JPH11101530A - Refrigerant distributor and refrigerating cycle apparatus using refrigerant distributor - Google Patents

Refrigerant distributor and refrigerating cycle apparatus using refrigerant distributor

Info

Publication number
JPH11101530A
JPH11101530A JP9265360A JP26536097A JPH11101530A JP H11101530 A JPH11101530 A JP H11101530A JP 9265360 A JP9265360 A JP 9265360A JP 26536097 A JP26536097 A JP 26536097A JP H11101530 A JPH11101530 A JP H11101530A
Authority
JP
Japan
Prior art keywords
refrigerant
mixing section
branch space
refrigerant distributor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9265360A
Other languages
Japanese (ja)
Other versions
JP3387387B2 (en
Inventor
Masahiro Nakayama
雅弘 中山
Yoshihiro Sumida
嘉裕 隅田
Fumio Matsuoka
文雄 松岡
Tomohiko Kasai
智彦 河西
Isao Funayama
功 舟山
Kunihiro Morishita
国博 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26536097A priority Critical patent/JP3387387B2/en
Publication of JPH11101530A publication Critical patent/JPH11101530A/en
Application granted granted Critical
Publication of JP3387387B2 publication Critical patent/JP3387387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant distributor capable of sufficiently stirring, mixing, and uniformly distributing a refrigerant even when the refrigerant flows in irrespective of installation conditions of the refrigerant distributor, and improve performance, efficiency, and reliability of a refrigerating apparatus using the refrigerant distributor. SOLUTION: When a refrigerant flowing in from an inflow pipe is distributed to a plurality of outflow pipes 3 after passage through a mixing section 4 and a branch space 5, the mixing section 4 is constructed with a thin pipe to ensure a uniform flow. When an inner diameter of the mixing section 4 is assumed D [m], length L [ml in a flow direction, height [m] of the branch space 5 in the flow direction, a volume V [m<3> ], and a mass flow rate W [kg/s] of the refrigerant flowing through the mixing section 4, L/D>5, W/(π×D<2> /4)>500 is satisfied to bring a flow of a gas/liquid two phase refrigerant in the mixing section 4 into a uniform flow. Further, W/H>2, W/V>10 is satisfied, whereby the refrigerant is uniformly distributed from the branch space 5 to the outflow pipe 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機や冷凍
装置などの冷凍サイクル装置に用いられる冷媒分配器に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant distributor used for a refrigeration cycle device such as an air conditioner and a refrigeration device.

【0002】[0002]

【従来の技術】空気調和機や冷凍装置などの冷凍サイク
ル装置の凝縮器または蒸発器として作用する熱交換器に
おいて、内部の冷媒流路を複数パスに分割した場合に、
熱交換器の入口には各パスへ冷媒を分配する冷媒分配器
が必要である。また例えば複数台の室外ユニットや室内
ユニットを並列に接続してなるマルチ型空気調和機で
は、メインの冷媒流路から各ユニットへ冷媒を分配する
ためにも冷媒分配器が必要である。一般に冷凍サイクル
装置の膨張弁を通過した冷媒や蒸発器入口の冷媒は、ガ
ス冷媒と液冷媒の気液二相の状態となっており、配管内
を流れる冷媒の断面において密度分布が生じている。例
えば流入配管に曲がりがある場合は遠心力の影響によ
り、また、流入配管や冷媒分配器本体が水平に配置され
ている場合は重力の影響により、液冷媒が一方の管内面
に偏って流れる偏流現象が生じる。従って冷媒分配器に
は、上記のような偏流の現象が生じることなく、気液の
分離を防止でき、冷媒を均質に混合して、冷媒分配器入
口での気液質量流量比と冷媒分配器出口での気液質量流
量比が均等の状態で冷媒を分配する機能が要求される。
2. Description of the Related Art In a heat exchanger acting as a condenser or an evaporator of a refrigeration cycle device such as an air conditioner or a refrigeration device, when an internal refrigerant flow path is divided into a plurality of paths,
At the inlet of the heat exchanger, a refrigerant distributor for distributing the refrigerant to each path is required. Further, for example, in a multi-type air conditioner in which a plurality of outdoor units and indoor units are connected in parallel, a refrigerant distributor is required to distribute the refrigerant from the main refrigerant flow path to each unit. Generally, the refrigerant that has passed through the expansion valve of the refrigeration cycle device and the refrigerant at the evaporator inlet are in a gas-liquid two-phase state of a gas refrigerant and a liquid refrigerant, and a density distribution is generated in a cross section of the refrigerant flowing in the piping. . For example, due to the effect of centrifugal force when the inflow pipe has a bend, and due to the influence of gravity when the inflow pipe and the refrigerant distributor body are arranged horizontally, the liquid refrigerant flows unevenly to one pipe inner surface. A phenomenon occurs. Therefore, the refrigerant distributor can prevent gas-liquid separation without causing the above-described drift phenomenon, uniformly mix the refrigerant, and determine the gas-liquid mass flow ratio at the refrigerant distributor inlet and the refrigerant distributor. A function of distributing the refrigerant in a state where the gas-liquid mass flow ratio at the outlet is equal is required.

【0003】従来の冷媒分配器としては特開平2−16
6366号公報が挙げられる。図15はこの冷媒分配器
を示す断面図である。図において、13は冷媒分配器本
体、15は絞り部、16は流入管、17は衝突壁、18
は周壁、19は流出管21の流入口、20は流出管21
の流出口、21は流出管である。従来の冷媒分配器は、
冷媒分配器本体13に流入管16と複数の流出管21を
それぞれ接続するとともに、冷媒分配器本体13の内部
に衝突壁17と周壁18からなる分岐空間を形成し、流
入管16から分岐空間へ至る流路に絞り部15を設けて
いる。そして流入管径をD1、周壁内径をD2、絞り径
をL1、絞り部15から衝突壁17までの距離をL2と
した場合、D2/D1<2.0、L1/D1<0.5、
L2<30mmとしている。
A conventional refrigerant distributor is disclosed in Japanese Patent Laid-Open Publication No. 2-16.
No. 6366. FIG. 15 is a sectional view showing the refrigerant distributor. In the figure, 13 is a refrigerant distributor main body, 15 is a throttle section, 16 is an inflow pipe, 17 is a collision wall, 18
Is a peripheral wall, 19 is an inlet of the outflow pipe 21, 20 is an outflow pipe 21
Is an outflow pipe. Conventional refrigerant distributors
The inflow pipe 16 and the plurality of outflow pipes 21 are respectively connected to the refrigerant distributor main body 13, and a branch space including the collision wall 17 and the peripheral wall 18 is formed inside the refrigerant distributor main body 13, and the branch space is formed from the inflow pipe 16 to the branch space. A throttle section 15 is provided in a flow path leading to the passage. When the inlet pipe diameter is D1, the inner diameter of the peripheral wall is D2, the throttle diameter is L1, and the distance from the throttle unit 15 to the collision wall 17 is L2, D2 / D1 <2.0, L1 / D1 <0.5,
L2 <30 mm.

【0004】このように構成した冷媒分配器では、絞り
部15によって流入管16から流入した冷媒を分岐空間
に噴出させ、分岐空間の衝突壁17に衝突させて気液二
相流の均一化を促進させる。そして、分岐空間から複数
の流出管21に分配するのであるが、分岐空間をある程
度小さく構成することにより、液溜りや気溜りの形成を
無くし、均等に流出管21に分配しようとするものであ
る。
In the refrigerant distributor configured as described above, the refrigerant flowing from the inflow pipe 16 is jetted into the branch space by the throttle portion 15 and collides with the collision wall 17 of the branch space to make the gas-liquid two-phase flow uniform. Promote. Then, the water is distributed from the branch space to the plurality of outflow pipes 21. By making the branch space small to some extent, the formation of liquid pools and air pockets is eliminated, and the distribution is uniformly distributed to the outflow pipes 21. .

【0005】[0005]

【発明が解決しようとする課題】従来の冷媒分配器は以
上のように構成されているので、流入管16より上流で
配管に曲がりがある場合や、流入管16や冷媒分配器本
体13が水平に配置されている場合などによって気液二
相冷媒に偏流がある場合、流入管径D1に対して絞り径
L1をL1/D1<0.5としただけでは、複数の流出
管21で均等に分配ができない。これは、上記の条件だ
けでは、冷媒流速が遅い場合や冷媒の気液二相の流量比
が変化して極端に液冷媒の質量流量が多い場合など、広
範囲な流動状態において気液二相冷媒を均質に攪拌、混
合できないためである。さらに、衝突壁17と周壁18
からなる分岐空間の容積はπ×(D2)2/4×L2
(π:円周率)となるのであるが、D2/D1<2.
0、L2<30mmとしただけでは、冷媒流速が遅い場
合などに分岐空間容積が十分小さいとは言えず、気液二
相冷媒が絞り部15を通過後再度分離してしまい、流出
管21で均等分配ができないという問題点があった。
Since the conventional refrigerant distributor is configured as described above, the pipe may be bent upstream of the inflow pipe 16 or the inflow pipe 16 or the refrigerant distributor main body 13 may be horizontal. When the gas-liquid two-phase refrigerant has a deviated flow due to, for example, the arrangement of the refrigerant, even if the throttle diameter L1 is set to L1 / D1 <0.5 with respect to the inflow pipe diameter D1, the plurality of outflow pipes 21 are evenly distributed. Cannot be distributed. This is because, under the above conditions alone, when the flow rate of the refrigerant is low, or when the mass flow rate of the liquid refrigerant is extremely large due to the change in the gas-liquid two-phase flow rate of the refrigerant, the gas-liquid two-phase refrigerant This is because they cannot be uniformly stirred and mixed. Further, the collision wall 17 and the peripheral wall 18
The volume of the branch space of the π × (D2) 2/4 × L2
(Π: pi), but D2 / D1 <2.
If only 0, L2 <30 mm, the branch space volume cannot be said to be sufficiently small when the flow rate of the refrigerant is low, and the gas-liquid two-phase refrigerant is separated again after passing through the throttle unit 15, and the refrigerant flows through the outlet pipe 21. There was a problem that equal distribution was not possible.

【0006】本発明による冷媒分配器は、以上のような
問題点を解決するためになされたもので、冷媒分配器よ
りも上流の配管に曲がりがある場合や、配管や冷媒分配
器本体が水平に配置されている場合など、どのような冷
媒分配器の設置状況においても、偏流の影響を受けずに
気液の分離が生じることなく、冷媒を攪拌、混合し、複
数の流出管に均質に冷媒を分配することを目的とする。
The refrigerant distributor according to the present invention has been made in order to solve the above-mentioned problems, and has a problem in that the piping upstream of the refrigerant distributor has a bend or that the piping and the refrigerant distributor main body are horizontal. In any situation where a refrigerant distributor is installed, such as when the refrigerant is installed, the refrigerant is agitated and mixed without being affected by the drift, without causing gas-liquid separation, and is homogenized in a plurality of outlet pipes. The purpose is to distribute the refrigerant.

【0007】さらに本発明による冷媒分配器を空気調和
機や冷凍装置などの冷凍サイクル装置に用いることによ
り、その性能や効率を向上させるとともに、冷媒分配の
不均質性に起因する信頼性上の問題、例えば冷媒音の発
生や蒸発器での露飛びなどを防止することを目的とす
る。
Further, by using the refrigerant distributor according to the present invention in a refrigeration cycle device such as an air conditioner or a refrigeration device, the performance and efficiency thereof are improved, and reliability problems due to non-uniform refrigerant distribution are caused. For example, an object of the present invention is to prevent generation of a refrigerant noise and dew drop in an evaporator.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1による
冷媒分配器は、流入管から流入した冷媒を通過させる混
合部、および複数の流出管に接続し、混合部から流入し
た冷媒を流出管のそれぞれに分配する分岐空間を備え、
冷媒を縮流加速してその流動状態が気泡流または環状噴
霧流になるように混合部を流入管の管径以下の内径で、
かつ流れ方向長さよりも大幅に小さい長さの内径を有す
る細管で構成したものである。
According to a first aspect of the present invention, there is provided a refrigerant distributor connected to a mixing section through which a refrigerant flowing from an inflow pipe passes, and a plurality of outflow pipes to discharge the refrigerant flowing from the mixing section. With a branch space to distribute to each of the pipes,
The mixing section is reduced in diameter to an inner diameter smaller than the pipe diameter of the inflow pipe so that the flow state becomes a bubble flow or an annular spray flow by compressing and accelerating the refrigerant,
In addition, it is formed of a thin tube having an inner diameter much smaller than the length in the flow direction.

【0009】また、本発明の請求項2による冷媒分配器
は、流入管から流入した冷媒を通過させる混合部、およ
び複数の流出管に接続し、混合部から流入した冷媒を流
出管のそれぞれに分配する分岐空間を備え、混合部での
冷媒の流動状態が次式を満たすように構成したものであ
る。 Gg /λ>5×104かつλ×ψ×Gl /Gg >20 ただし、λ=[(ρg /ρa )×(ρl /ρw )]1/2 ψ=(σw /σ)×[(μl /μw )×(ρw /ρl )
21/3 Gg [kg/m2・h]:ガス冷媒の質量流速 Gl [kg/m2・h]:液冷媒の質量流速 ρ:密度 σ:表面張力 μ:粘性係数 添字g、l、a、wはそれぞれガス、液、空気、水を表す。
A refrigerant distributor according to a second aspect of the present invention is connected to a mixing section through which the refrigerant flowing from the inflow pipe passes and a plurality of outflow pipes, and transfers the refrigerant flowing from the mixing section to each of the outflow pipes. It has a branch space for distribution, and is configured so that the flow state of the refrigerant in the mixing section satisfies the following equation. Gg / λ> 5 × 10 4 and λ × ψ × Gl / Gg> 20 where λ = [(ρg / ρa) × (ρl / ρw)] 1/2 ψ = (σw / σ) × [(μl / μw) × (ρw / ρl)
2 ] 1/3 Gg [kg / m 2 · h]: Mass flow rate of gas refrigerant Gl [kg / m 2 · h]: Mass flow rate of liquid refrigerant ρ: Density σ: Surface tension μ: Viscosity coefficient Subscript g, l , A, and w represent gas, liquid, air, and water, respectively.

【0010】また、本発明の請求項3による冷媒分配器
は、請求項1記載の冷媒分配器において、混合部の内径
をD[m]、冷媒の流れ方向の長さをL[m]とする
と、D、Lが、L/D>5を満たすように混合部を構成
したものである。
The refrigerant distributor according to claim 3 of the present invention is the refrigerant distributor according to claim 1, wherein the inside diameter of the mixing section is D [m] and the length of the refrigerant in the flow direction is L [m]. Then, the mixing unit is configured so that D and L satisfy L / D> 5.

【0011】また、本発明の請求項4による冷媒分配器
は、請求項2記載の冷媒分配器において、混合部の内径
をD[m]、混合部を流れる冷媒の質量流量をW[kg
/s]とすると、D、Wが、W/(π×D2/4)>5
00(π:円周率)を満たすように混合部を構成したも
のである。
The refrigerant distributor according to claim 4 of the present invention is the refrigerant distributor according to claim 2, wherein the inner diameter of the mixing section is D [m], and the mass flow rate of the refrigerant flowing through the mixing section is W [kg].
When / s] to, D, W is, W / (π × D 2 /4)> 5
The mixing unit is configured to satisfy 00 (π: pi).

【0012】また、本発明の請求項5による冷媒分配器
は、請求項1ないし請求項4のいずれか1項に記載の冷
媒分配器において、分岐空間の冷媒の流れ方向の高さを
H[m]、混合部を流れる冷媒の質量流量をW[kg/
s]とすると、W/H>2を満たすように分岐空間を構
成したものである。
According to a fifth aspect of the present invention, in the refrigerant distributor according to any one of the first to fourth aspects, the height of the branch space in the flow direction of the refrigerant is H [ m], and the mass flow rate of the refrigerant flowing through the mixing section is W [kg /
s], the branch space is configured to satisfy W / H> 2.

【0013】また、本発明の請求項6による冷媒分配器
は、請求項1ないし請求項5のいずれか1項に記載の冷
媒分配器において、分岐空間の容積をV[m3]、混合
部を流れる冷媒の質量流量をW[kg/s]とすると、
W/V>10を満たすように上記分岐空間を構成したも
のである。
According to a sixth aspect of the present invention, there is provided a refrigerant distributor according to any one of the first to fifth aspects, wherein the volume of the branch space is V [m 3 ], If the mass flow rate of the refrigerant flowing through is represented by W [kg / s],
The branch space is configured to satisfy W / V> 10.

【0014】また、本発明の請求項7による冷媒分配器
は、請求項1ないし請求項6のいずれか1項に記載の冷
媒分配器において、混合部および分岐空間の少なくとも
いずれか一方を流れる冷媒を混合する攪拌手段を備えた
ものである。
A refrigerant distributor according to a seventh aspect of the present invention is the refrigerant distributor according to any one of the first to sixth aspects, wherein the refrigerant flows through at least one of the mixing section and the branch space. Is provided with a stirring means.

【0015】また、本発明の請求項8による冷凍サイク
ル装置は、請求項1ないし請求項7のいずれか1項に記
載の冷媒分配器を、冷媒を循環させる冷媒流路の冷媒分
岐部に設けたものである。
In a refrigeration cycle apparatus according to an eighth aspect of the present invention, the refrigerant distributor according to any one of the first to seventh aspects is provided at a refrigerant branch of a refrigerant flow path for circulating a refrigerant. It is a thing.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、本発明の実施の形態1を図に基づ
いて説明する。図1は実施の形態1による冷媒分配器を
示す断面図である。図1において、1は冷媒分配器本
体、2は流入管、3a,3bは例えば2本の流出管、4
は細管で構成した混合部、5は分岐空間である。また、
図中の矢印は冷媒の流れ方向を示し、Lは混合部4の流
れ方向の長さ[m]、Dは混合部4の内径[m]、Hは
分岐空間5の流れ方向の高さ[m]、Vは分岐空間5の
容積[m3]、Wは混合部4を流れる冷媒の質量流量
[kg/s]を示している。
Embodiment 1 FIG. Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a refrigerant distributor according to the first embodiment. In FIG. 1, 1 is a refrigerant distributor main body, 2 is an inflow pipe, 3a and 3b are, for example, two outflow pipes,
Is a mixing section composed of a thin tube, and 5 is a branch space. Also,
The arrow in the figure indicates the flow direction of the refrigerant, L is the length [m] of the mixing section 4 in the flow direction, D is the inner diameter [m] of the mixing section 4, and H is the height of the branch space 5 in the flow direction [ m] and V represent the volume [m 3 ] of the branch space 5, and W represents the mass flow rate [kg / s] of the refrigerant flowing through the mixing section 4.

【0017】冷媒分配器本体1は、一端側に流入管2、
他端側に複数、例えば2本の流出管3a,3bをそれぞ
れ接続し、冷媒分配器本体1の流入管2側に流入管2に
接続する混合部4を設けている。この混合部4は細管で
構成され、流入する気液二相冷媒の流動状態を気泡流や
環状噴霧流などの均質流にするという機能を有する。本
実施の形態では、例えば混合部4の内径を流入管2の内
径より小さく、かつ混合部4の流れ方向長さより大幅に
小さい長さで構成している。そして、混合部4から2本
の流出管3a,3bに至る間に分岐空間5を設け、流入
管2から流入した冷媒は、混合部4で縮流加速され、分
岐空間5を経由して流出管3a,3bに分配される。
The refrigerant distributor body 1 has an inflow pipe 2 at one end.
A plurality of, for example, two outflow pipes 3a, 3b are connected to the other end side, respectively, and a mixing section 4 is connected to the inflow pipe 2 on the inflow pipe 2 side of the refrigerant distributor body 1. The mixing section 4 is formed of a thin tube, and has a function of changing the flowing state of the flowing gas-liquid two-phase refrigerant into a homogeneous flow such as a bubble flow or an annular spray flow. In the present embodiment, for example, the inside diameter of the mixing section 4 is smaller than the inside diameter of the inflow pipe 2 and is significantly smaller than the length of the mixing section 4 in the flow direction. A branch space 5 is provided between the mixing section 4 and the two outflow pipes 3a and 3b. The refrigerant flowing from the inflow pipe 2 is accelerated by the contraction in the mixing section 4 and flows out through the branch space 5. It is distributed to the tubes 3a, 3b.

【0018】次に分配の作用について説明する。図2は
水平に設置した冷媒分配器本体1内の冷媒の状態を示す
説明図で、流入管2からガス冷媒と液冷媒の気液二相冷
媒が流入し、流出管3a,3bから気液二相冷媒が流出
する様子を示す。また、図3は、流出管3a,3bを水
平方向に設置した例を示す斜視図であり、図4は、流出
管3a,3bの配置を図3に示したものから軸を中心に
回転させ、垂直方向に設置した例を示す斜視図である。
図2に示すように流入管2の内部では重力の影響で液冷
媒が配管下面に偏在して偏流現象が起こっている。本実
施の形態では、細管で構成した混合部4の内径D
[m]、長さL[m]、冷媒の質量流量W[kg/s]
の関係を、式1,式2を満たすものとした。
Next, the operation of the distribution will be described. FIG. 2 is an explanatory view showing the state of the refrigerant in the refrigerant distributor main body 1 installed horizontally, in which a gas-liquid two-phase refrigerant of a gas refrigerant and a liquid refrigerant flows in from an inflow pipe 2 and gas-liquid refrigerant flows out of outflow pipes 3a and 3b. 4 shows how a two-phase refrigerant flows out. FIG. 3 is a perspective view showing an example in which the outflow pipes 3a and 3b are installed in a horizontal direction. FIG. 4 is a view in which the arrangement of the outflow pipes 3a and 3b is rotated about the axis from that shown in FIG. FIG. 3 is a perspective view showing an example of installation in a vertical direction.
As shown in FIG. 2, in the inflow pipe 2, the liquid refrigerant is unevenly distributed on the lower surface of the pipe under the influence of gravity, and a drift phenomenon occurs. In the present embodiment, the inner diameter D of the mixing section 4 composed of a thin tube is
[M], length L [m], mass flow rate of refrigerant W [kg / s]
Is such that Expressions 1 and 2 are satisfied.

【0019】 L/D>5 ...(1) W/(π×D2/4)>500 ...(2) π:円周率L / D> 5. . . (1) W / (π × D 2/4)> 500. . . (2) π: Pi

【0020】上記のように混合部4を構成すれば、例え
ば流入管2より上流の配管に曲がりがある場合なども含
めて気液二相冷媒に偏流がある場合でも、流入管2から
流入した気液二相冷媒は、混合部4で縮流、加速される
ことにより、気液二相冷媒は十分に攪拌、混合されて均
質流となる。
If the mixing section 4 is configured as described above, even when the gas-liquid two-phase refrigerant has a deviated flow including, for example, a case where the pipe upstream of the inflow pipe 2 is bent, the inflow from the inflow pipe 2 is performed. The gas-liquid two-phase refrigerant is contracted and accelerated in the mixing section 4, so that the gas-liquid two-phase refrigerant is sufficiently stirred and mixed to become a homogeneous flow.

【0021】また、本実施の形態では、分岐空間5の高
さH[m]、容積V[m3]の関係を式3,式4を満た
すものとした。
In this embodiment, the relationship between the height H [m] and the volume V [m 3 ] of the branch space 5 satisfies the equations (3) and (4).

【0022】 W/H>2 ...(3) W/V>10 ...(4)W / H> 2. . . (3) W / V> 10. . . (4)

【0023】特に図4に示すように流出管3a,3bを
垂直方向に設置した場合には、重力の影響で液冷媒が下
方の流出管3aに偏在しやすいが、式3,式4のように
分岐空間5の高さH[m]、容積V[m3]を定める
と、分岐空間5で気液二相冷媒は十分に攪拌、混合され
て均質流となり、流出管3a,3bからは均質な状態の
冷媒が流出する。例えば、分岐空間5の断面積が混合部
4より大きくなったとしても、容積Vと高さHを式3,
式4の関係を満たすように小さくすれば、液溜りや気溜
りが形成されることなく、流出管3a,3bに均質に気
液二相冷媒を分配することができる。ここで、均質な状
態とは、冷媒分配器の入口、即ち流入管2を流れる気液
質量流量比と、冷媒分配器の複数の出口、即ち流出管3
a,3bを流れる気液質量流量比とがそれぞれ均等であ
る状態のことを言う。
In particular, when the outflow pipes 3a and 3b are installed vertically as shown in FIG. 4, the liquid refrigerant tends to be unevenly distributed in the lower outflow pipe 3a under the influence of gravity. When the height H [m] and the volume V [m 3 ] of the branch space 5 are determined, the gas-liquid two-phase refrigerant is sufficiently stirred and mixed in the branch space 5 to become a homogeneous flow, and the refrigerant flows out of the outlet pipes 3a and 3b. A homogeneous refrigerant flows out. For example, even if the cross-sectional area of the branch space 5 is larger than that of the mixing section 4, the volume V and the height H can be calculated by the formulas 3 and 3.
If the size is made small so as to satisfy the relationship of Expression 4, the gas-liquid two-phase refrigerant can be uniformly distributed to the outflow pipes 3a and 3b without forming a liquid pool or an air pocket. Here, the homogeneous state means that the gas-liquid mass flow ratio flowing through the inlet of the refrigerant distributor, that is, the inflow pipe 2, and the plurality of outlets of the refrigerant distributor, that is, the outflow pipe 3
This refers to a state in which the gas-liquid mass flow ratios flowing through a and 3b are equal.

【0024】次に、本実施の形態による冷媒分配器の混
合部4の内径D[m]、長さL[m]、混合部4を流れ
る冷媒の質量流量W[kg/s]、分岐空間5の高さH
[m]、容積V[m3]を変化させ、冷媒分配器本体1
の設置状態を変更した場合の流出管3a,3bへの分配
比率の試験結果について、図5,図6,図7,図8にグ
ラフで示す。この試験は、図4に示すように、2本の流
出管3a,3bを有する冷媒分配器を水平に設置し、流
出管3a,3bを垂直方向に配置したものを用いた例で
あり、気液二相冷媒の偏流が一番大きい場合を示す。そ
して、各図の縦軸である分配比率[%]は、2本の流出
管3a,3bのうちの下方の流出管3aの冷媒分配比率
を示している。また、各図において、性能低下をきたさ
ない実用上の流出管3aの分配比率[%]の許容範囲を
48%〜52%とし、図のそれぞれに斜線の範囲内で示
す。
Next, the inner diameter D [m] and the length L [m] of the mixing section 4 of the refrigerant distributor according to the present embodiment, the mass flow rate W [kg / s] of the refrigerant flowing through the mixing section 4, the branch space 5 height H
[M] and the volume V [m 3 ] to change the refrigerant distributor body 1
5, 6, 7, and 8 are graphs showing test results of the distribution ratio to the outflow pipes 3 a and 3 b in the case where the installation state is changed. This test is an example in which a refrigerant distributor having two outflow pipes 3a and 3b is installed horizontally and the outflow pipes 3a and 3b are arranged vertically as shown in FIG. The case where the drift of the liquid two-phase refrigerant is the largest is shown. The distribution ratio [%], which is the vertical axis in each drawing, indicates the refrigerant distribution ratio of the lower outflow pipe 3a of the two outflow pipes 3a and 3b. In each of the figures, the allowable range of the distribution ratio [%] of the practical outflow pipe 3a that does not cause performance degradation is set to 48% to 52%.

【0025】図5の横軸はパラメータL/D(混合部4
の長さ/内径)であり、縦軸は質量流量W=0.01
[kg/s]とした時の分配比率[%]を示している。
図に示されるように、L/D>5の範囲で許容範囲とな
り、この範囲では混合部4の内径Dに対して長さLを十
分長く構成しているので、気液二相冷媒がより均質化さ
れる。図6の横軸はパラメータW/(π×D2/4)
(混合部4の断面における単位面積あたりの質量流量)
であり、縦軸は混合部4の長さL=0.05[m]、内
径D=0.005[m]とした時の分配比率[%]を示
している。図に示されるように、W/(π×D2/4)
>500の範囲で許容範囲となり、この範囲では混合部
4の質量流速を十分速くしているので、気液二相冷媒が
より均質化される。図7の横軸はパラメータW/H(質
量流量/分岐空間5の高さ)であり、縦軸は質量流量W
=0.01[kg/s]、混合部4の長さL=0.05
[m]、内径D=0.005[m]とした時の分配比率
[%]を示している。図に示されるように、W/H>2
の範囲で許容範囲となり、この範囲では分岐空間5の高
さを十分小さくしているので、気液二相冷媒がより均質
化される。図8の横軸はパラメータW/V(質量流量/
分岐空間5の容積)であり、縦軸は質量流量W=0.0
1[kg/s]、混合部4の長さL=0.05[m]、
内径D=0.005[m]とした時の分配比率[%]を
示している。図に示されるように、W/V>10の範囲
で許容範囲となり、この範囲では分岐空間5の容積を十
分小さくしているので、気液二相冷媒がより均質化され
る。
The horizontal axis in FIG. 5 is a parameter L / D (mixing unit 4).
The vertical axis represents the mass flow rate W = 0.01.
The distribution ratio [%] when [kg / s] is set is shown.
As shown in the figure, the allowable range is in the range of L / D> 5. In this range, the length L is configured to be sufficiently long with respect to the inner diameter D of the mixing section 4, so that the gas-liquid two-phase refrigerant is more Homogenized. The horizontal axis parameter W / (π × D 2/ 4) in FIG. 6
(Mass flow per unit area in cross section of mixing section 4)
The vertical axis indicates the distribution ratio [%] when the length L of the mixing unit 4 is 0.05 [m] and the inner diameter D is 0.005 [m]. As shown in FIG., W / (π × D 2 /4)
In the range of> 500, the permissible range is reached. In this range, the mass flow rate of the mixing section 4 is sufficiently high, so that the gas-liquid two-phase refrigerant is further homogenized. The horizontal axis in FIG. 7 is the parameter W / H (mass flow rate / height of the branch space 5), and the vertical axis is the mass flow rate W
= 0.01 [kg / s], length L of mixing section 4 = 0.05
[M] and the distribution ratio [%] when the inner diameter D is 0.005 [m]. As shown, W / H> 2
In this range, the height of the branch space 5 is made sufficiently small, so that the gas-liquid two-phase refrigerant is further homogenized. The horizontal axis in FIG. 8 is the parameter W / V (mass flow rate /
The vertical axis represents the mass flow rate W = 0.0.
1 [kg / s], length L of mixing section 4 = 0.05 [m],
The distribution ratio [%] when the inner diameter D is 0.005 [m] is shown. As shown in the figure, the allowable range is W / V> 10. In this range, since the volume of the branch space 5 is sufficiently small, the gas-liquid two-phase refrigerant is further homogenized.

【0026】このように、冷媒分配器を構成する混合部
4を細管で構成すれば、流入管2で偏流状態であった気
液二相冷媒を縮流、加速することにより均質流とするこ
とができる。特に、混合部4の形状を式1,式2を満た
すように構成すれば、冷媒を確実に攪拌、混合できる。
さらに、分岐空間5の形状を式3,式4を満たすように
構成すれば、流出管3a,3bからはそれぞれ均質な状
態の気液二相冷媒が流出し、冷媒分配器としての性能を
保持できる。
As described above, if the mixing section 4 constituting the refrigerant distributor is formed of a thin tube, the gas-liquid two-phase refrigerant which has been deflected in the inflow pipe 2 is compressed and accelerated so as to have a uniform flow. Can be. In particular, if the shape of the mixing section 4 is configured to satisfy Expressions 1 and 2, the refrigerant can be reliably stirred and mixed.
Furthermore, if the shape of the branch space 5 is configured so as to satisfy the equations (3) and (4), the gas-liquid two-phase refrigerant in a homogeneous state flows out of the outflow pipes 3a and 3b, and the performance as a refrigerant distributor is maintained. it can.

【0027】なお、図3,図4では例えば2本の流出管
3a,3bを有する例について述べたが、流出管が3本
以上の場合でも、同様の効果を奏する。また、分岐空間
5の形状は円筒形や鞍型など、どのような形状で構成し
てもよく、式3を満たすように高さHを構成し、式4を
満たすように容積Vを構成すればよい。また、式3,式
4をともに満たしていなくても、高さHまたは容積Vの
どちらか一方を満足していれば、ある程度気液二相冷媒
を均質に分配する効果を発揮する。
Although FIGS. 3 and 4 show an example having two outflow pipes 3a and 3b, the same effect can be obtained when three or more outflow pipes are used. Further, the shape of the branch space 5 may be any shape such as a cylindrical shape or a saddle shape, and the height H is configured so as to satisfy Expression 3, and the volume V is configured so as to satisfy Expression 4. I just need. Further, even if neither Formula 3 nor Formula 4 are satisfied, if either the height H or the volume V is satisfied, the effect of uniformly distributing the gas-liquid two-phase refrigerant is exhibited to some extent.

【0028】また上記では、冷媒分配器に気液二相冷媒
が流入する例について述べたが、ガスや液の単相冷媒
や、ガス冷媒と冷凍機油が混合して流れる気液二相冷媒
や、液冷媒と冷媒に溶解しない冷凍機油が流れる液−液
冷媒、液冷媒と冷媒に溶解しない冷凍機油とガス冷媒が
流れる気−液−液冷媒などの状態でも同様であり、混合
部を細管、特に式1,式2を満たすように構成すれば、
冷媒分配器は冷媒を均質に分配する効果を発揮する。ま
た、分岐空間5を式3,式4を満たすように構成すれ
ば、さらに均質に冷媒を分配することができる。
In the above description, the gas-liquid two-phase refrigerant flows into the refrigerant distributor. However, the gas-liquid single-phase refrigerant, the gas-liquid two-phase refrigerant that flows by mixing the gas refrigerant and the refrigerating machine oil, and the like are described. The same applies to the state of a liquid-liquid refrigerant in which a liquid refrigerant and a refrigerating machine oil that does not dissolve in a refrigerant flow, a gas-liquid-liquid refrigerant in which a refrigerating machine oil and a gas refrigerant that do not dissolve in a liquid refrigerant and a refrigerant flow, and the mixing section is a thin tube. In particular, if it is configured to satisfy Equations 1 and 2,
The refrigerant distributor has an effect of uniformly distributing the refrigerant. Further, if the branch space 5 is configured to satisfy Expressions 3 and 4, the refrigerant can be more uniformly distributed.

【0029】実施の形態2.以下、本発明の実施の形態
2による冷媒分配器について説明する。図9は本実施の
形態による冷媒分配器を示す斜視図である。図におい
て、6は混合部4および分岐空間5内の冷媒を攪拌する
攪拌手段で、例えば外部から通電して発振する超音波自
励素子や電磁振動素子などの振動素子であり、冷媒分配
器本体1の外部で分岐空間5に相当する部分に取り付け
ている。
Embodiment 2 Hereinafter, a refrigerant distributor according to Embodiment 2 of the present invention will be described. FIG. 9 is a perspective view showing a refrigerant distributor according to the present embodiment. In the figure, reference numeral 6 denotes a stirring means for stirring the refrigerant in the mixing section 4 and the branch space 5, for example, a vibration element such as an ultrasonic self-exciting element or an electromagnetic vibration element which oscillates by supplying electricity from the outside, 1 and is attached to a portion corresponding to the branch space 5 outside.

【0030】本実施の形態では、振動素子6によって冷
媒分配器本体1の外部から混合部4や分岐空間5を振動
させ、内部の冷媒を攪拌、混合する。このため、混合部
4や分岐空間5での気液二相冷媒の攪拌、混合効果をよ
り確実なものとし、冷媒をさらに均質に分配する効果を
発揮する。なお、攪拌手段として、冷媒分配器本体1内
の分岐空間5に、例えばモータを用いて回転させる攪拌
羽根車や冷媒流れにより回転させる攪拌羽根車などの攪
拌装置を設けても、同様の効果を奏する。
In the present embodiment, the mixing section 4 and the branch space 5 are vibrated from outside the refrigerant distributor main body 1 by the vibrating element 6 to stir and mix the internal refrigerant. For this reason, the effect of stirring and mixing the gas-liquid two-phase refrigerant in the mixing section 4 and the branch space 5 is further ensured, and the refrigerant is more uniformly distributed. The same effect can be obtained by providing a stirring device such as a stirring impeller rotated by using a motor or a stirring impeller rotated by a refrigerant flow in the branch space 5 in the refrigerant distributor main body 1 as the stirring means. Play.

【0031】実施の形態3.以下、本発明の実施の形態
3による冷媒分配器について説明する。図10は本実施
の形態による冷媒分配器を用いた空気調和機や冷凍装置
などの冷凍サイクル装置を示す冷媒回路図である。図に
おいて、1は冷媒分配器、7は圧縮機、8は凝縮器、9
は膨張弁、10は蒸発器である。
Embodiment 3 Hereinafter, a refrigerant distributor according to Embodiment 3 of the present invention will be described. FIG. 10 is a refrigerant circuit diagram showing a refrigeration cycle device such as an air conditioner or a refrigeration device using the refrigerant distributor according to the present embodiment. In the figure, 1 is a refrigerant distributor, 7 is a compressor, 8 is a condenser, 9
Is an expansion valve and 10 is an evaporator.

【0032】このような構成の冷凍サイクル装置におい
て、膨張弁9と蒸発器10との間の冷媒流路で、循環す
る冷媒を複数、この場合は3本のパスに分割している。
そこで、この分岐部に、実施の形態1または2で記載し
た冷媒分配器1を配設している。ここで、質量流量W
[kg/s]を変化させるには、例えば、圧縮機7の回
転数を変化させたり、膨張弁9の開度を変化させればよ
い。この冷媒分配器を用いることにより、蒸発器10へ
の3本のパスに均等に冷媒を分配することができ、冷凍
サイクル装置の性能や効率を向上させることができる。
In the refrigeration cycle apparatus having such a configuration, the circulating refrigerant is divided into a plurality of, in this case, three paths in the refrigerant flow path between the expansion valve 9 and the evaporator 10.
Therefore, the refrigerant distributor 1 described in the first or second embodiment is disposed at this branch. Here, the mass flow rate W
In order to change [kg / s], for example, the rotation speed of the compressor 7 may be changed or the opening of the expansion valve 9 may be changed. By using this refrigerant distributor, the refrigerant can be evenly distributed to the three paths to the evaporator 10, and the performance and efficiency of the refrigeration cycle device can be improved.

【0033】また、一般に気液二相流れでは冷媒音が発
生しやすい。この冷媒音発生原因としては、不均質な液
滴流れが管壁に衝突して発生するものと考えられる。例
えば冷媒が不均質な流れとして循環する冷媒分配器を組
み込んだ冷凍サイクル装置では、冷媒音が耳障りとな
り、不良原因の一つとしてあげられることもある。そこ
で、本実施の形態では、冷凍サイクル装置を構成する
際、図10に示すように、細管で構成した混合部や分岐
空間を冷媒の質量流量を用いて最適に構成して気液二相
冷媒の均質化を図ることのできる冷媒分配器を用いてお
り、冷凍サイクル装置における冷媒音の発生を防ぐこと
ができる。このように本実施の形態では、冷媒を均質に
分配して冷凍サイクル装置の性能や効率を向上させると
ともに、冷媒分配の不均質さに起因する信頼性上の問
題、例えば冷媒音の発生や蒸発器での露飛びなどを防止
する効果も発揮する。
In general, refrigerant noise is likely to be generated in a gas-liquid two-phase flow. It is considered that the cause of the generation of the refrigerant noise is that a non-uniform droplet flow collides with the tube wall and is generated. For example, in a refrigeration cycle device incorporating a refrigerant distributor in which the refrigerant circulates in a heterogeneous flow, the noise of the refrigerant may be annoying and may be one of the causes of the defect. Therefore, in the present embodiment, when configuring the refrigeration cycle apparatus, as shown in FIG. 10, the mixing section and the branch space configured by the thin tubes are optimally configured using the mass flow rate of the refrigerant, and the gas-liquid two-phase refrigerant Since a refrigerant distributor capable of achieving homogenization of the refrigerant is used, generation of refrigerant noise in the refrigeration cycle device can be prevented. As described above, in this embodiment, the performance and efficiency of the refrigeration cycle device are improved by uniformly distributing the refrigerant, and reliability problems caused by the non-uniform distribution of the refrigerant, for example, generation and evaporation of refrigerant noise It also has the effect of preventing dew dropping in containers.

【0034】また、図11は、複数台の室内ユニット1
1や室外ユニット12を並列に接続してなるマルチ型空
気調和機において、メインの冷媒流路から各ユニットへ
冷媒を分配する部分に実施の形態1または2による冷媒
分配器を用いたものを示す冷媒回路図である。図におい
て、11aは室内ユニット11の熱交換器、12aは室
外ユニット12の熱交換器である。本実施の形態では、
複数の室内ユニット11に分岐する箇所と、複数の室外
ユニット12に分岐する冷媒流路の2ヶ所に冷媒分配器
1を配設している。この実施の形態1または2による冷
媒分配器によって、冷媒を室内ユニット11、室外ユニ
ット12のそれぞれに均質に分配する効果を発揮し、空
気調和機の性能や効率を向上させるとともに、冷媒音の
発生や蒸発器での露飛びなどを防止する効果も発揮す
る。なお、上記のマルチ型空気調和機では、2つの冷媒
分配器1を分岐部に設けたが、この回路構成において、
室内ユニット11へ流入する部分の冷媒は気液二相状態
ではないので、この分岐部での冷媒分配器を省略しても
循環する冷媒の状態はそれ程変化ない。
FIG. 11 shows a plurality of indoor units 1.
1 and 2 show a multi-type air conditioner in which the outdoor unit 12 is connected in parallel, in which the refrigerant distributor according to the first or second embodiment is used for distributing the refrigerant from the main refrigerant flow path to each unit. It is a refrigerant circuit diagram. In the figure, 11a is a heat exchanger of the indoor unit 11, and 12a is a heat exchanger of the outdoor unit 12. In the present embodiment,
The refrigerant distributors 1 are disposed at two locations: a location branched to a plurality of indoor units 11 and a coolant flow path branched to a plurality of outdoor units 12. The refrigerant distributor according to the first or second embodiment exerts an effect of uniformly distributing the refrigerant to each of the indoor unit 11 and the outdoor unit 12, thereby improving the performance and efficiency of the air conditioner and generating refrigerant noise. It also has the effect of preventing dew dropping in the evaporator. In the above multi-type air conditioner, two refrigerant distributors 1 are provided at the branch portion.
Since the refrigerant flowing into the indoor unit 11 is not in a gas-liquid two-phase state, the state of the circulating refrigerant does not change so much even if the refrigerant distributor at the branch is omitted.

【0035】実施の形態4.以下、本発明の実施の形態
4による冷媒分配器について説明する。図12は、図1
と同じ構造を持つ冷媒分配器において、各部の寸法や気
液の流量比などを変化させ、気液二相状態で混合部4に
流入した冷媒の流動状態を調べる試験結果を示す特性図
である。図12の縦軸,横軸はそれぞれ冷媒の流動状態
を表す値であり、縦軸はGg /λで、冷媒の質量流量の
大きさを示し上に行くほどその値は大きくなる。また、
横軸はλ×ψ×Gl /Gg で、冷媒のガス質量流量と液
質量流量の比、即ち乾き度を示し、右に行くほど乾き度
は小さくなり液リッチの状態になる。ただし、上記式に
おける各パラメータは以下のものを表している。 λ=[(ρg /ρa )×(ρl /ρw )]1/2 ψ=(σw /σ)×[(μl /μw )×(ρw /ρl )
21/3 Gg [kg/m2・h]:ガス冷媒の質量流速 Gl [kg/m2・h]:液冷媒の質量流速 ρ:密度 σ:表面張力 μ:粘性係数 添字g、l、a、wはそれぞれガス、液、空気、水を表す。
Embodiment 4 FIG. Hereinafter, a refrigerant distributor according to Embodiment 4 of the present invention will be described. FIG.
FIG. 9 is a characteristic diagram showing test results for examining the flow state of the refrigerant flowing into the mixing unit 4 in the gas-liquid two-phase state by changing the dimensions of each part, the gas-liquid flow ratio, and the like in the refrigerant distributor having the same structure as that of FIG. . The vertical and horizontal axes in FIG. 12 are values representing the flow state of the refrigerant, respectively, and the vertical axis is Gg / λ, which indicates the magnitude of the mass flow rate of the refrigerant, and the larger the value, the higher the value. Also,
The horizontal axis is λ × ψ × Gl / Gg, which indicates the ratio between the gas mass flow rate and the liquid mass flow rate of the refrigerant, that is, the degree of dryness. The degree of dryness decreases toward the right and the liquid becomes rich. However, each parameter in the above equation represents the following. λ = [(ρg / ρa) × (ρl / ρw)] 1/2 ψ = (σw / σ) × [(μl / μw) × (ρw / ρl)
2 ] 1/3 Gg [kg / m 2 · h]: Mass flow rate of gas refrigerant Gl [kg / m 2 · h]: Mass flow rate of liquid refrigerant ρ: Density σ: Surface tension μ: Viscosity coefficient Subscript g, l , A, and w represent gas, liquid, air, and water, respectively.

【0036】図12に示す冷媒の流動状態を図13を用
いて以下に説明する。図13において、(a)成層流、
(b)波状流、(c)スラグ流と呼ばれる流動状態は、
気液二相冷媒の偏流が大きい例であり、(d)環状流、
(e)気泡流、(f)環状噴霧流と呼ばれる流動状態
は、気液二相冷媒が混合、攪拌された状態である。図1
2に示したグラフでは、縦軸と横軸の値によって冷媒の
流動状態を示す領域が分かれている。ここで図12にお
ける黒丸で示す点と白丸で示す点での条件で、流出管で
の冷媒分配比率を調べた試験結果を図14に示す。図1
4は、図4に示す構成の冷媒分配器を対象とし、縦軸は
下方の流出管3aの冷媒分配比率、横軸はλ×ψ×Gl
/Gg を示すグラフである。図14においては、2本の
流出管での分配比率で性能低下をきたさない実用上の許
容範囲を48%〜52%として、斜線の範囲内で示す。
図から明らかなように、黒丸の条件ではすべてが許容範
囲に含まれており、白丸の条件ではすべてが許容範囲か
ら外れている。図12,図13とともに考察すると、混
合部において、環状噴霧流および気泡流の状態であれ
ば、良好な冷媒の分配結果が得られることがわかる。
The flow state of the refrigerant shown in FIG. 12 will be described below with reference to FIG. In FIG. 13, (a) a stratified flow,
The flow state called (b) wavy flow and (c) slug flow are as follows:
This is an example in which the drift of the gas-liquid two-phase refrigerant is large.
The flow state called (e) bubble flow and (f) annular spray flow is a state in which the gas-liquid two-phase refrigerant is mixed and stirred. FIG.
In the graph shown in FIG. 2, regions indicating the flow state of the refrigerant are divided according to the values on the vertical and horizontal axes. Here, FIG. 14 shows test results obtained by examining the refrigerant distribution ratio in the outlet pipe under the conditions indicated by the black circles and the white circles in FIG. FIG.
Reference numeral 4 denotes a refrigerant distributor having the configuration shown in FIG. 4, in which the vertical axis represents the refrigerant distribution ratio of the lower outlet pipe 3a, and the horizontal axis represents λ × ψ × Gl.
4 is a graph showing / Gg. In FIG. 14, the practical allowable range where the performance is not reduced by the distribution ratio of the two outflow pipes is set to 48% to 52%, and is shown within the range of the oblique line.
As is clear from the figure, all are included in the allowable range under the condition of the black circle, and all are out of the allowable range under the condition of the white circle. 12 and 13, it can be seen that a good refrigerant distribution result can be obtained if the mixing section is in the state of the annular spray flow and the bubble flow.

【0037】そこで、図12から明らかなように、混合
部4の入口での気液二相冷媒が式5,式6を満たす範囲
にあれば、混合部では気泡流から環状噴霧流の状態が得
られる。 Gg /λ>5×104 ・・・(5) λ×ψ×Gl /Gg >20 ・・・(6) そして、式5、式6を満たすように冷媒の質量流速を構
成することにより、混合部4での冷媒の流動状態は混
合、攪拌されたものとなり、偏流がなく均質化される。
従って流出管からは均質な状態の冷媒が流出され、冷媒
分配器としての性能を保持できる。
Therefore, as is clear from FIG. 12, if the gas-liquid two-phase refrigerant at the inlet of the mixing section 4 is within the range satisfying the equations (5) and (6), the state of the annular spray flow from the bubble flow in the mixing section is changed. can get. Gg / λ> 5 × 10 4 (5) λ × ψ × Gl / Gg> 20 (6) By configuring the mass flow rate of the refrigerant so as to satisfy Equations 5 and 6, The flow state of the refrigerant in the mixing section 4 is a state of mixing and stirring, and is homogenized without drift.
Therefore, the refrigerant in a homogeneous state is discharged from the outlet pipe, and the performance as the refrigerant distributor can be maintained.

【0038】また、本実施の形態による冷媒分配器は、
混合部4の入口での気液二相冷媒の流動状態をGg /λ
>5×104かつλ×ψ×Gl /Gg >20に示す範囲
に限定して気液二相冷媒の均質化できるため、冷媒が不
均質な流れとして循環するために生じる冷媒音の発生も
防ぐこともできる。
Further, the refrigerant distributor according to the present embodiment is
The flow state of the gas-liquid two-phase refrigerant at the inlet of the mixing section 4 is represented by Gg / λ.
> 5 × 10 4 and λ × ψ × Gl / Gg> 20, since the gas-liquid two-phase refrigerant can be homogenized, the generation of refrigerant noise caused by the circulation of the refrigerant as an inhomogeneous flow also occurs. It can also be prevented.

【0039】なお、ここでは2本の流出管3a,3bを
有する冷媒分配器について述べたが、流出管が3本以上
の場合でも、混合部4の入口での気液二相冷媒が式5,
式6を満たす範囲に限定すれば、冷媒分配器は冷媒を均
質に分配する効果を発揮する。
Although the refrigerant distributor having two outflow pipes 3a and 3b has been described here, even when there are three or more outflow pipes, the gas-liquid two-phase refrigerant at the inlet of the mixing section 4 is expressed by Formula 5 ,
If it is limited to the range that satisfies Equation 6, the refrigerant distributor exerts an effect of uniformly distributing the refrigerant.

【0040】また、本実施の形態による冷媒分配器は、
実施の形態2に示したように、その冷媒分配器本体1の
外部に振動素子による攪拌手段を設けたり、冷媒分配器
本体1内の分岐空間5に攪拌手段を設けることにより、
混合部4や分岐空間5での気液二相冷媒の攪拌、混合効
果をより確実なものとし、冷媒を均質に分配する効果を
発揮する。
The refrigerant distributor according to the present embodiment is
As described in the second embodiment, by providing stirring means by a vibrating element outside the refrigerant distributor main body 1, or by providing stirring means in the branch space 5 in the refrigerant distributor main body 1,
The effect of stirring and mixing the gas-liquid two-phase refrigerant in the mixing section 4 and the branch space 5 is further ensured, and the refrigerant is uniformly distributed.

【0041】また、本実施の形態による冷媒分配器は、
実施の形態3に示したように、空気調和機や冷凍装置な
どの冷凍サイクル装置において、凝縮器あるいは蒸発器
として作用する熱交換器で内部の冷媒流路を複数パスに
分割した場合、熱交換器の入口の各パスへ冷媒を分配す
る分岐部分に用いてもよい。また、複数台の室外ユニッ
トや室内ユニットを並列に接続してなるマルチ型空気調
和機において、メインの冷媒流路から各ユニットへ冷媒
を分配するための分岐部分に用いてもよい。このような
冷凍サイクル装置に用いることにより、冷媒を均質に分
配する効果を発揮し、冷凍サイクル装置の性能や効率を
向上させるとともに、冷媒分配の不均質さに起因する信
頼性上の問題、例えば冷媒音の発生や蒸発器での露飛び
などを防止する効果も発揮する。
The refrigerant distributor according to the present embodiment is
As described in the third embodiment, in a refrigeration cycle device such as an air conditioner or a refrigeration device, when the internal refrigerant flow path is divided into a plurality of paths by a heat exchanger acting as a condenser or an evaporator, heat exchange is prevented. It may be used in a branch portion for distributing the refrigerant to each path at the inlet of the vessel. Further, in a multi-type air conditioner in which a plurality of outdoor units or indoor units are connected in parallel, the multi-type air conditioner may be used as a branch portion for distributing a refrigerant from a main refrigerant flow path to each unit. By using such a refrigeration cycle device, the effect of uniformly distributing the refrigerant is exhibited, and the performance and efficiency of the refrigeration cycle device are improved, and reliability problems due to the non-uniform refrigerant distribution, for example, It also exerts the effect of preventing generation of refrigerant noise and dew dropping in the evaporator.

【0042】また、実施の形態1〜実施の形態4に述べ
た冷媒分配器は、冷媒の種類が変わった場合、例えばH
CFC系冷媒(R22など、単一冷媒、混合冷媒含む)
やHFC系冷媒(R134a、R407C、R410
A、R404Aなど、単一冷媒、混合冷媒含む)、HC
系冷媒(メタン、エタン、プロパン、ブタン、イソブタ
ンなど、単一冷媒、混合冷媒含む)や他の自然冷媒(空
気、水、二酸化炭素など、単一冷媒、混合冷媒含む)
や、以上述べた冷媒の混合冷媒でも同様であり、冷媒を
均質に分配する効果を発揮する。
In the refrigerant distributor described in the first to fourth embodiments, when the type of refrigerant changes, for example, H
CFC-based refrigerant (including single refrigerant and mixed refrigerant such as R22)
And HFC-based refrigerants (R134a, R407C, R410
A, R404A, etc., including single refrigerant and mixed refrigerant), HC
System refrigerant (including single refrigerant and mixed refrigerant such as methane, ethane, propane, butane and isobutane) and other natural refrigerants (including single refrigerant and mixed refrigerant such as air, water and carbon dioxide)
The same applies to the mixed refrigerant of the refrigerants described above, and the effect of uniformly distributing the refrigerant is exhibited.

【0043】また、実施の形態1〜実施の形態4におけ
る冷媒分配器は、設置場所に係わらず、例えば空気調和
機や冷凍装置のユニット内に設置しても、またユニット
の外に設置しても、同様の効果を奏する。また、例え
ば、実施の形態1〜実施の形態4では冷媒分配器を水平
に配置した場合について説明したが、垂直に配置した
り、垂直より多少傾いて配置してしまった場合など、冷
媒分配器の配置状態に係わらず、冷媒を均質に分配する
効果を発揮する。
Further, the refrigerant distributor according to Embodiments 1 to 4 can be installed in a unit of an air conditioner or a refrigeration system, or installed outside the unit, regardless of the installation location. Has the same effect. Further, for example, in the first to fourth embodiments, the case where the refrigerant distributor is arranged horizontally is described. However, the refrigerant distributor is arranged vertically, or when the refrigerant distributor is slightly inclined from the vertical. Regardless of the arrangement state, the effect of uniformly distributing the refrigerant is exhibited.

【0044】また、実施の形態1〜実施の形態4に述べ
た冷媒分配器は、流入管2の内径が混合部4の内径と同
様の細管で構成されていれば、流入管2に混合部4の機
能を代用させることができ、冷媒を均質に分配する効果
を発揮する。
Further, in the refrigerant distributor described in the first to fourth embodiments, if the inside diameter of the inflow pipe 2 is formed of a narrow tube similar to the inside diameter of the mixing section 4, the mixing section is connected to the inflow pipe 2. The function of No. 4 can be substituted, and the effect of uniformly distributing the refrigerant is exhibited.

【0045】また、実施の形態1による冷媒分配器およ
び実施の形態4による冷媒分配器を兼ね備えたものとし
て、図1に示した各部の値を、L/D>5、W/(π×
2/4)>500(π:円周率)、W/H>2、およ
びW/V>10に示す範囲に限定し、かつ混合部4の入
口での気液二相冷媒の流動状態をGg /λ>5×104
およびλ×ψ×Gl /Gg >20に示す範囲に限定する
ことによって、さらに冷媒を均質に分配する効果を発揮
する。また、この冷媒分配器を冷凍サイクル装置に用い
ることにより、性能や効率を向上させるとともに、冷媒
分配の不均質さに起因する信頼性上の問題、例えば冷媒
音の発生や蒸発器での露飛びなどを防止する効果も発揮
する。
Further, assuming that the refrigerant distributor according to the first embodiment and the refrigerant distributor according to the fourth embodiment are combined, the values of the respective parts shown in FIG. 1 are represented by L / D> 5, W / (π ×
D 2/4)> 500 ( π: circular constant), W / H> 2, and W / V> limited to the range indicated in 10, and the flow state of the gas-liquid two-phase refrigerant at the inlet of the mixing section 4 To Gg / λ> 5 × 10 4
By limiting the range to λ × ψ × Gl / Gg> 20, the effect of more uniformly distributing the refrigerant is exhibited. In addition, by using this refrigerant distributor in a refrigeration cycle device, performance and efficiency are improved, and reliability problems due to non-uniform refrigerant distribution, such as generation of refrigerant noise and splashing in the evaporator, are achieved. It also has the effect of preventing such problems.

【0046】[0046]

【発明の効果】以上のように、本発明の請求項1によれ
ば、流入管から流入した冷媒を通過させる混合部、およ
び複数の流出管に接続し、混合部から流入した冷媒を流
出管のそれぞれに分配する分岐空間を備え、冷媒を縮流
加速してその流動状態が気泡流または環状噴霧流になる
ように混合部を流入管の管径以下の内径で、かつ流れ方
向長さよりも大幅に小さい長さの内径を有する細管で構
成したことにより、冷媒分配器の設置状況によらず、偏
流の影響を受けずに気液の分離が生じることなく冷媒を
攪拌、混合し、均質に冷媒を分配することのできる冷媒
分配器が得られる効果がある。
As described above, according to the first aspect of the present invention, the refrigerant flowing from the inflow pipe is connected to the mixing section and the plurality of outflow pipes, and the refrigerant flowing from the mixing section is transmitted to the outflow pipe. The branching space is distributed to each of the two, and the mixing section is reduced to an inner diameter smaller than the pipe diameter of the inflow pipe, and is longer than the length in the flow direction such that the flow state of the refrigerant is reduced or accelerated and the flow state becomes a bubble flow or an annular spray flow. By using a small tube with an inner diameter of a significantly smaller length, the refrigerant is stirred and mixed without being affected by drift and without gas-liquid separation, regardless of the installation condition of the refrigerant distributor. There is an effect that a refrigerant distributor capable of distributing the refrigerant can be obtained.

【0047】また、本発明の請求項2によれば、流入管
から流入した冷媒を通過させる混合部、および複数の流
出管に接続し、混合部から流入した冷媒を流出管のそれ
ぞれに分配する分岐空間を備え、混合部での冷媒の流動
状態が次式を満たすように構成したことにより、冷媒分
配器の設置状況によらず、偏流の影響を受けずに気液の
分離が生じることなく冷媒を攪拌、混合し、均質に冷媒
を分配できる冷媒分配器が得られる効果がある。 Gg /λ>5×104かつλ×ψ×Gl /Gg >20 ただし、λ=[(ρg /ρa )×(ρl /ρw )]1/2 ψ=(σw /σ)×[(μl /μw )×(ρw /ρl )
21/3 Gg [kg/m2・h]:ガス冷媒の質量流速 Gl [kg/m2・h]:液冷媒の質量流速 ρ:密度 σ:表面張力 μ:粘性係数 添字g、l、a、wはそれぞれガス、液、空気、水を表す。
According to the second aspect of the present invention, the refrigerant flowing from the mixing section is connected to the mixing section through which the refrigerant flowing from the inflow pipe passes and the plurality of outflow pipes, and the refrigerant flowing from the mixing section is distributed to each of the outflow pipes. With a branch space, the flow state of the refrigerant in the mixing section is configured to satisfy the following equation, regardless of the installation state of the refrigerant distributor, without gas-liquid separation without being affected by drift There is an effect that a refrigerant distributor that can stir and mix the refrigerant and uniformly distribute the refrigerant can be obtained. Gg / λ> 5 × 10 4 and λ × ψ × Gl / Gg> 20 where λ = [(ρg / ρa) × (ρl / ρw)] 1/2 ψ = (σw / σ) × [(μl / μw) × (ρw / ρl)
2 ] 1/3 Gg [kg / m 2 · h]: Mass flow rate of gas refrigerant Gl [kg / m 2 · h]: Mass flow rate of liquid refrigerant ρ: Density σ: Surface tension μ: Viscosity coefficient Subscript g, l , A, and w represent gas, liquid, air, and water, respectively.

【0048】また、本発明の請求項3によれば、請求項
1記載の冷媒分配器において、混合部の内径をD
[m]、冷媒の流れ方向の長さをL[m]とすると、
D、Lが、L/D>5を満たすように混合部を構成した
ことにより、冷媒分配器の設置状況によらず、偏流の影
響を受けずに気液の分離が生じることなく冷媒を攪拌、
混合し、均質に冷媒を分配できる冷媒分配器が得られる
効果がある。
According to a third aspect of the present invention, in the refrigerant distributor according to the first aspect, the inner diameter of the mixing section is set to D.
[M], and the length in the flow direction of the refrigerant is L [m],
Since the mixing unit is configured so that D and L satisfy L / D> 5, the refrigerant is stirred without being affected by the drift and without gas-liquid separation regardless of the installation state of the refrigerant distributor. ,
There is an effect that a refrigerant distributor that can mix and uniformly distribute the refrigerant is obtained.

【0049】また、本発明の請求項4による冷媒分配器
は、請求項3記載の冷媒分配器において、混合部の内径
をD[m]、混合部を流れる冷媒の質量流量をW[kg
/s]とすると、D、Wが、W/(π×D2/4)>5
00(π:円周率)を満たすように混合部を構成したこ
とにより、冷媒分配器の設置状況によらず、偏流の影響
を受けずに気液の分離が生じることなく冷媒を攪拌、混
合し、均質に冷媒を分配できる冷媒分配器が得られる効
果がある。
The refrigerant distributor according to claim 4 of the present invention is the refrigerant distributor according to claim 3, wherein the inner diameter of the mixing section is D [m], and the mass flow rate of the refrigerant flowing through the mixing section is W [kg].
When / s] to, D, W is, W / (π × D 2 /4)> 5
Since the mixing section is configured to satisfy 00 (π: pi), the refrigerant is stirred and mixed without being affected by the drift and without separating gas-liquid regardless of the installation state of the refrigerant distributor. In addition, there is an effect that a refrigerant distributor that can uniformly distribute the refrigerant can be obtained.

【0050】また、本発明の請求項5によれば、請求項
1ないし請求項4のいずれか1項に記載の冷媒分配器に
おいて、分岐空間の冷媒の流れ方向の高さをH[m]、
混合部を流れる冷媒の質量流量をW[kg/s]とする
と、W/H>2を満たすように分岐空間を構成したこと
により、冷媒分配器の設置状況によらず、偏流の影響を
受けずに気液の分離が生じることなく冷媒を攪拌、混合
し、均質に冷媒を分配できる冷媒分配器が得られる効果
がある。
According to a fifth aspect of the present invention, in the refrigerant distributor according to any one of the first to fourth aspects, the height of the branch space in the flow direction of the refrigerant is H [m]. ,
Assuming that the mass flow rate of the refrigerant flowing through the mixing section is W [kg / s], the branch space is configured to satisfy W / H> 2. Thus, there is an effect that a refrigerant distributor that can stir and mix the refrigerant without causing gas-liquid separation and uniformly distribute the refrigerant can be obtained.

【0051】また、本発明の請求項6によれば、請求項
1ないし請求項5のいずれか1項に記載の冷媒分配器に
おいて、分岐空間の容積をV[m3]、混合部を流れる
冷媒の質量流量をW[kg/s]とすると、W/V>1
0を満たすように上記分岐空間を構成したことにより、
冷媒分配器の設置状況によらず、偏流の影響を受けずに
気液の分離が生じることなく冷媒を攪拌、混合し、均質
に冷媒を分配できる冷媒分配器が得られる効果がある。
According to a sixth aspect of the present invention, in the refrigerant distributor according to any one of the first to fifth aspects, the volume of the branch space is V [m 3 ], and the refrigerant flows through the mixing section. Assuming that the mass flow rate of the refrigerant is W [kg / s], W / V> 1
By configuring the branch space to satisfy 0,
Irrespective of the installation state of the refrigerant distributor, there is an effect that a refrigerant distributor that can stir and mix the refrigerant without being affected by the drift and without gas-liquid separation and uniformly distribute the refrigerant can be obtained.

【0052】また、本発明の請求項7によれば、請求項
1ないし請求項6のいずれか1項に記載の冷媒分配器に
おいて、混合部および分岐空間の少なくともいずれか一
方を流れる冷媒を混合する攪拌手段を備えたことによ
り、冷媒分配器の設置状況によらず、偏流の影響を受け
ずに気液の分離が生じることなく確実に冷媒を攪拌、混
合し、均質に冷媒を分配できる冷媒分配器が得られる効
果がある。
According to a seventh aspect of the present invention, in the refrigerant distributor according to any one of the first to sixth aspects, the refrigerant flowing through at least one of the mixing section and the branch space is mixed. A refrigerant that can stir and mix the refrigerant reliably without gas flow separation without being affected by the drift, regardless of the installation state of the refrigerant distributor, and can uniformly distribute the refrigerant regardless of the installation state of the refrigerant distributor. There is an effect that a distributor can be obtained.

【0053】また、本発明の請求項8によれば、請求項
1ないし請求項7のいずれか1項に記載の冷媒分配器
を、冷媒を循環させる冷媒流路の冷媒分岐部に設けたこ
とにより、冷凍サイクル装置の性能や効率を向上させる
とともに、冷媒分配の不均質さに起因する信頼性上の問
題、例えば冷媒音の発生や蒸発器での露飛びなどを防止
できる冷凍サイクル装置が得られる効果がある。
According to an eighth aspect of the present invention, the refrigerant distributor according to any one of the first to seventh aspects is provided at a refrigerant branch portion of a refrigerant flow path for circulating a refrigerant. As a result, a refrigeration cycle device that can improve the performance and efficiency of the refrigeration cycle device and prevent reliability problems due to non-uniform refrigerant distribution, such as generation of refrigerant noise and dew dropping in the evaporator, is obtained. Has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1による冷媒分配器を示
す断面図である。
FIG. 1 is a sectional view showing a refrigerant distributor according to Embodiment 1 of the present invention.

【図2】 実施の形態1に係り、冷媒分配器本体内の冷
媒の状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of a refrigerant in a refrigerant distributor main body according to the first embodiment.

【図3】 実施の形態1に係り、2本の流出管を水平方
向に設置した場合の冷媒分配器を示す斜視図である。
FIG. 3 is a perspective view showing the refrigerant distributor when two outflow pipes are installed in a horizontal direction according to the first embodiment.

【図4】 実施の形態1に係り、2本の流出管を垂直方
向に設置した場合の冷媒分配器を示す斜視図である。
FIG. 4 is a perspective view showing the refrigerant distributor when two outflow pipes are installed in the vertical direction according to the first embodiment.

【図5】 実施の形態1に係り、混合部の内径をD
[m]、長さをL[m]とした場合の、L/Dと分配比
率の関係を示すグラフである。
FIG. 5 relates to the first embodiment, and the inside diameter of the mixing section is D.
6 is a graph showing the relationship between L / D and distribution ratio when [m] and length are L [m].

【図6】 実施の形態1に係り、混合部を流れる冷媒の
質量流量W[kg/s]と分配比率の関係を示すグラフ
である。
FIG. 6 is a graph showing a relationship between a mass flow rate W [kg / s] of a refrigerant flowing through a mixing section and a distribution ratio according to the first embodiment.

【図7】 実施の形態1に係り、分岐空間の高さをH
[m]、混合部の内径をD[m]、混合部を流れる冷媒
の質量流量W[kg/s]とした場合の、W/Hと分配
比率の関係を示すグラフである。
FIG. 7 relates to the first embodiment, and the height of the branch space is H.
4 is a graph showing the relationship between W / H and distribution ratio when [m], the inner diameter of the mixing section is D [m], and the mass flow rate of the refrigerant flowing through the mixing section is W [kg / s].

【図8】 実施の形態1に係り、分岐空間の高さをH
[m]、容積をV[m3]、混合部の内径をD[m]、
混合部を流れる冷媒の質量流量W[kg/s]とした場
合のW/Vと分配比率の関係を示すグラフである。
FIG. 8 relates to the first embodiment, and the height of the branch space is H
[M], the volume is V [m 3 ], the inner diameter of the mixing section is D [m],
It is a graph which shows the relationship of W / V and distribution ratio when the mass flow rate of the refrigerant | coolant which flows through a mixing part is set to W [kg / s].

【図9】 本発明の実施の形態2による冷媒分配器を示
す斜視図である。
FIG. 9 is a perspective view showing a refrigerant distributor according to Embodiment 2 of the present invention.

【図10】 本発明の実施の形態3に係る冷媒分配器を
用いた冷凍サイクル装置の冷媒回路図である。
FIG. 10 is a refrigerant circuit diagram of a refrigeration cycle apparatus using a refrigerant distributor according to Embodiment 3 of the present invention.

【図11】 実施の形態3に係る冷媒分配器を用いたマ
ルチ型空気調和機の冷媒回路図である。
FIG. 11 is a refrigerant circuit diagram of a multi-type air conditioner using a refrigerant distributor according to Embodiment 3.

【図12】 本発明の実施の形態4に係る冷媒分配器に
おいて、混合部の入口での気液二相冷媒の流動状態を表
した特性図である。
FIG. 12 is a characteristic diagram illustrating a flow state of a gas-liquid two-phase refrigerant at an inlet of a mixing unit in a refrigerant distributor according to Embodiment 4 of the present invention.

【図13】 実施の形態4に係る冷媒分配器において、
気液二相冷媒の流動様式を表した説明図である。
FIG. 13 shows a refrigerant distributor according to a fourth embodiment.
It is explanatory drawing showing the flow mode of the gas-liquid two-phase refrigerant.

【図14】 実施の形態4に係り、流動状態λ×ψ×G
l /Gg と分配比率の関係を示すグラフである。
FIG. 14 relates to the fourth embodiment, and shows the flow state λ × ψ × G
4 is a graph showing a relationship between l / Gg and a distribution ratio.

【図15】 従来の冷媒分配器を示す断面図である。FIG. 15 is a sectional view showing a conventional refrigerant distributor.

【符号の説明】[Explanation of symbols]

1 冷媒分配器本体、2 流入管、3a,3b 流出
管、4 混合部、5 分岐空間、6 攪拌手段、7 圧
縮機、8 凝縮器、9 膨張弁、10 蒸発器、11
室外ユニット、12 室内ユニット。
DESCRIPTION OF SYMBOLS 1 Refrigerant distributor main body, 2 Inflow pipe, 3a, 3b outflow pipe, 4 mixing part, 5 branch space, 6 stirring means, 7 compressor, 8 condenser, 9 expansion valve, 10 evaporator, 11
Outdoor unit, 12 indoor units.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河西 智彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 舟山 功 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 森下 国博 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomohiko Kasai 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Isao Funayama 2-3-2 Marunouchi 3-chome, Chiyoda-ku, Tokyo (72) Inventor Kunihiro Morishita 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 流入管から流入した冷媒を通過させる混
合部、および複数の流出管に接続し、上記混合部から流
入した上記冷媒を上記流出管のそれぞれに分配する分岐
空間を備え、上記冷媒を縮流加速してその流動状態が気
泡流または環状噴霧流になるように上記混合部を上記流
入管の管径以下の内径で、かつ流れ方向長さよりも大幅
に小さい長さの内径を有する細管で構成したことを特徴
とする冷媒分配器。
1. A cooling device, comprising: a mixing section that allows a refrigerant flowing from an inflow pipe to pass therethrough; and a branch space connected to a plurality of outflow pipes and distributing the refrigerant flowing from the mixing section to each of the outflow pipes. The mixing section has an inner diameter less than or equal to the pipe diameter of the inflow pipe and has an inner diameter much smaller than the length in the flow direction so that the flow state becomes a bubble flow or an annular spray flow by accelerating the flow. A refrigerant distributor comprising a thin tube.
【請求項2】 流入管から流入した冷媒を通過させる混
合部、および複数の流出管に接続し、上記混合部から流
入した上記冷媒を上記流出管のそれぞれに分配する分岐
空間を備え、上記混合部での上記冷媒の流動状態が次式
を満たすように構成したことを特徴とする冷媒分配器。 Gg /λ>5×104かつλ×ψ×Gl /Gg >20 ただし、λ=[(ρg /ρa )×(ρl /ρw )]1/2 ψ=(σw /σ)×[(μl /μw )×(ρw /ρl )
21/3 Gg [kg/m2・h]:ガス冷媒の質量流速 Gl [kg/m2・h]:液冷媒の質量流速 ρ:密度 σ:表面張力 μ:粘性係数 添字g、l、a、wはそれぞれガス、液、空気、水を表す。
2. A mixing section through which a refrigerant flowing from an inflow pipe passes, and a branch space connected to a plurality of outflow pipes for distributing the refrigerant flowing from the mixing section to each of the outflow pipes, A refrigerant distributor characterized in that the flow state of the refrigerant in the section satisfies the following expression. Gg / λ> 5 × 10 4 and λ × ψ × Gl / Gg> 20 where λ = [(ρg / ρa) × (ρl / ρw)] 1/2 ψ = (σw / σ) × [(μl / μw) × (ρw / ρl)
2 ] 1/3 Gg [kg / m 2 · h]: Mass flow rate of gas refrigerant Gl [kg / m 2 · h]: Mass flow rate of liquid refrigerant ρ: Density σ: Surface tension μ: Viscosity coefficient Subscript g, l , A, and w represent gas, liquid, air, and water, respectively.
【請求項3】 混合部の内径をD[m]、冷媒の流れ方
向の長さをL[m]とすると、D、Lが、L/D>5を
満たすように上記混合部を構成したことを特徴とする請
求項1記載の冷媒分配器。
3. The mixing unit is configured so that D and L satisfy L / D> 5, where D [m] is the inner diameter of the mixing unit and L [m] is the length in the flow direction of the refrigerant. The refrigerant distributor according to claim 1, wherein:
【請求項4】 混合部の内径をD[m]、上記混合部を
流れる冷媒の質量流量をW[kg/s]とすると、D、
Wが、W/(π×D2/4)>500(π:円周率)を
満たすように上記混合部を構成したことを特徴とする請
求項2記載の冷媒分配器。
4. When the inner diameter of the mixing section is D [m] and the mass flow rate of the refrigerant flowing through the mixing section is W [kg / s],
W is, W / (π × D 2 /4)> 500: refrigerant distributor according to claim 2, characterized in that constitute the mixing section so as to satisfy the ([pi pi).
【請求項5】 分岐空間の冷媒の流れ方向の高さをH
[m]、混合部を流れる冷媒の質量流量をW[kg/
s]とすると、W/H>2を満たすように上記分岐空間
を構成したことを特徴とする請求項1ないし請求項4の
いずれか1項に記載の冷媒分配器。
5. The height of the branch space in the flow direction of the refrigerant is H
[M], the mass flow rate of the refrigerant flowing through the mixing section is W [kg /
5. The refrigerant distributor according to claim 1, wherein the branch space is configured to satisfy W / H> 2.
【請求項6】 分岐空間の容積をV[m3]、混合部を
流れる冷媒の質量流量をW[kg/s]とすると、W/
V>10を満たすように上記分岐空間を構成したことを
特徴とする請求項1ないし請求項5のいずれか1項に記
載の冷媒分配器。
6. Assuming that the volume of the branch space is V [m 3 ] and the mass flow rate of the refrigerant flowing through the mixing section is W [kg / s], W /
The refrigerant distributor according to any one of claims 1 to 5, wherein the branch space is configured to satisfy V> 10.
【請求項7】 混合部および分岐空間の少なくともいず
れか一方を流れる冷媒を混合する攪拌手段を備えたこと
を特徴とする請求項1ないし請求項6のいずれか1項に
記載の冷媒分配器。
7. The refrigerant distributor according to claim 1, further comprising stirring means for mixing the refrigerant flowing in at least one of the mixing section and the branch space.
【請求項8】 請求項1ないし請求項7のいずれか1項
に記載の冷媒分配器を、冷媒を循環させる冷媒流路の冷
媒分岐部に設けたことを特徴とする冷凍サイクル装置。
8. A refrigeration cycle apparatus, wherein the refrigerant distributor according to claim 1 is provided at a refrigerant branch of a refrigerant flow path for circulating a refrigerant.
JP26536097A 1997-09-30 1997-09-30 Refrigerant distributor and refrigeration cycle device using the same Expired - Lifetime JP3387387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26536097A JP3387387B2 (en) 1997-09-30 1997-09-30 Refrigerant distributor and refrigeration cycle device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26536097A JP3387387B2 (en) 1997-09-30 1997-09-30 Refrigerant distributor and refrigeration cycle device using the same

Publications (2)

Publication Number Publication Date
JPH11101530A true JPH11101530A (en) 1999-04-13
JP3387387B2 JP3387387B2 (en) 2003-03-17

Family

ID=17416105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26536097A Expired - Lifetime JP3387387B2 (en) 1997-09-30 1997-09-30 Refrigerant distributor and refrigeration cycle device using the same

Country Status (1)

Country Link
JP (1) JP3387387B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130868A (en) * 2000-10-20 2002-05-09 Daikin Ind Ltd Refrigerant distributor and air conditioner employing the same
EP1892487A1 (en) * 2005-06-14 2008-02-27 Daikin Industries, Ltd. Refrigerant flow divider
JP2009300002A (en) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
CN104126099A (en) * 2012-02-29 2014-10-29 日立空调·家用电器株式会社 Refrigeration cycle device
WO2016046882A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
WO2017183444A1 (en) * 2016-04-20 2017-10-26 ダイキン工業株式会社 Refrigeration system having refrigerant flow path for flow control
US10060685B2 (en) 2014-11-04 2018-08-28 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
CN109323488A (en) * 2018-09-03 2019-02-12 上海科凌能源科技有限公司 A kind of current divider for realizing uniform and stable shunting based on annular flow rectification
JP2019109046A (en) * 2019-04-10 2019-07-04 ダイキン工業株式会社 Piping unit or air conditioning system
WO2023040265A1 (en) * 2021-09-19 2023-03-23 青岛海尔空调器有限总公司 Liquid distributor, heat exchanger, refrigeration cycle system, and air conditioner

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560939B2 (en) * 2000-10-20 2010-10-13 ダイキン工業株式会社 Refrigerant shunt and air conditioner using the same
JP2002130868A (en) * 2000-10-20 2002-05-09 Daikin Ind Ltd Refrigerant distributor and air conditioner employing the same
EP1892487A4 (en) * 2005-06-14 2015-04-22 Daikin Ind Ltd Refrigerant flow divider
EP1892487A1 (en) * 2005-06-14 2008-02-27 Daikin Industries, Ltd. Refrigerant flow divider
US7921671B2 (en) 2005-06-14 2011-04-12 Daikin Industries, Ltd. Refrigerant flow divider
JP2009300002A (en) * 2008-06-13 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
CN104126099B (en) * 2012-02-29 2016-05-04 日立空调·家用电器株式会社 Refrigerating circulatory device
CN104126099A (en) * 2012-02-29 2014-10-29 日立空调·家用电器株式会社 Refrigeration cycle device
WO2016046882A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
JP5921777B1 (en) * 2014-09-22 2016-05-24 三菱電機株式会社 Refrigeration cycle equipment
US10060685B2 (en) 2014-11-04 2018-08-28 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
WO2017183444A1 (en) * 2016-04-20 2017-10-26 ダイキン工業株式会社 Refrigeration system having refrigerant flow path for flow control
CN109323488A (en) * 2018-09-03 2019-02-12 上海科凌能源科技有限公司 A kind of current divider for realizing uniform and stable shunting based on annular flow rectification
JP2019109046A (en) * 2019-04-10 2019-07-04 ダイキン工業株式会社 Piping unit or air conditioning system
WO2023040265A1 (en) * 2021-09-19 2023-03-23 青岛海尔空调器有限总公司 Liquid distributor, heat exchanger, refrigeration cycle system, and air conditioner
WO2023040260A1 (en) * 2021-09-19 2023-03-23 青岛海尔空调器有限总公司 Liquid dispenser, heat exchanger, refrigeration cycle system and air conditioner

Also Published As

Publication number Publication date
JP3387387B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
US8052064B2 (en) Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
JP3376534B2 (en) Refrigerant distributor
JPH11101530A (en) Refrigerant distributor and refrigerating cycle apparatus using refrigerant distributor
JP2001116396A (en) Refrigerant distributor, refrigeration cycle and air conditioner using it
JPH06191262A (en) Refrigerating device
WO2014144105A1 (en) Side mounted refrigerant distributor in a flooded evaporator and side mounted inlet pipe to the distributor
JPH0829018A (en) Refrigerant flow divider
JPH04295599A (en) Heat exchanger
US6910349B2 (en) Suction connection for dual centrifugal compressor refrigeration systems
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
JP2009092305A (en) Refrigerant flow divider
JP2006349238A (en) Refrigerant flow divider
JP5193630B2 (en) Heat exchanger
JPH05223490A (en) Heat exchanger
JP5562879B2 (en) Refrigerant distributor and refrigeration cycle apparatus including the same
JPH0961016A (en) Refrigerant distributor
JP2746681B2 (en) Refrigerant flow divider
JP2005106368A (en) Cooling medium distribution mechanism, and air conditioner
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JPH05203286A (en) Heat exchanger
KR100704770B1 (en) Heat exchanger
JPH0468274A (en) Refrigerant divider
JP2813272B2 (en) Refrigerant flow divider
JP2001208451A (en) Refrigerant distributor
JPH09189403A (en) Intermediate header

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term