditioner
CN110131420A (en) * 2018-02-08 2019-08-16 浙江三花智能控制股份有限公司 Electric expansion valve and its manufacturing method
WO2019207717A1 (en) * 2018-04-26 2019-10-31 三菱電機株式会社 Air conditioner
JP2020016292A (en) * 2018-07-25 2020-01-30 株式会社不二工機 Motor-operated valve
CN114562830A (en) * 2022-02-17 2022-05-31 青岛海尔空调电子有限公司 Air conditioning system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019419A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
KR100334886B1 (en) * 1999-11-20 2002-05-02 권문구 An expansion valve for centrifugal chillers
JP2007016958A (en) * 2005-07-11 2007-01-25 Fuji Koki Corp Motor-operated valve
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
KR101294381B1 (en) * 2005-10-14 2013-08-08 가부시기가이샤 후지고오키 Electric motor operated valve
JP2007162851A (en) * 2005-12-14 2007-06-28 Fuji Koki Corp Motor operated valve
US7849705B2 (en) 2006-04-05 2010-12-14 Lg Electronics Inc. Noise reduction device and air conditioner having the same
KR101108029B1 (en) * 2009-09-21 2012-01-25 주식회사 이지플러스원 Heat Pump
WO2019017388A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Air conditioner
JP2019020113A (en) * 2017-07-20 2019-02-07 ダイキン工業株式会社 air conditioner
CN110131420A (en) * 2018-02-08 2019-08-16 浙江三花智能控制股份有限公司 Electric expansion valve and its manufacturing method
WO2019207717A1 (en) * 2018-04-26 2019-10-31 三菱電機株式会社 Air conditioner
CN108759190A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759191A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759188A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108731308A (en) * 2018-06-11 2018-11-02 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108426390A (en) * 2018-06-11 2018-08-21 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759188B (en) * 2018-06-11 2024-05-14 广东美的制冷设备有限公司 Mixer and household appliance
CN108426390B (en) * 2018-06-11 2024-05-14 广东美的制冷设备有限公司 Mixer and household appliance
CN108759191B (en) * 2018-06-11 2024-05-17 广东美的制冷设备有限公司 Mixer and household appliance
JP2020016292A (en) * 2018-07-25 2020-01-30 株式会社不二工機 Motor-operated valve
CN114562830A (en) * 2022-02-17 2022-05-31 青岛海尔空调电子有限公司 Air conditioning system
CN114562830B (en) * 2022-02-17 2024-06-07 青岛海尔空调电子有限公司 Air conditioning system

Similar Documents

Publication Publication Date Title
JPH0626738A (en) Air conditioning apparatus
JPH07146032A (en) Expansion valve
JPH11325655A (en) Silencer and air conditioner
JPH11325658A (en) Expansion valve
JP3435626B2 (en) Air conditioner
JP5535098B2 (en) Refrigeration cycle equipment
CN108518897A (en) Throttling filter assembly and air conditioner
JP3435621B2 (en) Air conditioner
US4381651A (en) Silencer in a refrigeration system
JPH06101938A (en) Expansion valve
JP2002071241A (en) Air conditioner and its throttle valve for controlling refrigerant
JPH05322379A (en) Refrigerant distributor for air-conditioning machine
JPH10185363A (en) Refrigerant distributor for refrigerating cycle
JPH0126469B2 (en)
JPH094941A (en) Refrigerating device
JPH05113272A (en) Expansion mechanism of air conditioner
KR200348437Y1 (en) Silencer for refrigerator
JPH0972631A (en) Air conditioner
CN216845107U (en) Air conditioner
JP3552937B2 (en) Air conditioner receiver
JPH06249545A (en) Cooling system
JPH08296924A (en) Refrigerating equipment
JP3329503B2 (en) Cooling system
JP2503138Y2 (en) Refrigeration equipment
JPH08240361A (en) Freezer device