JP4560939B2 - Refrigerant shunt and air conditioner using the same - Google Patents

Refrigerant shunt and air conditioner using the same Download PDF

Info

Publication number
JP4560939B2
JP4560939B2 JP2000321113A JP2000321113A JP4560939B2 JP 4560939 B2 JP4560939 B2 JP 4560939B2 JP 2000321113 A JP2000321113 A JP 2000321113A JP 2000321113 A JP2000321113 A JP 2000321113A JP 4560939 B2 JP4560939 B2 JP 4560939B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
inflow pipe
air conditioner
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000321113A
Other languages
Japanese (ja)
Other versions
JP2002130868A (en
Inventor
昌昭 北澤
幸治 芝池
敦 遠藤
裕二 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000321113A priority Critical patent/JP4560939B2/en
Publication of JP2002130868A publication Critical patent/JP2002130868A/en
Application granted granted Critical
Publication of JP4560939B2 publication Critical patent/JP4560939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、流入管から流入した冷媒を複数の分流通路に分流する冷媒分流器およびそれを用いた空気調和機に関する。
【0002】
【従来の技術】
従来、空気調和機としては、圧縮機,室外熱交換器,膨張弁および室内熱交換器を環状に接続して構成された冷媒回路を備えたものがある。この空気調和機の室外熱交換器および室内熱交換器は、圧力損失を低減するために冷媒分流器と分岐管を用いて複数のパスに冷媒を分配している。このような空気調和機では、温度制御を行うドライ運転や冷房運転,暖房運転において、複数のパスを有する蒸発器(室内熱交換器または室外熱交換器)の冷媒偏流が少なくかつ低圧力損失の冷媒分流器が必要不可欠となっている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記空気調和機において、冷媒分流器の分流性能を重視して冷媒偏流を少なくしようとすると、圧力損失や騒音が増大する一方、逆に冷媒分流器の圧力損失を少なくしようとすると、冷媒の乾き度や冷媒流速の変動により冷媒偏流が増大しやすくなり、運転能力が低下するという問題がある。
【0004】
そこで、この発明の目的は、簡単な構成によって、低損失,低騒音で冷媒偏流を低減できると共に、冷媒分配比率を任意に設定できる冷媒分流器およびそれを用いた高効率で低騒音な空気調和機を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、請求項1の空気調和機は、
流入管から流入した冷媒を複数の分流通路に分流する冷媒分流器において、
上記流入管から流入した冷媒を上記複数の分流通路に分配する分岐空間と、
上記流入管と上記分岐空間との間に設けられた流入側絞り部と、
上記流入側絞り部から流入した冷媒が上記分岐空間内で衝突するように設けられた衝突壁とを備え、
上記流入管に流入する冷媒流量をG[kg/s]とし、上記分岐空間の冷媒が流れる方向の高さをH[m]とし、上記流入管の内径をDi[mm]とし、上記流入側絞り部の内径をD0[mm]とするとき、
G/H > 3
Di/D0 < 2
の条件を満足すると共に、
上記分岐空間と上記複数の分流通路との間に分流側絞り部を夫々設け、
上記分流側絞り部の内径をDnとし、上記分流通路の本数をnとするとき、
Dn > Di/n
の条件を満足し、
上記分流側絞り部が上記流入管の軸を中心に周方向に配置され、
上記分流側絞り部で囲まれた内側領域の上記流入管の軸を中心にした最小半径Dwを、上記流入側絞り部の内径D0よりも大きくしたことを特徴としている。
【0006】
上記請求項1の冷媒分流器によれば、上記流入管から流入した冷媒は、上記流入側絞り部を通って流速が速くなった後に上記分岐空間内で衝突壁に衝突して攪拌され、均一に混合される。そして、上記分岐空間内で均一に混合された冷媒は、複数の分流通路に分流する。このとき、流入管に流入する冷媒流量Gと分岐空間の冷媒が流れる方向の高さHとをG/H>3の条件を満足するように設定することによって、冷媒偏流を抑えると共に、流入管の内径Diと流入側絞り部の内径D0とをDi/D0<2の条件を満足するように設定することによって、圧力損失の増大を防ぐことができる。したがって、簡単な構成により低損失,低騒音で冷媒偏流を低減できる冷媒分流器を実現できる。
また、上記分岐空間と上記複数の分流通路との間に設けられた分流側絞り部の内径Dnを適切に設定することによって、冷媒分配比率を任意に設定できる。また、各分流側絞り部の内径をDn>Di/nを満足するように設定することにより、分流側絞り部を絞り過ぎて圧力損失を増大させるということがなく、冷媒偏流に影響しない程度の絞り構造にできる。
【0007】
また、請求項2の冷媒分流器は、請求項1の冷媒分流器において、上記衝突壁に凹部を設けたことを特徴としている。
【0008】
上記請求項2の冷媒分流器によれば、上記衝突壁に設けられた凹部によって、上記流入管から流入側絞り部を介して流入した冷媒が上記衝突壁の凹部に衝突して攪拌され、より均一に混合される。
【0009】
【0010】
【0011】
また、請求項の空気調和機は、複数の熱交換部を有する蒸発器を備えた空気調和機において、上記複数の熱交換部のうちの上流側と下流側の熱交換部を接続する接続点で、かつ、下流側の2以上の熱交換部に冷媒を分流する分岐点に、請求項1または2の冷媒分流器を配設したことを特徴としている。
【0012】
上記請求項の空気調和機によれば、上記複数の熱交換部のうちの上流側と下流側の熱交換部を接続する接続点で、かつ、上記複数の熱交換部のうちの下流側の2以上の熱交換部に冷媒を分流する分岐点では、特に冷媒が気液二相流となるが、このような蒸発器の中間部に、低損失,低騒音で冷媒偏流を低減できる上記冷媒分流器を配設することによって、高効率で低騒音な空気調和機を実現できる。
【0013】
また、請求項の空気調和機は、圧縮機,室外熱交換器,第1減圧器,第1室内熱交換器,第2減圧器および第2室内熱交換器を環状に接続して構成された冷媒回路を備えた空気調和機において、上記第2室内熱交換器が並列接続された複数の熱交換部からなり、上記第2減圧器と上記第2室内熱交換器との間の分岐点に、請求項1または2の冷媒分流器を配設したことを特徴としている。
【0014】
上記請求項の空気調和機によれば、上記第1減圧器を全開し、上記第2減圧器を絞って、圧縮機,室外熱交換器,第1減圧器,第1室内熱交換器,第2減圧器および第2室内熱交換器の順に冷媒を循環させ、第1室内熱交換器を再熱を行う凝縮器として用い、第2室内熱交換器を除湿を行う蒸発器として用いてドライ運転を行う。このようなドライ運転を行う空気調和機において、上記第2室内熱交換器の並列接続された複数の熱交換部と上記第2減圧器との間の分岐点に低損失,低騒音で冷媒偏流を低減できる上記冷媒分流器を用いて、上記第2減圧器によって膨張した後の冷媒を分流するので、高効率で低騒音な空気調和機を実現できる。
【0015】
【発明の実施の形態】
以下、この発明の冷媒分流器およびそれを用いた空気調和機を図示の実施の形態により詳細に説明する。
【0016】
図1はこの発明の実施の一形態の冷媒分流器を用いた空気調和機の構成を示す回路図であり、1は圧縮機、2は上記圧縮機1の吐出側に接続された四路弁、3は上記四路弁2に一端が接続された室外熱交換器、4は上記室外熱交換器3の他端に一端が接続された受液器、5は上記受液器4の他端に一端が接続された膨張弁、6は上記膨張弁5の他端に一端が接続され、他端が四路弁2を介して圧縮機1の吸入側に接続された室内熱交換器である。上記室内熱交換器6は3つのパスを有し、室内熱交換器6の一端に冷媒分流器7を配設している。上記圧縮機1,四路弁2,室外熱交換器3,受液器4,膨張弁5および室内熱交換器6で冷媒回路を構成している。
【0017】
図2は上記冷媒分流器7の要部断面図を示している。この冷媒分流器7は、図2に示すように、流入側に大径部20aが形成され、流出側に3つの分流通路21,22(図2では2つのみを示す)が形成された円筒形状の基部20を有すると共に、その基部20の大径部20aに嵌合された流入管接続部30を有している。上記流入管接続部30の流入側から順に中径部31,小径の流入側絞り部32および大径部33を形成している。上記基部20の大径部20aの底面部である衝突壁27と流入管接続部30の大径部33とで分岐空間34を形成している。そして、上記3つの分流通路21,22(図2では2つのみを示す)内に流出管(図示せず)の一端を夫々嵌合すると共に、流入管接続部30の大径部31内に流入管39の一端を嵌合している。
【0018】
また、図3は図1の冷媒分流器7を矢印R1の方向から見た拡大矢視図であり、図3に示すように、上記基部20の3つの分流通路21,22,23の流入側に分流側絞り部24,25,26を夫々設けている。
【0019】
ここで、図2において、流入管31に流入する冷媒流量をG[kg/s]とし、分岐空間34の冷媒が流れる方向の高さをH[m]とすると共に、流入管39の内径をDi[mm]とし、流入管接続部30の小径の流入側絞り部32の内径をD0[mm]とするとき、
G/H > 3 ……………… (式1)
Di/D0 <2 ……………… (式2)
の条件を満足するように、G,H,DiおよびD0を夫々設定する。なお、流入側絞り部32の内径D0は、流入管39の内径Diと同等かそれ以下とする。
【0020】
また、分流側絞り部の内径をD1〜Dn(n=2,3,…)とし、分流通路の本数をnとするとき、分流側絞り部の内径D1〜DnがDi/nよりも夫々大きくなるように設定する。すなわち、図3において、
Dm >Di/3 ……………… (式3)
(ただし、m=1,2,3)
の条件を満足するように設定している。
【0021】
このように、上記流入管39から流入した冷媒は、流入側絞り部32を通った後に分岐空間34内で衝突壁27に衝突して攪拌され、均一に混合される。また、上記流入管39に流入する冷媒流量Gと分岐空間34の冷媒が流れる方向の高さHとをG/H>3の条件を満足するように設定することによって、冷媒偏流を抑えることができると共に、流入管39の内径Diと流入側絞り部32の内径D0とをDi/D0<2の条件を満足するように設定することによって、圧力損失の増大を防ぐことができる。したがって、この簡単な構成冷媒分流器により低損失,低騒音で冷媒偏流を低減でき、高効率で低騒音な空気調和機を実現することができる。
【0022】
上記分岐空間34と分流通路21〜23との間に設けられた分流側絞り部24〜26の内径D1〜D3を適切に設定することによって、冷媒分配比率を任意に設定できると共に、各分流側絞り部24〜26の内径D1〜D3をDn>Di/3よりも大きくなるように設定することにより、分流側絞り部24〜26を絞り過ぎて圧力損失を増大するということなく、冷媒偏流に影響しない程度の絞り構造とすることができる。
【0023】
さらに、図3に示すように、円筒形状の基部20の軸を中心に分流側絞り部24〜26の内側の最小半径Dwを流入管接続部30の流入側絞り部32の内径D0よりも大きくなるように設定する。そうすることによって、流入管接続部30の流入側絞り部32の内周の断面積よりも広い衝突壁27を確保することができ、流入管39から流入した冷媒が衝突壁27に衝突して攪拌されるので、均一に混合することができる。
【0024】
また、図4は他のもう1つの冷媒分流器の要部断面図を示している。この冷媒分流器17は、衝突壁を除いて図2,図3に示す冷媒分流器7と同一の構成をしている。
【0025】
図4に示すように、上記冷媒分流器17は、流入側に大径部40aが形成され、流出側に3つの分流通路41,42(図4では2つのみを示す)が形成された円筒基部40を有すると共に、その円筒基部40の大径部40aに嵌合された流入管接続部50を有している。上記流入管接続部50の流入側から順に中径部51,小径の絞り部52および大径部53を形成している。上記円筒基部40の大径部40aの底面部である衝突壁47と流入管接続部50の大径部53とで分岐空間54を形成している。そして、上記流入管接続部50の大径部51内に流入管59の一端を嵌合している。また、上記衝突壁47に円錐形状の凹部48を形成し、その凹部48の円錐角を120°としている。
【0026】
また、図5は図4の冷媒分流器を矢印R2の方向から見た拡大矢視図であり、円筒基部40の3つの分流通路41,42,43の流入側に分流側絞り部44,45,46を夫々設けている。
【0027】
上記冷媒分流器17では、衝突壁47に設けられた凹部48によって、流入管59から流入側絞り部52を介して流入した冷媒が衝突壁47の凹部48に衝突して攪拌され、より均一に混合される。
【0028】
なお、上記冷媒分流器17の衝突壁47に設けられた凹部48は、円錐角120°の円錐形状であったが、凹部の形状はこれに限らず、球面形状の凹部等を衝突壁に設けてもよい。
【0029】
また、図6はこの発明の他の実施の形態の冷媒分流器を用いた空気調和機の室内熱交換器の構成を示す概略図であり、室内熱交換器を除いて図1に示す空気調和機と同じ構成をしている。
【0030】
図6に示すように、この空気調和機の室内熱交換器は、ドライ運転時に凝縮器として働く再熱用の第1熱交換部61と、ドライ運転時に蒸発器として働く第2熱交換部62,63とを備えている。上記第1熱交換部61と第2熱交換部62,63との間の分岐点に冷媒分流器65を配設し、その冷媒分流器65と第1熱交換部61との間に膨張弁65を配設している。上記冷媒分流器65は、流出管が2つである以外は図2に示す冷媒分流器と同一の構成をしている。この場合、(式1)〜(式3)を満足するものとする。
【0031】
特に冷媒が気液二相流となる再熱用の第1熱交換部61と第2熱交換部62,63との中間点に、低損失,低騒音で冷媒偏流を低減できる冷媒分流器65を配設することによって、高効率で低騒音な空気調和機を実現することができる。
【0032】
上記実施の形態では、並列接続された2つの第2熱交換部62,63を有する室内熱交換器としたが、第2熱交換部が3以上のものでもよい。
【0033】
本出願人は、上記(式1),(式2)の条件を得るために図7に示す構成の室内熱交換器を用いて実験を行った。以下に、その実験結果について説明する。なお、実験に用いた冷媒分流器は、分流通路が2つであること除いて図2に示す冷媒分流器と同様の構成をしている。
【0034】
この室内熱交換器は、図7に示すように、再熱用の第1熱交換器71と、2パスの第2熱交換器72とを有している。上記第1熱交換器71の上側の入口側に入口冷媒配管73の一端を接続し、第1熱交換器71の下側の出口側に冷媒配管74の一端を接続している。上記冷媒配管74の他端を冷媒分流器76の流入側に接続すると共に、冷媒配管74に膨張弁75を配設している。そして、上記冷媒分流器76の2本の流出配管77A,77Bを第2熱交換器72の2つのパスの入口側に夫々接続している。そして、上記第2熱交換器72の2つのパスの出口側に合流器78を接続し、その合流器78の流出側に出口冷媒配管79を接続している。なお、上記第2熱交換器72の2パスの冷媒経路の熱交換面積,風量等を同じ条件にしている。
【0035】
図7に示す室内熱交換器の入口冷媒配管73に流入する冷媒の冷媒流量すなわち冷媒分流器76の流入側に流入する冷媒の冷媒流量G=0.01[kg/s]、およびG=0.02[kg/s]において、第2熱交換器72の2パスの出口A,Bの冷媒温度TA,TBを測定し、偏流幅(冷媒温度TA,TBの温度差の絶対値)を求めた結果を図8に示している。なお、冷媒分流器76の流入管の内径Di=6.5[mm]、流入管接続部の絞り部の内径D0=5[mm]とし、Di/D0=1.3とした。図8において、横軸はG/Hを示し、縦軸は偏流幅を示しており、黒丸印がG=0.01[kg/s]のときのデータ、白三角印がG=0.02[kg/s]のときのデータである。図8から明らかなように、G/Hが3[kg/s・m]未満では、偏流幅が2[deg]未満となり、上記(式1)の条件を満足することによって、実用上問題のない範囲内となることが分かる。
【0036】
次に、冷媒分流器76の流入管接続部の絞り部の内径D0に対する流入管の内径Diの比Di/D0を変えて、圧力損失[kPa・G]を測定した結果を図9に示している。図9において、横軸はDi/D0を示し、縦軸は圧力損失を示しており、黒丸印がG=0.01[kg/s]のときのデータ、白三角印がG=0.02[kg/s]のときのデータである。図9から明らかなように、Di/D0が2未満では、冷媒流量Gが0.02[kg/s]であっても、圧力損失が150[kPa・G]未満であり、上記(式2)の条件を満足することによって、圧力損失が実用上問題のない範囲内となることが分かる。
【0037】
上記実施の形態では、冷媒分流器を用いた空気調和機について説明したが、冷媒分流器は他の冷凍機等の冷媒回路を有する機器に用いてもよい。
【0038】
【発明の効果】
以上より明らかなように、請求項1の発明の冷媒分流器によれば、流入管から流入した冷媒を複数の分流通路に分流する冷媒分流器において、上記流入管から流入した冷媒を上記複数の分流通路に分配する分岐空間と、上記流入管と分岐空間との間に設けられた流入側絞り部と、上記流入側絞り部から流入した冷媒が上記分岐空間内で衝突する衝突壁とを備え、上記流入管に流入する冷媒流量Gと分岐空間の冷媒が流れる方向の高さHとをG/H>3の条件を満足するように設定することによって、冷媒偏流を抑えると共に、流入管の内径Diと流入側絞り部の内径D0とをDi/D0<2の条件を満足するように設定することによって、圧力損失の増大を防ぐことができる。したがって、簡単な構成により低損失,低騒音で冷媒偏流を低減できる冷媒分流器を実現することができる。
また、上記分岐空間と複数の分流通路との間に設けられた分流側絞り部の内径Dnを適切に設定することによって、冷媒分配比率を任意に設定できると共に、各分流側絞り部の内径DnをDn>Di/n(nは分流通路の本数)を満足するように設定することにより、分流側絞り部を絞り過ぎて圧力損失を増大させるということがなく、冷媒偏流に影響しない程度の絞り構造とすることができる。
【0039】
また、請求項2の発明の冷媒分流器によれば、請求項1の冷媒分流器において、上記衝突壁に設けられた凹部によって、上記流入管から流入側絞り部を介して流入した冷媒が上記衝突壁の凹部に衝突して攪拌され、より均一に混合することができる。
【0040】
【0041】
また、請求項の発明の空気調和機によれば、複数の熱交換部を有する蒸発器を備えた空気調和機において、上記複数の熱交換部のうちの上流側と下流側の熱交換部を接続する接続点で、かつ、下流側の2以上の熱交換部に冷媒を分流する分岐点であって、特に冷媒が気液二相流となるような蒸発器の中間部に、低損失,低騒音で冷媒偏流を低減できる上記冷媒分流器を配設することによって、高効率で低騒音な空気調和機を実現することができる。
【0042】
また、請求項の発明の空気調和機は、圧縮機,室外熱交換器,第1減圧器,第1室内熱交換器,第2減圧器および第2室内熱交換器を環状に接続して構成された冷媒回路を備えた空気調和機において、上記第1減圧器を全開し、上記第2減圧器を絞って、圧縮機,室外熱交換器,第1減圧器,第1室内熱交換器,第2減圧器および第2室内熱交換器の順に冷媒を循環させ、第1室内熱交換器を再熱を行う凝縮器として用い、第2室内熱交換器を除湿を行う蒸発器として用いてドライ運転を行うとき、上記第2減圧器による膨張後の冷媒を低損失,低騒音で冷媒偏流を低減できる上記冷媒分流器を用いて、上記第2室内熱交換器の並列接続された複数の熱交換部に分流するので、高効率で低騒音な空気調和機を実現することができる。
【図面の簡単な説明】
【図1】 図1はこの発明の実施の一形態の冷媒分流器を用いた空気調和機の構成を示す回路図である。
【図2】 図2は上記空気調和機の冷媒分流器の要部断面図である。
【図3】 図3は図2を矢印R1の方向から見た矢視図である。
【図4】 図4は他のもう1つの冷媒分流器の要部断面図である。
【図5】 図5は図4を矢印R2の方向から見た矢視図である。
【図6】 図6はこの発明の他の実施の形態の冷媒分流器を用いた空気調和機の室内熱交換器の構成を示す概略図である。
【図7】 図7は冷媒分流器を用いた熱交換器の構成を示す概略図である。
【図8】 図8は図7に示す熱交換器においてG/Hに対する偏流幅の特性を示す図である。
【図9】 図9は図7に示す熱交換器においてDi/D0に対する圧力損失の特性を示す図である。
【符号の説明】
1…圧縮機、2…四路弁、
3…室外熱交換器、4…受液器、
5…膨張弁、6…室内熱交換器、
7…冷媒分流器、
20,40…基部、20a,40a…大径部、
21〜23,41〜43…分流通路、
24〜26,44〜46…分流側絞り部、
27,47…衝突壁、30,50…流入管接続部、
31,51…中径部、32,52…流入側絞り部、
33,53…大径部、34,54…分岐空間、
39,59…流入管、48…凹部、
61…第1熱交換部、62,63…第2熱交換部、
64…膨張弁、65…冷媒分流器、
71…第1熱交換器、72…第2熱交換器、
73…入口冷媒配管、74…冷媒配管、
75…膨張弁、76…冷媒分流器、
77A,77B…流出配管、78…合流器78、
79…出口冷媒配管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant flow divider that diverts refrigerant flowing in from an inflow pipe to a plurality of flow dividing passages, and an air conditioner using the refrigerant flow divider.
[0002]
[Prior art]
Conventionally, some air conditioners include a refrigerant circuit configured by connecting a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger in an annular shape. The outdoor heat exchanger and the indoor heat exchanger of this air conditioner distribute the refrigerant to a plurality of paths using a refrigerant flow divider and a branch pipe in order to reduce pressure loss. In such an air conditioner, there are few refrigerant drifts in an evaporator (indoor heat exchanger or outdoor heat exchanger) having a plurality of paths and low pressure loss in dry operation, cooling operation, and heating operation for temperature control. A refrigerant shunt is indispensable.
[0003]
[Problems to be solved by the invention]
However, in the air conditioner described above, if an attempt is made to reduce refrigerant drift by placing importance on the flow dividing performance of the refrigerant flow divider, pressure loss and noise increase, while conversely, if an attempt is made to reduce the pressure loss of the refrigerant flow divider, There is a problem that refrigerant drift tends to increase due to fluctuations in the degree of dryness and refrigerant flow rate, and the operating capacity decreases.
[0004]
Accordingly, an object of the present invention is to reduce the refrigerant drift with low loss and low noise with a simple configuration, and to provide a refrigerant flow divider capable of arbitrarily setting the refrigerant distribution ratio and a highly efficient and low noise air conditioner using the refrigerant flow divider. Is to provide a machine.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an air conditioner according to claim 1 comprises:
In the refrigerant flow divider that diverts the refrigerant flowing in from the inflow pipe to the plurality of diversion passages,
A branch space for distributing the refrigerant flowing in from the inflow pipe to the plurality of branch passages;
An inflow side throttle portion provided between the inflow pipe and the branch space;
A collision wall provided so that the refrigerant flowing in from the inflow side throttle portion collides in the branch space;
The flow rate of refrigerant flowing into the inflow pipe is G [kg / s], the height in the direction in which the refrigerant flows in the branch space is H [m], the inner diameter of the inflow pipe is Di [mm], and the inflow side When the inner diameter of the throttle is D0 [mm]
G / H> 3
Di / D0 <2
Together to satisfy the conditions,
A diversion-side throttle portion is provided between the branch space and the plurality of diversion passages,
When the inner diameter of the diversion-side restricting portion is Dn and the number of the diversion passages is n,
Dn> Di / n
Satisfy the conditions of
The diversion-side restricting portion is disposed in the circumferential direction around the axis of the inflow pipe,
The minimum radius Dw centered on the axis of the inflow pipe in the inner region surrounded by the diversion-side restricting portion is larger than the inner diameter D0 of the inflow-side restricting portion .
[0006]
According to the refrigerant flow divider of the first aspect, the refrigerant that has flowed from the inflow pipe collides with the collision wall in the branch space after the flow velocity increases through the inflow side constricted portion, and is agitated. To be mixed. And the refrigerant | coolant mixed uniformly in the said branch space is divided into a some branch path. At this time, the refrigerant flow rate G flowing into the inflow pipe and the height H in the direction in which the refrigerant flows in the branch space are set so as to satisfy the condition of G / H> 3. By setting the inner diameter Di and the inner diameter D0 of the inflow side throttle portion so as to satisfy the condition of Di / D0 <2, it is possible to prevent an increase in pressure loss. Therefore, it is possible to realize a refrigerant flow divider that can reduce refrigerant drift with low loss and low noise with a simple configuration.
In addition, the refrigerant distribution ratio can be arbitrarily set by appropriately setting the inner diameter Dn of the diversion-side restricting portion provided between the branch space and the plurality of diversion passages. In addition, by setting the inner diameter of each diversion-side restricting portion so as to satisfy Dn> Di / n, the diversion-side restricting portion is not excessively restricted to increase the pressure loss, so that the refrigerant drift is not affected. Can be made into an aperture structure.
[0007]
A refrigerant flow divider according to claim 2 is the refrigerant flow divider according to claim 1, characterized in that a concave portion is provided in the collision wall.
[0008]
According to the refrigerant flow divider of the second aspect, the refrigerant that has flowed in from the inflow pipe through the inflow side restricting portion collides with the concave portion of the collision wall and is stirred by the concave portion provided in the collision wall. Mix evenly.
[0009]
[0010]
[0011]
Moreover, the air conditioner of Claim 3 is an air conditioner provided with the evaporator which has a some heat exchange part, The connection which connects the upstream and downstream heat exchange part of the said some heat exchange parts In this respect, the refrigerant flow divider according to claim 1 or 2 is arranged at a branch point where the refrigerant is divided into two or more heat exchange sections on the downstream side.
[0012]
According to the air conditioner of claim 3 , the connection point that connects the upstream side and the downstream side heat exchange unit among the plurality of heat exchange units, and the downstream side of the plurality of heat exchange units. At the branch point where the refrigerant is divided into two or more heat exchange parts, the refrigerant is in particular a gas-liquid two-phase flow. In the middle part of such an evaporator, the refrigerant drift can be reduced with low loss and low noise. By arranging the refrigerant flow divider, a highly efficient and low noise air conditioner can be realized.
[0013]
The air conditioner according to claim 4 is configured by connecting a compressor, an outdoor heat exchanger, a first pressure reducer, a first indoor heat exchanger, a second pressure reducer, and a second indoor heat exchanger in an annular shape. In the air conditioner provided with the refrigerant circuit, the second indoor heat exchanger includes a plurality of heat exchange units connected in parallel, and a branch point between the second decompressor and the second indoor heat exchanger. Further, the refrigerant distributor according to claim 1 or 2 is provided.
[0014]
According to the air conditioner of claim 4 , the first pressure reducer is fully opened and the second pressure reducer is throttled to obtain a compressor, an outdoor heat exchanger, a first pressure reducer, a first indoor heat exchanger, The refrigerant is circulated in the order of the second decompressor and the second indoor heat exchanger, the first indoor heat exchanger is used as a condenser for reheating, and the second indoor heat exchanger is used as an evaporator for dehumidification. Do the driving. In an air conditioner that performs such a dry operation, the refrigerant drifts with low loss and low noise at the branch point between the plurality of heat exchange units connected in parallel in the second indoor heat exchanger and the second pressure reducer. Since the refrigerant after being expanded by the second pressure reducer is diverted using the refrigerant diverter that can reduce the temperature, a highly efficient and low noise air conditioner can be realized.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a refrigerant flow divider of the present invention and an air conditioner using the refrigerant flow divider will be described in detail with reference to illustrated embodiments.
[0016]
FIG. 1 is a circuit diagram showing a configuration of an air conditioner using a refrigerant flow divider according to an embodiment of the present invention. 1 is a compressor, 2 is a four-way valve connected to the discharge side of the compressor 1 3 is an outdoor heat exchanger having one end connected to the four-way valve 2, 4 is a liquid receiver having one end connected to the other end of the outdoor heat exchanger 3, and 5 is the other end of the liquid receiver 4. 1 is an indoor heat exchanger in which one end is connected to the other end of the expansion valve 5 and the other end is connected to the suction side of the compressor 1 via the four-way valve 2. . The indoor heat exchanger 6 has three paths, and a refrigerant flow divider 7 is disposed at one end of the indoor heat exchanger 6. The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the liquid receiver 4, the expansion valve 5 and the indoor heat exchanger 6 constitute a refrigerant circuit.
[0017]
FIG. 2 shows a cross-sectional view of the main part of the refrigerant flow divider 7. As shown in FIG. 2, the refrigerant flow divider 7 has a large-diameter portion 20a formed on the inflow side and three diversion passages 21 and 22 (only two are shown in FIG. 2) on the outflow side. It has a cylindrical base portion 20 and an inflow pipe connecting portion 30 fitted to the large diameter portion 20a of the base portion 20. A medium diameter part 31, a small diameter inflow side throttle part 32, and a large diameter part 33 are formed in this order from the inflow side of the inflow pipe connecting part 30. A branch space 34 is formed by the collision wall 27 which is the bottom surface portion of the large diameter portion 20 a of the base portion 20 and the large diameter portion 33 of the inflow pipe connecting portion 30. One end of an outflow pipe (not shown) is fitted in each of the three branch passages 21 and 22 (only two are shown in FIG. 2), and the large-diameter portion 31 of the inflow pipe connection portion 30 is fitted. One end of the inflow pipe 39 is fitted to the end.
[0018]
3 is an enlarged arrow view of the refrigerant flow divider 7 of FIG. 1 as viewed from the direction of the arrow R1, and as shown in FIG. 3, the inflow of the three flow dividing passages 21, 22, 23 of the base 20 On the side, there are provided diversion-side throttle portions 24, 25 and 26, respectively.
[0019]
Here, in FIG. 2, the flow rate of the refrigerant flowing into the inflow pipe 31 is G [kg / s], the height of the flow direction of the refrigerant in the branch space 34 is H [m], and the inner diameter of the inflow pipe 39 is Di [mm] and when the inner diameter of the small diameter inflow side throttle portion 32 of the inflow pipe connection portion 30 is D0 [mm],
G / H> 3 ……………… (Formula 1)
Di / D0 <2 ……………… (Formula 2)
G, H, Di and D0 are set so as to satisfy the above condition. The inner diameter D0 of the inflow side throttle portion 32 is equal to or less than the inner diameter Di of the inflow pipe 39.
[0020]
Further, when the inner diameter of the flow restrictor is D1 to Dn (n = 2, 3,...) And the number of the flow diverting passages is n, the inner diameters D1 to Dn of the flow restrictor are more than Di / n, respectively. Set to be larger. That is, in FIG.
Dm> Di / 3 ……………… (Formula 3)
(However, m = 1,2,3)
It is set to satisfy the conditions.
[0021]
In this way, the refrigerant flowing in from the inflow pipe 39 passes through the inflow side throttle portion 32 and then collides with the collision wall 27 in the branch space 34 and is stirred and mixed uniformly. Further, by setting the refrigerant flow rate G flowing into the inflow pipe 39 and the height H in the flow direction of the refrigerant in the branch space 34 so as to satisfy the condition of G / H> 3, the refrigerant drift can be suppressed. In addition, an increase in pressure loss can be prevented by setting the inner diameter Di of the inflow pipe 39 and the inner diameter D0 of the inflow side restricting portion 32 so as to satisfy the condition of Di / D0 <2. Therefore, this simple configuration refrigerant flow divider can reduce refrigerant drift with low loss and low noise, and can realize an air conditioner with high efficiency and low noise.
[0022]
The refrigerant distribution ratio can be arbitrarily set by appropriately setting the inner diameters D1 to D3 of the diversion-side throttle portions 24 to 26 provided between the branch space 34 and the diversion passages 21 to 23. By setting the inner diameters D1 to D3 of the side throttle portions 24 to 26 to be larger than Dn> Di / 3, the refrigerant drift flows without excessively narrowing the flow dividing side throttle portions 24 to 26 and increasing the pressure loss. The aperture structure can be made to an extent that does not affect
[0023]
Further, as shown in FIG. 3, the minimum radius Dw inside the diversion-side restricting portions 24 to 26 around the axis of the cylindrical base portion 20 is larger than the inner diameter D0 of the inflow-side restricting portion 32 of the inflow pipe connecting portion 30. Set as follows. By doing so, it is possible to secure a collision wall 27 wider than the cross-sectional area of the inner periphery of the inflow side throttle portion 32 of the inflow pipe connection portion 30, and the refrigerant flowing from the inflow pipe 39 collides with the collision wall 27. Since it is stirred, it can mix uniformly.
[0024]
FIG. 4 shows a cross-sectional view of the main part of another refrigerant distributor. The refrigerant flow divider 17 has the same configuration as the refrigerant flow divider 7 shown in FIGS. 2 and 3 except for the collision wall.
[0025]
As shown in FIG. 4, the refrigerant distributor 17 has a large-diameter portion 40a formed on the inflow side and three branch passages 41 and 42 (only two are shown in FIG. 4) on the outflow side. It has a cylindrical base 40 and an inflow pipe connecting portion 50 fitted to the large diameter portion 40 a of the cylindrical base 40. A medium diameter part 51, a small diameter throttle part 52, and a large diameter part 53 are formed in this order from the inflow side of the inflow pipe connecting part 50. The collision wall 47 which is the bottom surface portion of the large diameter portion 40 a of the cylindrical base portion 40 and the large diameter portion 53 of the inflow pipe connection portion 50 form a branch space 54. Then, one end of the inflow pipe 59 is fitted in the large diameter part 51 of the inflow pipe connection part 50. A conical recess 48 is formed in the collision wall 47, and the conical angle of the recess 48 is 120 °.
[0026]
5 is an enlarged arrow view of the refrigerant flow divider of FIG. 4 as viewed from the direction of the arrow R2, and the flow dividing side restricting portion 44, on the inflow side of the three flow dividing passages 41, 42, 43 of the cylindrical base 40. 45 and 46 are provided.
[0027]
In the refrigerant flow divider 17, the concave portion 48 provided in the collision wall 47 causes the refrigerant flowing from the inflow pipe 59 through the inflow side restricting portion 52 to collide with the concave portion 48 of the collision wall 47 and be agitated. Mixed.
[0028]
The concave portion 48 provided in the collision wall 47 of the refrigerant distributor 17 has a conical shape with a cone angle of 120 °. However, the shape of the concave portion is not limited to this, and a spherical concave portion or the like is provided in the collision wall. May be.
[0029]
FIG. 6 is a schematic diagram showing the configuration of an indoor heat exchanger of an air conditioner using a refrigerant distributor according to another embodiment of the present invention, and the air conditioner shown in FIG. 1 except for the indoor heat exchanger. It has the same configuration as the machine.
[0030]
As shown in FIG. 6, the indoor heat exchanger of the air conditioner includes a first heat exchange unit 61 for reheating that functions as a condenser during dry operation, and a second heat exchange unit 62 that functions as an evaporator during dry operation. , 63. A refrigerant flow distributor 65 is disposed at a branch point between the first heat exchange section 61 and the second heat exchange sections 62 and 63, and an expansion valve is provided between the refrigerant flow distributor 65 and the first heat exchange section 61. 65 is disposed. The refrigerant distributor 65 has the same configuration as the refrigerant distributor shown in FIG. 2 except that the number of outlet pipes is two. In this case, (Expression 1) to (Expression 3) are satisfied.
[0031]
In particular, a refrigerant distributor 65 that can reduce refrigerant drift with low loss and low noise at an intermediate point between the first heat exchanging part 61 for reheating and the second heat exchanging parts 62 and 63 where the refrigerant becomes a gas-liquid two-phase flow. By providing the air conditioner, a highly efficient and low noise air conditioner can be realized.
[0032]
In the said embodiment, although it was set as the indoor heat exchanger which has the 2nd 2nd heat exchange parts 62 and 63 connected in parallel, a 2nd or more 2nd heat exchange part may be sufficient.
[0033]
The present applicant conducted an experiment using an indoor heat exchanger configured as shown in FIG. 7 in order to obtain the conditions of the above (formula 1) and (formula 2). The experimental results will be described below. The refrigerant flow divider used in the experiment has the same configuration as the refrigerant flow divider shown in FIG. 2 except that there are two flow dividing passages.
[0034]
As shown in FIG. 7, the indoor heat exchanger includes a first heat exchanger 71 for reheating and a second heat exchanger 72 having two passes. One end of the inlet refrigerant pipe 73 is connected to the upper inlet side of the first heat exchanger 71, and one end of the refrigerant pipe 74 is connected to the lower outlet side of the first heat exchanger 71. The other end of the refrigerant pipe 74 is connected to the inflow side of the refrigerant flow divider 76, and an expansion valve 75 is disposed in the refrigerant pipe 74. Then, the two outflow pipes 77A and 77B of the refrigerant distributor 76 are connected to the inlet sides of the two paths of the second heat exchanger 72, respectively. A merger 78 is connected to the outlet side of the two paths of the second heat exchanger 72, and an outlet refrigerant pipe 79 is connected to the outflow side of the merger 78. Note that the heat exchange area, the air volume, etc. of the two-pass refrigerant path of the second heat exchanger 72 are set to the same conditions.
[0035]
The refrigerant flow rate of the refrigerant flowing into the inlet refrigerant pipe 73 of the indoor heat exchanger shown in FIG. 7, that is, the refrigerant flow rate G of refrigerant flowing into the inflow side of the refrigerant flow divider 76 = 0.01 [kg / s], and G = 0. At 0.02 [kg / s], the refrigerant temperatures TA and TB at the two-pass outlets A and B of the second heat exchanger 72 are measured to determine the drift width (absolute value of the temperature difference between the refrigerant temperatures TA and TB). The results are shown in FIG. In addition, the inner diameter Di = 6.5 [mm] of the inflow pipe of the refrigerant flow divider 76, the inner diameter D0 = 5 [mm] of the throttle part of the inflow pipe connecting portion, and Di / D0 = 1.3. In FIG. 8, the horizontal axis indicates G / H, the vertical axis indicates the drift width, black circles indicate data when G = 0.01 [kg / s], and white triangles indicate G = 0.02. The data is for [kg / s]. As can be seen from FIG. 8, when G / H is less than 3 [kg / s · m], the drift width is less than 2 [deg]. It can be seen that it is within the range.
[0036]
Next, FIG. 9 shows the result of measuring the pressure loss [kPa · G] by changing the ratio Di / D0 of the inner diameter Di of the inflow pipe to the inner diameter D0 of the throttle section of the inflow pipe connecting portion of the refrigerant flow divider 76. Yes. In FIG. 9, the horizontal axis indicates Di / D0, the vertical axis indicates pressure loss, black circles indicate data when G = 0.01 [kg / s], and white triangles indicate G = 0.02. The data is for [kg / s]. As is clear from FIG. 9, when Di / D0 is less than 2, even if the refrigerant flow rate G is 0.02 [kg / s], the pressure loss is less than 150 [kPa · G], It can be seen that the pressure loss falls within a practically non-problematic range by satisfying the condition (1).
[0037]
In the above embodiment, an air conditioner using a refrigerant flow divider has been described. However, the refrigerant flow divider may be used for a device having a refrigerant circuit such as another refrigerator.
[0038]
【The invention's effect】
As is clear from the above, according to the refrigerant flow divider of the first aspect of the present invention, in the refrigerant flow divider that diverts the refrigerant that flows in from the inflow pipe to the plurality of branch passages, the refrigerant that flows in from the inflow pipe A branch space distributed to the branch flow path, an inflow side throttle portion provided between the inflow pipe and the branch space, and a collision wall in which the refrigerant flowing in from the inflow side throttle portion collides in the branch space. The refrigerant flow rate G flowing into the inflow pipe and the height H in the direction in which the refrigerant flows in the branch space are set so as to satisfy the condition of G / H> 3. By setting the inner diameter Di of the tube and the inner diameter D0 of the inflow side throttle portion so as to satisfy the condition of Di / D0 <2, an increase in pressure loss can be prevented. Accordingly, it is possible to realize a refrigerant flow divider that can reduce refrigerant drift with low loss and low noise with a simple configuration.
In addition, the refrigerant distribution ratio can be arbitrarily set by appropriately setting the inner diameter Dn of the diversion-side restricting portion provided between the branch space and the plurality of diversion passages, and the inner diameter of each diversion-side restricting portion. By setting Dn to satisfy Dn> Di / n (n is the number of flow dividing passages), it is possible to prevent the pressure loss from being increased by excessively restricting the flow dividing side restricting portion and not to affect refrigerant drift. The aperture structure can be made.
[0039]
Further, according to the refrigerant flow divider of the invention of claim 2, in the refrigerant flow divider of claim 1, the refrigerant that has flowed from the inflow pipe through the inflow side restricting portion is caused by the recess provided in the collision wall. It collides with the concave portion of the collision wall and is stirred, so that it can be mixed more uniformly.
[0040]
[0041]
Moreover, according to the air conditioner of the invention of claim 3 , in the air conditioner including an evaporator having a plurality of heat exchange units, the upstream side and the downstream side heat exchange units of the plurality of heat exchange units. And a branch point where the refrigerant is diverted to two or more heat exchange parts on the downstream side, particularly in the middle part of the evaporator where the refrigerant becomes a gas-liquid two-phase flow with low loss. Therefore, by disposing the refrigerant flow divider that can reduce refrigerant drift with low noise, a highly efficient and low noise air conditioner can be realized.
[0042]
According to a fourth aspect of the present invention, there is provided an air conditioner in which a compressor, an outdoor heat exchanger, a first pressure reducer, a first indoor heat exchanger, a second pressure reducer, and a second indoor heat exchanger are connected in a ring shape. In an air conditioner having a constructed refrigerant circuit, the first pressure reducer is fully opened and the second pressure reducer is throttled to produce a compressor, an outdoor heat exchanger, a first pressure reducer, and a first indoor heat exchanger. , Circulating the refrigerant in the order of the second decompressor and the second indoor heat exchanger, using the first indoor heat exchanger as a condenser for reheating, and using the second indoor heat exchanger as an evaporator for dehumidifying When the dry operation is performed, the refrigerant after the expansion by the second pressure reducer is reduced in loss and noise, and the refrigerant flow divider that can reduce the refrigerant drift is used to connect a plurality of the second indoor heat exchangers connected in parallel. Since the air is diverted to the heat exchanging section, a highly efficient and low noise air conditioner can be realized.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of an air conditioner using a refrigerant flow divider according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a main part of the refrigerant flow divider of the air conditioner.
FIG. 3 is an arrow view when FIG. 2 is viewed from the direction of an arrow R1.
FIG. 4 is a cross-sectional view of the main part of another refrigerant distributor.
FIG. 5 is an arrow view of FIG. 4 viewed from the direction of arrow R2.
FIG. 6 is a schematic view showing a configuration of an indoor heat exchanger of an air conditioner using a refrigerant flow divider according to another embodiment of the present invention.
FIG. 7 is a schematic view showing a configuration of a heat exchanger using a refrigerant flow divider.
FIG. 8 is a diagram showing a characteristic of drift width with respect to G / H in the heat exchanger shown in FIG.
FIG. 9 is a graph showing the characteristics of pressure loss with respect to Di / D0 in the heat exchanger shown in FIG.
[Explanation of symbols]
1 ... compressor, 2 ... four-way valve,
3 ... outdoor heat exchanger, 4 ... liquid receiver,
5 ... expansion valve, 6 ... indoor heat exchanger,
7 ... refrigerant shunt,
20, 40 ... base, 20a, 40a ... large diameter part,
21 to 23, 41 to 43 ...
24 to 26, 44 to 46, ...
27, 47 ... collision wall, 30, 50 ... inflow pipe connection,
31, 51 ... medium diameter part, 32, 52 ... inflow side throttle part,
33, 53 ... large diameter part, 34, 54 ... branch space,
39,59 ... inflow pipe, 48 ... concave,
61 ... 1st heat exchange part, 62,63 ... 2nd heat exchange part,
64 ... expansion valve, 65 ... refrigerant flow divider,
71 ... 1st heat exchanger, 72 ... 2nd heat exchanger,
73 ... Inlet refrigerant piping, 74 ... Refrigerant piping,
75 ... expansion valve, 76 ... refrigerant flow divider,
77A, 77B ... Outflow piping, 78 ... Merger 78,
79 ... Outlet refrigerant piping.

Claims (4)

流入管(39,59)から流入した冷媒を複数の分流通路(21〜23,41〜43)に分流する冷媒分流器において、
上記流入管(39,59)から流入した冷媒を上記複数の分流通路(21〜23,41〜43)に分配する分岐空間(34,54)と、
上記流入管(39,59)と上記分岐空間(34,54)との間に設けられた流入側絞り部(32,52)と、
上記流入側絞り部(32,52)から流入した冷媒が上記分岐空間(34,54)内で衝突するように設けられた衝突壁(27,47)とを備え、
上記流入管(39,59)に流入する冷媒流量をG[kg/s]とし、上記分岐空間(34,54)の冷媒が流れる方向の高さをH[m]とし、上記流入管(39,59)の内径をDi[mm]とし、上記流入側絞り部(32,52)の内径をD0[mm]とするとき、
G/H > 3
Di/D0 <2
の条件を満足すると共に、
上記分岐空間(34,54)と上記複数の分流通路(21〜23,41〜43)との間に分流側絞り部(24〜26,44〜46)を夫々設け、
上記分流側絞り部(24〜26,44〜46)の内径をDnとし、上記分流通路の本数をnとするとき、
Dn > Di/n
の条件を満足し、
上記分流側絞り部(24〜26,44〜46)が上記流入管(39,59)の軸を中心に周方向に配置され、
上記分流側絞り部(24〜26,44〜46)で囲まれた内側領域の上記流入管(39,59)の軸を中心にした最小半径Dwを、上記流入側絞り部(32,52)の内径D0よりも大きくしたことを特徴とする冷媒分流器。
In the refrigerant flow divider for diverting the refrigerant flowing in from the inflow pipe (39, 59) to the plurality of diversion passages (21 to 23, 41 to 43),
A branch space (34, 54) for distributing the refrigerant flowing in from the inflow pipe (39, 59) to the plurality of branch passages (21-23, 41-43);
An inflow side throttle (32, 52) provided between the inflow pipe (39, 59) and the branch space (34, 54);
A collision wall (27, 47) provided so that the refrigerant flowing in from the inflow side throttle portion (32, 52) collides in the branch space (34, 54),
The flow rate of refrigerant flowing into the inflow pipe (39, 59) is G [kg / s], the height of the branch space (34, 54) in the direction in which the refrigerant flows is H [m], and the inflow pipe (39 , 59) is Di [mm], and the inflow side throttle part (32, 52) is D0 [mm],
G / H> 3
Di / D0 <2
Together to satisfy the conditions,
A diversion side restricting portion (24 to 26, 44 to 46) is provided between the branch space (34, 54) and the plurality of diversion passages (21 to 23, 41 to 43), respectively.
When the inner diameter of the diversion-side restricting portion (24 to 26, 44 to 46) is Dn and the number of the diversion passages is n,
Dn> Di / n
Satisfy the conditions of
The diversion-side restricting portions (24 to 26, 44 to 46) are arranged in the circumferential direction around the axis of the inflow pipe (39, 59),
The minimum radius Dw centered on the axis of the inflow pipe (39, 59) in the inner region surrounded by the diversion side restricting portion (24 to 26, 44 to 46) is set to the inflow side restricting portion (32, 52). A refrigerant shunt characterized in that it is larger than the inner diameter D0 .
請求項1に記載の冷媒分流器において、
上記衝突壁(47)に凹部(48)を設けたことを特徴とする冷媒分流器。
The refrigerant shunt according to claim 1, wherein
A refrigerant distributor according to claim 1, wherein a concave portion (48) is provided in the collision wall (47).
複数の熱交換部(61〜63)を有する蒸発器を備えた空気調和機において、
上記複数の熱交換部(61〜63)のうちの上流側と下流側の熱交換部を接続する接続点で、かつ、下流側の2以上の熱交換部(62,63)に冷媒を分流する分岐点に、請求項1または2に記載の冷媒分流器(65)を配設したことを特徴とする空気調和機。
In an air conditioner including an evaporator having a plurality of heat exchange units (61 to 63),
The refrigerant is divided into two or more heat exchange sections (62, 63) at the connection point connecting the upstream and downstream heat exchange sections among the plurality of heat exchange sections (61 to 63). An air conditioner characterized in that the refrigerant distributor (65) according to claim 1 or 2 is disposed at a branching point.
圧縮機(1),室外熱交換器(3),第1減圧器(5),第1室内熱交換器(61),第2減圧器(65)および第2室内熱交換器を環状に接続して構成された冷媒回路を備えた空気調和機において、
上記第2室内熱交換器が並列接続された複数の熱交換部(62,63)からなり、
上記第2減圧器(65)と上記第2室内熱交換器(62,63)との間の分岐点に、請求項1または2に記載の冷媒分流器(65)を配設したことを特徴とする空気調和機。
Compressor (1), outdoor heat exchanger (3), first decompressor (5), first indoor heat exchanger (61), second decompressor (65), and second indoor heat exchanger are connected in an annular shape In an air conditioner equipped with a refrigerant circuit configured as
The second indoor heat exchanger comprises a plurality of heat exchange parts (62, 63) connected in parallel,
The refrigerant flow divider (65) according to claim 1 or 2 is disposed at a branch point between the second pressure reducer (65) and the second indoor heat exchanger (62, 63). Air conditioner.
JP2000321113A 2000-10-20 2000-10-20 Refrigerant shunt and air conditioner using the same Expired - Fee Related JP4560939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000321113A JP4560939B2 (en) 2000-10-20 2000-10-20 Refrigerant shunt and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000321113A JP4560939B2 (en) 2000-10-20 2000-10-20 Refrigerant shunt and air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2002130868A JP2002130868A (en) 2002-05-09
JP4560939B2 true JP4560939B2 (en) 2010-10-13

Family

ID=18799298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000321113A Expired - Fee Related JP4560939B2 (en) 2000-10-20 2000-10-20 Refrigerant shunt and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP4560939B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193630B2 (en) * 2008-03-06 2013-05-08 パナソニック株式会社 Heat exchanger
JP5189386B2 (en) * 2008-03-10 2013-04-24 パナソニック株式会社 Heat exchanger
JP4827882B2 (en) * 2008-05-08 2011-11-30 三菱電機株式会社 Heat exchanger module, heat exchanger, indoor unit and air-conditioning refrigeration apparatus
JP2010133644A (en) * 2008-12-04 2010-06-17 Hitachi Appliances Inc Distributor
JP2013113557A (en) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd Refrigerant distributor
JP5998632B2 (en) * 2012-05-21 2016-09-28 ダイキン工業株式会社 Shunt and air conditioner
DE102014108989A1 (en) * 2014-06-26 2015-12-31 Valeo Klimasysteme Gmbh Branch for a refrigerant flow of a refrigerant circuit
JP6102889B2 (en) * 2014-11-11 2017-03-29 ダイキン工業株式会社 Shunt and air conditioner having the same
WO2019021457A1 (en) * 2017-07-28 2019-01-31 三菱電機株式会社 Refrigerant distributor and heat pump device having said refrigerant distributor
CN109405371B (en) * 2018-10-09 2020-05-19 珠海格力电器股份有限公司 Capillary tube and flow divider integrated flow dividing device and assembly method thereof and air conditioner
JP7444641B2 (en) * 2020-03-03 2024-03-06 株式会社日本クライメイトシステムズ refrigerant flow divider
KR102154465B1 (en) * 2020-03-06 2020-09-09 이종문 Expansion valve for air-conditioning and heating system using multiple heat-source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498055A (en) * 1990-08-14 1992-03-30 Matsushita Refrig Co Ltd Refrigerant flow divider
JPH06337183A (en) * 1993-05-27 1994-12-06 Sanyo Electric Co Ltd Flow dividing device for refrigerant
JPH0719665A (en) * 1993-07-07 1995-01-20 Hitachi Ltd Air conditioner for vehicle
JPH0868574A (en) * 1994-08-30 1996-03-12 Tensei Eng Kk Distributor for air conditioner
JPH08338668A (en) * 1995-06-14 1996-12-24 Hitachi Ltd Multi-room type air conditioner
JPH11101530A (en) * 1997-09-30 1999-04-13 Mitsubishi Electric Corp Refrigerant distributor and refrigerating cycle apparatus using refrigerant distributor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3381486B2 (en) * 1995-10-27 2003-02-24 松下電器産業株式会社 Shunt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498055A (en) * 1990-08-14 1992-03-30 Matsushita Refrig Co Ltd Refrigerant flow divider
JPH06337183A (en) * 1993-05-27 1994-12-06 Sanyo Electric Co Ltd Flow dividing device for refrigerant
JPH0719665A (en) * 1993-07-07 1995-01-20 Hitachi Ltd Air conditioner for vehicle
JPH0868574A (en) * 1994-08-30 1996-03-12 Tensei Eng Kk Distributor for air conditioner
JPH08338668A (en) * 1995-06-14 1996-12-24 Hitachi Ltd Multi-room type air conditioner
JPH11101530A (en) * 1997-09-30 1999-04-13 Mitsubishi Electric Corp Refrigerant distributor and refrigerating cycle apparatus using refrigerant distributor

Also Published As

Publication number Publication date
JP2002130868A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
US7600393B2 (en) Refrigerant distributing device for multi-type air conditioner
CN101111730B (en) Tube inset and bi-flow arrangement for a header of a heat pump
JP4560939B2 (en) Refrigerant shunt and air conditioner using the same
CN113932491A (en) One-way valve, heat exchanger, refrigeration cycle system and air conditioner
CN214581751U (en) Heat exchanger and air conditioner
US7921671B2 (en) Refrigerant flow divider
CN106839531B (en) Gas bypass micro-channel evaporator
CN108061409B (en) Variable orifice for a chiller unit
CN101738026A (en) Distributor and refrigerant circulation system comprising the same
JP7102686B2 (en) Heat exchanger
CN104764256A (en) Heat exchanger and multi-split system with the same
WO2019239445A1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP6246396B2 (en) Distributor and refrigeration cycle apparatus
JP2006349238A (en) Refrigerant flow divider
JP2012137223A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
CN112856588B (en) Air conditioner indoor unit and air conditioner
JPH08159615A (en) Refrigerant distribution structure of refrigeration cycle
JP5193630B2 (en) Heat exchanger
JP5045252B2 (en) Air conditioner
JP3410309B2 (en) Air conditioner branch pipe
JP3326930B2 (en) Refrigerant shunt
JP2012137224A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
CN112856866B (en) Throttling element, throttling liquid-separating assembly and air conditioner indoor unit
CN212431418U (en) Liquid separator for air conditioner and air conditioner
US20220196255A1 (en) Heat exchanger and air conditioner including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees