JP3387387B2 - Refrigerant distributor and refrigeration cycle device using the same - Google Patents

Refrigerant distributor and refrigeration cycle device using the same

Info

Publication number
JP3387387B2
JP3387387B2 JP26536097A JP26536097A JP3387387B2 JP 3387387 B2 JP3387387 B2 JP 3387387B2 JP 26536097 A JP26536097 A JP 26536097A JP 26536097 A JP26536097 A JP 26536097A JP 3387387 B2 JP3387387 B2 JP 3387387B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
gas
distributor
refrigerant distributor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26536097A
Other languages
Japanese (ja)
Other versions
JPH11101530A (en
Inventor
雅弘 中山
嘉裕 隅田
文雄 松岡
智彦 河西
功 舟山
国博 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26536097A priority Critical patent/JP3387387B2/en
Publication of JPH11101530A publication Critical patent/JPH11101530A/en
Application granted granted Critical
Publication of JP3387387B2 publication Critical patent/JP3387387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機や冷凍
装置などの冷凍サイクル装置に用いられる冷媒分配器に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant distributor used in a refrigeration cycle device such as an air conditioner or a refrigeration device.

【0002】[0002]

【従来の技術】空気調和機や冷凍装置などの冷凍サイク
ル装置の凝縮器または蒸発器として作用する熱交換器に
おいて、内部の冷媒流路を複数パスに分割した場合に、
熱交換器の入口には各パスへ冷媒を分配する冷媒分配器
が必要である。また例えば複数台の室外ユニットや室内
ユニットを並列に接続してなるマルチ型空気調和機で
は、メインの冷媒流路から各ユニットへ冷媒を分配する
ためにも冷媒分配器が必要である。一般に冷凍サイクル
装置の膨張弁を通過した冷媒や蒸発器入口の冷媒は、ガ
ス冷媒と液冷媒の気液二相の状態となっており、配管内
を流れる冷媒の断面において密度分布が生じている。例
えば流入配管に曲がりがある場合は遠心力の影響によ
り、また、流入配管や冷媒分配器本体が水平に配置され
ている場合は重力の影響により、液冷媒が一方の管内面
に偏って流れる偏流現象が生じる。従って冷媒分配器に
は、上記のような偏流の現象が生じることなく、気液の
分離を防止でき、冷媒を均質に混合して、冷媒分配器入
口での気液質量流量比と冷媒分配器出口での気液質量流
量比が均等の状態で冷媒を分配する機能が要求される。
2. Description of the Related Art In a heat exchanger that functions as a condenser or an evaporator of a refrigeration cycle apparatus such as an air conditioner or a refrigeration apparatus, when an internal refrigerant flow path is divided into a plurality of paths,
A refrigerant distributor for distributing the refrigerant to each path is required at the inlet of the heat exchanger. In addition, for example, in a multi-type air conditioner in which a plurality of outdoor units and indoor units are connected in parallel, a refrigerant distributor is required to distribute the refrigerant from the main refrigerant passage to each unit. Generally, the refrigerant that has passed through the expansion valve of the refrigeration cycle device and the refrigerant at the inlet of the evaporator are in a gas-liquid two-phase state of a gas refrigerant and a liquid refrigerant, and a density distribution occurs in the cross section of the refrigerant flowing in the pipe. . For example, if there is a bend in the inflow pipe, due to the effect of centrifugal force, and if the inflow pipe and the refrigerant distributor main body are horizontally arranged, due to the effect of gravity, the liquid refrigerant is biased to flow unevenly on the inner surface of one pipe. The phenomenon occurs. Therefore, in the refrigerant distributor, the phenomenon of non-uniform flow as described above does not occur, the separation of gas and liquid can be prevented, the refrigerant is homogeneously mixed, and the gas-liquid mass flow ratio at the refrigerant distributor inlet and the refrigerant distributor. A function of distributing the refrigerant in a state where the gas-liquid mass flow rate ratio at the outlet is uniform is required.

【0003】従来の冷媒分配器としては特開平2−16
6366号公報が挙げられる。図15はこの冷媒分配器
を示す断面図である。図において、13は冷媒分配器本
体、15は絞り部、16は流入管、17は衝突壁、18
は周壁、19は流出管21の流入口、20は流出管21
の流出口、21は流出管である。従来の冷媒分配器は、
冷媒分配器本体13に流入管16と複数の流出管21を
それぞれ接続するとともに、冷媒分配器本体13の内部
に衝突壁17と周壁18からなる分岐空間を形成し、流
入管16から分岐空間へ至る流路に絞り部15を設けて
いる。そして流入管径をD1、周壁内径をD2、絞り径
をL1、絞り部15から衝突壁17までの距離をL2と
した場合、D2/D1<2.0、L1/D1<0.5、
L2<30mmとしている。
As a conventional refrigerant distributor, Japanese Patent Laid-Open No. 2-16
6366 publication is mentioned. FIG. 15 is a sectional view showing this refrigerant distributor. In the figure, 13 is a refrigerant distributor main body, 15 is a throttle part, 16 is an inflow pipe, 17 is a collision wall, 18
Is the peripheral wall, 19 is the inlet of the outflow pipe 21, and 20 is the outflow pipe 21.
And 21 is an outflow pipe. The conventional refrigerant distributor is
The inflow pipe 16 and the plurality of outflow pipes 21 are connected to the refrigerant distributor main body 13, respectively, and a branch space composed of the collision wall 17 and the peripheral wall 18 is formed inside the refrigerant distributor main body 13 to move from the inflow pipe 16 to the branch space. A narrowed portion 15 is provided in the flow path that reaches. When the inlet pipe diameter is D1, the peripheral wall inner diameter is D2, the throttle diameter is L1, and the distance from the throttle portion 15 to the collision wall 17 is L2, D2 / D1 <2.0, L1 / D1 <0.5,
L2 <30 mm.

【0004】このように構成した冷媒分配器では、絞り
部15によって流入管16から流入した冷媒を分岐空間
に噴出させ、分岐空間の衝突壁17に衝突させて気液二
相流の均一化を促進させる。そして、分岐空間から複数
の流出管21に分配するのであるが、分岐空間をある程
度小さく構成することにより、液溜りや気溜りの形成を
無くし、均等に流出管21に分配しようとするものであ
る。
In the refrigerant distributor configured as described above, the refrigerant flowing from the inflow pipe 16 is jetted into the branch space by the throttle portion 15 and collided with the collision wall 17 of the branch space to make the gas-liquid two-phase flow uniform. Promote. Then, the branch space is distributed to the plurality of outflow pipes 21. By making the branch space small to some extent, formation of a liquid pool or an air pool is eliminated, and the distribution space is evenly distributed to the outflow pipes 21. .

【0005】[0005]

【発明が解決しようとする課題】従来の冷媒分配器は以
上のように構成されているので、流入管16より上流で
配管に曲がりがある場合や、流入管16や冷媒分配器本
体13が水平に配置されている場合などによって気液二
相冷媒に偏流がある場合、流入管径D1に対して絞り径
L1をL1/D1<0.5としただけでは、複数の流出
管21で均等に分配ができない。これは、上記の条件だ
けでは、冷媒流速が遅い場合や冷媒の気液二相の流量比
が変化して極端に液冷媒の質量流量が多い場合など、広
範囲な流動状態において気液二相冷媒を均質に攪拌、混
合できないためである。さらに、衝突壁17と周壁18
からなる分岐空間の容積はπ×(D2)2/4×L2
(π:円周率)となるのであるが、D2/D1<2.
0、L2<30mmとしただけでは、冷媒流速が遅い場
合などに分岐空間容積が十分小さいとは言えず、気液二
相冷媒が絞り部15を通過後再度分離してしまい、流出
管21で均等分配ができないという問題点があった。
Since the conventional refrigerant distributor is constructed as described above, there is a bend in the pipe upstream of the inflow pipe 16, or the inflow pipe 16 and the refrigerant distributor main body 13 are horizontal. In the case where the gas-liquid two-phase refrigerant has a non-uniform flow due to such a situation as being arranged in the above-mentioned case, by simply setting the throttle diameter L1 to L1 / D1 <0.5 with respect to the inflow pipe diameter D1, the plurality of outflow pipes 21 can be made uniform. Cannot be distributed. This is because under the above conditions alone, the gas-liquid two-phase refrigerant is used in a wide range of flow conditions, such as when the refrigerant flow velocity is slow or when the gas-liquid two-phase flow rate of the refrigerant changes and the mass flow rate of the liquid refrigerant is extremely large. This is because it is impossible to uniformly stir and mix. Further, the collision wall 17 and the peripheral wall 18
The volume of the branch space of the π × (D2) 2/4 × L2
(Π: pi), D2 / D1 <2.
If only 0, L2 <30 mm, the branch space volume cannot be said to be sufficiently small when the flow velocity of the refrigerant is slow, and the gas-liquid two-phase refrigerant is separated again after passing through the throttle section 15, and the outflow pipe 21 There was a problem that it could not be distributed evenly.

【0006】本発明による冷媒分配器は、以上のような
問題点を解決するためになされたもので、冷媒分配器よ
りも上流の配管に曲がりがある場合や、配管や冷媒分配
器本体が水平に配置されている場合など、どのような冷
媒分配器の設置状況においても、偏流の影響を受けずに
気液の分離が生じることなく、冷媒を攪拌、混合し、複
数の流出管に均質に冷媒を分配することを目的とする。
The refrigerant distributor according to the present invention has been made in order to solve the above problems, and when the pipe upstream of the refrigerant distributor has a bend or the pipe or the refrigerant distributor main body is horizontal. In any installation condition of the refrigerant distributor, such as the case where the refrigerant is installed, the refrigerant is agitated and mixed without being affected by the non-uniform flow and the separation of gas and liquid does not occur. The purpose is to distribute the refrigerant.

【0007】さらに本発明による冷媒分配器を空気調和
機や冷凍装置などの冷凍サイクル装置に用いることによ
り、その性能や効率を向上させるとともに、冷媒分配の
不均質性に起因する信頼性上の問題、例えば冷媒音の発
生や蒸発器での露飛びなどを防止することを目的とす
る。
Further, by using the refrigerant distributor according to the present invention in a refrigerating cycle device such as an air conditioner or a refrigerating device, its performance and efficiency are improved, and reliability problems due to the non-uniformity of refrigerant distribution are caused. For example, the purpose is to prevent the generation of refrigerant noise and the splashing of dew on the evaporator.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1による
冷媒分配器は、流入管から流入した冷媒を通過させる混
合部、および複数の流出管に接続し、混合部から流入し
た冷媒を流出管のそれぞれに分配する分岐空間を備え、
混合部における内径をD[m]、冷媒の流れ方向の長さ
をL[m]、この混合部を流れる冷媒の質量流量をW
[kg/s]とすると、D、Lが、L/D>5を満たす
とともに、D、WがW/(π×D /4)>500
(π:円周率)を満たすように混合部を構成したもので
ある。
According to a first aspect of the present invention, there is provided a refrigerant distributor, which is connected to a mixing section through which a refrigerant flowing from an inflow pipe passes, and a plurality of outflow tubes, and discharges the refrigerant flowing from the mixing section. With a branch space that distributes to each of the tubes,
Inner diameter in mixing section is D [m], length of refrigerant in flow direction
Is L [m], and the mass flow rate of the refrigerant flowing through this mixing section is W
[Kg / s], D and L satisfy L / D> 5
With, D, W is W / (π × D 2/ 4)> 500
The mixing part is configured to satisfy (π: pi)
is there.

【0009】[0009]

【0010】[0010]

【0011】[0011]

【0012】また、本発明の請求項による冷媒分配器
は、請求項1に記載の冷媒分配器において、分岐空間の
冷媒の流れ方向の高さをH[m]、混合部を流れる冷媒
の質量流量をW[kg/s]とすると、W/H>2を満
たすように分岐空間を構成したものである。
A refrigerant distributor according to a second aspect of the present invention is the refrigerant distributor according to the first aspect, wherein the height of the branch space in the flow direction of the refrigerant is H [m] and the refrigerant flowing through the mixing portion is When the mass flow rate is W [kg / s], the branch space is configured to satisfy W / H> 2.

【0013】また、本発明の請求項による冷媒分配器
は、請求項1または請求項2に記載の冷媒分配器におい
て、分岐空間の容積をV[m]、混合部を流れる冷媒
の質量流量をW[kg/s]とすると、W/V>10を
満たすように分岐空間を構成したものである。
The refrigerant distributor according to claim 3 of the present invention is the refrigerant distributor according to claim 1 or 2 , wherein the volume of the branch space is V [m 3 ] and the mass of the refrigerant flowing through the mixing portion. When the flow rate is W [kg / s], the branch space is configured to satisfy W / V> 10.

【0014】[0014]

【0015】また、本発明の請求項による冷凍サイク
ル装置は、請求項1ないし請求項のいずれかに記載の
冷媒分配器を、冷媒を循環させる冷媒流路の冷媒分岐部
に設けたものである。
According to a fourth aspect of the present invention, there is provided a refrigeration cycle apparatus in which the refrigerant distributor according to any one of the first to third aspects is provided in a refrigerant branch portion of a refrigerant passage for circulating a refrigerant. Is.

【0016】[0016]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

実施の形態1.以下、本発明の実施の形態1を図に基づ
いて説明する。図1は実施の形態1による冷媒分配器を
示す断面図である。図1において、1は冷媒分配器本
体、2は流入管、3a,3bは例えば2本の流出管、4
は細管で構成した混合部、5は分岐空間である。また、
図中の矢印は冷媒の流れ方向を示し、Lは混合部4の流
れ方向の長さ[m]、Dは混合部4の内径[m]、Hは
分岐空間5の流れ方向の高さ[m]、Vは分岐空間5の
容積[m3]、Wは混合部4を流れる冷媒の質量流量
[kg/s]を示している。
Embodiment 1. Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a refrigerant distributor according to the first embodiment. In FIG. 1, 1 is a refrigerant distributor body, 2 is an inflow pipe, 3a and 3b are, for example, two outflow pipes, 4
Is a mixing section composed of a thin tube, and 5 is a branch space. Also,
The arrow in the figure indicates the flow direction of the refrigerant, L is the length [m] of the mixing part 4 in the flow direction, D is the inner diameter [m] of the mixing part 4, and H is the height of the branch space 5 in the flow direction [m]. m], V is the volume [m 3 ] of the branch space 5, and W is the mass flow rate [kg / s] of the refrigerant flowing through the mixing section 4.

【0017】冷媒分配器本体1は、一端側に流入管2、
他端側に複数、例えば2本の流出管3a,3bをそれぞ
れ接続し、冷媒分配器本体1の流入管2側に流入管2に
接続する混合部4を設けている。この混合部4は細管で
構成され、流入する気液二相冷媒の流動状態を気泡流や
環状噴霧流などの均質流にするという機能を有する。本
実施の形態では、例えば混合部4の内径を流入管2の内
径より小さく、かつ混合部4の流れ方向長さより大幅に
小さい長さで構成している。そして、混合部4から2本
の流出管3a,3bに至る間に分岐空間5を設け、流入
管2から流入した冷媒は、混合部4で縮流加速され、分
岐空間5を経由して流出管3a,3bに分配される。
The refrigerant distributor body 1 has an inflow pipe 2 on one end side,
A plurality of, for example, two outflow pipes 3a and 3b are respectively connected to the other end side, and a mixing section 4 connected to the inflow pipe 2 is provided on the inflow pipe 2 side of the refrigerant distributor body 1. The mixing section 4 is composed of a thin tube and has a function of making the flow state of the inflowing gas-liquid two-phase refrigerant a homogeneous flow such as a bubbly flow or an annular spray flow. In the present embodiment, for example, the inner diameter of the mixing portion 4 is smaller than the inner diameter of the inflow pipe 2 and is significantly smaller than the length of the mixing portion 4 in the flow direction. A branch space 5 is provided between the mixing section 4 and the two outflow pipes 3a and 3b, and the refrigerant flowing from the inflow tube 2 is contracted and accelerated in the mixing section 4 and flows out through the branch space 5. The tubes 3a, 3b are distributed.

【0018】次に分配の作用について説明する。図2は
水平に設置した冷媒分配器本体1内の冷媒の状態を示す
説明図で、流入管2からガス冷媒と液冷媒の気液二相冷
媒が流入し、流出管3a,3bから気液二相冷媒が流出
する様子を示す。また、図3は、流出管3a,3bを水
平方向に設置した例を示す斜視図であり、図4は、流出
管3a,3bの配置を図3に示したものから軸を中心に
回転させ、垂直方向に設置した例を示す斜視図である。
図2に示すように流入管2の内部では重力の影響で液冷
媒が配管下面に偏在して偏流現象が起こっている。本実
施の形態では、細管で構成した混合部4の内径D
[m]、長さL[m]、冷媒の質量流量W[kg/s]
の関係を、式1,式2を満たすものとした。
Next, the operation of distribution will be described. FIG. 2 is an explanatory diagram showing the state of the refrigerant in the horizontally arranged refrigerant distributor body 1, in which a gas-liquid two-phase refrigerant of a gas refrigerant and a liquid refrigerant flows in from an inflow pipe 2 and gas-liquid flows from an outflow pipe 3a, 3b. It shows how the two-phase refrigerant flows out. 3 is a perspective view showing an example in which the outflow pipes 3a and 3b are installed in the horizontal direction, and FIG. 4 shows the outflow pipes 3a and 3b rotated about the axis from the one shown in FIG. FIG. 3 is a perspective view showing an example of installation in the vertical direction.
As shown in FIG. 2, in the inside of the inflow pipe 2, the liquid refrigerant is unevenly distributed on the lower surface of the pipe due to the influence of gravity, and a nonuniform flow phenomenon occurs. In the present embodiment, the inner diameter D of the mixing section 4 formed of a thin tube is used.
[M], length L [m], refrigerant mass flow rate W [kg / s]
The relationship is defined as satisfying Equations 1 and 2.

【0019】 L/D>5 ...(1) W/(π×D2/4)>500 ...(2) π:円周率L / D> 5. . . (1) W / (π × D 2/4)> 500. . . (2) π: Pi

【0020】上記のように混合部4を構成すれば、例え
ば流入管2より上流の配管に曲がりがある場合なども含
めて気液二相冷媒に偏流がある場合でも、流入管2から
流入した気液二相冷媒は、混合部4で縮流、加速される
ことにより、気液二相冷媒は十分に攪拌、混合されて均
質流となる。
When the mixing section 4 is constructed as described above, even if the gas-liquid two-phase refrigerant has a non-uniform flow, for example, when the pipe upstream of the inflow pipe 2 has a bend, it flows in from the inflow pipe 2. The gas-liquid two-phase refrigerant is contracted and accelerated in the mixing section 4, so that the gas-liquid two-phase refrigerant is sufficiently stirred and mixed to form a homogeneous flow.

【0021】また、本実施の形態では、分岐空間5の高
さH[m]、容積V[m3]の関係を式3,式4を満た
すものとした。
Further, in the present embodiment, the relationship between the height H [m] and the volume V [m 3 ] of the branch space 5 satisfies the expressions 3 and 4.

【0022】 W/H>2 ...(3) W/V>10 ...(4)[0022]     W / H> 2. . . (3)     W / V> 10. . . (4)

【0023】特に図4に示すように流出管3a,3bを
垂直方向に設置した場合には、重力の影響で液冷媒が下
方の流出管3aに偏在しやすいが、式3,式4のように
分岐空間5の高さH[m]、容積V[m3]を定める
と、分岐空間5で気液二相冷媒は十分に攪拌、混合され
て均質流となり、流出管3a,3bからは均質な状態の
冷媒が流出する。例えば、分岐空間5の断面積が混合部
4より大きくなったとしても、容積Vと高さHを式3,
式4の関係を満たすように小さくすれば、液溜りや気溜
りが形成されることなく、流出管3a,3bに均質に気
液二相冷媒を分配することができる。ここで、均質な状
態とは、冷媒分配器の入口、即ち流入管2を流れる気液
質量流量比と、冷媒分配器の複数の出口、即ち流出管3
a,3bを流れる気液質量流量比とがそれぞれ均等であ
る状態のことを言う。
In particular, when the outflow pipes 3a and 3b are installed vertically as shown in FIG. 4, the liquid refrigerant is likely to be unevenly distributed in the lower outflow pipe 3a due to the influence of gravity. When the height H [m] and the volume V [m 3 ] of the branch space 5 are determined in the above, the gas-liquid two-phase refrigerant is sufficiently agitated and mixed in the branch space 5 to form a homogeneous flow, and from the outflow pipes 3a and 3b, The refrigerant in a homogeneous state flows out. For example, even if the cross-sectional area of the branch space 5 is larger than that of the mixing section 4, the volume V and the height H are calculated by the formula 3,
If it is made small so as to satisfy the relationship of Expression 4, the gas-liquid two-phase refrigerant can be homogeneously distributed to the outflow pipes 3a and 3b without forming a liquid pool or a gas pool. Here, the homogeneous state means the gas-liquid mass flow ratio flowing through the inlet of the refrigerant distributor, that is, the inflow pipe 2, and the plurality of outlets of the refrigerant distributor, that is, the outflow pipe 3.
It means that the gas-liquid mass flow rate ratios flowing through a and 3b are equal to each other.

【0024】次に、本実施の形態による冷媒分配器の混
合部4の内径D[m]、長さL[m]、混合部4を流れ
る冷媒の質量流量W[kg/s]、分岐空間5の高さH
[m]、容積V[m3]を変化させ、冷媒分配器本体1
の設置状態を変更した場合の流出管3a,3bへの分配
比率の試験結果について、図5,図6,図7,図8にグ
ラフで示す。この試験は、図4に示すように、2本の流
出管3a,3bを有する冷媒分配器を水平に設置し、流
出管3a,3bを垂直方向に配置したものを用いた例で
あり、気液二相冷媒の偏流が一番大きい場合を示す。そ
して、各図の縦軸である分配比率[%]は、2本の流出
管3a,3bのうちの下方の流出管3aの冷媒分配比率
を示している。また、各図において、性能低下をきたさ
ない実用上の流出管3aの分配比率[%]の許容範囲を
48%〜52%とし、図のそれぞれに斜線の範囲内で示
す。
Next, the inner diameter D [m], the length L [m] of the mixing section 4 of the refrigerant distributor according to the present embodiment, the mass flow rate W [kg / s] of the refrigerant flowing through the mixing section 4, and the branch space. Height H of 5
[M] and volume V [m 3 ] are changed, and the refrigerant distributor main body 1
The test results of the distribution ratio to the outflow pipes 3a and 3b when the installation state of is changed are shown in the graphs of FIGS. 5, 6, 7, and 8. This test is an example in which a refrigerant distributor having two outflow pipes 3a and 3b is horizontally installed and the outflow pipes 3a and 3b are vertically arranged as shown in FIG. The case where the drift of the liquid two-phase refrigerant is the largest is shown. Then, the distribution ratio [%] on the vertical axis of each drawing indicates the refrigerant distribution ratio of the lower outflow pipe 3a of the two outflow pipes 3a and 3b. Further, in each drawing, the allowable range of the distribution ratio [%] of the practical outflow pipe 3a that does not cause the performance deterioration is set to 48% to 52%, and each is shown within the range of the shaded area.

【0025】図5の横軸はパラメータL/D(混合部4
の長さ/内径)であり、縦軸は質量流量W=0.01
[kg/s]とした時の分配比率[%]を示している。
図に示されるように、L/D>5の範囲で許容範囲とな
り、この範囲では混合部4の内径Dに対して長さLを十
分長く構成しているので、気液二相冷媒がより均質化さ
れる。図6の横軸はパラメータW/(π×D2/4)
(混合部4の断面における単位面積あたりの質量流量)
であり、縦軸は混合部4の長さL=0.05[m]、内
径D=0.005[m]とした時の分配比率[%]を示
している。図に示されるように、W/(π×D2/4)
>500の範囲で許容範囲となり、この範囲では混合部
4の質量流速を十分速くしているので、気液二相冷媒が
より均質化される。図7の横軸はパラメータW/H(質
量流量/分岐空間5の高さ)であり、縦軸は質量流量W
=0.01[kg/s]、混合部4の長さL=0.05
[m]、内径D=0.005[m]とした時の分配比率
[%]を示している。図に示されるように、W/H>2
の範囲で許容範囲となり、この範囲では分岐空間5の高
さを十分小さくしているので、気液二相冷媒がより均質
化される。図8の横軸はパラメータW/V(質量流量/
分岐空間5の容積)であり、縦軸は質量流量W=0.0
1[kg/s]、混合部4の長さL=0.05[m]、
内径D=0.005[m]とした時の分配比率[%]を
示している。図に示されるように、W/V>10の範囲
で許容範囲となり、この範囲では分岐空間5の容積を十
分小さくしているので、気液二相冷媒がより均質化され
る。
The horizontal axis of FIG. 5 is the parameter L / D (mixing unit 4
(Length / inner diameter), and the vertical axis indicates mass flow rate W = 0.01
The distribution ratio [%] when [kg / s] is shown.
As shown in the figure, the allowable range is L / D> 5, and the length L is sufficiently long with respect to the inner diameter D of the mixing section 4 in this range, so that the gas-liquid two-phase refrigerant is more effective. Homogenized. The horizontal axis parameter W / (π × D 2/ 4) in FIG. 6
(Mass flow rate per unit area in cross section of mixing section 4)
The vertical axis represents the distribution ratio [%] when the length L of the mixing section 4 is 0.05 [m] and the inner diameter D is 0.005 [m]. As shown in FIG., W / (π × D 2 /4)
In the range of> 500, the allowable range is established. In this range, the mass flow rate of the mixing section 4 is sufficiently high, so that the gas-liquid two-phase refrigerant is more homogenized. The horizontal axis of FIG. 7 is the parameter W / H (mass flow rate / height of the branch space 5), and the vertical axis is the mass flow rate W.
= 0.01 [kg / s], length L of the mixing part 4 = 0.05
The distribution ratio [%] when [m] and the inner diameter D = 0.005 [m] is shown. As shown in the figure, W / H> 2
In this range, the height of the branch space 5 is made sufficiently small, so that the gas-liquid two-phase refrigerant is more homogenized. The horizontal axis of FIG. 8 indicates the parameter W / V (mass flow rate /
The volume of the branch space 5), and the vertical axis indicates the mass flow rate W = 0.0.
1 [kg / s], length L of the mixing part 4 = 0.05 [m],
The distribution ratio [%] is shown when the inner diameter D is 0.005 [m]. As shown in the figure, the allowable range is in the range of W / V> 10, and since the volume of the branch space 5 is sufficiently small in this range, the gas-liquid two-phase refrigerant is more homogenized.

【0026】このように、冷媒分配器を構成する混合部
4を細管で構成すれば、流入管2で偏流状態であった気
液二相冷媒を縮流、加速することにより均質流とするこ
とができる。特に、混合部4の形状を式1,式2を満た
すように構成すれば、冷媒を確実に攪拌、混合できる。
さらに、分岐空間5の形状を式3,式4を満たすように
構成すれば、流出管3a,3bからはそれぞれ均質な状
態の気液二相冷媒が流出し、冷媒分配器としての性能を
保持できる。
As described above, when the mixing section 4 constituting the refrigerant distributor is formed of a thin tube, the gas-liquid two-phase refrigerant, which was in a non-uniform flow state in the inflow tube 2, is contracted and accelerated to form a homogeneous flow. You can In particular, if the shape of the mixing portion 4 is configured to satisfy the formulas 1 and 2, the refrigerant can be surely stirred and mixed.
Further, if the shape of the branch space 5 is configured to satisfy the equations 3 and 4, the gas-liquid two-phase refrigerant in a homogeneous state flows out from the outflow pipes 3a and 3b, respectively, and the performance as the refrigerant distributor is maintained. it can.

【0027】なお、図3,図4では例えば2本の流出管
3a,3bを有する例について述べたが、流出管が3本
以上の場合でも、同様の効果を奏する。また、分岐空間
5の形状は円筒形や鞍型など、どのような形状で構成し
てもよく、式3を満たすように高さHを構成し、式4を
満たすように容積Vを構成すればよい。また、式3,式
4をともに満たしていなくても、高さHまたは容積Vの
どちらか一方を満足していれば、ある程度気液二相冷媒
を均質に分配する効果を発揮する。
Although an example having two outflow pipes 3a and 3b has been described with reference to FIGS. 3 and 4, the same effect can be obtained even when the number of outflow pipes is three or more. The shape of the branch space 5 may be any shape such as a cylindrical shape or a saddle shape, and the height H may be configured to satisfy the expression 3 and the volume V may be configured to satisfy the expression 4. Good. Further, even if neither Expression 3 nor Expression 4 is satisfied, if either the height H or the volume V is satisfied, the effect of uniformly distributing the gas-liquid two-phase refrigerant is exhibited to some extent.

【0028】また上記では、冷媒分配器に気液二相冷媒
が流入する例について述べたが、ガスや液の単相冷媒
や、ガス冷媒と冷凍機油が混合して流れる気液二相冷媒
や、液冷媒と冷媒に溶解しない冷凍機油が流れる液−液
冷媒、液冷媒と冷媒に溶解しない冷凍機油とガス冷媒が
流れる気−液−液冷媒などの状態でも同様であり、混合
部を細管、特に式1,式2を満たすように構成すれば、
冷媒分配器は冷媒を均質に分配する効果を発揮する。ま
た、分岐空間5を式3,式4を満たすように構成すれ
ば、さらに均質に冷媒を分配することができる。
In the above description, the example in which the gas-liquid two-phase refrigerant flows into the refrigerant distributor has been described. However, the gas-liquid single-phase refrigerant, the gas-liquid two-phase refrigerant flowing by mixing the gas refrigerant and the refrigerating machine oil, and the like. , Liquid refrigerant and liquid-liquid refrigerant in which the refrigerating machine oil that does not dissolve in the refrigerant flows, the same also in the state such as gas-liquid-liquid refrigerant that flows in the refrigerating machine oil and gas refrigerant that do not dissolve in the liquid refrigerant and refrigerant, the mixing portion is a thin tube, In particular, if it is configured so as to satisfy Equations 1 and 2,
The refrigerant distributor exerts an effect of uniformly distributing the refrigerant. Further, if the branch space 5 is configured to satisfy the formulas 3 and 4, the refrigerant can be distributed more uniformly.

【0029】実施の形態2.以下、本発明の実施の形態
2による冷媒分配器について説明する。図9は本実施の
形態による冷媒分配器を示す斜視図である。図におい
て、6は混合部4および分岐空間5内の冷媒を攪拌する
攪拌手段で、例えば外部から通電して発振する超音波自
励素子や電磁振動素子などの振動素子であり、冷媒分配
器本体1の外部で分岐空間5に相当する部分に取り付け
ている。
Embodiment 2. Hereinafter, a refrigerant distributor according to the second embodiment of the present invention will be described. FIG. 9 is a perspective view showing the refrigerant distributor according to the present embodiment. In the figure, 6 is a stirring means for stirring the refrigerant in the mixing part 4 and the branch space 5, for example, a vibrating element such as an ultrasonic self-exciting element or an electromagnetic vibrating element that oscillates when energized from the outside. It is attached to a portion corresponding to the branch space 5 outside the unit 1.

【0030】本実施の形態では、振動素子6によって冷
媒分配器本体1の外部から混合部4や分岐空間5を振動
させ、内部の冷媒を攪拌、混合する。このため、混合部
4や分岐空間5での気液二相冷媒の攪拌、混合効果をよ
り確実なものとし、冷媒をさらに均質に分配する効果を
発揮する。なお、攪拌手段として、冷媒分配器本体1内
の分岐空間5に、例えばモータを用いて回転させる攪拌
羽根車や冷媒流れにより回転させる攪拌羽根車などの攪
拌装置を設けても、同様の効果を奏する。
In this embodiment, the vibrating element 6 vibrates the mixing section 4 and the branch space 5 from the outside of the refrigerant distributor body 1 to stir and mix the refrigerant inside. Therefore, the effect of agitating and mixing the gas-liquid two-phase refrigerant in the mixing section 4 and the branch space 5 is made more reliable, and the effect of distributing the refrigerant more uniformly is exhibited. Even if a stirring device such as a stirring impeller rotated by using a motor or a stirring impeller rotated by a refrigerant flow is provided in the branch space 5 in the refrigerant distributor main body 1 as the stirring means, the same effect can be obtained. Play.

【0031】実施の形態3.以下、本発明の実施の形態
3による冷媒分配器について説明する。図10は本実施
の形態による冷媒分配器を用いた空気調和機や冷凍装置
などの冷凍サイクル装置を示す冷媒回路図である。図に
おいて、1は冷媒分配器、7は圧縮機、8は凝縮器、9
は膨張弁、10は蒸発器である。
Embodiment 3. Hereinafter, a refrigerant distributor according to the third embodiment of the present invention will be described. FIG. 10 is a refrigerant circuit diagram showing a refrigeration cycle device such as an air conditioner or a refrigeration device using the refrigerant distributor according to the present embodiment. In the figure, 1 is a refrigerant distributor, 7 is a compressor, 8 is a condenser, and 9
Is an expansion valve and 10 is an evaporator.

【0032】このような構成の冷凍サイクル装置におい
て、膨張弁9と蒸発器10との間の冷媒流路で、循環す
る冷媒を複数、この場合は3本のパスに分割している。
そこで、この分岐部に、実施の形態1または2で記載し
た冷媒分配器1を配設している。ここで、質量流量W
[kg/s]を変化させるには、例えば、圧縮機7の回
転数を変化させたり、膨張弁9の開度を変化させればよ
い。この冷媒分配器を用いることにより、蒸発器10へ
の3本のパスに均等に冷媒を分配することができ、冷凍
サイクル装置の性能や効率を向上させることができる。
In the refrigeration cycle apparatus having such a configuration, the refrigerant flow path between the expansion valve 9 and the evaporator 10 divides the circulating refrigerant into a plurality of, in this case, three paths.
Therefore, the refrigerant distributor 1 described in the first or second embodiment is arranged at this branch portion. Where mass flow rate W
To change [kg / s], for example, the rotation speed of the compressor 7 or the opening degree of the expansion valve 9 may be changed. By using this refrigerant distributor, the refrigerant can be evenly distributed in the three paths to the evaporator 10, and the performance and efficiency of the refrigeration cycle apparatus can be improved.

【0033】また、一般に気液二相流れでは冷媒音が発
生しやすい。この冷媒音発生原因としては、不均質な液
滴流れが管壁に衝突して発生するものと考えられる。例
えば冷媒が不均質な流れとして循環する冷媒分配器を組
み込んだ冷凍サイクル装置では、冷媒音が耳障りとな
り、不良原因の一つとしてあげられることもある。そこ
で、本実施の形態では、冷凍サイクル装置を構成する
際、図10に示すように、細管で構成した混合部や分岐
空間を冷媒の質量流量を用いて最適に構成して気液二相
冷媒の均質化を図ることのできる冷媒分配器を用いてお
り、冷凍サイクル装置における冷媒音の発生を防ぐこと
ができる。このように本実施の形態では、冷媒を均質に
分配して冷凍サイクル装置の性能や効率を向上させると
ともに、冷媒分配の不均質さに起因する信頼性上の問
題、例えば冷媒音の発生や蒸発器での露飛びなどを防止
する効果も発揮する。
In general, refrigerant noise is likely to occur in a gas-liquid two-phase flow. It is considered that the cause of this refrigerant noise is that a nonuniform liquid droplet flow collides with the tube wall. For example, in a refrigeration cycle device incorporating a refrigerant distributor in which a refrigerant circulates as a non-homogeneous flow, the refrigerant noise may be offensive to the ear and may be cited as one of the causes of defects. Therefore, in the present embodiment, when the refrigeration cycle device is configured, as shown in FIG. 10, the mixing portion and the branch space configured by thin tubes are optimally configured by using the mass flow rate of the refrigerant, and the gas-liquid two-phase refrigerant is used. The use of a refrigerant distributor capable of achieving homogenization of the refrigerant makes it possible to prevent the generation of refrigerant noise in the refrigeration cycle apparatus. As described above, in the present embodiment, the refrigerant is homogeneously distributed to improve the performance and efficiency of the refrigeration cycle apparatus, and the reliability problem due to the inhomogeneity of the refrigerant distribution, for example, the generation or evaporation of the refrigerant noise. It also has the effect of preventing dew splashing on the vessel.

【0034】また、図11は、複数台の室内ユニット1
1や室外ユニット12を並列に接続してなるマルチ型空
気調和機において、メインの冷媒流路から各ユニットへ
冷媒を分配する部分に実施の形態1または2による冷媒
分配器を用いたものを示す冷媒回路図である。図におい
て、11aは室内ユニット11の熱交換器、12aは室
外ユニット12の熱交換器である。本実施の形態では、
複数の室内ユニット11に分岐する箇所と、複数の室外
ユニット12に分岐する冷媒流路の2ヶ所に冷媒分配器
1を配設している。この実施の形態1または2による冷
媒分配器によって、冷媒を室内ユニット11、室外ユニ
ット12のそれぞれに均質に分配する効果を発揮し、空
気調和機の性能や効率を向上させるとともに、冷媒音の
発生や蒸発器での露飛びなどを防止する効果も発揮す
る。なお、上記のマルチ型空気調和機では、2つの冷媒
分配器1を分岐部に設けたが、この回路構成において、
室内ユニット11へ流入する部分の冷媒は気液二相状態
ではないので、この分岐部での冷媒分配器を省略しても
循環する冷媒の状態はそれ程変化ない。
FIG. 11 shows a plurality of indoor units 1
1 shows a multi-type air conditioner in which an outdoor unit 12 and an outdoor unit 12 are connected in parallel, in which a refrigerant distributor according to the first or second embodiment is used in a portion for distributing a refrigerant from a main refrigerant passage to each unit. It is a refrigerant circuit diagram. In the figure, 11a is a heat exchanger of the indoor unit 11, and 12a is a heat exchanger of the outdoor unit 12. In this embodiment,
The refrigerant distributor 1 is disposed at two locations, a location branching into a plurality of indoor units 11 and a refrigerant flow channel branching into a plurality of outdoor units 12. The refrigerant distributor according to the first or second embodiment exerts an effect of uniformly distributing the refrigerant to each of the indoor unit 11 and the outdoor unit 12, improves the performance and efficiency of the air conditioner, and generates the refrigerant noise. It also has the effect of preventing dew splash on the evaporator. In addition, in the above multi-type air conditioner, the two refrigerant distributors 1 are provided in the branch portion, but in this circuit configuration,
Since the refrigerant in the portion flowing into the indoor unit 11 is not in the gas-liquid two-phase state, the state of the circulating refrigerant does not change so much even if the refrigerant distributor at this branch portion is omitted.

【0035】実施の形態4.以下、本発明の実施の形態
4による冷媒分配器について説明する。図12は、図1
と同じ構造を持つ冷媒分配器において、各部の寸法や気
液の流量比などを変化させ、気液二相状態で混合部4に
流入した冷媒の流動状態を調べる試験結果を示す特性図
である。図12の縦軸,横軸はそれぞれ冷媒の流動状態
を表す値であり、縦軸はGg /λで、冷媒の質量流量の
大きさを示し上に行くほどその値は大きくなる。また、
横軸はλ×ψ×Gl /Gg で、冷媒のガス質量流量と液
質量流量の比、即ち乾き度を示し、右に行くほど乾き度
は小さくなり液リッチの状態になる。ただし、上記式に
おける各パラメータは以下のものを表している。 λ=[(ρg /ρa )×(ρl /ρw )]1/2 ψ=(σw /σ)×[(μl /μw )×(ρw /ρl )
21/3 Gg [kg/m2・h]:ガス冷媒の質量流速 Gl [kg/m2・h]:液冷媒の質量流速 ρ:密度 σ:表面張力 μ:粘性係数 添字g、l、a、wはそれぞれガス、液、空気、水を表す。
Fourth Embodiment Hereinafter, a refrigerant distributor according to the fourth embodiment of the present invention will be described. 12 is shown in FIG.
In the refrigerant distributor having the same structure as the above, it is a characteristic diagram showing the test results for examining the flow state of the refrigerant flowing into the mixing section 4 in a gas-liquid two-phase state by changing the size of each part, the gas-liquid flow rate ratio, and the like. . The vertical axis and the horizontal axis of FIG. 12 are values representing the flow state of the refrigerant, and the vertical axis is Gg / λ, which indicates the mass flow rate of the refrigerant, and the value increases as it goes up. Also,
The horizontal axis represents λ × ψ × Gl / Gg, which represents the ratio of the gas mass flow rate to the liquid mass flow rate of the refrigerant, that is, the dryness. The dryness decreases toward the right and becomes liquid-rich. However, each parameter in the above equation represents the following. λ = [(ρg / ρa) × (ρl / ρw)] 1/2 ψ = (σw / σ) × [(μl / μw) × (ρw / ρl)
2 ] 1/3 Gg [kg / m 2 · h]: Gas refrigerant mass flow rate Gl [kg / m 2 · h]: Liquid refrigerant mass flow rate ρ: Density σ: Surface tension μ: Viscosity coefficient subscript g, l , A, and w represent gas, liquid, air, and water, respectively.

【0036】図12に示す冷媒の流動状態を図13を用
いて以下に説明する。図13において、(a)成層流、
(b)波状流、(c)スラグ流と呼ばれる流動状態は、
気液二相冷媒の偏流が大きい例であり、(d)環状流、
(e)気泡流、(f)環状噴霧流と呼ばれる流動状態
は、気液二相冷媒が混合、攪拌された状態である。図1
2に示したグラフでは、縦軸と横軸の値によって冷媒の
流動状態を示す領域が分かれている。ここで図12にお
ける黒丸で示す点と白丸で示す点での条件で、流出管で
の冷媒分配比率を調べた試験結果を図14に示す。図1
4は、図4に示す構成の冷媒分配器を対象とし、縦軸は
下方の流出管3aの冷媒分配比率、横軸はλ×ψ×Gl
/Gg を示すグラフである。図14においては、2本の
流出管での分配比率で性能低下をきたさない実用上の許
容範囲を48%〜52%として、斜線の範囲内で示す。
図から明らかなように、黒丸の条件ではすべてが許容範
囲に含まれており、白丸の条件ではすべてが許容範囲か
ら外れている。図12,図13とともに考察すると、混
合部において、環状噴霧流および気泡流の状態であれ
ば、良好な冷媒の分配結果が得られることがわかる。
The flow state of the refrigerant shown in FIG. 12 will be described below with reference to FIG. In FIG. 13, (a) stratified flow,
Flow states called (b) wavy flow and (c) slug flow are
This is an example in which the gas-liquid two-phase refrigerant has a large uneven flow.
The flow states called (e) bubbly flow and (f) annular spray flow are a state in which a gas-liquid two-phase refrigerant is mixed and stirred. Figure 1
In the graph shown in FIG. 2, the regions showing the flow state of the refrigerant are divided according to the values on the vertical axis and the horizontal axis. Here, FIG. 14 shows the test results of examining the refrigerant distribution ratio in the outflow pipe under the conditions of the points indicated by the black circles and the points indicated by the white circles in FIG. Figure 1
4 is intended for the refrigerant distributor having the configuration shown in FIG. 4, the vertical axis represents the refrigerant distribution ratio of the lower outflow pipe 3a, and the horizontal axis represents λ × ψ × Gl.
7 is a graph showing / Gg. In FIG. 14, the practical allowable range that does not cause the performance deterioration due to the distribution ratio of the two outflow pipes is set to 48% to 52%, and is shown within the range of the diagonal lines.
As is clear from the figure, under the conditions of black circles, all are within the allowable range, and under the conditions of white circles, all are outside the allowable range. Considering together with FIG. 12 and FIG. 13, it can be seen that a good refrigerant distribution result can be obtained in the state of the annular spray flow and the bubbly flow in the mixing section.

【0037】そこで、図12から明らかなように、混合
部4の入口での気液二相冷媒が式5,式6を満たす範囲
にあれば、混合部では気泡流から環状噴霧流の状態が得
られる。 Gg /λ>5×104 ・・・(5) λ×ψ×Gl /Gg >20 ・・・(6) そして、式5、式6を満たすように冷媒の質量流速を構
成することにより、混合部4での冷媒の流動状態は混
合、攪拌されたものとなり、偏流がなく均質化される。
従って流出管からは均質な状態の冷媒が流出され、冷媒
分配器としての性能を保持できる。
Therefore, as is apparent from FIG. 12, when the gas-liquid two-phase refrigerant at the inlet of the mixing section 4 is in the range satisfying the expressions 5 and 6, the state of the bubbly flow to the annular spray flow is changed in the mixing section. can get. Gg / λ> 5 × 10 4 (5) λ × ψ × Gl / Gg> 20 (6) Then, by configuring the mass flow rate of the refrigerant so as to satisfy Equations 5 and 6, The flow state of the refrigerant in the mixing section 4 becomes a state of being mixed and agitated, and is homogenized without any drift.
Therefore, the refrigerant in a homogeneous state flows out from the outflow pipe, and the performance as the refrigerant distributor can be maintained.

【0038】また、本実施の形態による冷媒分配器は、
混合部4の入口での気液二相冷媒の流動状態をGg /λ
>5×104かつλ×ψ×Gl /Gg >20に示す範囲
に限定して気液二相冷媒の均質化できるため、冷媒が不
均質な流れとして循環するために生じる冷媒音の発生も
防ぐこともできる。
Further, the refrigerant distributor according to the present embodiment is
The flow state of the gas-liquid two-phase refrigerant at the inlet of the mixing section 4 is Gg / λ
> 5 × 10 4 and λ × ψ × Gl / Gg> 20 Since the gas-liquid two-phase refrigerant can be homogenized only within the range shown, the refrigerant noise generated due to the refrigerant circulating as an inhomogeneous flow is also generated. You can prevent it.

【0039】なお、ここでは2本の流出管3a,3bを
有する冷媒分配器について述べたが、流出管が3本以上
の場合でも、混合部4の入口での気液二相冷媒が式5,
式6を満たす範囲に限定すれば、冷媒分配器は冷媒を均
質に分配する効果を発揮する。
Although the refrigerant distributor having the two outflow pipes 3a and 3b has been described here, even when the number of the outflow pipes is three or more, the gas-liquid two-phase refrigerant at the inlet of the mixing section 4 is expressed by the formula 5 ,
If it is limited to the range that satisfies Expression 6, the refrigerant distributor exerts the effect of uniformly distributing the refrigerant.

【0040】また、本実施の形態による冷媒分配器は、
実施の形態2に示したように、その冷媒分配器本体1の
外部に振動素子による攪拌手段を設けたり、冷媒分配器
本体1内の分岐空間5に攪拌手段を設けることにより、
混合部4や分岐空間5での気液二相冷媒の攪拌、混合効
果をより確実なものとし、冷媒を均質に分配する効果を
発揮する。
Further, the refrigerant distributor according to the present embodiment is
As shown in the second embodiment, by providing a stirring means by a vibrating element outside the refrigerant distributor main body 1 or by providing a stirring means in the branch space 5 in the refrigerant distributor main body 1,
The effect of stirring and mixing the gas-liquid two-phase refrigerant in the mixing section 4 and the branch space 5 is further ensured, and the effect of uniformly distributing the refrigerant is exhibited.

【0041】また、本実施の形態による冷媒分配器は、
実施の形態3に示したように、空気調和機や冷凍装置な
どの冷凍サイクル装置において、凝縮器あるいは蒸発器
として作用する熱交換器で内部の冷媒流路を複数パスに
分割した場合、熱交換器の入口の各パスへ冷媒を分配す
る分岐部分に用いてもよい。また、複数台の室外ユニッ
トや室内ユニットを並列に接続してなるマルチ型空気調
和機において、メインの冷媒流路から各ユニットへ冷媒
を分配するための分岐部分に用いてもよい。このような
冷凍サイクル装置に用いることにより、冷媒を均質に分
配する効果を発揮し、冷凍サイクル装置の性能や効率を
向上させるとともに、冷媒分配の不均質さに起因する信
頼性上の問題、例えば冷媒音の発生や蒸発器での露飛び
などを防止する効果も発揮する。
Further, the refrigerant distributor according to the present embodiment is
As shown in the third embodiment, in a refrigeration cycle device such as an air conditioner or a refrigeration device, when the internal refrigerant flow passage is divided into a plurality of paths by a heat exchanger acting as a condenser or an evaporator, heat exchange is performed. It may be used in a branch portion that distributes the refrigerant to each path at the inlet of the vessel. Further, in a multi-type air conditioner in which a plurality of outdoor units and indoor units are connected in parallel, it may be used as a branch portion for distributing a refrigerant from a main refrigerant passage to each unit. By using such a refrigeration cycle device, it exerts the effect of uniformly distributing the refrigerant, improves the performance and efficiency of the refrigeration cycle device, and has a reliability problem due to the non-uniformity of the refrigerant distribution, for example, It also has the effect of preventing the generation of refrigerant noise and the exposure of the evaporator to dew.

【0042】また、実施の形態1〜実施の形態4に述べ
た冷媒分配器は、冷媒の種類が変わった場合、例えばH
CFC系冷媒(R22など、単一冷媒、混合冷媒含む)
やHFC系冷媒(R134a、R407C、R410
A、R404Aなど、単一冷媒、混合冷媒含む)、HC
系冷媒(メタン、エタン、プロパン、ブタン、イソブタ
ンなど、単一冷媒、混合冷媒含む)や他の自然冷媒(空
気、水、二酸化炭素など、単一冷媒、混合冷媒含む)
や、以上述べた冷媒の混合冷媒でも同様であり、冷媒を
均質に分配する効果を発揮する。
In addition, the refrigerant distributor described in the first to fourth embodiments is, for example, H when the kind of the refrigerant is changed.
CFC refrigerants (including R22, single refrigerant, mixed refrigerant)
And HFC refrigerants (R134a, R407C, R410
A, R404A, etc., including single and mixed refrigerants), HC
System refrigerants (including methane, ethane, propane, butane, isobutane, etc., single refrigerant and mixed refrigerant) and other natural refrigerants (air, water, carbon dioxide, etc., single refrigerant, mixed refrigerant)
The same applies to the mixed refrigerant of the above-mentioned refrigerants, and the effect of uniformly distributing the refrigerants is exhibited.

【0043】また、実施の形態1〜実施の形態4におけ
る冷媒分配器は、設置場所に係わらず、例えば空気調和
機や冷凍装置のユニット内に設置しても、またユニット
の外に設置しても、同様の効果を奏する。また、例え
ば、実施の形態1〜実施の形態4では冷媒分配器を水平
に配置した場合について説明したが、垂直に配置した
り、垂直より多少傾いて配置してしまった場合など、冷
媒分配器の配置状態に係わらず、冷媒を均質に分配する
効果を発揮する。
Further, the refrigerant distributors according to the first to fourth embodiments are installed regardless of the installation location, for example, in the unit of an air conditioner or a refrigerating apparatus or outside the unit. Also has the same effect. Further, for example, in the first to fourth embodiments, the case where the refrigerant distributor is arranged horizontally has been described. However, when the refrigerant distributor is arranged vertically, or when it is arranged at a slight inclination from the vertical, the refrigerant distributor is arranged. The effect of uniformly distributing the refrigerant is exhibited regardless of the arrangement state of.

【0044】また、実施の形態1〜実施の形態4に述べ
た冷媒分配器は、流入管2の内径が混合部4の内径と同
様の細管で構成されていれば、流入管2に混合部4の機
能を代用させることができ、冷媒を均質に分配する効果
を発揮する。
In the refrigerant distributor described in the first to fourth embodiments, if the inner diameter of the inflow pipe 2 is a thin tube similar to the inner diameter of the mixing part 4, the mixing part is mixed in the inflow pipe 2. The function of 4 can be substituted, and the effect of uniformly distributing the refrigerant is exhibited.

【0045】また、実施の形態1による冷媒分配器およ
び実施の形態4による冷媒分配器を兼ね備えたものとし
て、図1に示した各部の値を、L/D>5、W/(π×
2/4)>500(π:円周率)、W/H>2、およ
びW/V>10に示す範囲に限定し、かつ混合部4の入
口での気液二相冷媒の流動状態をGg /λ>5×104
およびλ×ψ×Gl /Gg >20に示す範囲に限定する
ことによって、さらに冷媒を均質に分配する効果を発揮
する。また、この冷媒分配器を冷凍サイクル装置に用い
ることにより、性能や効率を向上させるとともに、冷媒
分配の不均質さに起因する信頼性上の問題、例えば冷媒
音の発生や蒸発器での露飛びなどを防止する効果も発揮
する。
Further, assuming that the refrigerant distributor according to the first embodiment and the refrigerant distributor according to the fourth embodiment are combined, the values of the respective parts shown in FIG. 1 are L / D> 5, W / (π ×
D 2/4)> 500 ( π: circular constant), W / H> 2, and W / V> limited to the range indicated in 10, and the flow state of the gas-liquid two-phase refrigerant at the inlet of the mixing section 4 Gg / λ> 5 × 10 4
And λ × ψ × Gl / Gg> 20, the effect of more evenly distributing the refrigerant is exhibited. In addition, by using this refrigerant distributor in a refrigeration cycle device, performance and efficiency are improved, and reliability problems due to inhomogeneity of refrigerant distribution, such as generation of refrigerant noise and exposure of the evaporator It also has the effect of preventing such problems.

【0046】[0046]

【発明の効果】以上のように、本発明の請求項1によれ
ば、流入管から流入した冷媒を通過させる混合部、およ
び複数の流出管に接続し、混合部から流入した冷媒を流
出管のそれぞれに分配する分岐空間を備え、混合部にお
ける内径をD[m]、冷媒の流れ方向の長さをL
[m]、この混合部を流れる冷媒の質量流量をW[kg
/s]とすると、D、Lが、L/D>5を満たすととも
に、D、WがW/(π×D /4)>500(π:円周
率)を満たすように混合部を構成したので、冷媒分配器
の設置状況によらず、偏流の影響を受けずに気液の分離
が生じることなく冷媒を攪拌、混合し、均質に冷媒を分
配することのできる冷媒分配器が得られる効果がある。
As described above, according to the first aspect of the present invention, the refrigerant flowing from the inflow pipe is connected to the mixing portion and the plurality of outflow pipes, and the refrigerant flowing from the mixing portion is discharged from the outflow pipe. includes a branch space distribution respectively, contact the mixing unit
Inner diameter is D [m], and the length in the flow direction of the refrigerant is L
[M], the mass flow rate of the refrigerant flowing through this mixing section is W [kg
/ S], D and L satisfy L / D> 5.
A, D, W is W / (π × D 2/ 4)> 500 (π: circle
Since the mixing section is configured to satisfy the above condition, the refrigerant is agitated and mixed without being affected by uneven flow without separation of gas and liquid regardless of the installation status of the refrigerant distributor, and the refrigerant is distributed homogeneously. There is an effect that a refrigerant distributor that can be obtained is obtained.

【0047】[0047]

【0048】[0048]

【0049】[0049]

【0050】また、本発明の請求項によれば、請求項
1に記載の冷媒分配器において、分岐空間の冷媒の流れ
方向の高さをH[m]、混合部を流れる冷媒の質量流量
をW[kg/s]とすると、W/H>2を満たすように
分岐空間を構成したことにより、冷媒分配器の設置状況
によらず、偏流の影響を受けずに気液の分離が生じるこ
となく冷媒を攪拌、混合し、均質に冷媒を分配できる冷
媒分配器が得られる効果がある。
According to a second aspect of the present invention, in the refrigerant distributor according to the first aspect, the height of the branch space in the flow direction of the refrigerant is H [m], and the mass flow rate of the refrigerant flowing through the mixing section. Is W [kg / s], the branch space is configured so as to satisfy W / H> 2, so that gas-liquid separation occurs without being affected by uneven flow regardless of the installation status of the refrigerant distributor. It is possible to obtain a refrigerant distributor that can stir and mix the refrigerant without any need and can evenly distribute the refrigerant.

【0051】また、本発明の請求項によれば、請求項
または請求項2に記載の冷媒分配器において、分岐空
間の容積をV[m]、混合部を流れる冷媒の質量流量
をW[kg/s]とすると、W/V>10を満たすよう
に分岐空間を構成したことにより、冷媒分配器の設置状
況によらず、偏流の影響を受けずに気液の分離が生じる
ことなく冷媒を攪拌、混合し、均質に冷媒を分配できる
冷媒分配器が得られる効果がある。
According to a third aspect of the present invention, in the refrigerant distributor according to the first or second aspect , the volume of the branch space is V [m 3 ] and the mass flow rate of the refrigerant flowing through the mixing section is If W [kg / s] is set, the branch space is configured so as to satisfy W / V> 10, so that gas-liquid separation occurs without being affected by uneven flow regardless of the installation status of the refrigerant distributor. There is an effect that a refrigerant distributor that can stir and mix the refrigerant without the need to uniformly distribute the refrigerant can be obtained.

【0052】[0052]

【0053】また、本発明の請求項によれば、請求項
1ないし請求項のいずれかに記載の冷媒分配器を、冷
媒を循環させる冷媒流路の冷媒分岐部に設けたことによ
り、冷凍サイクル装置の性能や効率を向上させるととも
に、冷媒分配の不均質さに起因する信頼性上の問題、例
えば冷媒音の発生や蒸発器での露飛びなどを防止できる
冷凍サイクル装置が得られる効果がある。
Further, according to a fourth aspect of the present invention, by providing the refrigerant distributor according to any one of the first to third aspects in a refrigerant branch portion of a refrigerant passage for circulating a refrigerant, An effect that can improve the performance and efficiency of the refrigeration cycle device, and can also provide a refrigeration cycle device that can prevent reliability problems due to inhomogeneity of refrigerant distribution, for example, generation of refrigerant noise and dew splash in the evaporator There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1による冷媒分配器を示
す断面図である。
FIG. 1 is a sectional view showing a refrigerant distributor according to a first embodiment of the present invention.

【図2】 実施の形態1に係り、冷媒分配器本体内の冷
媒の状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of a refrigerant in a refrigerant distributor body according to the first embodiment.

【図3】 実施の形態1に係り、2本の流出管を水平方
向に設置した場合の冷媒分配器を示す斜視図である。
FIG. 3 is a perspective view showing a refrigerant distributor in the case where two outflow pipes are horizontally installed according to the first embodiment.

【図4】 実施の形態1に係り、2本の流出管を垂直方
向に設置した場合の冷媒分配器を示す斜視図である。
FIG. 4 is a perspective view showing a refrigerant distributor when two outflow pipes are installed in a vertical direction according to the first embodiment.

【図5】 実施の形態1に係り、混合部の内径をD
[m]、長さをL[m]とした場合の、L/Dと分配比
率の関係を示すグラフである。
FIG. 5 relates to the first embodiment, where the inner diameter of the mixing portion is D
It is a graph which shows the relationship between L / D and a distribution ratio when [m] and length are L [m].

【図6】 実施の形態1に係り、混合部を流れる冷媒の
質量流量W[kg/s]と分配比率の関係を示すグラフ
である。
FIG. 6 is a graph showing a relationship between a mass flow rate W [kg / s] of a refrigerant flowing through a mixing section and a distribution ratio according to the first embodiment.

【図7】 実施の形態1に係り、分岐空間の高さをH
[m]、混合部の内径をD[m]、混合部を流れる冷媒
の質量流量W[kg/s]とした場合の、W/Hと分配
比率の関係を示すグラフである。
FIG. 7 relates to the first embodiment and sets the height of a branch space to H.
6 is a graph showing the relationship between W / H and the distribution ratio, where [m] is the inner diameter of the mixing section, D [m], and the mass flow rate W [kg / s] of the refrigerant flowing through the mixing section.

【図8】 実施の形態1に係り、分岐空間の高さをH
[m]、容積をV[m3]、混合部の内径をD[m]、
混合部を流れる冷媒の質量流量W[kg/s]とした場
合のW/Vと分配比率の関係を示すグラフである。
FIG. 8 relates to the first embodiment and sets the height of the branch space to H.
[M], the volume is V [m 3 ], the inner diameter of the mixing section is D [m],
It is a graph which shows the relationship of W / V and distribution ratio when it is considered as the mass flow rate W [kg / s] of the refrigerant which flows through a mixing part.

【図9】 本発明の実施の形態2による冷媒分配器を示
す斜視図である。
FIG. 9 is a perspective view showing a refrigerant distributor according to a second embodiment of the present invention.

【図10】 本発明の実施の形態3に係る冷媒分配器を
用いた冷凍サイクル装置の冷媒回路図である。
FIG. 10 is a refrigerant circuit diagram of a refrigeration cycle device using a refrigerant distributor according to a third embodiment of the present invention.

【図11】 実施の形態3に係る冷媒分配器を用いたマ
ルチ型空気調和機の冷媒回路図である。
FIG. 11 is a refrigerant circuit diagram of a multi-type air conditioner using the refrigerant distributor according to the third embodiment.

【図12】 本発明の実施の形態4に係る冷媒分配器に
おいて、混合部の入口での気液二相冷媒の流動状態を表
した特性図である。
FIG. 12 is a characteristic diagram showing a flow state of the gas-liquid two-phase refrigerant at the inlet of the mixing section in the refrigerant distributor according to the fourth embodiment of the present invention.

【図13】 実施の形態4に係る冷媒分配器において、
気液二相冷媒の流動様式を表した説明図である。
FIG. 13 is a diagram showing a refrigerant distributor according to a fourth embodiment,
It is explanatory drawing showing the flow mode of a gas-liquid two-phase refrigerant.

【図14】 実施の形態4に係り、流動状態λ×ψ×G
l /Gg と分配比率の関係を示すグラフである。
FIG. 14 relates to a fourth embodiment and is in a fluidized state λ × ψ × G.
It is a graph which shows the relationship between l / Gg and a distribution ratio.

【図15】 従来の冷媒分配器を示す断面図である。FIG. 15 is a cross-sectional view showing a conventional refrigerant distributor.

【符号の説明】[Explanation of symbols]

1 冷媒分配器本体、2 流入管、3a,3b 流出
管、4 混合部、5 分岐空間、6 攪拌手段、7 圧
縮機、8 凝縮器、9 膨張弁、10 蒸発器、11
室外ユニット、12 室内ユニット。
DESCRIPTION OF SYMBOLS 1 Refrigerant distributor main body, 2 Inflow pipe, 3a, 3b Outflow pipe, 4 Mixing part, 5 Branch space, 6 Stirring means, 7 Compressor, 8 Condenser, 9 Expansion valve, 10 Evaporator, 11
Outdoor unit, 12 indoor units.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河西 智彦 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 舟山 功 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 森下 国博 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 平6−88657(JP,A) 実開 昭54−42155(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 41/00 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Tomohiko Kasai 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Isao Funayama 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Co., Ltd. (72) Inventor Kunihiro Morishita 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Co., Ltd. (56) Reference JP-A-6-88657 (JP, A) Actual Development Sho 54-42155 (JP , U) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 41/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流入管から流入した冷媒を通過させる混
合部、および複数の流出管に接続し、上記混合部から流
入した上記冷媒を上記流出管のそれぞれに分配する分岐
空間を備え、上記混合部における内径をD[m]、冷媒
の流れ方向の長さをL[m]、この混合部を流れる冷媒
の質量流量をW[kg/s]とすると、D、Lが、L/
D>5を満たすとともに、D、WがW/(π×D
4)>500(π:円周率)を満たすように上記混合部
を構成したことを特徴とする冷媒分配器。
1. A mixing unit for passing the refrigerant flowing in from the inlet pipe, and connected to a plurality of outlet tubes, the refrigerant flowing from the mixing section comprises a branch space to be distributed to each of the outflow pipe, the mixed Inner diameter of the part is D [m], refrigerant
The length in the flow direction of L [m], the refrigerant flowing through this mixing section
If the mass flow rate of W is [kg / s], then D and L are L /
While satisfying D> 5, D and W are W / (π × D 2 /
4) The above-mentioned mixing part so as to satisfy> 500 (π: pi)
Refrigerant distributor characterized in that.
【請求項2】 分岐空間の冷媒の流れ方向の高さをH
[m]、混合部を流れる冷媒の質量流量をW[kg/
s]とすると、W/H>2を満たすように上記分岐空間
を構成したことを特徴とする請求項に記載の冷媒分配
器。
2. The height of the branch space in the flow direction of the refrigerant is H
[M], the mass flow rate of the refrigerant flowing through the mixing section is W [kg /
[s]], the refrigerant distributor according to claim 1 , wherein the branch space is configured so as to satisfy W / H> 2.
【請求項3】 分岐空間の容積をV[m]、混合部を
流れる冷媒の質量流量をW[kg/s]とすると、W/
V>10を満たすように上記分岐空間を構成したことを
特徴とする請求項1または請求項2に記載の冷媒分配
器。
3. When the volume of the branch space is V [m 3 ] and the mass flow rate of the refrigerant flowing through the mixing section is W [kg / s], W /
The refrigerant distributor according to claim 1 or 2 , wherein the branch space is configured to satisfy V> 10.
【請求項4】 請求項1ないし請求項のいずれか1項
に記載の冷媒分配器を、冷媒を循環させる冷媒流路の冷
媒分岐部に設けたことを特徴とする冷凍サイクル装置。
4. A refrigerant distributor and a refrigeration cycle device, characterized in that provided in the refrigerant branch portion of the refrigerant flow path for circulating a refrigerant according to any one of claims 1 to 3.
JP26536097A 1997-09-30 1997-09-30 Refrigerant distributor and refrigeration cycle device using the same Expired - Lifetime JP3387387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26536097A JP3387387B2 (en) 1997-09-30 1997-09-30 Refrigerant distributor and refrigeration cycle device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26536097A JP3387387B2 (en) 1997-09-30 1997-09-30 Refrigerant distributor and refrigeration cycle device using the same

Publications (2)

Publication Number Publication Date
JPH11101530A JPH11101530A (en) 1999-04-13
JP3387387B2 true JP3387387B2 (en) 2003-03-17

Family

ID=17416105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26536097A Expired - Lifetime JP3387387B2 (en) 1997-09-30 1997-09-30 Refrigerant distributor and refrigeration cycle device using the same

Country Status (1)

Country Link
JP (1) JP3387387B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560939B2 (en) * 2000-10-20 2010-10-13 ダイキン工業株式会社 Refrigerant shunt and air conditioner using the same
JP4571019B2 (en) 2005-06-14 2010-10-27 ダイキン工業株式会社 Refrigerant shunt
JP5127578B2 (en) * 2008-06-13 2013-01-23 三菱電機株式会社 Refrigeration cycle equipment
JP5696069B2 (en) * 2012-02-29 2015-04-08 日立アプライアンス株式会社 Refrigeration cycle equipment
WO2016046882A1 (en) * 2014-09-22 2016-03-31 三菱電機株式会社 Refrigeration cycle device
CN107003085B (en) 2014-11-04 2019-01-04 三菱电机株式会社 Laminated type collector, heat exchanger and air-conditioning device
JP2019108990A (en) * 2016-04-20 2019-07-04 ダイキン工業株式会社 Refrigeration unit having straightening refrigerant flow passage
CN109323488A (en) * 2018-09-03 2019-02-12 上海科凌能源科技有限公司 A kind of current divider for realizing uniform and stable shunting based on annular flow rectification
JP7001923B2 (en) * 2019-04-10 2022-01-20 ダイキン工業株式会社 Piping unit or air conditioning system
CN113932488A (en) * 2021-09-19 2022-01-14 青岛海尔空调器有限总公司 Heat exchanger, refrigeration cycle system and air conditioner

Also Published As

Publication number Publication date
JPH11101530A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
US8052064B2 (en) Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
JP3387387B2 (en) Refrigerant distributor and refrigeration cycle device using the same
JP3376534B2 (en) Refrigerant distributor
US4543802A (en) Evaporating apparatus
JPH11337293A (en) Evaporator
JP3480392B2 (en) Refrigerant distributor and refrigeration cycle device using the same
JPH11351706A (en) Refrigerant distributor
JPH0829018A (en) Refrigerant flow divider
JP4560939B2 (en) Refrigerant shunt and air conditioner using the same
JPH1123104A (en) Air conditioner
JP5193630B2 (en) Heat exchanger
JP3247087B2 (en) Piping structure including heat exchanger and air conditioner using the same
JPH05223490A (en) Heat exchanger
JP2746681B2 (en) Refrigerant flow divider
JP3644289B2 (en) Gas-liquid two-phase fluid distributor and refrigeration cycle apparatus using the same
JPH0961016A (en) Refrigerant distributor
JP5045252B2 (en) Air conditioner
JPH05203285A (en) Heat exchanger
JP6715958B2 (en) Expansion valve and refrigeration cycle apparatus including the same
CN215373041U (en) Evaporator input pipe assembly, air conditioner indoor unit and air conditioner
JPH0468274A (en) Refrigerant divider
JP3408677B2 (en) Pipe headers
JPH05203286A (en) Heat exchanger
JPH0498055A (en) Refrigerant flow divider
JP5189386B2 (en) Heat exchanger

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term