JP7199335B2 - Electric valve and refrigeration cycle system - Google Patents

Electric valve and refrigeration cycle system Download PDF

Info

Publication number
JP7199335B2
JP7199335B2 JP2019193956A JP2019193956A JP7199335B2 JP 7199335 B2 JP7199335 B2 JP 7199335B2 JP 2019193956 A JP2019193956 A JP 2019193956A JP 2019193956 A JP2019193956 A JP 2019193956A JP 7199335 B2 JP7199335 B2 JP 7199335B2
Authority
JP
Japan
Prior art keywords
valve
pipe
joint pipe
motor
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019193956A
Other languages
Japanese (ja)
Other versions
JP2021067329A (en
Inventor
大樹 中川
一也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2019193956A priority Critical patent/JP7199335B2/en
Priority to CN202011075550.1A priority patent/CN112709860B/en
Publication of JP2021067329A publication Critical patent/JP2021067329A/en
Application granted granted Critical
Publication of JP7199335B2 publication Critical patent/JP7199335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Details Of Valves (AREA)

Description

本発明は、冷凍サイクルシステムなどに使用する電動弁及び冷凍サイクルシステムに関する。 TECHNICAL FIELD The present invention relates to an electrically operated valve and a refrigeration cycle system used in a refrigeration cycle system and the like.

従来、空気調和機の冷凍サイクルに設けられる電動弁として、例えば特開2013-234726号公報(特許文献1)に開示されたものがある。この特許文献1の電動弁は、弁ハウジングに第1弁ポートと第2弁ポートを形成し、弁ポートでの冷媒の流れを安定化させて電動弁の静音化を図るものである。 2. Description of the Related Art Conventionally, as a motor-operated valve provided in a refrigeration cycle of an air conditioner, for example, there is one disclosed in Japanese Patent Laying-Open No. 2013-234726 (Patent Document 1). In the motor-operated valve disclosed in Patent Document 1, a first valve port and a second valve port are formed in a valve housing, and the flow of refrigerant at the valve ports is stabilized to reduce the noise of the motor-operated valve.

特開2013-234726号公報JP 2013-234726 A

特許文献1の電動弁では、弁絞り部の形状(すなわち弁ポートの形状)を変更して冷媒通過音を低減させている。しかし、絞り部の構造の改良だけでは部品構成や配管形状の制約などから音の改善が十分になされないことがあり、騒音対策として依然、改良の余地がある。 In the electric valve disclosed in Patent Document 1, the shape of the valve throttle portion (that is, the shape of the valve port) is changed to reduce the refrigerant passage noise. However, improvement in the structure of the constricted portion alone may not sufficiently improve the sound due to restrictions on the configuration of parts and the shape of the piping, and there is still room for improvement as a noise countermeasure.

本発明は、二次側継手管における冷媒通過音等の騒音を低減した電動弁及び冷凍サイクルシステムを提供することを課題とする。 An object of the present invention is to provide an electrically operated valve and a refrigeration cycle system in which noise such as refrigerant passage noise in a secondary joint pipe is reduced.

本発明の電動弁は、弁本体の弁室に対して第1の継手管と第2の継手管とがそれぞれ連通され、前記第1及び第2の継手管の、一方を流体が流入する一次側継手管とし、他方を流体が流出する二次側継手管とするよう構成された電動弁において、前記弁室に連通するとともに前記二次側継手管内に突出する長尺円筒状の整流管部を備え、前記二次側継手管が、前記弁本体に接続される直管部と、該直管部から湾曲された湾曲管部とを有し、前記整流管部の端部が前記二次側継手管の前記湾曲管部に対向するよう配置されており、前記整流管部の端部が、前記二次側継手管の前記直管部と前記湾曲管部との境界よりも該湾曲管部側に配置されていることを特徴とする。 In the motor operated valve of the present invention, a first joint pipe and a second joint pipe are respectively communicated with a valve chamber of a valve body, and one of the first and second joint pipes is a primary valve through which a fluid flows. In a motor-operated valve configured to have a side joint pipe and a secondary side joint pipe through which fluid flows out, a long cylindrical straightening pipe portion communicates with the valve chamber and protrudes into the secondary side joint pipe. wherein the secondary side joint pipe has a straight pipe portion connected to the valve body and a curved pipe portion bent from the straight pipe portion, and an end portion of the rectifying pipe portion is connected to the secondary It is arranged to face the curved tube portion of the side joint pipe, and the end portion of the rectifying tube portion is positioned closer to the curved tube than the boundary between the straight tube portion and the curved tube portion of the secondary side joint pipe. It is characterized by being arranged on the part side .

また、前記整流管部の内側通路の内径「d」と前記二次側継手管の前記直管部の内径「D」とは、
d≧D/2
の関係であることを特徴とする電動弁が好ましい。
Further, the inner diameter "d" of the inner passage of the rectifying tube portion and the inner diameter "D" of the straight pipe portion of the secondary joint pipe are
d≧D/2
A motor-operated valve characterized by the relationship of

また、前記第1の継手管と第2の継手管とが、前記弁室に対して互いに交差する方向にして前記弁本体に接続されていることを特徴とする電動弁が好ましい。 Further, it is preferable that the motor-operated valve is characterized in that the first joint pipe and the second joint pipe are connected to the valve main body so as to intersect each other with respect to the valve chamber.

また、前記整流管部の内側通路が、前記弁室に開口して弁部材により開口面積が増減される弁ポートを構成していることを特徴とする電動弁が好ましい。 Further, it is preferable that the electric valve is characterized in that the inner passage of the rectifying pipe portion constitutes a valve port that opens to the valve chamber and whose opening area is increased or decreased by a valve member.

本発明の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、前記電動弁が、前記膨張弁として用いられていることを特徴とする。 A refrigerating cycle system of the present invention includes a compressor, a condenser, an expansion valve, and an evaporator, and is characterized in that the motor-operated valve is used as the expansion valve. do.

本発明の電動弁によれば、整流管部の端部が湾曲管部の内壁に対向しているので、整流管部から流出する流体は、二次側継手管の湾曲管部の内壁に衝突することとなる。したがって、この二次側継手管内を流れる流体の速度が減速され、騒音が低減される。 According to the electrically operated valve of the present invention, since the end of the straightening tube portion faces the inner wall of the curved tube portion, the fluid flowing out of the straightening tube portion collides with the inner wall of the curved tube portion of the secondary joint pipe. It will be done. Therefore, the speed of the fluid flowing through the secondary joint pipe is decelerated, and noise is reduced.

また、本発明の冷凍サイクルシステムによれば、前記電動弁と同様に、二次側継手管内を流れる流体の速度が減速され、騒音が低減される。 Further, according to the refrigeration cycle system of the present invention, the speed of the fluid flowing through the secondary side joint pipe is decelerated and noise is reduced, as with the motor-operated valve.

本発明の第1実施形態における電動弁の要部縦断面図である。1 is a vertical cross-sectional view of a main part of an electrically operated valve according to a first embodiment of the present invention; FIG. 第1実施形態における電動弁の要部拡断面大図である。FIG. 2 is an enlarged cross-sectional view of the main part of the motor-operated valve in the first embodiment; 本発明の第2実施形態における電動弁の要部縦断面図である。FIG. 7 is a vertical cross-sectional view of a main part of an electrically operated valve according to a second embodiment of the present invention; 本発明の実施形態の冷凍サイクルシステムを示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the refrigerating-cycle system of embodiment of this invention.

次に、本発明の電動弁及び冷凍サイクルシステムの実施形態について図面を参照して説明する。図1は本発明の第1実施形態における電動弁の要部縦断面図、図2は同電動弁の要部拡断面大図である。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。 Next, an embodiment of an electrically operated valve and a refrigeration cycle system of the present invention will be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of a main part of a motor-operated valve according to a first embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part of the same motor-operated valve. Note that the concept of "up and down" in the following description corresponds to up and down in the drawing of FIG.

この実施形態の電動弁10は、ステンレスや真鍮等の金属部材の切削加工等により形成された「弁本体」としての弁ハウジング1を有しており、弁ハウジング1には弁室1Aが形成されている。また、弁ハウジング1には第1ポート11と、第2ポート12と、第3ポート13とが形成され、第1ポート11と第2ポート12との間に第1テーパ部14が形成され、第2ポート12と第3ポート13との間に第2テーパ部15が形成されている。さらに、弁ハウジング1には、側面側から弁室1Aに連通する第1の継手管21が取り付けられるとともに、弁室1Aの軸線X方向の片側端部に第2の継手管22が取り付けられている。そして、第1ポート11、第1テーパ部14、第2ポート12、第2テーパ部15及び第3ポート13を介して、弁室1Aと第2の継手管22とが導通可能となっている。 A motor-operated valve 10 of this embodiment has a valve housing 1 as a "valve body" formed by cutting a metal member such as stainless steel or brass, and a valve chamber 1A is formed in the valve housing 1. ing. Further, the valve housing 1 is formed with a first port 11, a second port 12 and a third port 13, and a first tapered portion 14 is formed between the first port 11 and the second port 12, A second tapered portion 15 is formed between the second port 12 and the third port 13 . Furthermore, a first joint pipe 21 communicating with the valve chamber 1A from the side surface side is attached to the valve housing 1, and a second joint pipe 22 is attached to one end of the valve chamber 1A in the direction of the axis X. there is Through the first port 11, the first tapered portion 14, the second port 12, the second tapered portion 15 and the third port 13, the valve chamber 1A and the second joint pipe 22 are electrically connected. .

また、弁ハウジング1の下端には、第2の継手管22内に突出する長尺円筒状の整流管部20が形成されている。そして、第1ポート11、第2ポート12、第3ポート13、第1テーパ部14及び第2テーパ部15は、軸線Xを中心とする断面形状が円形の「弁ポート」を構成しており、この「弁ポート」は、整流管部20を貫通している。なお、整流管部20と第2の継手管22との関係は後述する。 At the lower end of the valve housing 1, an elongated cylindrical rectifier tube portion 20 is formed to protrude into the second joint tube 22. As shown in FIG. The first port 11, the second port 12, the third port 13, the first tapered portion 14, and the second tapered portion 15 constitute a "valve port" having a circular cross-sectional shape centered on the axis X. , this “valve port” passes through the rectifier tube section 20 . Note that the relationship between the straightening pipe portion 20 and the second joint pipe 22 will be described later.

弁ハウジング1には、上部から弁室1A内に挿通されるように弁ガイド部材23が圧入及びかしめにより取り付けられており、この弁ガイド部材23の中心には弁ガイド孔23aが形成されている。また、弁ハウジング1の上端部には弁ガイド部材23の上端外周部を囲うようにリム1aが形成されており、弁ハウジング1には、リム1aの外周に嵌合するように円筒状のケース24が組み付けられている。このケース24は、リム1aをかしめるとともに、底部外周をろう付けすることにより弁ハウジング1に固着されている。さらに、ケース24の上端開口部には固定金具31を介して支持部材3が取り付けられている。 A valve guide member 23 is attached to the valve housing 1 by press-fitting and caulking so as to be inserted into the valve chamber 1A from above, and a valve guide hole 23a is formed in the center of the valve guide member 23. . A rim 1a is formed at the upper end of the valve housing 1 so as to surround the outer periphery of the upper end of the valve guide member 23, and the valve housing 1 has a cylindrical case fitted to the outer periphery of the rim 1a. 24 is installed. The case 24 is fixed to the valve housing 1 by crimping the rim 1a and brazing the outer circumference of the bottom portion. Furthermore, the support member 3 is attached to the upper end opening of the case 24 via a fixing metal fitting 31 .

支持部材3の中心には、第1ポート11等の軸線Xと同軸の雌ねじ部3aとそのネジ孔が形成されるとともに、雌ねじ部3aのネジ孔の外周よりも径の大きな円筒状のスライド孔3bが形成されている。そして、スライド孔3bには弁ホルダ4が軸線X方向に摺動可能に嵌合されており、この弁ホルダ4は下部に「弁部材」としてのニードル弁5を保持している。 At the center of the support member 3, a female threaded portion 3a coaxial with the axis X of the first port 11, etc., and a threaded hole thereof are formed, and a cylindrical slide hole having a diameter larger than the outer circumference of the threaded hole of the female threaded portion 3a is formed. 3b is formed. A valve holder 4 is fitted in the slide hole 3b so as to be slidable in the direction of the axis X, and the valve holder 4 holds a needle valve 5 as a "valve member" at its lower portion.

弁ホルダ4は、筒状の円筒部41の下端にボス部42が固着されるとともに、円筒部41内にバネ受け43と圧縮コイルバネ44とワッシャ45とスペーサ46とを備えている。ニードル弁5は、ステンレスや真鍮等の金属部材により形成され、下側先端のニードル部51と、このニードル部51から軸線X方向に伸びる円柱棒状のロッド部52と、ロッド部52の上端に形成されたフランジ部53とを有している。そして、ニードル弁5は、弁ホルダ4のボス部42の挿通孔42a内に挿通されるとともに、フランジ部53をボス部42に当接させて弁ホルダ4に取り付けられている。また、ニードル弁5のロッド部52は弁ガイド部材23の弁ガイド孔23a内に挿通されている。 The valve holder 4 has a boss portion 42 fixed to the lower end of a cylindrical portion 41 , and has a spring receiver 43 , a compression coil spring 44 , a washer 45 and a spacer 46 inside the cylindrical portion 41 . The needle valve 5 is made of a metal member such as stainless steel or brass. and a flange portion 53 which is formed. The needle valve 5 is inserted into the insertion hole 42 a of the boss portion 42 of the valve holder 4 and attached to the valve holder 4 with the flange portion 53 abutting against the boss portion 42 . Also, the rod portion 52 of the needle valve 5 is inserted through the valve guide hole 23 a of the valve guide member 23 .

ケース24の上端にはキャン25が溶接等によって気密に固定され、キャン25内には、外周部を多極に着磁されたマグネットロータ61と、その中心に固着されたロータ軸62とが設けられている。ロータ軸62の上端部は、キャン25の天井部に設けられた円筒状のガイド26内に回転可能に嵌合されている。また、ロータ軸62には雄ねじ部62aが形成されており、この雄ねじ部62aは支持部材3に形成された雌ねじ部3aに螺合している。キャン25の外周にはステータコイル63が配設されており、マグネットロータ61、ロータ軸62及びステータコイル63はステッピングモータ6を構成している。そして、ステータコイル63にパルス信号が与えられることにより、そのパルス数に応じてマグネットロータ61が回転されてロータ軸62が回転する。なお、ガイド26の外周にはマグネットロータ61に対する回転ストッパ機構27が設けられている。 A can 25 is airtightly fixed to the upper end of the case 24 by welding or the like, and a magnet rotor 61 whose outer periphery is magnetized with multiple poles and a rotor shaft 62 fixed to the center are provided in the can 25. It is The upper end of the rotor shaft 62 is rotatably fitted in a cylindrical guide 26 provided on the ceiling of the can 25 . A male threaded portion 62 a is formed on the rotor shaft 62 , and the male threaded portion 62 a is screwed into a female threaded portion 3 a formed on the support member 3 . A stator coil 63 is arranged on the outer periphery of the can 25 , and the magnet rotor 61 , rotor shaft 62 and stator coil 63 constitute the stepping motor 6 . When a pulse signal is applied to the stator coil 63, the magnet rotor 61 is rotated according to the number of pulses, and the rotor shaft 62 is rotated. A rotation stopper mechanism 27 for the magnet rotor 61 is provided on the outer periphery of the guide 26 .

なお、弁ホルダ4において、圧縮コイルバネ44はバネ受け43とニードル弁5のフランジ部53との間には所定の荷重を与えられた状態で取り付けられており、弁ホルダ4は、バネ受け43をスペーサ46の下端部に当接するとともに、円筒部41の上端部でワッシャ45を介してスペーサ46上端部を押さえつけている。そして、ロータ軸62のフランジ部62bは、ワッシャ45とスペーサ46との間に係合されて、ワッシャ45により抜け止めがなされている。これにより、ニードル弁5は弁ホルダ4を介してロータ軸62に連結されるとともに、ロッド部52がガイドされて軸線X方向に移動可能となっている。 In the valve holder 4, the compression coil spring 44 is attached between the spring bearing 43 and the flange portion 53 of the needle valve 5 with a predetermined load applied thereto. While contacting the lower end portion of the spacer 46 , the upper end portion of the cylindrical portion 41 presses the upper end portion of the spacer 46 via a washer 45 . The flange portion 62b of the rotor shaft 62 is engaged between the washer 45 and the spacer 46, and is retained by the washer 45. As shown in FIG. As a result, the needle valve 5 is connected to the rotor shaft 62 via the valve holder 4, and is movable in the direction of the axis X as the rod portion 52 is guided.

以上の構成により、ステッピングモータ6が駆動されると、マグネットロータ61及びロータ軸62が回転し、ロータ軸62の雄ねじ部62aと支持部材3の雌ねじ部3aとのねじ送り機構により、ロータ軸62は軸線X方向に移動する。この回転に伴うロータ軸62の軸線X方向移動によって弁ホルダ4と共にニードル弁5が軸線X方向に移動する。以上のように、ニードル弁5は、ニードル部51を第1ポート11内に挿通させた状態で第1ポート11の軸線X方向に進退させて第1ポート11の開口面積を増減させる。そして、第1の継手管21から第2の継手管22へ流れる流体(冷媒)の流量が制御される。すなわち、この例では、第1の継手管21が一次側継手管であり、第2の継手管22が二次側継手管である。 With the above configuration, when the stepping motor 6 is driven, the magnet rotor 61 and the rotor shaft 62 are rotated. moves in the direction of the axis X. Due to the movement of the rotor shaft 62 in the X-axis direction accompanying this rotation, the needle valve 5 moves in the X-axis direction together with the valve holder 4 . As described above, the needle valve 5 advances and retracts the first port 11 in the direction of the axis X while the needle portion 51 is inserted into the first port 11 to increase or decrease the opening area of the first port 11 . Then, the flow rate of the fluid (refrigerant) flowing from the first joint pipe 21 to the second joint pipe 22 is controlled. That is, in this example, the first joint pipe 21 is the primary joint pipe, and the second joint pipe 22 is the secondary joint pipe.

図2に示すように、二次側継手管である第2の継手管22は、弁ハウジング1に接続される直管部22Aと、この直管部22A(軸線X)と交差する方向に湾曲した湾曲管部22Bを有しており、この湾曲管部22Bからさらに先の部分は第1の継手管21と平行となる方向(軸線Xと直角となる方向)に延びている。そして、整流管部20の軸線L方向の端部20aは、直管部22Aと湾曲管部22Bとの境界よりも長さ「H」だけ湾曲管部22B内に位置するとともに、さらに、この整流管部20の端部20aは湾曲管部22B内で管壁に接触しないよう構成されている。 As shown in FIG. 2, the second joint pipe 22, which is the secondary joint pipe, includes a straight pipe portion 22A connected to the valve housing 1 and a curved portion that intersects the straight pipe portion 22A (axis X). A portion beyond the curved tube portion 22B extends in a direction parallel to the first joint pipe 21 (a direction perpendicular to the axis X). An end portion 20a of the rectifying tube portion 20 in the direction of the axis L is positioned within the bending tube portion 22B by a length "H" from the boundary between the straight tube portion 22A and the curved tube portion 22B. The end portion 20a of the tube portion 20 is configured so as not to contact the tube wall within the curved tube portion 22B.

このように、整流管部20の軸線L方向の端部20aが湾曲管部22Bの内壁に対向しているので、整流管部20の第3ポート13から流出する流体は、第2の継手管22の湾曲管部22Bの内壁に衝突して、この第2の継手管22内を流れる。したがって、第2の継手管22を流れる流体の速度が減速され、騒音が低減される。なお、第2の継手管22は整流管部20に対して横に曲げられていることにより、第2の継手管22から第1の継手管21方向に流体(冷媒)を流す場合も、湾曲管部22Bにより整流管部20に達する冷媒の流速が減速され、騒音が低減される。 In this way, since the end 20a of the rectifier tube portion 20 in the direction of the axis L faces the inner wall of the curved tube portion 22B, the fluid flowing out from the third port 13 of the rectifier tube portion 20 flows through the second joint pipe. 22 collides with the inner wall of the curved pipe portion 22B and flows through the second joint pipe 22. As shown in FIG. Therefore, the speed of the fluid flowing through the second joint pipe 22 is reduced, and noise is reduced. In addition, since the second joint pipe 22 is bent laterally with respect to the rectifying pipe portion 20, even when the fluid (refrigerant) flows from the second joint pipe 22 to the first joint pipe 21, the bending The flow velocity of the refrigerant reaching the straightening tube portion 20 is reduced by the tube portion 22B, and noise is reduced.

さらに、第3ポート13の内径「d」と直管部22Aの内径「D」とは、
d≧D/2
の関係になるのが好ましい。このように、湾曲管部22B内に突出する第3ポート13の内径を直管部22A(第2の継手管22)内径の半径よりも大きくすることで、第3ポート13から流出する流体が第2の継手管22の内壁に対して衝突しやすくなる。これにより、流体の流速を減速させやすくなり、静音効果が高まる。
Further, the inner diameter "d" of the third port 13 and the inner diameter "D" of the straight pipe portion 22A are
d≧D/2
It is preferable to have a relationship of In this way, by making the inner diameter of the third port 13 projecting into the curved pipe portion 22B larger than the radius of the inner diameter of the straight pipe portion 22A (second joint pipe 22), the fluid flowing out from the third port 13 is It becomes easy to collide with the inner wall of the second joint pipe 22 . This makes it easier to slow down the flow velocity of the fluid and enhances the noise reduction effect.

なお、整流管部20の外径は、第2の継手管22の内壁に接触しない程度まで大きくすることができる。整流管部20の外径を第2の継手管の内壁に接触させないことで、第3ポート13の開口から流出して湾曲管部22B(第2の継手管22)の内壁に衝突した流体が第3ポート13内に逆流することによる流量の低下を抑制できる。 It should be noted that the outer diameter of the straightening tube portion 20 can be increased to such an extent that it does not come into contact with the inner wall of the second joint tube 22 . By preventing the outer diameter of the rectifying tube portion 20 from contacting the inner wall of the second joint pipe, the fluid that flows out from the opening of the third port 13 and collides with the inner wall of the curved tube portion 22B (second joint pipe 22) A decrease in the flow rate due to reverse flow into the third port 13 can be suppressed.

なお、この実施形態では、湾曲管部22Bは第1の継手21と同じ方向に延びるように曲げた例を示しているが、第1の継手管21とは逆方向に延びるように曲げてもよいし、さらに、この湾曲管部22Bの曲げ方向は、例えば直管部22Aに対して略直角とするなど、部整流管部20から流出する流体が湾曲管部22Bの内壁に衝突するような方向であれば任意の方向に曲げてもよい。特にこのような湾曲管部の曲げ方向は、例えば冷凍サイクルシステムの配管等の構成に応じて選定するのが好ましい。 In this embodiment, the bending tube portion 22B is bent so as to extend in the same direction as the first joint 21. In addition, the bending direction of the curved tube portion 22B is, for example, substantially perpendicular to the straight tube portion 22A, so that the fluid flowing out of the rectifying tube portion 20 collides with the inner wall of the curved tube portion 22B. It may be bent in any direction as long as it is a direction. In particular, it is preferable to select the bending direction of such a curved tube portion according to the configuration of, for example, the piping of the refrigeration cycle system.

図3は本発明の第2実施形態における電動弁の要部縦断面図であり、この第2実施形態の電動弁は、第2の継手管22′が一次側継手管、第1の継手管21′が二次側継手管となる仕様の電動弁である。なお、この第2実施形態においても、この図3に示す第1の継手管21′、第2の継手管22′、及び整流管部20′以外のその他の構成は図1と同様である。 FIG. 3 is a vertical cross-sectional view of a main part of a motor-operated valve according to a second embodiment of the present invention. 21' is a motor-operated valve with a specification that serves as a secondary side joint pipe. Also in this second embodiment, the configuration other than the first joint pipe 21', the second joint pipe 22', and the rectifying pipe portion 20' shown in FIG. 3 is the same as in FIG.

この第2実施形態において、二次側継手管である第1の継手管21′は、弁ハウジング1に接続される直管部21A′と、この直管部21A′と交差する方向に湾曲した湾曲管部21B′を有しており、この湾曲管部21B′からさらに先の部分は第2の継手管21と平行となる方向(軸線X方向)に延びている。また、弁室1Aに連通するように整流管部20′が設けられている。そして、整流管部20′の軸線Lと交差する方向の端部20a′は、直管部21A′と湾曲管部21B′との境界よりも湾曲管部21B′内に位置している。さらに、この整流管部20′の端部20a′は湾曲管部21B′内で管壁に接触しないよう構成されている。 In the second embodiment, a first joint pipe 21', which is a secondary joint pipe, includes a straight pipe portion 21A' connected to the valve housing 1 and a curved portion intersecting the straight pipe portion 21A'. It has a curved tube portion 21B', and a portion beyond this curved tube portion 21B' extends in a direction parallel to the second joint tube 21 (axis X direction). Further, a rectifying pipe portion 20' is provided so as to communicate with the valve chamber 1A. An end portion 20a' of the rectifying tube portion 20' in the direction intersecting with the axis L is located inside the curved tube portion 21B' from the boundary between the straight tube portion 21A' and the curved tube portion 21B'. Further, the end portion 20a' of the rectifying tube portion 20' is constructed so as not to come into contact with the tube wall inside the curved tube portion 21B'.

この第2実施形態でも、弁室1Aから整流管部20′を通して第1の継手管21′に流出する流体は、第1の継手管21′の湾曲管部21B′の内壁に衝突して、この第1の継手管21′内を流れる。したがって、第1の継手管21′を流れる流体の速度が減速され、騒音が低減される。 In this second embodiment as well, the fluid flowing out from the valve chamber 1A through the rectifying pipe portion 20' into the first joint pipe 21' collides with the inner wall of the curved pipe portion 21B' of the first joint pipe 21', It flows through this first joint pipe 21'. Therefore, the speed of the fluid flowing through the first joint pipe 21' is reduced and the noise is reduced.

また、この第2実施形態でも、第1実施形態で説明したと同様に、湾曲管部21B′の曲げ方向は、例えば直管部21A′に対して略直角とするなど、整流管部20′から流出する流体が湾曲管部21B′の内壁に衝突するような方向であれば任意の方向に曲げてもよい。また、湾曲管部の曲げ方向は、例えば冷凍サイクルシステムの配管等の構成に応じて選定するのが好ましい。 Also, in the second embodiment, as in the first embodiment, the bending direction of the curved tube portion 21B' is substantially perpendicular to the straight tube portion 21A'. It may be bent in any direction as long as the fluid flowing out from the tube collides with the inner wall of the curved tube portion 21B'. Moreover, it is preferable to select the bending direction of the curved tube portion according to the configuration of the piping of the refrigeration cycle system, for example.

以上の第1実施形態では、第2の継手管に湾曲管部を設けた例を、第2の実施形態では、第1の継手管に湾曲管部を設けた例を、それぞれ示したが、第1の継手管と第2の継手管との両方に整流管部を設けるとともに、この整流管部の端部に内壁が対向するように、第1の継手管と第2の継手管との両方に湾曲管部を設けたような電動弁でもよい。 In the above-described first embodiment, an example in which the second joint pipe is provided with the curved pipe portion is shown, and in the second embodiment, an example in which the first joint pipe is provided with the curved pipe portion is shown. Both the first joint pipe and the second joint pipe are provided with rectifying pipe portions, and the first joint pipe and the second joint pipe are connected so that the inner walls face the ends of the rectifying pipe portions. A motor-operated valve having curved pipe portions on both sides may also be used.

図4は実施形態の冷凍サイクルシステムを示す図であり、空気調和機の冷凍サイクルシステムの例である。空気調和機は、膨張弁としての実施形態の電動弁10、室外ユニット100に搭載された室外熱交換器20、室内ユニット200に搭載された室内熱交換器30、流路切換弁40、圧縮機50を有しており、これらの各要素は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクルシステムを構成している。この冷凍サイクルシステムは本発明の電動弁を適用する冷凍サイクルシステムの一例であり、本発明の電動弁は、ビル用のマルチエアコン等の室内機側の絞り装置等、他のシステムにも適用することができる。 FIG. 4 is a diagram showing a refrigeration cycle system of the embodiment, which is an example of a refrigeration cycle system for an air conditioner. The air conditioner includes an electric valve 10 as an expansion valve, an outdoor heat exchanger 20 mounted in an outdoor unit 100, an indoor heat exchanger 30 mounted in an indoor unit 200, a flow path switching valve 40, a compressor 50, and each of these elements is connected by conduits as shown in the drawing to form a heat pump refrigeration cycle system. This refrigerating cycle system is one example of a refrigerating cycle system to which the motor-operated valve of the present invention is applied, and the motor-operated valve of the present invention can also be applied to other systems such as a throttle device on the indoor unit side of multi-air conditioners for buildings. be able to.

冷凍サイクルシステムの流路は流路切換弁40により暖房モードおよび冷房モードの2通りの流路に切換えられ、暖房モードでは実線の矢印で示すように、圧縮機50で圧縮された冷媒が流路切換弁40から室内熱交換器30に流入され、室内熱交換器30から流出する冷媒が、管路60を通って電動弁10に流入される。そして、この電動弁10で冷媒が膨張され、室外熱交換器20、流路切換弁40、圧縮機50の順に循環される。冷房モードでは、破線の矢印で示すように、圧縮機50で圧縮された冷媒が流路切換弁40から室外熱交換器20に流入され、室外熱交換器20から流出する冷媒が電動弁10で膨張され、管路60を流れて室内熱交換器30に流入される。この室内熱交換器30に流入された冷媒は、流路切換弁40を介して圧縮機50に流入される。なお、この図4に示す例では、暖房モード時に、冷媒を電動弁10の一次継手管21から二次継手管22へ流す構成となっているが、配管の接続を逆にして、暖房モード時に、冷媒を二次継手管22から一次継手管21へ流す構成としてもよい。 The flow path of the refrigeration cycle system is switched between two flow paths for heating mode and cooling mode by a flow path switching valve 40. In the heating mode, as indicated by solid line arrows, the refrigerant compressed by the compressor 50 flows through the flow path. Refrigerant flowing from the switching valve 40 into the indoor heat exchanger 30 and flowing out from the indoor heat exchanger 30 flows through the conduit 60 into the motor-operated valve 10 . Refrigerant is expanded by the motor-operated valve 10 and circulated through the outdoor heat exchanger 20, the flow path switching valve 40, and the compressor 50 in this order. In the cooling mode, the refrigerant compressed by the compressor 50 flows into the outdoor heat exchanger 20 through the flow path switching valve 40, and the refrigerant flowing out of the outdoor heat exchanger 20 flows through the motor-operated valve 10, as indicated by the dashed arrow. After being expanded, it flows through the conduit 60 and into the indoor heat exchanger 30 . The refrigerant that has flowed into the indoor heat exchanger 30 flows into the compressor 50 via the flow path switching valve 40 . In the example shown in FIG. 4, the refrigerant flows from the primary joint pipe 21 of the motor-operated valve 10 to the secondary joint pipe 22 in the heating mode. Alternatively, the refrigerant may flow from the secondary joint pipe 22 to the primary joint pipe 21 .

電動弁10は、冷媒の流量を制御する膨張弁(絞り装置)として働き、暖房モードでは、室外熱交換器20が蒸発器として機能し、室内熱交換器30が凝縮器として機能し、室内の暖房がなされる。また、冷房モードでは、室外熱交換器20が凝縮器として機能し、室内熱交換器30が蒸発器として機能し、室内の冷房がなされる。 The motor-operated valve 10 functions as an expansion valve (throttling device) that controls the flow rate of the refrigerant. In the heating mode, the outdoor heat exchanger 20 functions as an evaporator, the indoor heat exchanger 30 functions as a condenser, and the indoor Heating is provided. In the cooling mode, the outdoor heat exchanger 20 functions as a condenser and the indoor heat exchanger 30 functions as an evaporator to cool the room.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 Although the embodiments of the present invention have been described in detail above with reference to the drawings, the specific configuration is not limited to these embodiments, and design modifications and the like are made within the scope of the present invention. is included in the present invention.

1 弁ハウジング(弁本体)
1A 弁室
11 第1ポート(弁ポート)
12 第2ポート(弁ポート)
13 第3ポート(弁ポート)
14 第1テーパ部(弁ポート)
15 第2テーパ部(弁ポート)
21 第1の継手管
22 第2の継手管(二次側継手管)
22A 直管部
22B 湾曲管部
20 整流管部
20a 端部
3 支持部材
4 弁ホルダ
5 ニードル弁(弁部材)
6 ステッピングモータ
21′ 第1の継手管(二次側継手管)
21A′ 直管部
21B′ 湾曲管部
22′ 第2の継手管
20′ 整流管部
20a′ 端部
10 電動弁
20 室外熱交換器
30 室内熱交換器
40 流路切換弁
50 圧縮機
1 Valve housing (valve body)
1A Valve chamber 11 First port (valve port)
12 Second port (valve port)
13 Third port (valve port)
14 first tapered portion (valve port)
15 Second tapered portion (valve port)
21 First joint pipe 22 Second joint pipe (secondary joint pipe)
22A straight tube portion 22B curved tube portion 20 rectifying tube portion 20a end portion 3 support member 4 valve holder 5 needle valve (valve member)
6 stepping motor 21' first joint pipe (secondary side joint pipe)
21A' straight pipe portion 21B' curved pipe portion 22' second joint pipe 20' rectifying pipe portion 20a' end portion 10 motor-operated valve 20 outdoor heat exchanger 30 indoor heat exchanger 40 flow path switching valve 50 compressor

Claims (5)

弁本体の弁室に対して第1の継手管と第2の継手管とがそれぞれ連通され、前記第1及び第2の継手管の、一方を流体が流入する一次側継手管とし、他方を流体が流出する二次側継手管とするよう構成された電動弁において、
前記弁室に連通するとともに前記二次側継手管内に突出する長尺円筒状の整流管部を備え、前記二次側継手管が、前記弁本体に接続される直管部と、該直管部から湾曲された湾曲管部とを有し、前記整流管部の端部が前記二次側継手管の前記湾曲管部に対向するよう配置されており、
前記整流管部の端部が、前記二次側継手管の前記直管部と前記湾曲管部との境界よりも該湾曲管部側に配置されていることを特徴とする電動弁。
A first joint pipe and a second joint pipe communicate with the valve chamber of the valve body, and one of the first and second joint pipes is used as a primary side joint pipe into which fluid flows, and the other is used as a primary side joint pipe. In a motor-operated valve configured to serve as a secondary joint pipe through which fluid flows,
a long cylindrical rectifying pipe portion communicating with the valve chamber and protruding into the secondary side joint pipe, the secondary side joint pipe being provided with a straight pipe portion connected to the valve main body; and a curved tube portion curved from a portion, and an end portion of the rectifying tube portion is arranged to face the curved tube portion of the secondary joint tube ,
A motor-operated valve , wherein an end portion of the rectifying pipe portion is disposed closer to the curved pipe portion than a boundary between the straight pipe portion and the curved pipe portion of the secondary joint pipe .
前記整流管部の内側通路の内径「d」と前記二次側継手管の前記直管部の内径「D」とは、
d≧D/2
の関係であることを特徴とする請求項に記載の電動弁。
The inner diameter "d" of the inner passage of the rectifying tube portion and the inner diameter "D" of the straight tube portion of the secondary joint tube are
d≧D/2
2. The motor-operated valve according to claim 1 , wherein the relationship is:
前記第1の継手管と第2の継手管とが、前記弁室に対して互いに交差する方向にして前記弁本体に接続されていることを特徴とする請求項1または2に記載の電動弁。 3. The motor-operated valve according to claim 1, wherein the first joint pipe and the second joint pipe are connected to the valve body in directions that intersect each other with respect to the valve chamber. . 前記整流管部の内側通路が、前記弁室に開口して弁部材により開口面積が増減される弁ポートを構成していることを特徴とする請求項1~3のいずれか一項に記載の電動弁。 4. The inner passage of the rectifying pipe portion constitutes a valve port that opens to the valve chamber and whose opening area is increased or decreased by a valve member. electric valve. 圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1~4のいずれか一項に記載の電動弁が、前記膨張弁として用いられている
ことを特徴とする冷凍サイクルシステム。
A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the motor-operated valve according to any one of claims 1 to 4 is used as the expansion valve. A refrigeration cycle system characterized by:
JP2019193956A 2019-10-25 2019-10-25 Electric valve and refrigeration cycle system Active JP7199335B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019193956A JP7199335B2 (en) 2019-10-25 2019-10-25 Electric valve and refrigeration cycle system
CN202011075550.1A CN112709860B (en) 2019-10-25 2020-10-09 Electric valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019193956A JP7199335B2 (en) 2019-10-25 2019-10-25 Electric valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2021067329A JP2021067329A (en) 2021-04-30
JP7199335B2 true JP7199335B2 (en) 2023-01-05

Family

ID=75542576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019193956A Active JP7199335B2 (en) 2019-10-25 2019-10-25 Electric valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP7199335B2 (en)
CN (1) CN112709860B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117515199A (en) * 2022-07-27 2024-02-06 广东威灵电机制造有限公司 Electronic expansion valve assembly, electronic expansion valve and refrigeration equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234726A (en) 2012-05-10 2013-11-21 Saginomiya Seisakusho Inc Electric valve
US20150184768A1 (en) 2012-08-10 2015-07-02 Zhejiang Sanhua Co., Ltd. Electronic expanding valve
JP2017115989A (en) 2015-12-24 2017-06-29 株式会社鷺宮製作所 Electric operated valve
WO2018230159A1 (en) 2017-06-15 2018-12-20 株式会社鷺宮製作所 Electrically operated valve and refrigeration cycle system
CN109538772A (en) 2017-09-21 2019-03-29 浙江三花智能控制股份有限公司 Electric expansion valve

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435626B2 (en) * 1997-07-02 2003-08-11 株式会社日立製作所 Air conditioner
JP2010019406A (en) * 2008-07-14 2010-01-28 Fuji Koki Corp Motor-driven valve
JP5395775B2 (en) * 2010-10-12 2014-01-22 株式会社鷺宮製作所 Motorized valve
CN106545660B (en) * 2015-09-23 2020-04-10 盾安环境技术有限公司 Electronic expansion valve
JP6639876B2 (en) * 2015-11-17 2020-02-05 株式会社不二工機 Flow control valve
JP6692213B2 (en) * 2016-05-23 2020-05-13 株式会社不二工機 Flow control valve
JP6659624B2 (en) * 2017-06-23 2020-03-04 株式会社鷺宮製作所 Motorized valve and refrigeration cycle system
JP6740179B2 (en) * 2017-06-23 2020-08-12 株式会社鷺宮製作所 Motorized valve and refrigeration cycle system
JP6738775B2 (en) * 2017-07-24 2020-08-12 株式会社鷺宮製作所 Motorized valve and refrigeration cycle system
JP7123020B2 (en) * 2019-09-03 2022-08-22 株式会社鷺宮製作所 Electric valve and refrigeration cycle system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234726A (en) 2012-05-10 2013-11-21 Saginomiya Seisakusho Inc Electric valve
US20150184768A1 (en) 2012-08-10 2015-07-02 Zhejiang Sanhua Co., Ltd. Electronic expanding valve
JP2017115989A (en) 2015-12-24 2017-06-29 株式会社鷺宮製作所 Electric operated valve
WO2018230159A1 (en) 2017-06-15 2018-12-20 株式会社鷺宮製作所 Electrically operated valve and refrigeration cycle system
CN109538772A (en) 2017-09-21 2019-03-29 浙江三花智能控制股份有限公司 Electric expansion valve

Also Published As

Publication number Publication date
CN112709860B (en) 2023-03-24
JP2021067329A (en) 2021-04-30
CN112709860A (en) 2021-04-27

Similar Documents

Publication Publication Date Title
JP6740179B2 (en) Motorized valve and refrigeration cycle system
JP6738775B2 (en) Motorized valve and refrigeration cycle system
JP5395775B2 (en) Motorized valve
JP6479648B2 (en) Motorized valve
CN103388688B (en) Mortor operated valve
JP6659624B2 (en) Motorized valve and refrigeration cycle system
JP5480753B2 (en) Motorized valve
JP2019044880A (en) Motor valve and refrigeration cycle system
JP7123020B2 (en) Electric valve and refrigeration cycle system
JP7199335B2 (en) Electric valve and refrigeration cycle system
JP2019070449A (en) Motor valve and refrigeration cycle system
JP7317191B2 (en) Electric valve and refrigeration cycle system
JP7341280B2 (en) Electric valve and refrigeration cycle system
JP7299178B2 (en) Electric valve and refrigeration cycle system
JP7361628B2 (en) Electric valve and refrigeration cycle system
JP7365300B2 (en) Electric valve and refrigeration cycle system
JP2021124153A (en) Motor-operated valve and refrigeration cycle system
JP2004093016A (en) Expansion valve and refrigeration device
JPH0725531Y2 (en) Air conditioner outdoor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221220

R150 Certificate of patent or registration of utility model

Ref document number: 7199335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150