JP2002130868A - Refrigerant distributor and air conditioner employing the same - Google Patents

Refrigerant distributor and air conditioner employing the same

Info

Publication number
JP2002130868A
JP2002130868A JP2000321113A JP2000321113A JP2002130868A JP 2002130868 A JP2002130868 A JP 2002130868A JP 2000321113 A JP2000321113 A JP 2000321113A JP 2000321113 A JP2000321113 A JP 2000321113A JP 2002130868 A JP2002130868 A JP 2002130868A
Authority
JP
Japan
Prior art keywords
refrigerant
air conditioner
inflow
heat exchanger
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000321113A
Other languages
Japanese (ja)
Other versions
JP4560939B2 (en
Inventor
Masaaki Kitazawa
昌昭 北澤
Koji Shibaike
幸治 芝池
Atsushi Endo
敦 遠藤
Yuji Yoneda
裕二 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000321113A priority Critical patent/JP4560939B2/en
Publication of JP2002130868A publication Critical patent/JP2002130868A/en
Application granted granted Critical
Publication of JP4560939B2 publication Critical patent/JP4560939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant distributor, low in loss as well as in noise and capable of reducing the bias flow of refrigerant by a simple constitution while being capable of setting a refrigerant distributing ratio arbitrarily, and an air conditioner, high in an efficiency and low in noise while employing the refrigerant distributor. SOLUTION: The refrigerant, conducted to flow into a branching space 34 from an inflow pipe 39 through an inflow side choking unit 27, is collided against a colliding wall 27 and is mixed, then, is distributed into distributing flow passages 21, 22 from the branching space 34 through distributing side choking units 24, 25. The flow amount G of refrigerant conducted to flow into the inflow pipe 39, the height H in the flow direction of the refrigerant in the branching space 34, the inner diameter Di of the inflow pipe 39 and the inner diameter D0 of the inflow side choking unit 32 are set respectively so as to satisfy the conditions of G/H>3 and Di/D0<2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、流入管から流入
した冷媒を複数の分流通路に分流する冷媒分流器および
それを用いた空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant distribution device for dividing a refrigerant flowing from an inflow pipe into a plurality of distribution passages, and an air conditioner using the same.

【0002】[0002]

【従来の技術】従来、空気調和機としては、圧縮機,室
外熱交換器,膨張弁および室内熱交換器を環状に接続し
て構成された冷媒回路を備えたものがある。この空気調
和機の室外熱交換器および室内熱交換器は、圧力損失を
低減するために冷媒分流器と分岐管を用いて複数のパス
に冷媒を分配している。このような空気調和機では、温
度制御を行うドライ運転や冷房運転,暖房運転におい
て、複数のパスを有する蒸発器(室内熱交換器または室
外熱交換器)の冷媒偏流が少なくかつ低圧力損失の冷媒
分流器が必要不可欠となっている。
2. Description of the Related Art Conventionally, there is an air conditioner provided with a refrigerant circuit constituted by connecting a compressor, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger in a ring shape. In the outdoor heat exchanger and the indoor heat exchanger of the air conditioner, the refrigerant is distributed to a plurality of paths using a refrigerant flow divider and a branch pipe in order to reduce pressure loss. In such an air conditioner, in the dry operation, the cooling operation, and the heating operation for controlling the temperature, the refrigerant drift in the evaporator having a plurality of paths (the indoor heat exchanger or the outdoor heat exchanger) is small and the pressure loss is low. A refrigerant shunt has become essential.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記空
気調和機において、冷媒分流器の分流性能を重視して冷
媒偏流を少なくしようとすると、圧力損失や騒音が増大
する一方、逆に冷媒分流器の圧力損失を少なくしようと
すると、冷媒の乾き度や冷媒流速の変動により冷媒偏流
が増大しやすくなり、運転能力が低下するという問題が
ある。
However, in the above-described air conditioner, if the refrigerant flow is reduced by focusing on the flow dividing performance of the refrigerant flow divider, pressure loss and noise increase, while conversely, the flow rate of the refrigerant flow divider increases. If an attempt is made to reduce the pressure loss, there is a problem that the refrigerant drift tends to increase due to fluctuations in the dryness of the refrigerant and the flow velocity of the refrigerant, resulting in a decrease in operating capacity.

【0004】そこで、この発明の目的は、簡単な構成に
よって、低損失,低騒音で冷媒偏流を低減できると共
に、冷媒分配比率を任意に設定できる冷媒分流器および
それを用いた高効率で低騒音な空気調和機を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a refrigerant diverter which can reduce refrigerant drift with low loss and low noise by a simple structure, and which can set a refrigerant distribution ratio arbitrarily. It is to provide a simple air conditioner.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の空気調和機は、流入管から流入した冷媒
を複数の分流通路に分流する冷媒分流器において、上記
流入管から流入した冷媒を上記複数の分流通路に分配す
る分岐空間と、上記流入管と上記分岐空間との間に設け
られた流入側絞り部と、上記流入側絞り部から流入した
冷媒が上記分岐空間内で衝突するように設けられた衝突
壁とを備え、上記流入管に流入する冷媒流量をG[kg
/s]とし、上記分岐空間の冷媒が流れる方向の高さを
H[m]とし、上記流入管の内径をDi[mm]とし、上記
流入側絞り部の内径をD0[mm]とするとき、 G/H > 3 Di/D0 < 2 の条件を満足することを特徴としている。
To achieve the above object, an air conditioner according to a first aspect of the present invention is a refrigerant distributor which divides refrigerant flowing from an inlet pipe into a plurality of branch passages. Branch space for distributing the divided refrigerant to the plurality of branch passages, an inflow-side restrictor provided between the inflow pipe and the branch space, and a refrigerant flowing from the inflow-side restrictor is disposed in the branch space. And a collision wall provided so as to collide with the refrigerant at a flow rate of G [kg
/ S], the height of the branch space in the direction in which the refrigerant flows is H [m], the inside diameter of the inflow pipe is Di [mm], and the inside diameter of the inflow-side throttle is D0 [mm]. , G / H> 3Di / D0 <2.

【0006】上記請求項1の冷媒分流器によれば、上記
流入管から流入した冷媒は、上記流入側絞り部を通って
流速が速くなった後に上記分岐空間内で衝突壁に衝突し
て攪拌され、均一に混合される。そして、上記分岐空間
内で均一に混合された冷媒は、複数の分流通路に分流す
る。このとき、流入管に流入する冷媒流量Gと分岐空間
の冷媒が流れる方向の高さHとをG/H>3の条件を満
足するように設定することによって、冷媒偏流を抑える
と共に、流入管の内径Diと流入側絞り部の内径D0とを
Di/D0<2の条件を満足するように設定することによ
って、圧力損失の増大を防ぐことができる。したがっ
て、簡単な構成により低損失,低騒音で冷媒偏流を低減
できる冷媒分流器を実現できる。
According to the refrigerant distribution device of the first aspect, the refrigerant flowing from the inflow pipe collides with the collision wall in the branch space and agitates after the flow velocity increases through the inflow-side throttle. And mixed evenly. Then, the refrigerant uniformly mixed in the branch space is divided into a plurality of branch passages. At this time, by setting the flow rate G of the refrigerant flowing into the inflow pipe and the height H in the direction in which the refrigerant flows in the branch space so as to satisfy the condition of G / H> 3, it is possible to suppress the refrigerant drift and suppress the inflow pipe. By setting the inner diameter Di and the inner diameter D0 of the inflow-side restrictor so as to satisfy the condition of Di / D0 <2, an increase in pressure loss can be prevented. Therefore, it is possible to realize a refrigerant flow divider that can reduce refrigerant drift with low loss and low noise with a simple configuration.

【0007】また、請求項2の冷媒分流器は、請求項1
の冷媒分流器において、上記衝突壁に凹部を設けたこと
を特徴としている。
[0007] The refrigerant flow divider according to claim 2 is based on claim 1.
In the above refrigerant distribution device, a recess is provided in the collision wall.

【0008】上記請求項2の冷媒分流器によれば、上記
衝突壁に設けられた凹部によって、上記流入管から流入
側絞り部を介して流入した冷媒が上記衝突壁の凹部に衝
突して攪拌され、より均一に混合される。
According to the refrigerant distributor of the second aspect, the refrigerant flowing from the inflow pipe through the inflow-side throttle portion collides with the concave portion of the collision wall by the concave portion provided in the collision wall and is stirred. And more evenly mixed.

【0009】また、請求項3の冷媒分流器は、請求項1
または2の冷媒分流器において、上記分岐空間と上記複
数の分流通路との間に分流側絞り部を夫々設け、上記分
流側絞り部の内径をDnとし、上記分流通路の本数をn
とするとき、 Dn > Di/n の条件を満足することを特徴としている。
[0009] Further, the refrigerant flow divider according to claim 3 is based on claim 1.
Alternatively, in the two refrigerant flow dividers, a flow restricting portion is provided between the branch space and the plurality of flow dividing passages, the inner diameter of the flow dividing side restricting portion is Dn, and the number of the flow dividing passages is n.
Where the condition of Dn> Di / n is satisfied.

【0010】上記請求項3の冷媒分流器によれば、上記
分岐空間と上記複数の分流通路との間に設けられた分流
側絞り部の内径Dnを適切に設定することによって、冷
媒分配比率を任意に設定できる。また、各分流側絞り部
の内径をDn>Di/nを満足するように設定することに
より、分流側絞り部を絞り過ぎて圧力損失を増大させる
ということがなく、冷媒偏流に影響しない程度の絞り構
造にできる。
According to the refrigerant distribution device of the third aspect, by appropriately setting the inner diameter Dn of the distribution-side restricting portion provided between the branch space and the plurality of distribution passages, the refrigerant distribution ratio can be improved. Can be set arbitrarily. Further, by setting the inner diameter of each branch-side throttle portion so as to satisfy Dn> Di / n, pressure loss does not increase due to excessive narrowing of the branch-side throttle portion, so that the refrigerant flow is not affected. A diaphragm structure can be used.

【0011】また、請求項4の空気調和機は、複数の熱
交換部を有する蒸発器を備えた空気調和機において、上
記複数の熱交換部のうちの上流側と下流側の熱交換部を
接続する接続点で、かつ、下流側の2以上の熱交換部に
冷媒を分流する分岐点に、請求項1乃至3のいずれか1
つの冷媒分流器を配設したことを特徴としている。
According to a fourth aspect of the present invention, there is provided an air conditioner including an evaporator having a plurality of heat exchange sections, wherein the upstream and downstream heat exchange sections of the plurality of heat exchange sections are separated. 4. The method according to claim 1, wherein the connection point is a connection point and a branch point for dividing the refrigerant into two or more heat exchange units on the downstream side.
It is characterized in that two refrigerant flow dividers are provided.

【0012】上記請求項4の空気調和機によれば、上記
複数の熱交換部のうちの上流側と下流側の熱交換部を接
続する接続点で、かつ、上記複数の熱交換部のうちの下
流側の2以上の熱交換部に冷媒を分流する分岐点では、
特に冷媒が気液二相流となるが、このような蒸発器の中
間部に、低損失,低騒音で冷媒偏流を低減できる上記冷
媒分流器を配設することによって、高効率で低騒音な空
気調和機を実現できる。
According to the air conditioner of the fourth aspect, at the connection point connecting the upstream and downstream heat exchange sections of the plurality of heat exchange sections, and at the connection point of the plurality of heat exchange sections. At the branch point where the refrigerant is diverted to two or more heat exchange sections on the downstream side of
In particular, the refrigerant becomes a gas-liquid two-phase flow, but by arranging the refrigerant diverter capable of reducing refrigerant drift with low loss and low noise in the middle part of such an evaporator, high efficiency and low noise are achieved. An air conditioner can be realized.

【0013】また、請求項5の空気調和機は、圧縮機,
室外熱交換器,第1減圧器,第1室内熱交換器,第2減圧
器および第2室内熱交換器を環状に接続して構成された
冷媒回路を備えた空気調和機において、上記第2室内熱
交換器が並列接続された複数の熱交換部からなり、上記
第2減圧器と上記第2室内熱交換器との間の分岐点に、
請求項1乃至3のいずれか1つの冷媒分流器を配設した
ことを特徴としている。
The air conditioner according to claim 5 is a compressor,
An air conditioner including a refrigerant circuit configured by connecting an outdoor heat exchanger, a first decompressor, a first indoor heat exchanger, a second decompressor, and a second indoor heat exchanger in an annular manner, An indoor heat exchanger is composed of a plurality of heat exchange units connected in parallel, and at a branch point between the second decompressor and the second indoor heat exchanger,
A refrigerant distributor according to any one of claims 1 to 3 is provided.

【0014】上記請求項5の空気調和機によれば、上記
第1減圧器を全開し、上記第2減圧器を絞って、圧縮
機,室外熱交換器,第1減圧器,第1室内熱交換器,第2減
圧器および第2室内熱交換器の順に冷媒を循環させ、第
1室内熱交換器を再熱を行う凝縮器として用い、第2室
内熱交換器を除湿を行う蒸発器として用いてドライ運転
を行う。このようなドライ運転を行う空気調和機におい
て、上記第2室内熱交換器の並列接続された複数の熱交
換部と上記第2減圧器との間の分岐点に低損失,低騒音
で冷媒偏流を低減できる上記冷媒分流器を用いて、上記
第2減圧器によって膨張した後の冷媒を分流するので、
高効率で低騒音な空気調和機を実現できる。
According to the air conditioner of the fifth aspect, the first decompressor is fully opened, and the second decompressor is squeezed to reduce the compressor, the outdoor heat exchanger, the first decompressor, the first indoor heat exchanger. The refrigerant is circulated in the order of the exchanger, the second decompressor and the second indoor heat exchanger, the first indoor heat exchanger is used as a condenser for reheating, and the second indoor heat exchanger is used as an evaporator for dehumidifying. And dry operation. In the air conditioner performing such a dry operation, the refrigerant deflection with low loss, low noise, and the branch point between the plurality of heat exchangers connected in parallel of the second indoor heat exchanger and the second pressure reducer. Since the refrigerant after expansion by the second decompressor is diverted by using the refrigerant diverter capable of reducing
High efficiency and low noise air conditioner can be realized.

【0015】[0015]

【発明の実施の形態】以下、この発明の冷媒分流器およ
びそれを用いた空気調和機を図示の実施の形態により詳
細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a refrigerant flow divider according to the present invention and an air conditioner using the same.

【0016】図1はこの発明の実施の一形態の冷媒分流
器を用いた空気調和機の構成を示す回路図であり、1は
圧縮機、2は上記圧縮機1の吐出側に接続された四路
弁、3は上記四路弁2に一端が接続された室外熱交換
器、4は上記室外熱交換器3の他端に一端が接続された
受液器、5は上記受液器4の他端に一端が接続された膨
張弁、6は上記膨張弁5の他端に一端が接続され、他端
が四路弁2を介して圧縮機1の吸入側に接続された室内
熱交換器である。上記室内熱交換器6は3つのパスを有
し、室内熱交換器6の一端に冷媒分流器7を配設してい
る。上記圧縮機1,四路弁2,室外熱交換器3,受液器4,
膨張弁5および室内熱交換器6で冷媒回路を構成してい
る。
FIG. 1 is a circuit diagram showing a configuration of an air conditioner using a refrigerant flow divider according to an embodiment of the present invention, wherein 1 is a compressor, and 2 is connected to the discharge side of the compressor 1. The four-way valve 3 is an outdoor heat exchanger having one end connected to the four-way valve 2, 4 is a liquid receiver having one end connected to the other end of the outdoor heat exchanger 3, and 5 is the liquid receiver 4. Is an expansion valve having one end connected to the other end, and 6 is an indoor heat exchanger having one end connected to the other end of the expansion valve 5 and the other end connected to the suction side of the compressor 1 via the four-way valve 2. It is a vessel. The indoor heat exchanger 6 has three paths, and a refrigerant flow divider 7 is provided at one end of the indoor heat exchanger 6. The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the receiver 4,
The expansion valve 5 and the indoor heat exchanger 6 constitute a refrigerant circuit.

【0017】図2は上記冷媒分流器7の要部断面図を示
している。この冷媒分流器7は、図2に示すように、流
入側に大径部20aが形成され、流出側に3つの分流通
路21,22(図2では2つのみを示す)が形成された円
筒形状の基部20を有すると共に、その基部20の大径
部20aに嵌合された流入管接続部30を有している。
上記流入管接続部30の流入側から順に中径部31,小
径の流入側絞り部32および大径部33を形成してい
る。上記基部20の大径部20aの底面部である衝突壁
27と流入管接続部30の大径部33とで分岐空間34
を形成している。そして、上記3つの分流通路21,2
2(図2では2つのみを示す)内に流出管(図示せず)の一
端を夫々嵌合すると共に、流入管接続部30の大径部3
1内に流入管39の一端を嵌合している。
FIG. 2 is a sectional view of a main part of the refrigerant flow divider 7. As shown in FIG. 2, the refrigerant distributor 7 has a large-diameter portion 20a formed on the inflow side, and three distribution passages 21 and 22 (only two are shown in FIG. 2) on the outflow side. It has a cylindrical base 20 and an inflow pipe connection 30 fitted into the large diameter portion 20a of the base 20.
From the inflow side of the inflow pipe connection portion 30, a middle diameter portion 31, a small diameter inflow side throttle portion 32, and a large diameter portion 33 are formed in this order. A branch space 34 is formed by the collision wall 27, which is the bottom surface of the large diameter portion 20a of the base 20, and the large diameter portion 33 of the inflow pipe connecting portion 30.
Is formed. Then, the above three branch passages 21 and 2
2 (only two are shown in FIG. 2), one end of each of the outflow pipes (not shown) is fitted, and the large-diameter portion 3 of the inflow pipe connection portion 30 is fitted.
One end of the inflow pipe 39 is fitted into the inside 1.

【0018】また、図3は図1の冷媒分流器7を矢印R
1の方向から見た拡大矢視図であり、図3に示すよう
に、上記基部20の3つの分流通路21,22,23の流
入側に分流側絞り部24,25,26を夫々設けている。
FIG. 3 shows the refrigerant flow divider 7 of FIG.
FIG. 4 is an enlarged view taken in the direction of arrow 1 and, as shown in FIG. 3, diversion-side restrictors 24, 25, and 26 are provided on the inflow sides of the three diversion passages 21, 22, and 23 of the base 20, respectively. ing.

【0019】ここで、図2において、流入管31に流入
する冷媒流量をG[kg/s]とし、分岐空間34の冷媒
が流れる方向の高さをH[m]とすると共に、流入管39
の内径をDi[mm]とし、流入管接続部30の小径の流
入側絞り部32の内径をD0[mm]とするとき、 G/H > 3 ……………… (式1) Di/D0 <2 ……………… (式2) の条件を満足するように、G,H,DiおよびD0を夫々設
定する。なお、流入側絞り部32の内径D0は、流入管
39の内径Diと同等かそれ以下とする。
In FIG. 2, the flow rate of the refrigerant flowing into the inflow pipe 31 is represented by G [kg / s], the height of the branch space 34 in the direction in which the refrigerant flows is represented by H [m], and the inflow pipe 39 is formed.
G / H> 3 (3) where Di / mm is the inner diameter of Di and the inner diameter of the small-diameter inflow-side throttle portion 32 of the inflow pipe connection portion 30 is D0 [mm]. D0 <2 ... G, H, Di and D0 are each set so as to satisfy the condition of (Equation 2). The inner diameter D0 of the inflow-side restrictor 32 is equal to or less than the inner diameter Di of the inflow pipe 39.

【0020】また、分流側絞り部の内径をD1〜Dn(n
=2,3,…)とし、分流通路の本数をnとするとき、分
流側絞り部の内径D1〜DnがDi/nよりも夫々大きく
なるように設定する。すなわち、図3において、 Dm >Di/3 ……………… (式3) (ただし、m=1,2,3)の条件を満足するように設定し
ている。
Further, the inside diameter of the branching portion on the branch side is D1 to Dn (n
= 2, 3,...) And the number of branch paths is n, the inner diameters D1 to Dn of the branch portions on the branch side are set to be larger than Di / n. That is, in FIG. 3, Dm> Di / 3... (3) (where m = 1, 2, 3).

【0021】このように、上記流入管39から流入した
冷媒は、流入側絞り部32を通った後に分岐空間34内
で衝突壁27に衝突して攪拌され、均一に混合される。
また、上記流入管39に流入する冷媒流量Gと分岐空間
34の冷媒が流れる方向の高さHとをG/H>3の条件
を満足するように設定することによって、冷媒偏流を抑
えることができると共に、流入管39の内径Diと流入
側絞り部32の内径D0とをDi/D0<2の条件を満足
するように設定することによって、圧力損失の増大を防
ぐことができる。したがって、この簡単な構成冷媒分流
器により低損失,低騒音で冷媒偏流を低減でき、高効率
で低騒音な空気調和機を実現することができる。
As described above, the refrigerant flowing from the inflow pipe 39 collides with the collision wall 27 in the branch space 34 after passing through the inflow-side restricting portion 32, and is stirred and uniformly mixed.
Further, by setting the flow rate G of the refrigerant flowing into the inflow pipe 39 and the height H in the direction in which the refrigerant flows in the branch space 34 so as to satisfy the condition of G / H> 3, it is possible to suppress the refrigerant drift. In addition, by setting the inner diameter Di of the inflow pipe 39 and the inner diameter D0 of the inflow-side throttle portion 32 so as to satisfy the condition of Di / D0 <2, it is possible to prevent an increase in pressure loss. Therefore, with this simple configuration of the refrigerant flow divider, the refrigerant drift can be reduced with low loss and low noise, and an air conditioner with high efficiency and low noise can be realized.

【0022】上記分岐空間34と分流通路21〜23と
の間に設けられた分流側絞り部24〜26の内径D1〜
D3を適切に設定することによって、冷媒分配比率を任
意に設定できると共に、各分流側絞り部24〜26の内
径D1〜D3をDn>Di/3よりも大きくなるように設定
することにより、分流側絞り部24〜26を絞り過ぎて
圧力損失を増大するということなく、冷媒偏流に影響し
ない程度の絞り構造とすることができる。
The inside diameters D1 to D1 of the branching side throttles 24 to 26 provided between the branch space 34 and the branching passages 21 to 23 are defined.
By appropriately setting D3, the refrigerant distribution ratio can be arbitrarily set, and by setting the inner diameters D1 to D3 of the respective diversion-side restrictors 24 to 26 so as to be larger than Dn> Di / 3, the diversion is achieved. A throttle structure that does not affect the refrigerant drift can be provided without increasing the pressure loss by excessively narrowing the side throttle portions 24-26.

【0023】さらに、図3に示すように、円筒形状の基
部20の軸を中心に分流側絞り部24〜26の内側の最
小半径Dwを流入管接続部30の流入側絞り部32の内
径D0よりも大きくなるように設定する。そうすること
によって、流入管接続部30の流入側絞り部32の内周
の断面積よりも広い衝突壁27を確保することができ、
流入管39から流入した冷媒が衝突壁27に衝突して攪
拌されるので、均一に混合することができる。
Further, as shown in FIG. 3, the minimum radius Dw inside the diversion-side restriction portions 24 to 26 around the axis of the cylindrical base 20 is set to the inner diameter D0 of the inflow-side restriction portion 32 of the inflow pipe connection portion 30. Set to be larger than By doing so, it is possible to secure a collision wall 27 that is wider than the inner peripheral cross-sectional area of the inflow-side throttle portion 32 of the inflow-pipe connection portion 30.
Since the refrigerant flowing from the inflow pipe 39 collides with the collision wall 27 and is agitated, the refrigerant can be uniformly mixed.

【0024】また、図4は他のもう1つの冷媒分流器の
要部断面図を示している。この冷媒分流器17は、衝突
壁を除いて図2,図3に示す冷媒分流器7と同一の構成
をしている。
FIG. 4 is a cross-sectional view of a main part of another refrigerant diverter. This refrigerant distributor 17 has the same configuration as the refrigerant distributor 7 shown in FIGS. 2 and 3 except for the collision wall.

【0025】図4に示すように、上記冷媒分流器17
は、流入側に大径部40aが形成され、流出側に3つの
分流通路41,42(図4では2つのみを示す)が形成さ
れた円筒基部40を有すると共に、その円筒基部40の
大径部40aに嵌合された流入管接続部50を有してい
る。上記流入管接続部50の流入側から順に中径部5
1,小径の絞り部52および大径部53を形成してい
る。上記円筒基部40の大径部40aの底面部である衝
突壁47と流入管接続部50の大径部53とで分岐空間
54を形成している。そして、上記流入管接続部50の
大径部51内に流入管59の一端を嵌合している。ま
た、上記衝突壁47に円錐形状の凹部48を形成し、そ
の凹部48の円錐角を120°としている。
As shown in FIG.
Has a cylindrical base 40 in which a large-diameter portion 40a is formed on the inflow side and three branch passages 41 and 42 (only two are shown in FIG. 4) are formed on the outflow side. It has an inflow pipe connection part 50 fitted to the large diameter part 40a. From the inflow side of the inflow pipe connecting portion 50, the middle diameter portion 5 is sequentially arranged.
1. A small diameter narrowed portion 52 and a large diameter portion 53 are formed. A branch space 54 is formed by the collision wall 47, which is the bottom surface of the large diameter portion 40a of the cylindrical base 40, and the large diameter portion 53 of the inflow pipe connecting portion 50. One end of the inflow pipe 59 is fitted into the large-diameter portion 51 of the inflow pipe connection section 50. Further, a conical recess 48 is formed in the collision wall 47, and the cone angle of the recess 48 is 120 °.

【0026】また、図5は図4の冷媒分流器を矢印R2
の方向から見た拡大矢視図であり、円筒基部40の3つ
の分流通路41,42,43の流入側に分流側絞り部4
4,45,46を夫々設けている。
FIG. 5 shows the refrigerant flow divider of FIG.
FIG. 5 is an enlarged view as viewed from the direction of FIG.
4, 45 and 46 are provided respectively.

【0027】上記冷媒分流器17では、衝突壁47に設
けられた凹部48によって、流入管59から流入側絞り
部52を介して流入した冷媒が衝突壁47の凹部48に
衝突して攪拌され、より均一に混合される。
In the refrigerant flow divider 17, the refrigerant flowing from the inflow pipe 59 via the inflow-side throttle 52 collides with the concave portion 48 of the collision wall 47 and is stirred by the concave portion 48 provided in the collision wall 47. More evenly mixed.

【0028】なお、上記冷媒分流器17の衝突壁47に
設けられた凹部48は、円錐角120°の円錐形状であ
ったが、凹部の形状はこれに限らず、球面形状の凹部等
を衝突壁に設けてもよい。
The concave portion 48 provided on the collision wall 47 of the refrigerant flow divider 17 has a conical shape with a conical angle of 120 °. However, the shape of the concave portion is not limited to this. It may be provided on a wall.

【0029】また、図6はこの発明の他の実施の形態の
冷媒分流器を用いた空気調和機の室内熱交換器の構成を
示す概略図であり、室内熱交換器を除いて図1に示す空
気調和機と同じ構成をしている。
FIG. 6 is a schematic diagram showing the configuration of an indoor heat exchanger of an air conditioner using a refrigerant flow divider according to another embodiment of the present invention. It has the same configuration as the air conditioner shown.

【0030】図6に示すように、この空気調和機の室内
熱交換器は、ドライ運転時に凝縮器として働く再熱用の
第1熱交換部61と、ドライ運転時に蒸発器として働く
第2熱交換部62,63とを備えている。上記第1熱交
換部61と第2熱交換部62,63との間の分岐点に冷
媒分流器65を配設し、その冷媒分流器65と第1熱交
換部61との間に膨張弁65を配設している。上記冷媒
分流器65は、流出管が2つである以外は図2に示す冷
媒分流器と同一の構成をしている。この場合、(式1)〜
(式3)を満足するものとする。
As shown in FIG. 6, the indoor heat exchanger of the air conditioner has a first heat exchange section 61 for reheating functioning as a condenser during a dry operation, and a second heat exchanger functioning as an evaporator during a dry operation. Exchange units 62 and 63 are provided. A refrigerant flow divider 65 is disposed at a branch point between the first heat exchange unit 61 and the second heat exchange units 62 and 63, and an expansion valve is provided between the refrigerant flow divider 65 and the first heat exchange unit 61. 65 are arranged. The refrigerant distributor 65 has the same configuration as the refrigerant distributor shown in FIG. 2 except that there are two outflow pipes. In this case, (Equation 1)
It is assumed that (Equation 3) is satisfied.

【0031】特に冷媒が気液二相流となる再熱用の第1
熱交換部61と第2熱交換部62,63との中間点に、
低損失,低騒音で冷媒偏流を低減できる冷媒分流器65
を配設することによって、高効率で低騒音な空気調和機
を実現することができる。
In particular, the first refrigerant for reheating, in which the refrigerant becomes a gas-liquid two-phase flow,
At an intermediate point between the heat exchange unit 61 and the second heat exchange units 62 and 63,
Refrigerant flow divider 65 that can reduce refrigerant drift with low loss and low noise
By disposing the air conditioner, an air conditioner with high efficiency and low noise can be realized.

【0032】上記実施の形態では、並列接続された2つ
の第2熱交換部62,63を有する室内熱交換器とした
が、第2熱交換部が3以上のものでもよい。
In the above embodiment, the indoor heat exchanger has the two second heat exchangers 62 and 63 connected in parallel. However, the number of the second heat exchangers may be three or more.

【0033】本出願人は、上記(式1),(式2)の条件を
得るために図7に示す構成の室内熱交換器を用いて実験
を行った。以下に、その実験結果について説明する。な
お、実験に用いた冷媒分流器は、分流通路が2つである
こと除いて図2に示す冷媒分流器と同様の構成をしてい
る。
The applicant conducted an experiment using an indoor heat exchanger having the configuration shown in FIG. 7 in order to obtain the conditions of the above (Equation 1) and (Equation 2). Hereinafter, the experimental results will be described. Note that the refrigerant flow divider used in the experiment has the same configuration as the refrigerant flow divider shown in FIG. 2 except that there are two branch passages.

【0034】この室内熱交換器は、図7に示すように、
再熱用の第1熱交換器71と、2パスの第2熱交換器7
2とを有している。上記第1熱交換器71の上側の入口
側に入口冷媒配管73の一端を接続し、第1熱交換器7
1の下側の出口側に冷媒配管74の一端を接続してい
る。上記冷媒配管74の他端を冷媒分流器76の流入側
に接続すると共に、冷媒配管74に膨張弁75を配設し
ている。そして、上記冷媒分流器76の2本の流出配管
77A,77Bを第2熱交換器72の2つのパスの入口
側に夫々接続している。そして、上記第2熱交換器72
の2つのパスの出口側に合流器78を接続し、その合流
器78の流出側に出口冷媒配管79を接続している。な
お、上記第2熱交換器72の2パスの冷媒経路の熱交換
面積,風量等を同じ条件にしている。
This indoor heat exchanger is, as shown in FIG.
A first heat exchanger 71 for reheating and a two-pass second heat exchanger 7
And 2. One end of an inlet refrigerant pipe 73 is connected to the upper inlet side of the first heat exchanger 71, and the first heat exchanger 7
One end of the refrigerant pipe 74 is connected to the lower outlet side of the refrigerant pipe 1. The other end of the refrigerant pipe 74 is connected to the inflow side of the refrigerant flow divider 76, and an expansion valve 75 is provided in the refrigerant pipe 74. The two outlet pipes 77A and 77B of the refrigerant distributor 76 are connected to the inlet sides of the two paths of the second heat exchanger 72, respectively. Then, the second heat exchanger 72
A junction 78 is connected to the outlet side of the two paths, and an outlet refrigerant pipe 79 is connected to the outlet side of the junction 78. Note that the heat exchange area, the air volume, and the like of the two refrigerant paths of the second heat exchanger 72 are set to the same conditions.

【0035】図7に示す室内熱交換器の入口冷媒配管7
3に流入する冷媒の冷媒流量すなわち冷媒分流器76の
流入側に流入する冷媒の冷媒流量G=0.01[kg/
s]、およびG=0.02[kg/s]において、第2熱交
換器72の2パスの出口A,Bの冷媒温度TA,TBを測定
し、偏流幅(冷媒温度TA,TBの温度差の絶対値)を求め
た結果を図8に示している。なお、冷媒分流器76の流
入管の内径Di=6.5[mm]、流入管接続部の絞り部の
内径D0=5[mm]とし、Di/D0=1.3とした。図8
において、横軸はG/Hを示し、縦軸は偏流幅を示して
おり、黒丸印がG=0.01[kg/s]のときのデー
タ、白三角印がG=0.02[kg/s]のときのデータ
である。図8から明らかなように、G/Hが3[kg/
s・m]未満では、偏流幅が2[deg]未満となり、上
記(式1)の条件を満足することによって、実用上問題の
ない範囲内となることが分かる。
The inlet refrigerant pipe 7 of the indoor heat exchanger shown in FIG.
3, the refrigerant flow rate G of the refrigerant flowing into the inflow side of the refrigerant flow divider 76 = 0.01 [kg /
s] and G = 0.02 [kg / s], the refrigerant temperatures TA and TB at the outlets A and B of the two passes of the second heat exchanger 72 are measured, and the drift width (the temperature of the refrigerant temperatures TA and TB) is measured. FIG. 8 shows the result of calculating the absolute value of the difference). The inside diameter Di of the inflow pipe of the refrigerant flow divider 76 was 6.5 mm, the inside diameter D0 of the constricted portion at the connection of the inflow pipe was 5 mm, and Di / D0 was 1.3. FIG.
In the graph, the horizontal axis represents G / H, the vertical axis represents the drift width, black circles indicate data when G = 0.01 [kg / s], and white triangles indicate G = 0.02 [kg. / S]. As is clear from FIG. 8, G / H is 3 [kg /
When the value is less than [s · m], the drift width is less than 2 [deg], and it can be seen that by satisfying the condition of the above (Equation 1), it is within a range in which there is no practical problem.

【0036】次に、冷媒分流器76の流入管接続部の絞
り部の内径D0に対する流入管の内径Diの比Di/D0を
変えて、圧力損失[kPa・G]を測定した結果を図9に示
している。図9において、横軸はDi/D0を示し、縦軸
は圧力損失を示しており、黒丸印がG=0.01[kg/
s]のときのデータ、白三角印がG=0.02[kg/s]
のときのデータである。図9から明らかなように、Di
/D0が2未満では、冷媒流量Gが0.02[kg/s]で
あっても、圧力損失が150[kPa・G]未満であり、上
記(式2)の条件を満足することによって、圧力損失が実
用上問題のない範囲内となることが分かる。
Next, FIG. 9 shows the result of measuring the pressure loss [kPa · G] by changing the ratio Di / D0 of the inner diameter Di of the inflow pipe to the inner diameter D0 of the constriction portion of the inflow pipe connection part of the refrigerant flow divider 76. Is shown in In FIG. 9, the horizontal axis represents Di / D0, the vertical axis represents pressure loss, and the black circles represent G = 0.01 [kg / kg].
s], the white triangle indicates G = 0.02 [kg / s]
It is the data at the time of. As is apparent from FIG.
When / D0 is less than 2, even if the refrigerant flow rate G is 0.02 [kg / s], the pressure loss is less than 150 [kPa · G], and by satisfying the condition of the above (Equation 2), It can be seen that the pressure loss falls within a range where there is no practical problem.

【0037】上記実施の形態では、冷媒分流器を用いた
空気調和機について説明したが、冷媒分流器は他の冷凍
機等の冷媒回路を有する機器に用いてもよい。
In the above embodiment, the air conditioner using the refrigerant flow divider has been described. However, the refrigerant flow divider may be used for other devices having a refrigerant circuit such as a refrigerator.

【0038】[0038]

【発明の効果】以上より明らかなように、請求項1の発
明の冷媒分流器によれば、流入管から流入した冷媒を複
数の分流通路に分流する冷媒分流器において、上記流入
管から流入した冷媒を上記複数の分流通路に分配する分
岐空間と、上記流入管と分岐空間との間に設けられた流
入側絞り部と、上記流入側絞り部から流入した冷媒が上
記分岐空間内で衝突する衝突壁とを備え、上記流入管に
流入する冷媒流量Gと分岐空間の冷媒が流れる方向の高
さHとをG/H>3の条件を満足するように設定するこ
とによって、冷媒偏流を抑えると共に、流入管の内径D
iと流入側絞り部の内径D0とをDi/D0<2の条件を満
足するように設定することによって、圧力損失の増大を
防ぐことができる。したがって、簡単な構成により低損
失,低騒音で冷媒偏流を低減できる冷媒分流器を実現す
ることができる。
As is apparent from the above description, according to the refrigerant distributor of the first aspect of the present invention, in the refrigerant distributor which divides the refrigerant flowing from the inlet pipe into a plurality of branch passages, the refrigerant flows from the inlet pipe. Branch space that distributes the divided refrigerant to the plurality of branch passages, an inflow-side restrictor provided between the inflow pipe and the branch space, and a refrigerant flowing from the inflow-side restrictor is disposed in the branch space. A collision flow wall that flows into the inflow pipe and a height H of the branch space in the direction in which the refrigerant flows so as to satisfy the condition of G / H> 3. And the inner diameter D of the inflow pipe
By setting i and the inner diameter D0 of the inflow-side restrictor so as to satisfy the condition of Di / D0 <2, an increase in pressure loss can be prevented. Therefore, it is possible to realize a refrigerant flow divider that can reduce refrigerant drift with low loss and low noise with a simple configuration.

【0039】また、請求項2の発明の冷媒分流器によれ
ば、請求項1の冷媒分流器において、上記衝突壁に設け
られた凹部によって、上記流入管から流入側絞り部を介
して流入した冷媒が上記衝突壁の凹部に衝突して攪拌さ
れ、より均一に混合することができる。
According to the refrigerant distributor of the second aspect of the present invention, in the refrigerant distributor of the first aspect, the refrigerant flows from the inflow pipe through the inflow-side throttle portion by the recess provided in the collision wall. The refrigerant collides with the concave portion of the collision wall and is stirred, and can be mixed more uniformly.

【0040】また、請求項3の発明の冷媒分流器によれ
ば、請求項1または2の冷媒分流器において、上記分岐
空間と複数の分流通路との間に設けられた分流側絞り部
の内径Dnを適切に設定することによって、冷媒分配比
率を任意に設定できると共に、各分流側絞り部の内径D
nをDn>Di/n(nは分流通路の本数)を満足するよう
に設定することにより、分流側絞り部を絞り過ぎて圧力
損失を増大させるということがなく、冷媒偏流に影響し
ない程度の絞り構造とすることができる。
According to a third aspect of the present invention, there is provided the refrigerant flow divider according to the first or second aspect, wherein the branch flow restrictor provided between the branch space and the plurality of flow paths is provided. By appropriately setting the inner diameter Dn, the refrigerant distribution ratio can be set arbitrarily, and the inner diameter D
By setting n so as to satisfy Dn> Di / n (n is the number of branch passages), the pressure loss does not increase due to excessive narrowing of the branch portion on the branch side, so that it does not affect the refrigerant drift. Aperture structure.

【0041】また、請求項4の発明の空気調和機によれ
ば、複数の熱交換部を有する蒸発器を備えた空気調和機
において、上記複数の熱交換部のうちの上流側と下流側
の熱交換部を接続する接続点で、かつ、下流側の2以上
の熱交換部に冷媒を分流する分岐点であって、特に冷媒
が気液二相流となるような蒸発器の中間部に、低損失,
低騒音で冷媒偏流を低減できる上記冷媒分流器を配設す
ることによって、高効率で低騒音な空気調和機を実現す
ることができる。
According to the air conditioner of the fourth aspect of the present invention, in an air conditioner provided with an evaporator having a plurality of heat exchange units, the upstream and downstream sides of the plurality of heat exchange units are provided. A connection point for connecting the heat exchange units, and a branch point for diverting the refrigerant to two or more heat exchange units on the downstream side, particularly at an intermediate portion of the evaporator where the refrigerant becomes a gas-liquid two-phase flow. , Low loss,
By arranging the refrigerant flow divider capable of reducing the refrigerant drift with low noise, an air conditioner with high efficiency and low noise can be realized.

【0042】また、請求項5の発明の空気調和機は、圧
縮機,室外熱交換器,第1減圧器,第1室内熱交換器,第2
減圧器および第2室内熱交換器を環状に接続して構成さ
れた冷媒回路を備えた空気調和機において、上記第1減
圧器を全開し、上記第2減圧器を絞って、圧縮機,室外
熱交換器,第1減圧器,第1室内熱交換器,第2減圧器お
よび第2室内熱交換器の順に冷媒を循環させ、第1室内
熱交換器を再熱を行う凝縮器として用い、第2室内熱交
換器を除湿を行う蒸発器として用いてドライ運転を行う
とき、上記第2減圧器による膨張後の冷媒を低損失,低
騒音で冷媒偏流を低減できる上記冷媒分流器を用いて、
上記第2室内熱交換器の並列接続された複数の熱交換部
に分流するので、高効率で低騒音な空気調和機を実現す
ることができる。
The air conditioner according to the fifth aspect of the present invention comprises a compressor, an outdoor heat exchanger, a first decompressor, a first indoor heat exchanger,
In an air conditioner including a refrigerant circuit configured by connecting a decompressor and a second indoor heat exchanger in a ring shape, the first decompressor is fully opened, and the second decompressor is squeezed, and a compressor and an outdoor A refrigerant is circulated in the order of a heat exchanger, a first decompressor, a first indoor heat exchanger, a second decompressor, and a second indoor heat exchanger, and the first indoor heat exchanger is used as a condenser for reheating, When the dry operation is performed using the second indoor heat exchanger as an evaporator for dehumidifying, the refrigerant after expansion by the second decompressor is reduced in loss, using the refrigerant diverter that can reduce refrigerant drift with low noise. ,
Since the flow is divided into a plurality of heat exchangers connected in parallel of the second indoor heat exchanger, a highly efficient and low-noise air conditioner can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1はこの発明の実施の一形態の冷媒分流器
を用いた空気調和機の構成を示す回路図である。
FIG. 1 is a circuit diagram showing a configuration of an air conditioner using a refrigerant flow divider according to an embodiment of the present invention.

【図2】 図2は上記空気調和機の冷媒分流器の要部断
面図である。
FIG. 2 is a sectional view of a main part of a refrigerant flow divider of the air conditioner.

【図3】 図3は図2を矢印R1の方向から見た矢視図
である。
FIG. 3 is an arrow view of FIG. 2 viewed from the direction of arrow R1.

【図4】 図4は他のもう1つの冷媒分流器の要部断面
図である。
FIG. 4 is a cross-sectional view of a main part of another refrigerant flow divider.

【図5】 図5は図4を矢印R2の方向から見た矢視図
である。
FIG. 5 is an arrow view of FIG. 4 viewed from the direction of arrow R2.

【図6】 図6はこの発明の他の実施の形態の冷媒分流
器を用いた空気調和機の室内熱交換器の構成を示す概略
図である。
FIG. 6 is a schematic diagram showing a configuration of an indoor heat exchanger of an air conditioner using a refrigerant flow divider according to another embodiment of the present invention.

【図7】 図7は冷媒分流器を用いた熱交換器の構成を
示す概略図である。
FIG. 7 is a schematic diagram showing a configuration of a heat exchanger using a refrigerant flow divider.

【図8】 図8は図7に示す熱交換器においてG/Hに
対する偏流幅の特性を示す図である。
FIG. 8 is a diagram showing characteristics of a drift width with respect to G / H in the heat exchanger shown in FIG.

【図9】 図9は図7に示す熱交換器においてDi/D0
に対する圧力損失の特性を示す図である。
FIG. 9 is a diagram showing Di / D0 in the heat exchanger shown in FIG. 7;
FIG. 6 is a diagram showing characteristics of pressure loss with respect to FIG.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四路弁、3…室外熱交換器、4…受液
器、5…膨張弁、6…室内熱交換器、7…冷媒分流器、
20,40…基部、20a,40a…大径部、21〜23,
41〜43…分流通路、24〜26,44〜46…分流
側絞り部、27,47…衝突壁、30,50…流入管接続
部、31,51…中径部、32,52…流入側絞り部、3
3,53…大径部、34,54…分岐空間、39,59…
流入管、48…凹部、61…第1熱交換部、62,63
…第2熱交換部、64…膨張弁、65…冷媒分流器、7
1…第1熱交換器、72…第2熱交換器、73…入口冷
媒配管、74…冷媒配管、75…膨張弁、76…冷媒分
流器、77A,77B…流出配管、78…合流器78、
79…出口冷媒配管。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Liquid receiver, 5 ... Expansion valve, 6 ... Indoor heat exchanger, 7 ... Refrigerant diverter,
20, 40: base portion, 20a, 40a: large diameter portion, 21 to 23,
41-43 diverting passage, 24-26, 44-46 diverting-side constriction, 27, 47 collision wall, 30, 50 inflow pipe connection, 31, 51 medium-diameter portion, 32, 52 inflow Side throttle, 3
3, 53 ... large diameter part, 34, 54 ... branch space, 39, 59 ...
Inflow pipe, 48 recess, 61 first heat exchange section, 62, 63
... second heat exchange section, 64 ... expansion valve, 65 ... refrigerant flow divider, 7
DESCRIPTION OF SYMBOLS 1 ... 1st heat exchanger, 72 ... 2nd heat exchanger, 73 ... Inlet refrigerant piping, 74 ... Refrigerant piping, 75 ... Expansion valve, 76 ... Refrigerant splitter, 77A, 77B ... Outflow piping, 78 ... Merging device 78 ,
79 ... outlet refrigerant pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 敦 滋賀県草津市岡本町字大谷1000番地の2 ダイキン工業株式会社滋賀製作所内 (72)発明者 米田 裕二 滋賀県草津市岡本町字大谷1000番地の2 ダイキン工業株式会社滋賀製作所内 Fターム(参考) 3H019 BA43 BC01 BC03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Atsushi Endo, Inventor Atsushi Oya 1000, Okamotocho, Kusatsu-shi, Shiga Prefecture Daiga Industries Co., Ltd. Shiga Works (72) Inventor Yuji Yoneda 1000, Oya, Okamotocho, Kusatsu-shi, Shiga No.2 F-term (reference) in Daikin Industries, Ltd. Shiga Works 3H019 BA43 BC01 BC03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 流入管(39,59)から流入した冷媒を
複数の分流通路(21〜23,41〜43)に分流する冷
媒分流器において、 上記流入管(39,59)から流入した冷媒を上記複数の
分流通路(21〜23,41〜43)に分配する分岐空間
(34,54)と、 上記流入管(39,59)と上記分岐空間(34,54)との
間に設けられた流入側絞り部(32,52)と、 上記流入側絞り部(32,52)から流入した冷媒が上記
分岐空間(34,54)内で衝突するように設けられた衝
突壁(27,47)とを備え、 上記流入管(39,59)に流入する冷媒流量をG[kg/
s]とし、上記分岐空間(34,54)の冷媒が流れる方向
の高さをH[m]とし、上記流入管(39,59)の内径を
Di[mm]とし、上記流入側絞り部(32,52)の内径を
D0[mm]とするとき、 G/H > 3 Di/D0 <2 の条件を満足することを特徴とする冷媒分流器。
A refrigerant distribution device for dividing a refrigerant flowing from an inflow pipe (39, 59) into a plurality of distribution passages (21 to 23, 41 to 43), wherein the refrigerant flows from the inflow pipe (39, 59). Branch space for distributing refrigerant to the plurality of branch passages (21 to 23, 41 to 43)
(34, 54), an inflow-side throttle (32, 52) provided between the inflow pipe (39, 59) and the branch space (34, 54), and an inflow-side throttle (32, 52). 52), and a collision wall (27, 47) provided so that the refrigerant flowing from the branch space (34, 54) collides in the branch space (34, 54). [kg /
s], the height of the branch space (34, 54) in the direction in which the refrigerant flows is H [m], the inner diameter of the inflow pipe (39, 59) is Di [mm], and the inflow-side restrictor ( 32, 52), wherein when the inner diameter is D0 [mm], the following condition is satisfied: G / H> 3 Di / D0 <2.
【請求項2】 請求項1に記載の冷媒分流器において、 上記衝突壁(47)に凹部(48)を設けたことを特徴とす
る冷媒分流器。
2. The refrigerant flow divider according to claim 1, wherein a recess (48) is provided in the collision wall (47).
【請求項3】 請求項1または2に記載の冷媒分流器に
おいて、 上記分岐空間(34,54)と上記複数の分流通路(21〜
23,41〜43)との間に分流側絞り部(24〜26,4
4〜46)を夫々設け、 上記分流側絞り部(24〜26,44〜46)の内径をDn
とし、上記分流通路の本数をnとするとき、 Dn > Di/n の条件を満足することを特徴とする冷媒分流器。
3. The refrigerant flow divider according to claim 1, wherein the branch space (34, 54) and the plurality of branch passages (21 to 21).
23, 41 to 43) and the branching portion on the diversion side (24 to 26, 4).
4 to 46), and the inner diameter of the diversion-side restrictor (24 to 26, 44 to 46) is Dn.
Wherein the number of the flow passages is n, and the condition of Dn> Di / n is satisfied.
【請求項4】 複数の熱交換部(61〜63)を有する蒸
発器を備えた空気調和機において、 上記複数の熱交換部(61〜63)のうちの上流側と下流
側の熱交換部を接続する接続点で、かつ、下流側の2以
上の熱交換部(62,63)に冷媒を分流する分岐点に、
請求項1乃至3のいずれか1つに記載の冷媒分流器(6
5)を配設したことを特徴とする空気調和機。
4. An air conditioner provided with an evaporator having a plurality of heat exchange sections (61-63), wherein the upstream and downstream heat exchange sections of the plurality of heat exchange sections (61-63) are provided. At the junction where the refrigerant is diverted to the two or more heat exchangers (62, 63) on the downstream side,
The refrigerant flow divider (6) according to any one of claims 1 to 3,
An air conditioner characterized by including (5).
【請求項5】 圧縮機(1),室外熱交換器(3),第1減圧
器(5),第1室内熱交換器(61),第2減圧器(65)およ
び第2室内熱交換器を環状に接続して構成された冷媒回
路を備えた空気調和機において、 上記第2室内熱交換器が並列接続された複数の熱交換部
(62,63)からなり、 上記第2減圧器(65)と上記第2室内熱交換器(62,6
3)との間の分岐点に、請求項1乃至3のいずれか1つ
に記載の冷媒分流器(65)を配設したことを特徴とする
空気調和機。
5. A compressor (1), an outdoor heat exchanger (3), a first pressure reducer (5), a first indoor heat exchanger (61), a second pressure reducer (65), and a second indoor heat exchange. An air conditioner provided with a refrigerant circuit configured by annularly connecting heat exchangers, wherein a plurality of heat exchange units in which the second indoor heat exchanger is connected in parallel
(62, 63), the second decompressor (65) and the second indoor heat exchanger (62, 6).
An air conditioner comprising the refrigerant diverter (65) according to any one of claims 1 to 3 disposed at a branch point between the air conditioner and the air conditioner.
JP2000321113A 2000-10-20 2000-10-20 Refrigerant shunt and air conditioner using the same Expired - Fee Related JP4560939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000321113A JP4560939B2 (en) 2000-10-20 2000-10-20 Refrigerant shunt and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000321113A JP4560939B2 (en) 2000-10-20 2000-10-20 Refrigerant shunt and air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2002130868A true JP2002130868A (en) 2002-05-09
JP4560939B2 JP4560939B2 (en) 2010-10-13

Family

ID=18799298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000321113A Expired - Fee Related JP4560939B2 (en) 2000-10-20 2000-10-20 Refrigerant shunt and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP4560939B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210225A (en) * 2008-03-06 2009-09-17 Panasonic Corp Refrigerant divider and heat exchanger comprising the same
JP2009216276A (en) * 2008-03-10 2009-09-24 Panasonic Corp Refrigerant divider, and heat exchanger comprising the same
JP2009270781A (en) * 2008-05-08 2009-11-19 Mitsubishi Electric Corp Heat exchanger module, heat exchanger, indoor unit and air conditioning and refrigerating device
JP2010133644A (en) * 2008-12-04 2010-06-17 Hitachi Appliances Inc Distributor
JP2013113557A (en) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd Refrigerant distributor
JP2013242088A (en) * 2012-05-21 2013-12-05 Daikin Industries Ltd Flow divider and air conditioner
JP2016090205A (en) * 2014-11-11 2016-05-23 ダイキン工業株式会社 Flow divider and air conditioner equipped therewith
JP2017523371A (en) * 2014-06-26 2017-08-17 ヴァレオ クリマジステーメ ゲーエムベーハー Branch means for refrigerant flow in refrigerant circuit
WO2019021457A1 (en) * 2017-07-28 2019-01-31 三菱電機株式会社 Refrigerant distributor and heat pump device having said refrigerant distributor
CN109405371A (en) * 2018-10-09 2019-03-01 珠海格力电器股份有限公司 Capillary tube and flow divider integrated flow dividing device and assembly method thereof and air conditioner
KR102154465B1 (en) * 2020-03-06 2020-09-09 이종문 Expansion valve for air-conditioning and heating system using multiple heat-source
CN115210514A (en) * 2020-03-03 2022-10-18 日本空调系统股份有限公司 Refrigerant flow divider

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498055A (en) * 1990-08-14 1992-03-30 Matsushita Refrig Co Ltd Refrigerant flow divider
JPH06337183A (en) * 1993-05-27 1994-12-06 Sanyo Electric Co Ltd Flow dividing device for refrigerant
JPH0719665A (en) * 1993-07-07 1995-01-20 Hitachi Ltd Air conditioner for vehicle
JPH0868574A (en) * 1994-08-30 1996-03-12 Tensei Eng Kk Distributor for air conditioner
JPH08338668A (en) * 1995-06-14 1996-12-24 Hitachi Ltd Multi-room type air conditioner
JPH09119750A (en) * 1995-10-27 1997-05-06 Matsushita Electric Ind Co Ltd Distributor
JPH11101530A (en) * 1997-09-30 1999-04-13 Mitsubishi Electric Corp Refrigerant distributor and refrigerating cycle apparatus using refrigerant distributor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498055A (en) * 1990-08-14 1992-03-30 Matsushita Refrig Co Ltd Refrigerant flow divider
JPH06337183A (en) * 1993-05-27 1994-12-06 Sanyo Electric Co Ltd Flow dividing device for refrigerant
JPH0719665A (en) * 1993-07-07 1995-01-20 Hitachi Ltd Air conditioner for vehicle
JPH0868574A (en) * 1994-08-30 1996-03-12 Tensei Eng Kk Distributor for air conditioner
JPH08338668A (en) * 1995-06-14 1996-12-24 Hitachi Ltd Multi-room type air conditioner
JPH09119750A (en) * 1995-10-27 1997-05-06 Matsushita Electric Ind Co Ltd Distributor
JPH11101530A (en) * 1997-09-30 1999-04-13 Mitsubishi Electric Corp Refrigerant distributor and refrigerating cycle apparatus using refrigerant distributor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210225A (en) * 2008-03-06 2009-09-17 Panasonic Corp Refrigerant divider and heat exchanger comprising the same
JP2009216276A (en) * 2008-03-10 2009-09-24 Panasonic Corp Refrigerant divider, and heat exchanger comprising the same
JP2009270781A (en) * 2008-05-08 2009-11-19 Mitsubishi Electric Corp Heat exchanger module, heat exchanger, indoor unit and air conditioning and refrigerating device
JP2010133644A (en) * 2008-12-04 2010-06-17 Hitachi Appliances Inc Distributor
JP2013113557A (en) * 2011-11-30 2013-06-10 Mitsubishi Heavy Ind Ltd Refrigerant distributor
JP2013242088A (en) * 2012-05-21 2013-12-05 Daikin Industries Ltd Flow divider and air conditioner
JP2017523371A (en) * 2014-06-26 2017-08-17 ヴァレオ クリマジステーメ ゲーエムベーハー Branch means for refrigerant flow in refrigerant circuit
JP2016090205A (en) * 2014-11-11 2016-05-23 ダイキン工業株式会社 Flow divider and air conditioner equipped therewith
WO2019021457A1 (en) * 2017-07-28 2019-01-31 三菱電機株式会社 Refrigerant distributor and heat pump device having said refrigerant distributor
CN109405371A (en) * 2018-10-09 2019-03-01 珠海格力电器股份有限公司 Capillary tube and flow divider integrated flow dividing device and assembly method thereof and air conditioner
CN115210514A (en) * 2020-03-03 2022-10-18 日本空调系统股份有限公司 Refrigerant flow divider
CN115210514B (en) * 2020-03-03 2024-05-03 日本空调系统股份有限公司 Refrigerant flow divider
KR102154465B1 (en) * 2020-03-06 2020-09-09 이종문 Expansion valve for air-conditioning and heating system using multiple heat-source

Also Published As

Publication number Publication date
JP4560939B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
EP3690358B1 (en) Refrigerant distributor and air-conditioning device
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
JPH0861809A (en) Refrigerant distributor, refrigerant distributing mechanism and air conditioner
CN108061409B (en) Variable orifice for a chiller unit
JP2002130866A (en) Condenser for air conditioning
JP2001116396A (en) Refrigerant distributor, refrigeration cycle and air conditioner using it
JP2018194251A (en) Heat exchanger
JP2008122010A (en) Refrigerant distributor and air conditioner equipped with refrigerant distributor
WO2019239445A1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JP2006349238A (en) Refrigerant flow divider
JP6246396B2 (en) Distributor and refrigeration cycle apparatus
CN212457530U (en) Liquid separation structure and air conditioner using same
JP2003214727A (en) Fluid distributor and air conditioner with the same
JP2012137223A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
JPH08159615A (en) Refrigerant distribution structure of refrigeration cycle
JPH09292166A (en) Air conditioner
JP2012141108A (en) Flow divider, and refrigeration cycle device
JPH11325656A (en) Header flow divider
CN112856588B (en) Air conditioner indoor unit and air conditioner
CN212431418U (en) Liquid separator for air conditioner and air conditioner
JP5193630B2 (en) Heat exchanger
JP2006317098A (en) Flow divider
JP3410309B2 (en) Air conditioner branch pipe
JP2009002548A (en) Refrigerant flow divider
JP3326930B2 (en) Refrigerant shunt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees