JP6738775B2 - Motorized valve and refrigeration cycle system - Google Patents

Motorized valve and refrigeration cycle system Download PDF

Info

Publication number
JP6738775B2
JP6738775B2 JP2017142469A JP2017142469A JP6738775B2 JP 6738775 B2 JP6738775 B2 JP 6738775B2 JP 2017142469 A JP2017142469 A JP 2017142469A JP 2017142469 A JP2017142469 A JP 2017142469A JP 6738775 B2 JP6738775 B2 JP 6738775B2
Authority
JP
Japan
Prior art keywords
valve
joint pipe
motor
space
valve port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017142469A
Other languages
Japanese (ja)
Other versions
JP2019023484A (en
Inventor
大樹 中川
大樹 中川
一也 小林
一也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2017142469A priority Critical patent/JP6738775B2/en
Priority to CN201810673159.8A priority patent/CN109296805B/en
Publication of JP2019023484A publication Critical patent/JP2019023484A/en
Application granted granted Critical
Publication of JP6738775B2 publication Critical patent/JP6738775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0254Construction of housing; Use of materials therefor of lift valves with conical shaped valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Description

本発明は、空気調和機等において冷媒の流量を制御する電動弁に関し、特に、弁ポートの周囲の形状を改良した電動弁及び冷凍サイクルシステムに関する。 The present invention relates to an electric valve that controls a flow rate of a refrigerant in an air conditioner or the like, and more particularly to an electric valve and a refrigeration cycle system in which the shape around a valve port is improved.

従来、冷凍サイクルシステムにおいて、冷媒の流量を制御する電動弁から発生する、冷媒通過に伴う騒音がしばしば問題となることがある。このような騒音対策を施すようにした電動弁として、例えば特開2012−82896号公報(特許文献1)及び特開2007−107847号公報(特許文献2)に開示されたものがある。 BACKGROUND ART Conventionally, in a refrigeration cycle system, noise generated by a motor-operated valve that controls the flow rate of the refrigerant and accompanying passage of the refrigerant often becomes a problem. As a motor-operated valve that takes such measures against noise, there are those disclosed in, for example, JP 2012-82896 A (Patent Document 1) and JP 2007-107847 A (Patent Document 2).

特許文献1の電動弁は、第1弁ポートより内径の大きな第2弁ポート内に冷媒を流出させ、二次継手管に到達する前の第2弁ポート(拡大空間)内で流速を減速させて、騒音を低減している。また、特許文献2の電動弁は、二次継手管(出口継手管)の形状を変形させて、その固有振動数を改良し、騒音低減を図っている。 The motor-operated valve of Patent Document 1 causes the refrigerant to flow into a second valve port having an inner diameter larger than that of the first valve port, and reduces the flow velocity in the second valve port (enlarged space) before reaching the secondary joint pipe. Noise is reduced. Further, the motor-operated valve of Patent Document 2 is designed to deform the shape of the secondary joint pipe (outlet joint pipe), improve its natural frequency, and reduce noise.

特開2012−82896号公報JP 2012-82896 A 特開2007−107847号公報JP, 2007-107847, A

特許文献1の電動弁では、第1ポートに対する拡大空間となる第2ポート内での冷媒の流速が速く、騒音を低減するためには改良の余地がある。なお、特許文献2の電動弁では、騒音に対応して二次継手管の固有振動数を設定するのがきわめて困難である。 In the motor-operated valve of Patent Document 1, the flow velocity of the refrigerant in the second port, which is an expanded space with respect to the first port, is high, and there is room for improvement in order to reduce noise. In addition, with the motor-operated valve of Patent Document 2, it is extremely difficult to set the natural frequency of the secondary joint pipe in response to noise.

本発明は、冷媒等の流体を一次継手管から弁室に流入させて、ニードル弁と弁ポートととの間から拡大空間に流体を流入させるとともに、二次継手管に流出する流体の速度をさらに減速させて、流体の流れに対して流体通過音等の騒音をさらに低減した電動弁を提供することを課題とする。 The present invention allows a fluid such as a refrigerant to flow into the valve chamber from the primary joint pipe to cause the fluid to flow into the enlarged space from between the needle valve and the valve port, and to control the velocity of the fluid flowing out to the secondary joint pipe. An object of the present invention is to provide a motor-operated valve that is further decelerated to further reduce noise such as fluid passage noise with respect to the flow of fluid.

請求項1の電動弁は、一次継手管が連通される弁室と二次継手管とを、ニードル弁で開口面積が増減される弁ポートを介して連通可能とする電動弁であって、前記弁ポートの前記二次継手管側に、該弁ポートよりも径が拡大された拡大空間を有する電動弁において、前記拡大空間内に前記弁ポート側に突出する筒部を有するノズル部を備え、前記拡大空間と前記二次継手管の管路とが前記ノズル部を介して連通されているとともに、前記拡大空間内壁と前記筒部の外周との間に流体が滞留する滞留空間形成されていることを特徴とする。 The motor-operated valve according to claim 1 is a motor-operated valve that enables communication between a valve chamber to which a primary joint pipe communicates with a secondary joint pipe via a valve port whose opening area is increased and decreased by a needle valve. On the secondary joint pipe side of the valve port, in a motor-operated valve having an enlarged space having a diameter enlarged than the valve port, a nozzle portion having a tubular portion protruding toward the valve port side in the enlarged space, together with the expansion space and the conduit of the secondary coupling tube is communicated through the nozzle portion, the retaining space which fluid remaining between the outer periphery of the inner wall and the tubular portion of the expansion space is formed It is characterized by

請求項2の電動弁は、請求項1に記載の電動弁であって、前記ノズル部の内径が前記弁ポートの内径より大きいことを特徴とする。 A motor-operated valve according to a second aspect is the motor-operated valve according to the first aspect, wherein the inner diameter of the nozzle portion is larger than the inner diameter of the valve port.

請求項3の電動弁は、請求項1または2に記載の電動弁であって、前記拡大空間が、前記弁ポート側の円錐台側面形状のテーパ部と、該テーパ部から前記二次継手管側に伸びる円柱側面形状のストレート部とにより形成されていることを特徴とする。 The motor-operated valve according to claim 3 is the motor-operated valve according to claim 1 or 2, wherein the expansion space has a tapered portion having a truncated cone side surface shape on the valve port side, and the secondary joint pipe extending from the tapered portion. It is characterized in that it is formed by a straight portion having a cylindrical side surface shape extending to the side.

請求項4の電動弁は、請求項1乃至3のいずれか一項に記載の電動弁であって、前記ノズル部が前記二次継手管の端部に一体に形成されていることを特徴とする。 A motor-operated valve according to claim 4 is the motor-operated valve according to any one of claims 1 to 3, wherein the nozzle portion is formed integrally with an end portion of the secondary joint pipe. To do.

請求項5の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1乃至4のいずれか一項に記載の電動弁が、前記膨張弁として用いられていることを特徴とする。 A refrigeration cycle system according to claim 5 is a refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, and the motor-operated valve according to any one of claims 1 to 4 is provided. It is used as the expansion valve.

請求項1乃至4の電動弁によれば、弁ポートとニードル弁との隙間から流れる流体が拡大空間に流出したとき、拡大空間内でノズル部により形成された滞留空間に流体が滞留し、このノズル部から二次継手管へ流れる流体の圧力の損失係数を高くして流速を抑えることができ、騒音を低減できる。 According to the motor-operated valve of claims 1 to 4, when the fluid flowing from the gap between the valve port and the needle valve flows into the expansion space, the fluid accumulates in the retention space formed by the nozzle portion in the expansion space. The loss factor of the pressure of the fluid flowing from the nozzle portion to the secondary joint pipe can be increased to suppress the flow velocity, and noise can be reduced.

請求項2の電動弁によれば、ノズル部の内径が弁ポートの内径より大きいので、弁ポートの全開時の二次継手管に流れる流量を確保することができる。 According to the electrically operated valve of the second aspect, since the inner diameter of the nozzle portion is larger than the inner diameter of the valve port, it is possible to secure the flow rate of the secondary joint pipe when the valve port is fully opened.

請求項3の電動弁によれば、テーパ部とストレート部とにより拡大空間が形成されているので、テーパ部により滞留空間を確保することができる。 According to the electrically operated valve of the third aspect, since the enlarged space is formed by the tapered portion and the straight portion, the retention space can be secured by the tapered portion.

請求項4の電動弁によれば、ノズル部が二次継手管の端部に一体に形成されているので、電動弁の組み付けが容易になるとともに、部品点数を少なくできる。 According to the electrically operated valve of the fourth aspect, since the nozzle portion is integrally formed at the end portion of the secondary joint pipe, the electrically operated valve can be easily assembled and the number of parts can be reduced.

請求項5の冷凍サイクルシステムによれば、請求項1乃至4と同様な効果が得られる。 According to the refrigeration cycle system of claim 5, the same effects as those of claims 1 to 4 can be obtained.

本発明の実施形態の電動弁の縦断面図である。It is a longitudinal section of an electric valve of an embodiment of the present invention. 本発明の実施形態の電動弁における弁ポート近傍の要部拡大縦断面図である。FIG. 3 is an enlarged vertical cross-sectional view of the main part near the valve port in the motor-operated valve according to the embodiment of the present invention. 本発明の実施形態の電動弁における弁ポートの作用を説明する図である。It is a figure explaining the effect|action of the valve port in the electrically operated valve of embodiment of this invention. 本発明の実施形態の電動弁を用いた空気調和機の一例を示す図である。It is a figure which shows an example of the air conditioner using the motor-operated valve of embodiment of this invention. 本発明の実施形態の第1変形例乃至第3変形例を示す図である。It is a figure which shows the 1st modification of the embodiment of this invention thru|or the 3rd modification.

次に、本発明の電動弁の実施の形態を図面を参照して説明する。図1は実施形態の電動弁の縦断面図、図2は実施形態の電動弁における弁ポート近傍の要部拡大縦断面図、図3は実施形態の電動弁における弁ポートの作用を説明する図、図4は実施形態の電動弁を用いた空気調和機の一例を示す図である。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。 Next, an embodiment of the motor-operated valve of the present invention will be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of a motor-operated valve according to an embodiment, FIG. 2 is an enlarged vertical cross-sectional view of a main portion near a valve port in the motor-operated valve according to the embodiment, and FIG. FIG. 4 is a diagram showing an example of an air conditioner using the electric valve of the embodiment. The concept of “upper and lower” in the following description corresponds to the upper and lower parts in the drawing of FIG.

まず、図4に基づいて実施形態に係る空気調和機について説明する。空気調和機は、膨張弁としての実施形態の電動弁10、室外ユニット100に搭載された室外熱交換器20、室内ユニット200に搭載された室内熱交換器30、流路切換弁40、圧縮機50を有しており、これらの各要素は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクルシステムを構成している。この冷凍サイクルシステムは本発明の電動弁を適用する冷凍サイクルシステムの一例であり、本発明の電動弁は、ビル用のマルチエアコン等の室内機側の絞り装置等、他のシステムにも適用することができる。 First, the air conditioner according to the embodiment will be described with reference to FIG. The air conditioner includes a motor-operated valve 10 according to an embodiment as an expansion valve, an outdoor heat exchanger 20 installed in an outdoor unit 100, an indoor heat exchanger 30 installed in an indoor unit 200, a flow path switching valve 40, a compressor. 50, each of these elements is connected by a conduit as shown in the figure to form a heat pump type refrigeration cycle system. This refrigeration cycle system is an example of a refrigeration cycle system to which the motor-operated valve of the present invention is applied, and the motor-operated valve of the present invention is also applied to other systems such as a throttle device on the indoor unit side of a multi-air conditioner for buildings. be able to.

冷凍サイクルシステムの流路は流路切換弁40により暖房モードおよび冷房モードの2通りの流路に切換えられ、暖房モードでは実線の矢印で示すように、圧縮機50で圧縮された流体としての冷媒が流路切換弁40から室内熱交換器30に流入され、室内熱交換器30から流出する冷媒が、管路60を通って電動弁10に流入される。そして、この電動弁10で冷媒が膨張され、室外熱交換器20、流路切換弁40、圧縮機50の順に循環される。冷房モードでは、破線の矢印で示すように、圧縮機50で圧縮された冷媒が流路切換弁40から室外熱交換器20に流入され、室外熱交換器20から流出する冷媒が電動弁10で膨張され、管路60を流れて室内熱交換器30に流入される。この室内熱交換器30に流入された冷媒は、流路切換弁40を介して圧縮機50に流入される。なお、この図4に示す例では、暖房モード時に、冷媒を電動弁10の一次継手管31から二次継手管32へ流す構成となっているが、配管の接続を逆にして、暖房モード時に、冷媒を二次継手管32から一次継手管31へ流す構成としてもよい。 The flow path of the refrigeration cycle system is switched to two flow paths of the heating mode and the cooling mode by the flow path switching valve 40, and in the heating mode, the refrigerant as the fluid compressed by the compressor 50 as indicated by the solid arrow. Is introduced into the indoor heat exchanger 30 from the flow path switching valve 40, and the refrigerant flowing out of the indoor heat exchanger 30 is introduced into the motor-operated valve 10 through the pipe line 60. Then, the refrigerant is expanded by the electrically operated valve 10 and circulated through the outdoor heat exchanger 20, the flow path switching valve 40, and the compressor 50 in this order. In the cooling mode, the refrigerant compressed by the compressor 50 flows into the outdoor heat exchanger 20 from the flow path switching valve 40 and the refrigerant flowing out of the outdoor heat exchanger 20 flows into the motor-operated valve 10 as indicated by the dashed arrow. It is expanded, flows through the pipe 60, and flows into the indoor heat exchanger 30. The refrigerant that has flowed into the indoor heat exchanger 30 flows into the compressor 50 via the flow path switching valve 40. In the example shown in FIG. 4, the refrigerant is made to flow from the primary joint pipe 31 to the secondary joint pipe 32 of the motor-operated valve 10 in the heating mode. The refrigerant may flow from the secondary joint pipe 32 to the primary joint pipe 31.

電動弁10は、冷媒の流量を制御する膨張弁(絞り装置)として働き、暖房モードでは、室外熱交換器20が蒸発器として機能し、室内熱交換器30が凝縮器として機能し、室内の暖房がなされる。また、冷房モードでは、室外熱交換器20が凝縮器として機能し、室内熱交換器30が蒸発器として機能し、室内の冷房がなされる。 The motor-operated valve 10 functions as an expansion valve (throttle device) that controls the flow rate of the refrigerant, and in the heating mode, the outdoor heat exchanger 20 functions as an evaporator, the indoor heat exchanger 30 functions as a condenser, and Heating is done. In the cooling mode, the outdoor heat exchanger 20 functions as a condenser, the indoor heat exchanger 30 functions as an evaporator, and the room is cooled.

次に、図1及び図2に基づいて実施形態の電動弁10について説明する。この電動弁10は、ステンレスや真鍮等の金属部材の切削加工等により形成された弁ハウジング1を有しており、弁ハウジング1には弁室1Aが形成されている。また、弁ハウジング1には、弁室1Aに開口する弁ポート11と、テーパ部12と、ストレート部13とが形成されている。弁ポート11、テーパ部12及びストレート部13は軸線Xを中心軸としており、弁ポート11は薄型円柱形状、テーパ部12は円錐台側面形状、ストレート部13は円柱形状となっている。 Next, the electrically operated valve 10 of the embodiment will be described based on FIGS. 1 and 2. The motor-operated valve 10 has a valve housing 1 formed by cutting a metal member such as stainless steel or brass, and a valve chamber 1A is formed in the valve housing 1. Further, the valve housing 1 is formed with a valve port 11 opening to the valve chamber 1A, a taper portion 12, and a straight portion 13. The valve port 11, the taper portion 12 and the straight portion 13 have an axis X as a central axis, the valve port 11 has a thin cylindrical shape, the taper portion 12 has a truncated cone side surface shape, and the straight portion 13 has a cylindrical shape.

また、弁ハウジング1には、側面側から弁室1Aに連通する一次継手管31が取り付けられるとともに、ストレート部13の軸線X方向の片側端部に二次継手管32が取り付けられている。テーパ部12は弁ポート11の下端からストレート部13の上端まで連なっており、ストレート部13は二次継手管32側に伸びている。そして、弁ポート11、テーパ部12及びストレート部13を介して、弁室1Aと二次継手管32とが導通可能となっている。 Further, the valve housing 1 is provided with a primary joint pipe 31 that communicates with the valve chamber 1A from the side surface side, and a secondary joint pipe 32 is attached to one end of the straight portion 13 in the direction of the axis X. The tapered portion 12 extends from the lower end of the valve port 11 to the upper end of the straight portion 13, and the straight portion 13 extends toward the secondary joint pipe 32 side. The valve chamber 1A and the secondary joint pipe 32 can be electrically connected to each other through the valve port 11, the taper portion 12 and the straight portion 13.

さらに、弁ハウジング1には、上部から弁室1A内に挿通されるように弁ガイド部材33が圧入及びかしめにより取り付けられており、この弁ガイド部材33の中心には弁ガイド孔33aが形成されている。また、弁ハウジング1の上端部には弁ガイド部材33の上端外周部を囲うようにリム1aが形成されており、弁ハウジング1には、リム1aの外周に嵌合するように円筒状のケース34が組み付けられている。このケース34は、リム1aをかしめるとともに、底部外周をろう付けすることにより弁ハウジング1に固着されている。さらに、ケース34の上端開口部には固定金具41を介して支持部材4が取り付けられている。 Further, a valve guide member 33 is attached to the valve housing 1 by press fitting and caulking so as to be inserted into the valve chamber 1A from above, and a valve guide hole 33a is formed at the center of the valve guide member 33. ing. Further, a rim 1a is formed on the upper end of the valve housing 1 so as to surround the outer periphery of the upper end of the valve guide member 33, and the valve housing 1 has a cylindrical case fitted to the outer periphery of the rim 1a. 34 is assembled. The case 34 is fixed to the valve housing 1 by caulking the rim 1a and brazing the outer periphery of the bottom portion. Further, the support member 4 is attached to the upper end opening of the case 34 via a fixing metal fitting 41.

支持部材4の中心には、弁ポート11の軸線Xと同軸の雌ねじ部4aとそのネジ孔が形成されるとともに、雌ねじ部4aのネジ孔の外周よりも径の大きな円筒状のスライド孔4bが形成されている。そして、雌ねじ部4aのネジ孔とスライド孔4aの中に後述の円柱棒状のロータ軸72が配設されている。また、スライド孔4bには弁ホルダ5が軸線X方向に摺動可能に嵌合されており、この弁ホルダ5は上部をロータ軸72に連結されるとともに、下部にニードル弁6を保持している。 At the center of the support member 4, a female screw portion 4a coaxial with the axis X of the valve port 11 and its screw hole are formed, and a cylindrical slide hole 4b having a diameter larger than the outer circumference of the screw hole of the female screw portion 4a is formed. Has been formed. A cylindrical rod-shaped rotor shaft 72, which will be described later, is disposed in the screw hole of the female screw portion 4a and the slide hole 4a. A valve holder 5 is fitted in the slide hole 4b so as to be slidable in the direction of the axis X. The valve holder 5 has an upper part connected to the rotor shaft 72 and a lower part holding the needle valve 6. There is.

弁ホルダ5は、筒状の円筒部51の下端にボス部52が固着されるとともに、円筒部51内にバネ受け53と圧縮コイルバネ54とワッシャ55とスペーサ56とを備えている。ニードル弁6は、ステンレスや真鍮等の金属部材により形成され、下側先端の略楕円体状のニードル部6aと円柱棒状のロッド部6bと上端のフランジ部6cとを有している。そして、ニードル弁6は、弁ホルダ5のボス部52の挿通孔52a内に挿通されるとともに、フランジ部6cをボス部52に当接させて弁ホルダ5に取り付けられている。また、ニードル弁6のロッド部6bは弁ガイド部材33の弁ガイド孔33a内に挿通されている。 The valve holder 5 has a boss portion 52 fixed to the lower end of a cylindrical cylindrical portion 51, and includes a spring receiver 53, a compression coil spring 54, a washer 55, and a spacer 56 in the cylindrical portion 51. The needle valve 6 is formed of a metal member such as stainless steel or brass, and has a substantially ellipsoidal needle portion 6a at the lower tip, a cylindrical rod-shaped rod portion 6b, and a flange portion 6c at the upper end. Then, the needle valve 6 is inserted into the insertion hole 52a of the boss portion 52 of the valve holder 5, and is attached to the valve holder 5 with the flange portion 6c brought into contact with the boss portion 52. The rod portion 6b of the needle valve 6 is inserted into the valve guide hole 33a of the valve guide member 33.

弁ホルダ5において、圧縮コイルバネ54はバネ受け53とニードル弁6のフランジ部6cとの間には所定の荷重を与えられた状態で取り付けられており、弁ホルダ5は、バネ受け53をスペーサ56の下端部に当接するとともに、円筒部51の上端部でワッシャ55を介してスペーサ56上端部を押さえつけている。そして、ロータ軸72のフランジ部72bは、ワッシャ55とスペーサ56との間に係合されて、ワッシャ55により抜け止めがなされている。これにより、ニードル弁6は弁ホルダ5を介してロータ軸72に連結されるとともに、ロッド部6bにガイドされて軸線X方向に移動可能となっている。 In the valve holder 5, the compression coil spring 54 is attached between the spring bearing 53 and the flange portion 6c of the needle valve 6 with a predetermined load applied, and the valve holder 5 mounts the spring bearing 53 on the spacer 56. While contacting the lower end of the spacer 51, the upper end of the cylindrical portion 51 presses the upper end of the spacer 56 via the washer 55. The flange portion 72b of the rotor shaft 72 is engaged between the washer 55 and the spacer 56, and is prevented from coming off by the washer 55. As a result, the needle valve 6 is coupled to the rotor shaft 72 via the valve holder 5, and is guided by the rod portion 6b so as to be movable in the axis X direction.

ケース34の上端には密閉ケース35が溶接等によって気密に固定されている。密閉ケース35内には、外周部を多極に着磁されたマグネットロータ71と、マグネットロータ71の中心に固着された前記ロータ軸72とが設けられている。ロータ軸72の上端部は、密閉ケース35の天井部に設けられた円筒状のガイド36内に回転可能に嵌合されている。また、ロータ軸72には雄ねじ部72aが形成されており、この雄ねじ部72aは支持部材4に形成された雌ねじ部4aに螺合している。密閉ケース35の外周にはステータコイル73が配設されており、マグネットロータ71、ロータ軸72及びステータコイル73はステッピングモータ7を構成している。そして、ステータコイル73にパルス信号が与えられることにより、そのパルス数に応じてマグネットロータ71が回転されてロータ軸72が回転する。なお、ガイド36の外周にはマグネットロータ71に対する回転ストッパ機構37が設けられている。 A closed case 35 is hermetically fixed to the upper end of the case 34 by welding or the like. Inside the sealed case 35, a magnet rotor 71 whose outer peripheral portion is magnetized with multiple poles, and the rotor shaft 72 fixed to the center of the magnet rotor 71 are provided. The upper end of the rotor shaft 72 is rotatably fitted in a cylindrical guide 36 provided on the ceiling of the closed case 35. A male screw portion 72 a is formed on the rotor shaft 72, and the male screw portion 72 a is screwed onto the female screw portion 4 a formed on the support member 4. A stator coil 73 is arranged on the outer circumference of the closed case 35, and the magnet rotor 71, the rotor shaft 72, and the stator coil 73 constitute the stepping motor 7. When a pulse signal is applied to the stator coil 73, the magnet rotor 71 is rotated according to the number of pulses, and the rotor shaft 72 is rotated. A rotation stopper mechanism 37 for the magnet rotor 71 is provided on the outer circumference of the guide 36.

以上の構成により実施形態の電動弁は以下のように動作する。まず、図1の状態で、ステッピングモータ7の駆動により、マグネットロータ71及びロータ軸72が回転し、ロータ軸72の雄ねじ部72aと支持部材4の雌ねじ部4aとのねじ送り機構により、ロータ軸72は軸線X方向に移動する。この回転に伴うロータ軸72の軸線X方向移動によって弁ホルダ5と共にニードル弁6が軸線X方向に移動する。そして、ニードル弁6は、ニードル部6aの部分で弁ポート11の開口面積を増減し、一次継手管31から二次継手管32へ、あるいは二次継手管32から一次継手管31へ流れる流体(冷媒)の流量が制御される。 With the above configuration, the motor-operated valve of the embodiment operates as follows. First, in the state of FIG. 1, the magnet rotor 71 and the rotor shaft 72 are rotated by driving the stepping motor 7, and the rotor shaft 72 is rotated by the screw feed mechanism between the male screw portion 72a of the rotor shaft 72 and the female screw portion 4a of the support member 4. 72 moves in the direction of the axis X. The needle valve 6 moves in the axis X direction together with the valve holder 5 by the movement of the rotor shaft 72 in the axis X direction accompanying this rotation. Then, the needle valve 6 increases or decreases the opening area of the valve port 11 at the needle portion 6a, and the fluid flowing from the primary joint pipe 31 to the secondary joint pipe 32 or from the secondary joint pipe 32 to the primary joint pipe 31 ( The flow rate of (refrigerant) is controlled.

二次継手管32の弁ハウジング1側の端部には、弁ハウジング1に嵌合される厚肉の接続管部21と、円筒状の筒部22とからなるノズル部2が形成されており、このノズル部2には、接続管部21と筒部22を貫通する連通路23が形成されている。ここで、弁ハウジング1側のテーパ部12とストレート部13は、弁ポート11よりも径が拡大された拡大空間1Bを構成しており、ノズル部2は、連通路23により拡大空間1Bと二次継手管32の管路32aとを連通している。また、ノズル部2の筒部22は、拡大空間1B内(ストレート部13内)に弁ポート11側に突出して配置され、この筒部22の外周面と拡大空間1Bの内壁(ストレート部13の内壁)との間に円環状の空間である滞留空間1Cが形成されている。そして、この滞留空間1Cには弁ポート11から流出する流体の一部が滞留される。 At the end portion of the secondary joint pipe 32 on the valve housing 1 side, a nozzle portion 2 including a thick connecting pipe portion 21 fitted into the valve housing 1 and a cylindrical tubular portion 22 is formed. In the nozzle portion 2, a communication passage 23 that penetrates the connecting pipe portion 21 and the cylindrical portion 22 is formed. Here, the taper portion 12 and the straight portion 13 on the valve housing 1 side form an enlarged space 1B having a diameter larger than that of the valve port 11, and the nozzle portion 2 is connected to the enlarged space 1B by a communication passage 23. It communicates with the conduit 32a of the next joint pipe 32. Further, the tubular portion 22 of the nozzle portion 2 is arranged so as to project toward the valve port 11 side in the expanded space 1B (in the straight portion 13), and the outer peripheral surface of the tubular portion 22 and the inner wall of the expanded space 1B (the straight portion 13). A retaining space 1C, which is an annular space, is formed between itself and the inner wall). Then, a part of the fluid flowing out from the valve port 11 is retained in the retention space 1C.

実施形態における各部の寸法は以下の条件を満たすように設定されている。図2に示すように、弁ポート11の内径はニードル部6aの外周に合わせた寸法である。また、ノズル部2の連通路23の内径は弁ポート11の内径より大きな寸法である。弁ポート11、テーパ部12及びストレート部13の全長L1に対し、ニードル部6aの長さL2(弁ポート11を全閉としたときのニードル部の弁座内の長さ)は、
(L2)≦(L1)/2
の関係にある。
また、ニードル部6aの長さL2と、筒部22の長さL3は、
(L2)>(L3)>(L2)/5
の関係にある。
また、筒部22の半径方向の幅W1と、滞留空間1Cの半径方向の幅W2は、
W2>W1
の関係にある。なお、これらの寸法及び角度は図2に図示のものには限定されるものではない。
The dimensions of each part in the embodiment are set so as to satisfy the following conditions. As shown in FIG. 2, the inner diameter of the valve port 11 is dimensioned according to the outer circumference of the needle portion 6a. The inner diameter of the communication passage 23 of the nozzle portion 2 is larger than the inner diameter of the valve port 11. With respect to the total length L1 of the valve port 11, the taper portion 12 and the straight portion 13, the length L2 of the needle portion 6a (the length of the needle portion inside the valve seat when the valve port 11 is fully closed) is
(L2)≦(L1)/2
Have a relationship.
Further, the length L2 of the needle portion 6a and the length L3 of the tubular portion 22 are
(L2)>(L3)>(L2)/5
Have a relationship.
The radial width W1 of the tubular portion 22 and the radial width W2 of the retention space 1C are
W2>W1
Have a relationship. Note that these dimensions and angles are not limited to those shown in FIG.

以上の構成により、図3に示すように、一次継手管31から弁室1Aに流体が流入し、二次継手管32側に流体が流れるとき、ニードル部6aと弁ポート11の隙間を通った流体が、テーパ部12、ストレート部13及びノズル部2の連通路23を通って二次継手管32へ流れる。このとき、ニードル部6aと弁ポート11の隙間は最も狭い箇所であり、ここで流速は最大になるが、弁ポート11の長さは可能な限り短くなっており、この隙間を通った流体の流れは、テーパ部12に倣って流れる。テーパ部12とストレート部13からなる拡大空間1Bは弁ポート11の内径より大きため、テーパ部12で圧力を急激に回復させる。そして、流体はその一部が滞留空間1Cに流れ込み、この滞留空間1C内に流体が滞留する。したがって、ノズル部2の連通路23を流れる流体の流速が減速され、キャビテーションや流れが二次継手管32に当接するのを抑制することができ、流体の流れを安定化して騒音を低減できる。すなわち、流体の流路中に円筒状の筒部22を突出させて滞留空間1Cを形成することで、流体の圧力の損失係数を高くして流速を抑えることができ、騒音を低減できる。 With the above configuration, as shown in FIG. 3, when the fluid flows from the primary joint pipe 31 into the valve chamber 1A and the fluid flows toward the secondary joint pipe 32 side, it passes through the gap between the needle portion 6a and the valve port 11. The fluid flows to the secondary joint pipe 32 through the tapered portion 12, the straight portion 13, and the communication passage 23 of the nozzle portion 2. At this time, the gap between the needle portion 6a and the valve port 11 is the narrowest part, and the flow velocity is maximized here, but the length of the valve port 11 is as short as possible, and the fluid flowing through this gap is The flow follows the tapered portion 12. Since the enlarged space 1B composed of the tapered portion 12 and the straight portion 13 is larger than the inner diameter of the valve port 11, the taper portion 12 rapidly recovers the pressure. Then, a part of the fluid flows into the retention space 1C, and the fluid is retained in the retention space 1C. Therefore, the flow velocity of the fluid flowing through the communication passage 23 of the nozzle portion 2 is reduced, and it is possible to suppress the cavitation and the flow from coming into contact with the secondary joint pipe 32, thereby stabilizing the fluid flow and reducing noise. That is, by projecting the cylindrical portion 22 into the flow path of the fluid to form the retention space 1C, the loss coefficient of the fluid pressure can be increased, the flow velocity can be suppressed, and noise can be reduced.

図5は、ノズル部2の第1乃至第3変形例を示す図である。以下の変形例において実施形態と同様な要素には図1乃至図3と同符号を付記して重複する説明は適宜省略する。図5(A)の第1変形例は、接続管部21に円筒状の筒部22′が形成され、この筒部22′の端部が外側に拡径されている。また、図5(B)の第2変形例は、接続管部21に円筒状の筒部22″が形成され、この筒部22″の端部が内側に縮径されている。ただし、この縮径部の内径は、弁ポート内径よりも大きい。第1変形例では筒部22′の端部が拡径されている分だけ滞留空間1C内に流体が流れ難く、逆に、第2変形例では筒部22″の端部が拡径されている分だけ滞留空間1C内に流体が流れ易い。すなわち、この第1変形例及び第2変形例のように、筒部の端部の形状により、滞留空間1C内に滞留させる流体の量を調整することができる。 FIG. 5 is a diagram showing first to third modifications of the nozzle unit 2. In the following modified examples, elements similar to those of the embodiment are designated by the same reference numerals as those in FIGS. 1 to 3, and redundant description will be appropriately omitted. In the first modified example of FIG. 5A, a cylindrical tubular portion 22' is formed in the connecting pipe portion 21, and the end portion of the tubular portion 22' is expanded outward. Further, in the second modified example of FIG. 5B, a cylindrical tube portion 22″ is formed in the connecting pipe portion 21, and the end portion of the tube portion 22″ is reduced in diameter. However, the inner diameter of the reduced diameter portion is larger than the inner diameter of the valve port. In the first modification, it is difficult for the fluid to flow into the retention space 1C by the amount that the end portion of the tubular portion 22′ is expanded, and conversely, in the second modification, the end portion of the tubular portion 22″ is expanded. The fluid easily flows in the retention space 1C by the amount of the presence of the fluid, that is, the amount of the fluid retained in the retention space 1C is adjusted by the shape of the end portion of the tubular portion as in the first modification and the second modification. can do.

図5(C)の第3変形例のノズル部2は、接続管部21に円錐台側面形状の筒部24が形成され、このノズル部2には、接続管部21と筒部24を貫通する円錐台状(テーパ状)の連通路23′が形成されている。ただし、この円錐台状の上面の内径は、弁ポート内径よりも大きい。この第3変形例では、二次継手管32の管路32aに流れる流体は、連通路23′内でも圧力が回復され流体の流速が減速される。 In the nozzle portion 2 of the third modified example of FIG. 5(C), the connection pipe portion 21 is formed with a cylindrical portion 24 having a truncated cone side surface shape, and the nozzle portion 2 penetrates the connection pipe portion 21 and the cylinder portion 24. A truncated cone-shaped (tapered) communication passage 23' is formed. However, the inner diameter of the upper surface of the truncated cone is larger than the inner diameter of the valve port. In the third modification, the pressure of the fluid flowing in the conduit 32a of the secondary joint pipe 32 is recovered even in the communication passage 23', and the flow velocity of the fluid is reduced.

以上の実施形態及び変形例では、ノズル部2が二次継手管32と一体に形成されている場合について説明したが、ノズル部は二次継手管と別部材で構成し、二次継手管と弁ハウジングとの間に取り付けるようにしてもよい。また、実施形態及び変形例では、テーパ部12とストレート部13により拡大空間1Bを構成しているが、テーパ部12のみ、あるいはストレート部13のみで拡大空間を構成してもよい。さらに、テーパ部とストレート部を複数段設けたような構成でもよい。 In the above-described embodiments and modified examples, the case where the nozzle portion 2 is formed integrally with the secondary joint pipe 32 has been described, but the nozzle portion is configured as a separate member from the secondary joint pipe, It may be mounted between the valve housing and the valve housing. Further, in the embodiment and the modified example, the expanded space 1B is configured by the tapered portion 12 and the straight portion 13, but the expanded space may be configured by only the tapered portion 12 or the straight portion 13. Furthermore, a configuration may be such that a plurality of tapered portions and straight portions are provided.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and changes in design within the scope not departing from the gist of the present invention. Even so, it is included in the present invention.

1 弁ハウジング
1A 弁室
11 弁ポート
12 テーパ部
13 ストレート部
1B 拡大空間
1C 滞留空間
2 ノズル部
21 接続管部
22 筒部
23 連通路
22′ 筒部
22″ 筒部
23′ 連通路
24 筒部
31 一次継手管
32 二次継手管
32a 管路
4 支持部材
4a 雌ねじ部
4b スライド孔
5 弁ホルダ
6 ニードル弁
6a ニードル部
7 ステッピングモータ
71 マグネットロータ
72 ロータ軸
72a 雄ねじ部
73 ステータコイル
X 軸線
10 電動弁
20 室外熱交換器
30 室内熱交換器
40 流路切換弁
50 圧縮機
100 室外ユニット
200 室内ユニット
DESCRIPTION OF SYMBOLS 1 valve housing 1A valve chamber 11 valve port 12 taper part 13 straight part 1B enlarged space 1C retention space 2 nozzle part 21 connection pipe part 22 cylinder part 23 communication path 22' cylinder part 22" cylinder part 23' communication path 24 cylinder part 31 Primary joint pipe 32 Secondary joint pipe 32a Pipe line 4 Support member 4a Female screw part 4b Slide hole 5 Valve holder 6 Needle valve 6a Needle part 7 Stepping motor 71 Magnet rotor 72 Rotor shaft 72a Male screw part 73 Stator coil X axis 10 Electric valve 20 Outdoor heat exchanger 30 Indoor heat exchanger 40 Flow path switching valve 50 Compressor 100 Outdoor unit 200 Indoor unit

Claims (5)

一次継手管が連通される弁室と二次継手管とを、ニードル弁で開口面積が増減される弁ポートを介して連通可能とする電動弁であって、前記弁ポートの前記二次継手管側に、該弁ポートよりも径が拡大された拡大空間を有する電動弁において、
前記拡大空間内に前記弁ポート側に突出する筒部を有するノズル部を備え、前記拡大空間と前記二次継手管の管路とが前記ノズル部を介して連通されているとともに、前記拡大空間内壁と前記筒部の外周との間に流体が滞留する滞留空間形成されていることを特徴とする電動弁。
A motor-operated valve capable of communicating a valve chamber communicating with a primary joint pipe and a secondary joint pipe via a valve port whose opening area is increased/decreased by a needle valve, the secondary joint pipe of the valve port On the side, in the motor-operated valve having an enlarged space whose diameter is enlarged than the valve port,
The expansion includes a nozzle portion having a cylindrical portion which projects into the valve port side into the space, along with being communicated the expansion space and the conduit of the secondary coupling tube through said nozzle portion, said enlarged space A motor-operated valve characterized in that a retention space for retaining a fluid is formed between the inner wall of the valve and the outer periphery of the tubular portion .
前記ノズル部の内径が前記弁ポートの内径より大きいことを特徴とする請求項1に記載の電動弁。 The motorized valve according to claim 1, wherein an inner diameter of the nozzle portion is larger than an inner diameter of the valve port. 前記拡大空間が、前記弁ポート側の円錐台側面形状のテーパ部と、該テーパ部から前記二次継手管側に伸びる円柱側面形状のストレート部とにより形成されていることを特徴とする請求項1または2に記載の電動弁。 The expanded space is formed by a tapered portion having a truncated cone side surface shape on the valve port side and a cylindrical side surface-shaped straight portion extending from the tapered portion to the secondary joint pipe side. The motor-operated valve according to 1 or 2. 前記ノズル部が前記二次継手管の端部に一体に形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の電動弁。 The motorized valve according to any one of claims 1 to 3, wherein the nozzle portion is integrally formed with an end portion of the secondary joint pipe. 圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1乃至4のいずれか一項に記載の電動弁が、前記膨張弁として用いられていることを特徴とする冷凍サイクルシステム。 A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the electrically operated valve according to any one of claims 1 to 4 is used as the expansion valve. A refrigeration cycle system characterized in that
JP2017142469A 2017-07-24 2017-07-24 Motorized valve and refrigeration cycle system Active JP6738775B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017142469A JP6738775B2 (en) 2017-07-24 2017-07-24 Motorized valve and refrigeration cycle system
CN201810673159.8A CN109296805B (en) 2017-07-24 2018-06-26 Electric valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142469A JP6738775B2 (en) 2017-07-24 2017-07-24 Motorized valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2019023484A JP2019023484A (en) 2019-02-14
JP6738775B2 true JP6738775B2 (en) 2020-08-12

Family

ID=65167774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142469A Active JP6738775B2 (en) 2017-07-24 2017-07-24 Motorized valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP6738775B2 (en)
CN (1) CN109296805B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828659B (en) * 2019-04-23 2022-05-17 株式会社鹭宫制作所 Valve device and refrigeration cycle system
JP7293038B2 (en) * 2019-08-09 2023-06-19 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system including the same
JP7246291B2 (en) * 2019-10-23 2023-03-27 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7199335B2 (en) * 2019-10-25 2023-01-05 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7299178B2 (en) * 2020-02-04 2023-06-27 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7299177B2 (en) 2020-02-04 2023-06-27 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7361628B2 (en) * 2020-02-19 2023-10-16 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
DE102020134622B4 (en) * 2020-12-22 2022-11-03 Hanon Systems Device for controlling a flow and expanding a fluid in a fluid circuit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1550435A1 (en) * 1966-02-25 1970-08-13 Wilhelm Odendahl Throttle device
US3911858A (en) * 1974-05-31 1975-10-14 United Technologies Corp Vortex acoustic oscillator
WO1983003655A1 (en) * 1982-04-07 1983-10-27 The British Hydromechanics Research Association A liquid flow control assembly
JPH11325658A (en) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd Expansion valve
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP2001241562A (en) * 2000-03-01 2001-09-07 Pacific Ind Co Ltd Control valve
DE102005005762A1 (en) * 2005-02-09 2006-08-10 Robert Bosch Gmbh Apparatus and method for controlling a pressure and / or a volume flow of a liquid
JP2006307964A (en) * 2005-04-28 2006-11-09 Furukawa Electric Co Ltd:The Electric control valve
JP2007162851A (en) * 2005-12-14 2007-06-28 Fuji Koki Corp Motor operated valve
CN204099606U (en) * 2014-05-12 2015-01-14 上海三洲自控仪表有限公司 Anti-incrustation anti-abrasion angular form control valve
JP6370269B2 (en) * 2015-07-17 2018-08-08 株式会社鷺宮製作所 Motorized valve and refrigeration cycle
JP6479648B2 (en) * 2015-12-24 2019-03-06 株式会社鷺宮製作所 Motorized valve
WO2018230159A1 (en) * 2017-06-15 2018-12-20 株式会社鷺宮製作所 Electrically operated valve and refrigeration cycle system

Also Published As

Publication number Publication date
JP2019023484A (en) 2019-02-14
CN109296805B (en) 2020-12-29
CN109296805A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
JP6738775B2 (en) Motorized valve and refrigeration cycle system
JP6740179B2 (en) Motorized valve and refrigeration cycle system
JP6479648B2 (en) Motorized valve
JP5696093B2 (en) Motorized valve
JP6659624B2 (en) Motorized valve and refrigeration cycle system
JP5395775B2 (en) Motorized valve
JP2019044880A (en) Motor valve and refrigeration cycle system
JP5480753B2 (en) Motorized valve
JP2020034141A (en) Motor-operated valve and refrigeration cycle system
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP7123020B2 (en) Electric valve and refrigeration cycle system
CN105587906A (en) Electronic expansion valve
JP7509961B2 (en) Motor-operated valve and refrigeration cycle system
JP7474892B2 (en) Motor-operated valve and refrigeration cycle system
JP7199335B2 (en) Electric valve and refrigeration cycle system
JP7317191B2 (en) Electric valve and refrigeration cycle system
JP2019070449A (en) Motor valve and refrigeration cycle system
JP7299178B2 (en) Electric valve and refrigeration cycle system
JP7341280B2 (en) Electric valve and refrigeration cycle system
JP7365300B2 (en) Electric valve and refrigeration cycle system
JP7361628B2 (en) Electric valve and refrigeration cycle system
JP2022053894A (en) Motor-operated valve and refrigeration cycle system
JP2023084804A (en) Motor-operated valve and refrigeration cycle system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6738775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150