JP2019023484A - Motor valve and refrigeration cycle system - Google Patents

Motor valve and refrigeration cycle system Download PDF

Info

Publication number
JP2019023484A
JP2019023484A JP2017142469A JP2017142469A JP2019023484A JP 2019023484 A JP2019023484 A JP 2019023484A JP 2017142469 A JP2017142469 A JP 2017142469A JP 2017142469 A JP2017142469 A JP 2017142469A JP 2019023484 A JP2019023484 A JP 2019023484A
Authority
JP
Japan
Prior art keywords
valve
joint pipe
space
motor
secondary joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017142469A
Other languages
Japanese (ja)
Other versions
JP6738775B2 (en
Inventor
大樹 中川
Daiki Nakagawa
大樹 中川
一也 小林
Kazuya Kobayashi
一也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2017142469A priority Critical patent/JP6738775B2/en
Priority to CN201810673159.8A priority patent/CN109296805B/en
Publication of JP2019023484A publication Critical patent/JP2019023484A/en
Application granted granted Critical
Publication of JP6738775B2 publication Critical patent/JP6738775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0254Construction of housing; Use of materials therefor of lift valves with conical shaped valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

To reduce noise caused by flow of a fluid in an electric valve which opens or closes a valve port 11 with a needle valve 6 to control a flow rate of the fluid such as a refrigerant.SOLUTION: A valve port 11, a taper part 12, and a straight part 13 are formed at a valve housing 1. The taper part 12 and the straight part 13 form an expansion space 1B. A nozzle part 2 is provided at a valve housing 1 side end part of a secondary joint 31. A cylinder part 22 of the nozzle part 2 protrudes into the expansion space 1B and an accumulation space 1C is formed between the cylinder part 22 and the straight part 13. A fluid is accumulated in the accumulation space 1C to increase a loss coefficient of a pressure of the fluid. The nozzle part 2 may be formed separately from the secondary joint 31.SELECTED DRAWING: Figure 2

Description

本発明は、空気調和機等において冷媒の流量を制御する電動弁に関し、特に、弁ポートの周囲の形状を改良した電動弁及び冷凍サイクルシステムに関する。   The present invention relates to a motor-operated valve that controls the flow rate of refrigerant in an air conditioner or the like, and more particularly to a motor-operated valve and a refrigeration cycle system having an improved shape around a valve port.

従来、冷凍サイクルシステムにおいて、冷媒の流量を制御する電動弁から発生する、冷媒通過に伴う騒音がしばしば問題となることがある。このような騒音対策を施すようにした電動弁として、例えば特開2012−82896号公報(特許文献1)及び特開2007−107847号公報(特許文献2)に開示されたものがある。   Conventionally, in a refrigeration cycle system, noise accompanying the passage of refrigerant, which is generated from an electric valve that controls the flow rate of the refrigerant, often becomes a problem. For example, Japanese Patent Application Laid-Open No. 2012-82896 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2007-107847 (Patent Document 2) have disclosed motor-driven valves that take such noise countermeasures.

特許文献1の電動弁は、第1弁ポートより内径の大きな第2弁ポート内に冷媒を流出させ、二次継手管に到達する前の第2弁ポート(拡大空間)内で流速を減速させて、騒音を低減している。また、特許文献2の電動弁は、二次継手管(出口継手管)の形状を変形させて、その固有振動数を改良し、騒音低減を図っている。   The electric valve of Patent Document 1 causes the refrigerant to flow out into the second valve port having a larger inner diameter than the first valve port, and reduces the flow velocity in the second valve port (enlarged space) before reaching the secondary joint pipe. Noise. Moreover, the electric valve of patent document 2 is changing the shape of a secondary joint pipe (outlet joint pipe), improving the natural frequency, and aiming at noise reduction.

特開2012−82896号公報JP 2012-82896 A 特開2007−107847号公報JP 2007-107847 A

特許文献1の電動弁では、第1ポートに対する拡大空間となる第2ポート内での冷媒の流速が速く、騒音を低減するためには改良の余地がある。なお、特許文献2の電動弁では、騒音に対応して二次継手管の固有振動数を設定するのがきわめて困難である。   In the electric valve of Patent Document 1, the flow rate of the refrigerant in the second port, which is an expansion space with respect to the first port, is fast, and there is room for improvement in order to reduce noise. In the electric valve of Patent Document 2, it is extremely difficult to set the natural frequency of the secondary joint pipe corresponding to noise.

本発明は、冷媒等の流体を一次継手管から弁室に流入させて、ニードル弁と弁ポートととの間から拡大空間に流体を流入させるとともに、二次継手管に流出する流体の速度をさらに減速させて、流体の流れに対して流体通過音等の騒音をさらに低減した電動弁を提供することを課題とする。   The present invention allows a fluid such as a refrigerant to flow into the valve chamber from the primary joint pipe, allows the fluid to flow into the expansion space from between the needle valve and the valve port, and sets the speed of the fluid flowing out to the secondary joint pipe. It is another object of the present invention to provide a motor-operated valve that is further decelerated to further reduce noise such as fluid passing sound with respect to the fluid flow.

請求項1の電動弁は、一次継手管が連通される弁室と二次継手管とを、ニードル弁で開口面積が増減される弁ポートを介して連通可能とする電動弁であって、前記弁ポートの前記二次継手管側に、該弁ポートよりも径が拡大された拡大空間を有する電動弁において、前記拡大空間と前記二次継手管の管路とを連通するとともに、前記拡大空間内に突出して該拡大空間の内壁との間に流体が滞留する滞留空間を形成するノズル部を備えたことを特徴とする。   The motor-operated valve according to claim 1 is a motor-operated valve that enables communication between a valve chamber that communicates with a primary joint pipe and a secondary joint pipe via a valve port whose opening area is increased or decreased by a needle valve, In the electric valve having an expansion space whose diameter is larger than that of the valve port on the secondary joint pipe side of the valve port, the expansion space communicates with the pipe line of the secondary joint pipe, and the expansion space The nozzle part which protrudes inward and forms the retention space in which a fluid retains between the inner walls of this expansion space is provided.

請求項2の電動弁は、請求項1に記載の電動弁であって、前記ノズル部の内径が前記弁ポートの内径より大きいことを特徴とする。   A motor-driven valve according to a second aspect is the motor-operated valve according to the first aspect, wherein an inner diameter of the nozzle portion is larger than an inner diameter of the valve port.

請求項3の電動弁は、請求項1または2に記載の電動弁であって、前記拡大空間が、前記弁ポート側の円錐台側面形状のテーパ部と、該テーパ部から前記二次継手管側に伸びる円柱側面形状のストレート部とにより形成されていることを特徴とする。   The motor-driven valve according to claim 3 is the motor-operated valve according to claim 1 or 2, wherein the expansion space includes a tapered portion having a truncated cone side shape on the valve port side and the secondary joint pipe from the tapered portion. It is formed by the straight part of the cylindrical side surface shape extended to the side.

請求項4の電動弁は、請求項1乃至3のいずれか一項に記載の電動弁であって、前記ノズル部が前記二次継手管の端部に一体に形成されていることを特徴とする。   The motor-operated valve according to claim 4 is the motor-operated valve according to any one of claims 1 to 3, wherein the nozzle portion is formed integrally with an end portion of the secondary joint pipe. To do.

請求項5の冷凍サイクルシステムは、圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1乃至4のいずれか一項に記載の電動弁が、前記膨張弁として用いられていることを特徴とする。   The refrigeration cycle system according to claim 5 is a refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the electric valve according to any one of claims 1 to 4 is provided. It is used as the expansion valve.

請求項1乃至4の電動弁によれば、弁ポートとニードル弁との隙間から流れる流体が拡大空間に流出したとき、拡大空間内でノズル部により形成された滞留空間に流体が滞留し、このノズル部から二次継手管へ流れる流体の圧力の損失係数を高くして流速を抑えることができ、騒音を低減できる。   According to the electric valve of the first to fourth aspects, when the fluid flowing from the gap between the valve port and the needle valve flows out into the expansion space, the fluid stays in the retention space formed by the nozzle portion in the expansion space. The loss factor of the pressure of the fluid flowing from the nozzle portion to the secondary joint pipe can be increased to suppress the flow velocity, and noise can be reduced.

請求項2の電動弁によれば、ノズル部の内径が弁ポートの内径より大きいので、弁ポートの全開時の二次継手管に流れる流量を確保することができる。   According to the electric valve of the second aspect, since the inner diameter of the nozzle portion is larger than the inner diameter of the valve port, it is possible to ensure the flow rate flowing through the secondary joint pipe when the valve port is fully opened.

請求項3の電動弁によれば、テーパ部とストレート部とにより拡大空間が形成されているので、テーパ部により滞留空間を確保することができる。   According to the motor-driven valve of the third aspect, since the enlarged space is formed by the tapered portion and the straight portion, the staying space can be secured by the tapered portion.

請求項4の電動弁によれば、ノズル部が二次継手管の端部に一体に形成されているので、電動弁の組み付けが容易になるとともに、部品点数を少なくできる。   According to the electric valve of the fourth aspect, since the nozzle portion is formed integrally with the end portion of the secondary joint pipe, the electric valve can be easily assembled and the number of parts can be reduced.

請求項5の冷凍サイクルシステムによれば、請求項1乃至4と同様な効果が得られる。   According to the refrigeration cycle system of claim 5, the same effects as in claims 1 to 4 can be obtained.

本発明の実施形態の電動弁の縦断面図である。It is a longitudinal cross-sectional view of the motor operated valve of embodiment of this invention. 本発明の実施形態の電動弁における弁ポート近傍の要部拡大縦断面図である。It is a principal part expansion longitudinal cross-sectional view of the valve port vicinity in the motor operated valve of embodiment of this invention. 本発明の実施形態の電動弁における弁ポートの作用を説明する図である。It is a figure explaining the effect | action of the valve port in the motor operated valve of embodiment of this invention. 本発明の実施形態の電動弁を用いた空気調和機の一例を示す図である。It is a figure which shows an example of the air conditioner using the motor operated valve of embodiment of this invention. 本発明の実施形態の第1変形例乃至第3変形例を示す図である。It is a figure which shows the 1st modification thru | or 3rd modification of embodiment of this invention.

次に、本発明の電動弁の実施の形態を図面を参照して説明する。図1は実施形態の電動弁の縦断面図、図2は実施形態の電動弁における弁ポート近傍の要部拡大縦断面図、図3は実施形態の電動弁における弁ポートの作用を説明する図、図4は実施形態の電動弁を用いた空気調和機の一例を示す図である。なお、以下の説明における「上下」の概念は図1の図面における上下に対応する。   Next, an embodiment of the motor-operated valve of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a motor-operated valve according to the embodiment, FIG. 2 is an enlarged longitudinal sectional view of a main part in the vicinity of the valve port in the motor-operated valve according to the embodiment, and FIG. FIG. 4 is a diagram illustrating an example of an air conditioner using the electric valve of the embodiment. Note that the concept of “upper and lower” in the following description corresponds to the upper and lower sides in the drawing of FIG.

まず、図4に基づいて実施形態に係る空気調和機について説明する。空気調和機は、膨張弁としての実施形態の電動弁10、室外ユニット100に搭載された室外熱交換器20、室内ユニット200に搭載された室内熱交換器30、流路切換弁40、圧縮機50を有しており、これらの各要素は、それぞれ導管によって図示のように接続され、ヒートポンプ式の冷凍サイクルシステムを構成している。この冷凍サイクルシステムは本発明の電動弁を適用する冷凍サイクルシステムの一例であり、本発明の電動弁は、ビル用のマルチエアコン等の室内機側の絞り装置等、他のシステムにも適用することができる。   First, the air conditioner according to the embodiment will be described with reference to FIG. The air conditioner includes an electric valve 10 as an expansion valve, an outdoor heat exchanger 20 mounted on the outdoor unit 100, an indoor heat exchanger 30 mounted on the indoor unit 200, a flow path switching valve 40, and a compressor. Each of these elements is connected by a conduit as shown in the figure to constitute a heat pump type refrigeration cycle system. This refrigeration cycle system is an example of a refrigeration cycle system to which the electric valve of the present invention is applied, and the electric valve of the present invention is also applied to other systems such as a throttle device on the indoor unit side such as a multi air conditioner for buildings. be able to.

冷凍サイクルシステムの流路は流路切換弁40により暖房モードおよび冷房モードの2通りの流路に切換えられ、暖房モードでは実線の矢印で示すように、圧縮機50で圧縮された流体としての冷媒が流路切換弁40から室内熱交換器30に流入され、室内熱交換器30から流出する冷媒が、管路60を通って電動弁10に流入される。そして、この電動弁10で冷媒が膨張され、室外熱交換器20、流路切換弁40、圧縮機50の順に循環される。冷房モードでは、破線の矢印で示すように、圧縮機50で圧縮された冷媒が流路切換弁40から室外熱交換器20に流入され、室外熱交換器20から流出する冷媒が電動弁10で膨張され、管路60を流れて室内熱交換器30に流入される。この室内熱交換器30に流入された冷媒は、流路切換弁40を介して圧縮機50に流入される。なお、この図4に示す例では、暖房モード時に、冷媒を電動弁10の一次継手管31から二次継手管32へ流す構成となっているが、配管の接続を逆にして、暖房モード時に、冷媒を二次継手管32から一次継手管31へ流す構成としてもよい。   The flow path of the refrigeration cycle system is switched to the two flow paths of the heating mode and the cooling mode by the flow path switching valve 40, and in the heating mode, as indicated by the solid line arrow, the refrigerant as the fluid compressed by the compressor 50 Flows into the indoor heat exchanger 30 from the flow path switching valve 40, and the refrigerant flowing out of the indoor heat exchanger 30 flows into the motor-operated valve 10 through the pipe line 60. Then, the refrigerant is expanded by the electric valve 10 and circulated in the order of the outdoor heat exchanger 20, the flow path switching valve 40, and the compressor 50. In the cooling mode, the refrigerant compressed by the compressor 50 flows into the outdoor heat exchanger 20 from the flow path switching valve 40 and the refrigerant flowing out of the outdoor heat exchanger 20 flows through the motor operated valve 10 as indicated by the dashed arrows. It is expanded, flows through the pipe line 60 and flows into the indoor heat exchanger 30. The refrigerant that has flowed into the indoor heat exchanger 30 flows into the compressor 50 via the flow path switching valve 40. In the example shown in FIG. 4, the refrigerant is configured to flow from the primary joint pipe 31 to the secondary joint pipe 32 in the heating valve in the heating mode. The refrigerant may flow from the secondary joint pipe 32 to the primary joint pipe 31.

電動弁10は、冷媒の流量を制御する膨張弁(絞り装置)として働き、暖房モードでは、室外熱交換器20が蒸発器として機能し、室内熱交換器30が凝縮器として機能し、室内の暖房がなされる。また、冷房モードでは、室外熱交換器20が凝縮器として機能し、室内熱交換器30が蒸発器として機能し、室内の冷房がなされる。   The motor-operated valve 10 functions as an expansion valve (throttle device) that controls the flow rate of the refrigerant. In the heating mode, the outdoor heat exchanger 20 functions as an evaporator, the indoor heat exchanger 30 functions as a condenser, Heating is done. In the cooling mode, the outdoor heat exchanger 20 functions as a condenser, the indoor heat exchanger 30 functions as an evaporator, and the room is cooled.

次に、図1及び図2に基づいて実施形態の電動弁10について説明する。この電動弁10は、ステンレスや真鍮等の金属部材の切削加工等により形成された弁ハウジング1を有しており、弁ハウジング1には弁室1Aが形成されている。また、弁ハウジング1には、弁室1Aに開口する弁ポート11と、テーパ部12と、ストレート部13とが形成されている。弁ポート11、テーパ部12及びストレート部13は軸線Xを中心軸としており、弁ポート11は薄型円柱形状、テーパ部12は円錐台側面形状、ストレート部13は円柱形状となっている。   Next, based on FIG.1 and FIG.2, the motor operated valve 10 of embodiment is demonstrated. The electric valve 10 has a valve housing 1 formed by cutting a metal member such as stainless steel or brass, and the valve housing 1 is formed with a valve chamber 1A. Further, the valve housing 1 is formed with a valve port 11 that opens to the valve chamber 1 </ b> A, a tapered portion 12, and a straight portion 13. The valve port 11, the tapered portion 12 and the straight portion 13 have an axis X as the central axis, the valve port 11 has a thin cylindrical shape, the tapered portion 12 has a truncated cone side shape, and the straight portion 13 has a cylindrical shape.

また、弁ハウジング1には、側面側から弁室1Aに連通する一次継手管31が取り付けられるとともに、ストレート部13の軸線X方向の片側端部に二次継手管32が取り付けられている。テーパ部12は弁ポート11の下端からストレート部13の上端まで連なっており、ストレート部13は二次継手管32側に伸びている。そして、弁ポート11、テーパ部12及びストレート部13を介して、弁室1Aと二次継手管32とが導通可能となっている。   In addition, a primary joint pipe 31 that communicates with the valve chamber 1 </ b> A from the side surface side is attached to the valve housing 1, and a secondary joint pipe 32 is attached to one end of the straight portion 13 in the axis X direction. The tapered portion 12 continues from the lower end of the valve port 11 to the upper end of the straight portion 13, and the straight portion 13 extends to the secondary joint pipe 32 side. The valve chamber 1 </ b> A and the secondary joint pipe 32 can be electrically connected to each other through the valve port 11, the tapered portion 12, and the straight portion 13.

さらに、弁ハウジング1には、上部から弁室1A内に挿通されるように弁ガイド部材33が圧入及びかしめにより取り付けられており、この弁ガイド部材33の中心には弁ガイド孔33aが形成されている。また、弁ハウジング1の上端部には弁ガイド部材33の上端外周部を囲うようにリム1aが形成されており、弁ハウジング1には、リム1aの外周に嵌合するように円筒状のケース34が組み付けられている。このケース34は、リム1aをかしめるとともに、底部外周をろう付けすることにより弁ハウジング1に固着されている。さらに、ケース34の上端開口部には固定金具41を介して支持部材4が取り付けられている。   Further, a valve guide member 33 is attached to the valve housing 1 by press-fitting and caulking so as to be inserted into the valve chamber 1A from above, and a valve guide hole 33a is formed at the center of the valve guide member 33. ing. A rim 1a is formed at the upper end of the valve housing 1 so as to surround the outer periphery of the upper end of the valve guide member 33. The valve housing 1 has a cylindrical case so as to be fitted to the outer periphery of the rim 1a. 34 is assembled. The case 34 is fixed to the valve housing 1 by caulking the rim 1a and brazing the outer periphery of the bottom. Further, the support member 4 is attached to the upper end opening of the case 34 via a fixing bracket 41.

支持部材4の中心には、弁ポート11の軸線Xと同軸の雌ねじ部4aとそのネジ孔が形成されるとともに、雌ねじ部4aのネジ孔の外周よりも径の大きな円筒状のスライド孔4bが形成されている。そして、雌ねじ部4aのネジ孔とスライド孔4aの中に後述の円柱棒状のロータ軸72が配設されている。また、スライド孔4bには弁ホルダ5が軸線X方向に摺動可能に嵌合されており、この弁ホルダ5は上部をロータ軸72に連結されるとともに、下部にニードル弁6を保持している。   In the center of the support member 4, a female screw portion 4a coaxial with the axis X of the valve port 11 and a screw hole thereof are formed, and a cylindrical slide hole 4b having a diameter larger than the outer periphery of the screw hole of the female screw portion 4a is formed. Is formed. A cylindrical rod-shaped rotor shaft 72 described later is disposed in the screw hole and the slide hole 4a of the female screw portion 4a. A valve holder 5 is fitted in the slide hole 4b so as to be slidable in the direction of the axis X. The valve holder 5 is connected to the rotor shaft 72 at the upper part and holds the needle valve 6 at the lower part. Yes.

弁ホルダ5は、筒状の円筒部51の下端にボス部52が固着されるとともに、円筒部51内にバネ受け53と圧縮コイルバネ54とワッシャ55とスペーサ56とを備えている。ニードル弁6は、ステンレスや真鍮等の金属部材により形成され、下側先端の略楕円体状のニードル部6aと円柱棒状のロッド部6bと上端のフランジ部6cとを有している。そして、ニードル弁6は、弁ホルダ5のボス部52の挿通孔52a内に挿通されるとともに、フランジ部6cをボス部52に当接させて弁ホルダ5に取り付けられている。また、ニードル弁6のロッド部6bは弁ガイド部材33の弁ガイド孔33a内に挿通されている。   The valve holder 5 has a boss portion 52 fixed to the lower end of a cylindrical cylindrical portion 51, and includes a spring receiver 53, a compression coil spring 54, a washer 55, and a spacer 56 in the cylindrical portion 51. The needle valve 6 is formed of a metal member such as stainless steel or brass, and has a substantially elliptical needle portion 6a at the lower end, a cylindrical rod-shaped rod portion 6b, and an upper flange portion 6c. The needle valve 6 is inserted into the insertion hole 52 a of the boss portion 52 of the valve holder 5 and attached to the valve holder 5 with the flange portion 6 c abutting against the boss portion 52. The rod portion 6 b of the needle valve 6 is inserted into the valve guide hole 33 a of the valve guide member 33.

弁ホルダ5において、圧縮コイルバネ54はバネ受け53とニードル弁6のフランジ部6cとの間には所定の荷重を与えられた状態で取り付けられており、弁ホルダ5は、バネ受け53をスペーサ56の下端部に当接するとともに、円筒部51の上端部でワッシャ55を介してスペーサ56上端部を押さえつけている。そして、ロータ軸72のフランジ部72bは、ワッシャ55とスペーサ56との間に係合されて、ワッシャ55により抜け止めがなされている。これにより、ニードル弁6は弁ホルダ5を介してロータ軸72に連結されるとともに、ロッド部6bにガイドされて軸線X方向に移動可能となっている。   In the valve holder 5, the compression coil spring 54 is attached between the spring receiver 53 and the flange portion 6 c of the needle valve 6 in a state where a predetermined load is applied. The valve holder 5 attaches the spring receiver 53 to the spacer 56. The upper end portion of the spacer 56 is pressed by the upper end portion of the cylindrical portion 51 via the washer 55. The flange portion 72 b of the rotor shaft 72 is engaged between the washer 55 and the spacer 56, and is prevented from coming off by the washer 55. Thus, the needle valve 6 is connected to the rotor shaft 72 via the valve holder 5 and is movable in the direction of the axis X while being guided by the rod portion 6b.

ケース34の上端には密閉ケース35が溶接等によって気密に固定されている。密閉ケース35内には、外周部を多極に着磁されたマグネットロータ71と、マグネットロータ71の中心に固着された前記ロータ軸72とが設けられている。ロータ軸72の上端部は、密閉ケース35の天井部に設けられた円筒状のガイド36内に回転可能に嵌合されている。また、ロータ軸72には雄ねじ部72aが形成されており、この雄ねじ部72aは支持部材4に形成された雌ねじ部4aに螺合している。密閉ケース35の外周にはステータコイル73が配設されており、マグネットロータ71、ロータ軸72及びステータコイル73はステッピングモータ7を構成している。そして、ステータコイル73にパルス信号が与えられることにより、そのパルス数に応じてマグネットロータ71が回転されてロータ軸72が回転する。なお、ガイド36の外周にはマグネットロータ71に対する回転ストッパ機構37が設けられている。   A sealed case 35 is airtightly fixed to the upper end of the case 34 by welding or the like. In the sealed case 35, there are provided a magnet rotor 71 whose outer peripheral portion is magnetized in multiple poles and the rotor shaft 72 fixed to the center of the magnet rotor 71. The upper end portion of the rotor shaft 72 is rotatably fitted in a cylindrical guide 36 provided on the ceiling portion of the sealed case 35. The rotor shaft 72 has a male screw portion 72 a, and the male screw portion 72 a is screwed into the female screw portion 4 a formed on the support member 4. A stator coil 73 is disposed on the outer periphery of the hermetic case 35, and the magnet rotor 71, the rotor shaft 72, and the stator coil 73 constitute a stepping motor 7. When a pulse signal is applied to the stator coil 73, the magnet rotor 71 is rotated according to the number of pulses, and the rotor shaft 72 is rotated. A rotation stopper mechanism 37 for the magnet rotor 71 is provided on the outer periphery of the guide 36.

以上の構成により実施形態の電動弁は以下のように動作する。まず、図1の状態で、ステッピングモータ7の駆動により、マグネットロータ71及びロータ軸72が回転し、ロータ軸72の雄ねじ部72aと支持部材4の雌ねじ部4aとのねじ送り機構により、ロータ軸72は軸線X方向に移動する。この回転に伴うロータ軸72の軸線X方向移動によって弁ホルダ5と共にニードル弁6が軸線X方向に移動する。そして、ニードル弁6は、ニードル部6aの部分で弁ポート11の開口面積を増減し、一次継手管31から二次継手管32へ、あるいは二次継手管32から一次継手管31へ流れる流体(冷媒)の流量が制御される。   With the above configuration, the motor-operated valve of the embodiment operates as follows. First, in the state of FIG. 1, the magnet rotor 71 and the rotor shaft 72 are rotated by driving the stepping motor 7, and the rotor shaft is rotated by the screw feed mechanism between the male screw portion 72 a of the rotor shaft 72 and the female screw portion 4 a of the support member 4. 72 moves in the direction of the axis X. The needle valve 6 moves in the axis X direction together with the valve holder 5 by the movement in the axis X direction of the rotor shaft 72 accompanying this rotation. The needle valve 6 increases or decreases the opening area of the valve port 11 at the needle portion 6a, and fluid flows from the primary joint pipe 31 to the secondary joint pipe 32 or from the secondary joint pipe 32 to the primary joint pipe 31 ( The flow rate of the refrigerant is controlled.

二次継手管32の弁ハウジング1側の端部には、弁ハウジング1に嵌合される厚肉の接続管部21と、円筒状の筒部22とからなるノズル部2が形成されており、このノズル部2には、接続管部21と筒部22を貫通する連通路23が形成されている。ここで、弁ハウジング1側のテーパ部12とストレート部13は、弁ポート11よりも径が拡大された拡大空間1Bを構成しており、ノズル部2は、連通路23により拡大空間1Bと二次継手管32の管路32aとを連通している。また、ノズル部2の筒部22は、拡大空間1B内(ストレート部13内)に弁ポート11側に突出して配置され、この筒部22の外周面と拡大空間1Bの内壁(ストレート部13の内壁)との間に円環状の空間である滞留空間1Cが形成されている。そして、この滞留空間1Cには弁ポート11から流出する流体の一部が滞留される。   At the end of the secondary joint pipe 32 on the valve housing 1 side, a nozzle part 2 comprising a thick connecting pipe part 21 fitted into the valve housing 1 and a cylindrical tube part 22 is formed. The nozzle portion 2 is formed with a communication passage 23 that penetrates the connecting pipe portion 21 and the cylindrical portion 22. Here, the tapered portion 12 and the straight portion 13 on the valve housing 1 side constitute an enlarged space 1B having a diameter larger than that of the valve port 11, and the nozzle portion 2 is connected to the enlarged space 1B by the communication passage 23. The pipe line 32a of the next joint pipe 32 is communicated. The cylindrical portion 22 of the nozzle portion 2 is disposed so as to protrude toward the valve port 11 in the enlarged space 1B (in the straight portion 13), and the outer peripheral surface of the cylindrical portion 22 and the inner wall of the enlarged space 1B (in the straight portion 13). A stay space 1C, which is an annular space, is formed between the inner wall and the inner wall. A part of the fluid flowing out from the valve port 11 is retained in the retention space 1C.

実施形態における各部の寸法は以下の条件を満たすように設定されている。図2に示すように、弁ポート11の内径はニードル部6aの外周に合わせた寸法である。また、ノズル部2の連通路23の内径は弁ポート11の内径より大きな寸法である。弁ポート11、テーパ部12及びストレート部13の全長L1に対し、ニードル部6aの長さL2(弁ポート11を全閉としたときのニードル部の弁座内の長さ)は、
(L2)≦(L1)/2
の関係にある。
また、ニードル部6aの長さL2と、筒部22の長さL3は、
(L2)>(L3)>(L2)/5
の関係にある。
また、筒部22の半径方向の幅W1と、滞留空間1Cの半径方向の幅W2は、
W2>W1
の関係にある。なお、これらの寸法及び角度は図2に図示のものには限定されるものではない。
The dimensions of each part in the embodiment are set so as to satisfy the following conditions. As shown in FIG. 2, the inner diameter of the valve port 11 is a dimension matched to the outer periphery of the needle portion 6a. The inner diameter of the communication passage 23 of the nozzle portion 2 is larger than the inner diameter of the valve port 11. For the total length L1 of the valve port 11, the taper portion 12 and the straight portion 13, the length L2 of the needle portion 6a (the length within the valve seat of the needle portion when the valve port 11 is fully closed) is:
(L2) ≦ (L1) / 2
Are in a relationship.
The length L2 of the needle portion 6a and the length L3 of the cylindrical portion 22 are
(L2)>(L3)> (L2) / 5
Are in a relationship.
Further, the radial width W1 of the cylindrical portion 22 and the radial width W2 of the stay space 1C are as follows:
W2> W1
Are in a relationship. These dimensions and angles are not limited to those shown in FIG.

以上の構成により、図3に示すように、一次継手管31から弁室1Aに流体が流入し、二次継手管32側に流体が流れるとき、ニードル部6aと弁ポート11の隙間を通った流体が、テーパ部12、ストレート部13及びノズル部2の連通路23を通って二次継手管32へ流れる。このとき、ニードル部6aと弁ポート11の隙間は最も狭い箇所であり、ここで流速は最大になるが、弁ポート11の長さは可能な限り短くなっており、この隙間を通った流体の流れは、テーパ部12に倣って流れる。テーパ部12とストレート部13からなる拡大空間1Bは弁ポート11の内径より大きため、テーパ部12で圧力を急激に回復させる。そして、流体はその一部が滞留空間1Cに流れ込み、この滞留空間1C内に流体が滞留する。したがって、ノズル部2の連通路23を流れる流体の流速が減速され、キャビテーションや流れが二次継手管32に当接するのを抑制することができ、流体の流れを安定化して騒音を低減できる。すなわち、流体の流路中に円筒状の筒部22を突出させて滞留空間1Cを形成することで、流体の圧力の損失係数を高くして流速を抑えることができ、騒音を低減できる。   With the above configuration, as shown in FIG. 3, when the fluid flows from the primary joint pipe 31 into the valve chamber 1 </ b> A and flows to the secondary joint pipe 32 side, the fluid passes through the gap between the needle portion 6 a and the valve port 11. The fluid flows through the tapered portion 12, the straight portion 13, and the communication passage 23 of the nozzle portion 2 to the secondary joint pipe 32. At this time, the gap between the needle portion 6a and the valve port 11 is the narrowest part, where the flow velocity is maximum, but the length of the valve port 11 is as short as possible, and the fluid flowing through this gap The flow follows the tapered portion 12. Since the enlarged space 1 </ b> B composed of the tapered portion 12 and the straight portion 13 is larger than the inner diameter of the valve port 11, the pressure is rapidly recovered at the tapered portion 12. A part of the fluid flows into the stay space 1C, and the fluid stays in the stay space 1C. Therefore, the flow velocity of the fluid flowing through the communication passage 23 of the nozzle unit 2 is reduced, and cavitation and flow can be prevented from coming into contact with the secondary joint pipe 32, and the flow of fluid can be stabilized and noise can be reduced. That is, by forming the staying space 1C by projecting the cylindrical tube portion 22 in the fluid flow path, the fluid pressure loss coefficient can be increased, the flow velocity can be suppressed, and noise can be reduced.

図5は、ノズル部2の第1乃至第3変形例を示す図である。以下の変形例において実施形態と同様な要素には図1乃至図3と同符号を付記して重複する説明は適宜省略する。図5(A)の第1変形例は、接続管部21に円筒状の筒部22′が形成され、この筒部22′の端部が外側に拡径されている。また、図5(B)の第2変形例は、接続管部21に円筒状の筒部22″が形成され、この筒部22″の端部が内側に縮径されている。ただし、この縮径部の内径は、弁ポート内径よりも大きい。第1変形例では筒部22′の端部が拡径されている分だけ滞留空間1C内に流体が流れ難く、逆に、第2変形例では筒部22″の端部が拡径されている分だけ滞留空間1C内に流体が流れ易い。すなわち、この第1変形例及び第2変形例のように、筒部の端部の形状により、滞留空間1C内に滞留させる流体の量を調整することができる。   FIG. 5 is a diagram illustrating first to third modifications of the nozzle unit 2. In the following modification, the same elements as those in the embodiment are denoted by the same reference numerals as those in FIGS. In the first modification of FIG. 5A, a cylindrical tube portion 22 'is formed in the connecting tube portion 21, and the end portion of the tube portion 22' is expanded outward. Further, in the second modified example of FIG. 5B, a cylindrical tube portion 22 ″ is formed in the connecting tube portion 21, and an end portion of the tube portion 22 ″ is reduced inward. However, the inner diameter of this reduced diameter portion is larger than the inner diameter of the valve port. In the first modification, the fluid hardly flows into the staying space 1C by the amount that the end portion of the cylindrical portion 22 'is expanded. Conversely, in the second modification example, the end portion of the cylindrical portion 22 "is expanded in diameter. The fluid easily flows in the staying space 1C as much as it is, that is, the amount of fluid to stay in the staying space 1C is adjusted by the shape of the end of the cylindrical portion as in the first and second modifications. can do.

図5(C)の第3変形例のノズル部2は、接続管部21に円錐台側面形状の筒部24が形成され、このノズル部2には、接続管部21と筒部24を貫通する円錐台状(テーパ状)の連通路23′が形成されている。ただし、この円錐台状の上面の内径は、弁ポート内径よりも大きい。この第3変形例では、二次継手管32の管路32aに流れる流体は、連通路23′内でも圧力が回復され流体の流速が減速される。   In the nozzle part 2 of the third modification of FIG. 5C, a cylindrical part 24 having a truncated cone shape is formed in the connecting pipe part 21, and the connecting pipe part 21 and the cylindrical part 24 pass through the nozzle part 2. A frustoconical (tapered) communication path 23 'is formed. However, the inner diameter of the upper surface of the truncated cone shape is larger than the inner diameter of the valve port. In this third modification, the pressure of the fluid flowing in the pipe line 32a of the secondary joint pipe 32 is recovered even in the communication path 23 ', and the flow velocity of the fluid is reduced.

以上の実施形態及び変形例では、ノズル部2が二次継手管32と一体に形成されている場合について説明したが、ノズル部は二次継手管と別部材で構成し、二次継手管と弁ハウジングとの間に取り付けるようにしてもよい。また、実施形態及び変形例では、テーパ部12とストレート部13により拡大空間1Bを構成しているが、テーパ部12のみ、あるいはストレート部13のみで拡大空間を構成してもよい。さらに、テーパ部とストレート部を複数段設けたような構成でもよい。   In the above embodiment and modification, although the case where the nozzle part 2 was formed integrally with the secondary joint pipe 32 was explained, the nozzle part is constituted by a separate member from the secondary joint pipe, and the secondary joint pipe and You may make it attach between valve housings. In the embodiment and the modification, the enlarged space 1B is configured by the tapered portion 12 and the straight portion 13, but the expanded space may be configured by only the tapered portion 12 or only the straight portion 13. Furthermore, the structure which provided the taper part and the straight part in multiple steps may be sufficient.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention.

1 弁ハウジング
1A 弁室
11 弁ポート
12 テーパ部
13 ストレート部
1B 拡大空間
1C 滞留空間
2 ノズル部
21 接続管部
22 筒部
23 連通路
22′ 筒部
22″ 筒部
23′ 連通路
24 筒部
31 一次継手管
32 二次継手管
32a 管路
4 支持部材
4a 雌ねじ部
4b スライド孔
5 弁ホルダ
6 ニードル弁
6a ニードル部
7 ステッピングモータ
71 マグネットロータ
72 ロータ軸
72a 雄ねじ部
73 ステータコイル
X 軸線
10 電動弁
20 室外熱交換器
30 室内熱交換器
40 流路切換弁
50 圧縮機
100 室外ユニット
200 室内ユニット
DESCRIPTION OF SYMBOLS 1 Valve housing 1A Valve chamber 11 Valve port 12 Taper part 13 Straight part 1B Expansion space 1C Retention space 2 Nozzle part 21 Connection pipe part 22 Cylinder part 23 Communication path 22 'Cylinder part 22 "Cylinder part 23' Communication path 24 Cylinder part 31 Primary joint pipe 32 Secondary joint pipe 32a Pipe line 4 Support member 4a Female thread part 4b Slide hole 5 Valve holder 6 Needle valve 6a Needle part 7 Stepping motor 71 Magnet rotor 72 Rotor shaft 72a Male thread part 73 Stator coil X Axis 10 Electric valve 20 Outdoor heat exchanger 30 Indoor heat exchanger 40 Flow path switching valve 50 Compressor 100 Outdoor unit 200 Indoor unit

Claims (5)

一次継手管が連通される弁室と二次継手管とを、ニードル弁で開口面積が増減される弁ポートを介して連通可能とする電動弁であって、前記弁ポートの前記二次継手管側に、該弁ポートよりも径が拡大された拡大空間を有する電動弁において、
前記拡大空間と前記二次継手管の管路とを連通するとともに、前記拡大空間内に突出して該拡大空間の内壁との間に流体が滞留する滞留空間を形成するノズル部
を備えたことを特徴とする電動弁。
An electric valve that enables communication between a valve chamber to which a primary joint pipe is communicated and a secondary joint pipe through a valve port whose opening area is increased or decreased by a needle valve, and the secondary joint pipe of the valve port On the side, in the electric valve having an enlarged space whose diameter is larger than that of the valve port,
A nozzle portion that communicates the expansion space and the pipe line of the secondary joint pipe, and that projects into the expansion space and forms a retention space in which fluid stays between the expansion wall and the inner wall of the expansion space; Features a motorized valve.
前記ノズル部の内径が前記弁ポートの内径より大きいことを特徴とする請求項1に記載の電動弁。   The motor operated valve according to claim 1, wherein an inner diameter of the nozzle portion is larger than an inner diameter of the valve port. 前記拡大空間が、前記弁ポート側の円錐台側面形状のテーパ部と、該テーパ部から前記二次継手管側に伸びる円柱側面形状のストレート部とにより形成されていることを特徴とする請求項1または2に記載の電動弁。   The expansion space is formed by a tapered portion having a side surface shape of a truncated cone on the valve port side, and a straight portion having a cylindrical side surface shape extending from the tapered portion toward the secondary joint pipe side. The motor-operated valve according to 1 or 2. 前記ノズル部が前記二次継手管の端部に一体に形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の電動弁。   The motor-operated valve according to any one of claims 1 to 3, wherein the nozzle portion is formed integrally with an end portion of the secondary joint pipe. 圧縮機と、凝縮器と、膨張弁と、蒸発器と、を含む冷凍サイクルシステムであって、請求項1乃至4のいずれか一項に記載の電動弁が、前記膨張弁として用いられている
ことを特徴とする冷凍サイクルシステム。
A refrigeration cycle system including a compressor, a condenser, an expansion valve, and an evaporator, wherein the motor-operated valve according to any one of claims 1 to 4 is used as the expansion valve. A refrigeration cycle system characterized by that.
JP2017142469A 2017-07-24 2017-07-24 Motorized valve and refrigeration cycle system Active JP6738775B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017142469A JP6738775B2 (en) 2017-07-24 2017-07-24 Motorized valve and refrigeration cycle system
CN201810673159.8A CN109296805B (en) 2017-07-24 2018-06-26 Electric valve and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142469A JP6738775B2 (en) 2017-07-24 2017-07-24 Motorized valve and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2019023484A true JP2019023484A (en) 2019-02-14
JP6738775B2 JP6738775B2 (en) 2020-08-12

Family

ID=65167774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142469A Active JP6738775B2 (en) 2017-07-24 2017-07-24 Motorized valve and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP6738775B2 (en)
CN (1) CN109296805B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028505A (en) * 2019-08-09 2021-02-25 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP2021124154A (en) * 2020-02-04 2021-08-30 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP2021124153A (en) * 2020-02-04 2021-08-30 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828659B (en) * 2019-04-23 2022-05-17 株式会社鹭宫制作所 Valve device and refrigeration cycle system
JP7246291B2 (en) * 2019-10-23 2023-03-27 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7199335B2 (en) * 2019-10-25 2023-01-05 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7361628B2 (en) * 2020-02-19 2023-10-16 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
DE102020134622B4 (en) * 2020-12-22 2022-11-03 Hanon Systems Device for controlling a flow and expanding a fluid in a fluid circuit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820049B1 (en) * 1966-02-25 1973-06-18
JPH11325658A (en) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd Expansion valve
US6148631A (en) * 1998-05-14 2000-11-21 Matsushita Electric Industrial Co., Ltd. Silencer and air conditioner
JP2001241562A (en) * 2000-03-01 2001-09-07 Pacific Ind Co Ltd Control valve
JP2006307964A (en) * 2005-04-28 2006-11-09 Furukawa Electric Co Ltd:The Electric control valve
JP2007162851A (en) * 2005-12-14 2007-06-28 Fuji Koki Corp Motor operated valve
JP2017025974A (en) * 2015-07-17 2017-02-02 株式会社鷺宮製作所 Motor valve and refrigeration cycle
JP2017115989A (en) * 2015-12-24 2017-06-29 株式会社鷺宮製作所 Electric operated valve
WO2018230159A1 (en) * 2017-06-15 2018-12-20 株式会社鷺宮製作所 Electrically operated valve and refrigeration cycle system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911858A (en) * 1974-05-31 1975-10-14 United Technologies Corp Vortex acoustic oscillator
EP0118452B1 (en) * 1982-04-07 1989-10-11 The British Hydromechanics Research Association A liquid flow control assembly
DE102005005762A1 (en) * 2005-02-09 2006-08-10 Robert Bosch Gmbh Apparatus and method for controlling a pressure and / or a volume flow of a liquid
CN204099606U (en) * 2014-05-12 2015-01-14 上海三洲自控仪表有限公司 Anti-incrustation anti-abrasion angular form control valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4820049B1 (en) * 1966-02-25 1973-06-18
JPH11325658A (en) * 1998-05-08 1999-11-26 Matsushita Seiko Co Ltd Expansion valve
US6148631A (en) * 1998-05-14 2000-11-21 Matsushita Electric Industrial Co., Ltd. Silencer and air conditioner
JP2001241562A (en) * 2000-03-01 2001-09-07 Pacific Ind Co Ltd Control valve
JP2006307964A (en) * 2005-04-28 2006-11-09 Furukawa Electric Co Ltd:The Electric control valve
JP2007162851A (en) * 2005-12-14 2007-06-28 Fuji Koki Corp Motor operated valve
JP2017025974A (en) * 2015-07-17 2017-02-02 株式会社鷺宮製作所 Motor valve and refrigeration cycle
JP2017115989A (en) * 2015-12-24 2017-06-29 株式会社鷺宮製作所 Electric operated valve
WO2018230159A1 (en) * 2017-06-15 2018-12-20 株式会社鷺宮製作所 Electrically operated valve and refrigeration cycle system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021028505A (en) * 2019-08-09 2021-02-25 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP2021124154A (en) * 2020-02-04 2021-08-30 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP2021124153A (en) * 2020-02-04 2021-08-30 株式会社鷺宮製作所 Motor-operated valve and refrigeration cycle system
JP7299177B2 (en) 2020-02-04 2023-06-27 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7299178B2 (en) 2020-02-04 2023-06-27 株式会社鷺宮製作所 Electric valve and refrigeration cycle system

Also Published As

Publication number Publication date
JP6738775B2 (en) 2020-08-12
CN109296805B (en) 2020-12-29
CN109296805A (en) 2019-02-01

Similar Documents

Publication Publication Date Title
JP2019023484A (en) Motor valve and refrigeration cycle system
JP6740179B2 (en) Motorized valve and refrigeration cycle system
JP5696093B2 (en) Motorized valve
JP5480753B2 (en) Motorized valve
JP6659624B2 (en) Motorized valve and refrigeration cycle system
JP5395775B2 (en) Motorized valve
JP6479648B2 (en) Motorized valve
JP6370269B2 (en) Motorized valve and refrigeration cycle
JP2019044880A (en) Motor valve and refrigeration cycle system
JP2020034141A (en) Motor-operated valve and refrigeration cycle system
JP7383774B2 (en) Electric valve and refrigeration cycle system
JP2021038802A (en) Electric valve and refrigeration cycle system
JP7474892B2 (en) Motor-operated valve and refrigeration cycle system
JP7199335B2 (en) Electric valve and refrigeration cycle system
JP6585581B2 (en) Motorized valve and cooling system using motorized valve
JP7361628B2 (en) Electric valve and refrigeration cycle system
JP2019070449A (en) Motor valve and refrigeration cycle system
JP7299178B2 (en) Electric valve and refrigeration cycle system
JP7341280B2 (en) Electric valve and refrigeration cycle system
JP7299177B2 (en) Electric valve and refrigeration cycle system
JP2018185048A (en) Electric operated valve
JP7317191B2 (en) Electric valve and refrigeration cycle system
JP2022053894A (en) Motor-operated valve and refrigeration cycle system

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R150 Certificate of patent or registration of utility model

Ref document number: 6738775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150