JPH11351706A - Refrigerant distributor - Google Patents

Refrigerant distributor

Info

Publication number
JPH11351706A
JPH11351706A JP10163235A JP16323598A JPH11351706A JP H11351706 A JPH11351706 A JP H11351706A JP 10163235 A JP10163235 A JP 10163235A JP 16323598 A JP16323598 A JP 16323598A JP H11351706 A JPH11351706 A JP H11351706A
Authority
JP
Japan
Prior art keywords
refrigerant
orifice
flow
gas
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10163235A
Other languages
Japanese (ja)
Inventor
Yasutaka Murakami
泰隆 村上
Toshiaki Yoshikawa
利彰 吉川
Kunihiro Morishita
国博 森下
Satoshi Suzuki
聡 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10163235A priority Critical patent/JPH11351706A/en
Publication of JPH11351706A publication Critical patent/JPH11351706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the occurrence of hydrodynamic self excitation sound by raising the distribution performance of a refrigerant. SOLUTION: This is a refrigerant circulating device comprising a compressor, a condenser, a depressurizer, a distributor 5, etc., and this is equipped with a inflow part 7 into which a gas-liquid two-phase flow flows, a taper space part which widens in the direction of downstream, being positioned downstream of the inflow part 7, a wide space part which has a refrigerant collision part 15, being positioned downstream of the taper space part, an orifice part 20 which has an orifice hole 2 and is thick in the direction of flow of the wide space part and also demarcates the wide space part into a first agitation space part 16 including the taper space part and a second agitation space part 17 including the refrigerant collision part 15, and an outflow part 13 which lets a homogeneous flow flow out, being positioned downstream of the wide space part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和装置等の
冷媒循環装置内に配置された冷媒分配器に係り、より詳
しくは、オリフィス部に厚みを持たせ、R形状に開口し
て、流体力学的自励音の発生を抑制するようにした冷媒
分配器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant distributor disposed in a refrigerant circulating device such as an air conditioner, and more particularly, to an orifice having a thickness, an R-shaped opening, The present invention relates to a refrigerant distributor configured to suppress the generation of mechanical self-excited sound.

【0002】図4は冷媒循環装置に設けた従来の冷媒分
配器の一例を示す縦断面図である。冷媒循環装置に設け
た圧縮器によって圧縮された高圧冷媒ガスは、四方切換
弁を通過した後に凝縮器に送られ、ここで熱を奪われな
がら全冷媒が液化し、減圧器を通過して気液二相流とな
り、分配器30の分配部を通過する。
FIG. 4 is a longitudinal sectional view showing an example of a conventional refrigerant distributor provided in a refrigerant circulation device. The high-pressure refrigerant gas compressed by the compressor provided in the refrigerant circulation device is sent to the condenser after passing through the four-way switching valve, where all the refrigerant is liquefied while being deprived of heat, and passes through the decompressor to evaporate. It becomes a liquid two-phase flow and passes through the distributor of the distributor 30.

【0003】ところで、減圧器を通過した気液二相流
は、冷媒配管を通過する際、曲り部で遠心力の影響を受
けて偏流となることが多い。そこで、分配器30の流入
管7から流入した冷媒は、拡幅された接続管9内で流速
を落とし、偏流の影響を少なくしている。さらに、オリ
フィス板31のオリフィス孔32で縮流して流速を上
げ、噴霧状の均質流にした後、複数の流出部14を通っ
て流出管13に均等に分配される。
[0003] By the way, the gas-liquid two-phase flow that has passed through the decompressor often becomes deflected under the influence of centrifugal force at the bent portion when passing through the refrigerant pipe. Therefore, the flow rate of the refrigerant flowing from the inflow pipe 7 of the distributor 30 is reduced in the widened connection pipe 9 to reduce the influence of the drift. Further, the flow is increased by reducing the flow rate in the orifice hole 32 of the orifice plate 31 to form a spray-like homogeneous flow, and is then uniformly distributed to the outflow pipe 13 through the plurality of outflow portions 14.

【0004】[0004]

【発明が解決しようとする課題】上記のように構成した
分配器30によれば、圧縮器を低周波数によって運転
時、つまり低冷媒循環量のときに流体力学的自励音が発
生する。この自励音は、低冷媒循環量であるため気液二
相流においても噴霧流にならずに気液が分離しているた
め、オリフィス板31のオリフィス孔32から流出する
気相部分にカルマン渦が発生し、このカルマン渦の周波
数と分配器30の共鳴周波数とが一致して自励的に発生
する。カルマン渦列の渦放出の周波数は、オリフィス板
31の内径と気相部の流速、つまり冷媒循環量によって
決まる。したがって、オリフィス板31の内径が決定さ
れている場合において、冷媒循環量がある特定の値に達
したとき、すなわち、気相部分の流速がある特定の値に
達したときに、カルマン渦の周波数が分配器30の共鳴
周波数と一致して、自励音が発生する。
According to the distributor 30 configured as described above, the hydrodynamic self-exciting sound is generated when the compressor is operated at a low frequency, that is, when the refrigerant circulation amount is low. Since the self-excited sound has a low refrigerant circulation amount, it does not become a spray flow even in a gas-liquid two-phase flow and the gas-liquid is separated, so that the Karman gas flows out from the orifice hole 32 of the orifice plate 31 A vortex is generated, and the frequency of the Karman vortex coincides with the resonance frequency of the distributor 30 and is generated self-excitingly. The frequency of the vortex shedding of the Karman vortex street is determined by the inner diameter of the orifice plate 31 and the flow rate of the gas phase, that is, the amount of circulating refrigerant. Therefore, when the inner diameter of the orifice plate 31 is determined, when the refrigerant circulation amount reaches a certain value, that is, when the flow rate of the gas phase reaches a certain value, the frequency of the Karman vortex Coincides with the resonance frequency of the distributor 30, and a self-excited sound is generated.

【0005】また、通常運転時における圧縮器運転周波
数において自励音が発生しない場合でも、圧縮器を停止
した後、徐々に冷媒循環量が少なくなり、カルマン渦の
周波数が分配器30の共鳴周波数に一致するような冷媒
循環量に達したとき、短時間であるが自励音が発生する
ことがある。特に、冷媒としてハイドロフルオロカーボ
ン系冷媒(R410A)を使用した場合は、冷媒密度が
大きいため、同一冷媒循環量のとき流速が低下して気液
が分離しやすくなるために、自励音が多発する。
[0005] Even when self-excited sound is not generated at the compressor operating frequency during normal operation, the amount of circulating refrigerant gradually decreases after the compressor is stopped, and the frequency of the Karman vortex is reduced by the resonance frequency of the distributor 30. When the amount of the circulating refrigerant reaches a value that coincides with the above, a self-excited sound may be generated for a short time. In particular, when a hydrofluorocarbon-based refrigerant (R410A) is used as the refrigerant, the self-excited sound occurs frequently because the refrigerant density is large, and the flow velocity is reduced at the same refrigerant circulation amount, so that gas-liquid is easily separated. .

【0006】本発明は上記のような課題を解決するため
になされたもので、冷媒の分配性能を向上させ、流体力
学的自励音の発生を抑制することができる冷媒分配器を
得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a refrigerant distributor capable of improving the refrigerant distribution performance and suppressing the generation of a hydrodynamic self-excited sound. Aim.

【0007】[0007]

【課題を解決するための手段】本発明は、冷媒ガスを圧
縮して高圧冷媒ガスにする圧縮器、高圧冷媒ガスを液化
冷媒にする凝縮器、液化冷媒を気液二相流にする減圧
器、気液二相流を均質流にして流出する冷媒分配器等か
らなる冷媒循環装置であって、気液二相流が流入する流
入部と、流入部の下流側に位置して下流側方向に拡幅す
るテーパ空間部と、テーパ空間部の下流側に位置して冷
媒衝突部を有する拡幅空間部と、オリフィス孔を有し拡
幅空間部の流れ方向に厚みを持つと共に拡幅空間部をテ
ーパ空間部を含む第1の攪拌空間部と冷媒衝突部を含む
第2の攪拌空間部とに区画するオリフィス部と、拡幅空
間部の下流側に位置して均質流を流出する流出部とを備
えた。
SUMMARY OF THE INVENTION The present invention provides a compressor for compressing a refrigerant gas into a high-pressure refrigerant gas, a condenser for converting the high-pressure refrigerant gas into a liquefied refrigerant, and a decompressor for converting the liquefied refrigerant into a gas-liquid two-phase flow. A refrigerant circulation device comprising a refrigerant distributor or the like that makes a gas-liquid two-phase flow a homogeneous flow and flows out, wherein an inflow part into which the gas-liquid two-phase flow flows, and a downstream direction located downstream of the inflow part A widened space portion having a refrigerant impingement portion located downstream of the tapered space portion, and a orifice hole having a thickness in the flow direction of the widened space portion and a widened space portion formed into a tapered space. An orifice section partitioned into a first stirring space section including a section and a second stirring space section including a refrigerant collision section, and an outflow section which is located downstream of the widening space section and flows out a homogeneous flow. .

【0008】また、オリフィス孔の上流側にテーパを有
するオリフィス部を備えた。さらに、オリフィス孔の下
流側にテーパを有するオリフィス部を備えた。また、オ
リフィス孔の上流側と下流側の両側にテーパを有するオ
リフィス部を備えた。さらに、オリフィス孔の上流側と
下流側の両側にR形状のテーパを有すると共にオリフィ
ス孔における流れ方向の中央部近傍を滑らかな構造とし
たオリフィス部を備えた。また、流入部の下流側端部に
流入部の肉厚に相当する深さの切り欠き部を設けた。
In addition, an orifice portion having a taper is provided upstream of the orifice hole. Further, an orifice portion having a taper is provided downstream of the orifice hole. Further, an orifice portion having a taper is provided on both the upstream side and the downstream side of the orifice hole. Further, an orifice portion having an R-shaped taper on both the upstream and downstream sides of the orifice hole and having a smooth structure near the center in the flow direction of the orifice hole is provided. In addition, a cutout portion having a depth corresponding to the thickness of the inflow portion was provided at the downstream end of the inflow portion.

【0009】[0009]

【発明の実施の形態】実施の形態1 図1は本発明の実施の形態1の冷媒循環装置を示す模式
図、図2は図1の要部の縦断面図である。1は冷媒ガス
を圧縮する圧縮器、2は冷媒の流れ方向を切り替える四
方切替弁、3は圧縮器1から送り出された高圧冷媒ガス
を凝縮させて液化する凝縮器、3aは凝縮器3に設けた
冷却ファン、4は凝縮器3で液化した冷媒を気液二相流
とする減圧器、5は冷媒の分配器、6はファンを備えた
蒸発器であり、これらが順次、冷媒配管によって接続さ
れており、さらに、圧縮器1の下流側の冷媒配管と蒸発
器6の下流側の冷媒配管は、四方切替弁2を介して接触
している。
Embodiment 1 FIG. 1 is a schematic view showing a refrigerant circulating apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a longitudinal sectional view of a main part of FIG. 1 is a compressor for compressing the refrigerant gas, 2 is a four-way switching valve for switching the flow direction of the refrigerant, 3 is a condenser for condensing and liquefying the high-pressure refrigerant gas sent from the compressor 1, and 3a is provided for the condenser 3. A cooling fan, 4 a decompressor for converting the refrigerant liquefied in the condenser 3 into a gas-liquid two-phase flow, 5 a refrigerant distributor, and 6 an evaporator with a fan, which are sequentially connected by refrigerant piping. Further, the refrigerant pipe on the downstream side of the compressor 1 and the refrigerant pipe on the downstream side of the evaporator 6 are in contact via the four-way switching valve 2.

【0010】次に、冷媒循環装置に設けた冷媒の分配器
5について、図2を用いて詳述する。7は気液二相流と
なった冷媒が流入する流入管、8は流入管7の下流側端
部である。9は一端を流入管7に同心状に取り付けたほ
ぼ漏斗状をなす接続管で、流入管7に流入した冷媒の速
度を落として冷媒配管によって偏流した流れを緩和する
ようにしてある。この接続管9は、縮径部9aと拡径部
9bとテーパ部9cとからなり、縮径部9aの内径を流
入管7の外径とほぼ等しく形成し、拡径部9bの径を縮
径部9aの径よりも大きく形成し、その間に配設したテ
ーパ部9cによって縮径部9a側から拡径部9b側に徐
々に拡幅するようにしてある。こうして、流入管7の下
流側端部8を接続管9の縮径部9a内に挿入し、ストッ
パ10によって位置決めし、ロウ付けしてある。
Next, the refrigerant distributor 5 provided in the refrigerant circulation device will be described in detail with reference to FIG. Reference numeral 7 denotes an inflow pipe into which the refrigerant in the gas-liquid two-phase flow flows, and reference numeral 8 denotes a downstream end of the inflow pipe 7. Reference numeral 9 denotes a substantially funnel-shaped connection pipe having one end concentrically attached to the inflow pipe 7 so as to reduce the speed of the refrigerant flowing into the inflow pipe 7 so as to reduce the flow deviated by the refrigerant pipe. The connecting pipe 9 includes a reduced diameter portion 9a, an increased diameter portion 9b, and a tapered portion 9c. The inner diameter of the reduced diameter portion 9a is substantially equal to the outer diameter of the inflow pipe 7, and the diameter of the increased diameter portion 9b is reduced. The diameter of the diameter portion 9a is larger than that of the diameter portion 9a, and the taper portion 9c disposed therebetween gradually widens the diameter from the reduced diameter portion 9a to the increased diameter portion 9b. Thus, the downstream end 8 of the inflow pipe 7 is inserted into the reduced diameter portion 9a of the connection pipe 9, positioned by the stopper 10, and brazed.

【0011】11は接続管9の拡径部9b側に取り付け
た本体管で、流入管7と同心状に配設され、接続管9側
端部近傍の内側面円周に沿って拡幅段差部11aを設け
てその内径を接続管9の拡径部9bの外径とほぼ等しく
形成し、その反対側には本体管11の軸方向に冷媒を均
等に分配する複数の流出管(キャピラリチューブ)13
が流出部14を介して設けられている。こうして、本体
管11の拡幅段差部11aに、接続管9の拡径部9bの
端部近傍を内挿してある。
Reference numeral 11 denotes a main body pipe attached to the enlarged-diameter portion 9b side of the connecting pipe 9, which is disposed concentrically with the inflow pipe 7, and has a widened stepped portion along the circumference of the inner surface near the end on the connecting pipe 9 side. A plurality of outlet pipes (capillary tubes) 11a are provided, the inner diameter of which is substantially equal to the outer diameter of the enlarged diameter portion 9b of the connection pipe 9, and the other side of which is provided with a uniform distribution of the refrigerant in the axial direction of the main pipe 11. 13
Is provided via the outflow portion 14. Thus, the vicinity of the end of the enlarged diameter portion 9b of the connection tube 9 is inserted into the widened step portion 11a of the main body tube 11.

【0012】20は冷媒を縮流してその流速を上げ気液
二相流の冷媒流動状態を噴霧状態にするためのオリフィ
ス板で、その円周面に沿って段差を形成し、流入管7側
に設けた縮径部21と流出管13側に設けた係止部22
とからなっている。そして、縮径部21を接続管9の拡
径部9bの内周に嵌入して係止部22を接続管9の端部
に係止させ、本体管11の拡幅段差部11aとの間に挟
持して固定されている。
Reference numeral 20 denotes an orifice plate for reducing the flow rate of the refrigerant to increase its flow velocity and to change the flow state of the gas-liquid two-phase refrigerant into a spray state. And a locking portion 22 provided on the outflow pipe 13 side.
It consists of Then, the reduced diameter portion 21 is fitted into the inner periphery of the enlarged diameter portion 9b of the connection pipe 9, and the locking portion 22 is locked to the end of the connection pipe 9 so that the reduced diameter portion 21 and the widened step portion 11a of the main pipe 11 can be inserted. It is clamped and fixed.

【0013】このオリフィス板20は、接続管9および
本体管11の軸方向すなわち冷媒の流れ方向に対してほ
ぼ直交して取り付けられ、そのほぼ中心部に、接続管9
および本体管11と同心状で接続管9の内径より小径の
オリフィス孔23が設けてある。そして、冷媒脈動に起
因する振動を抑制するため、また分配器5の共鳴周波数
を下げるために、冷媒の流れ方向に厚みを持つ肉厚な構
造になっており、カルマン渦列の渦放出周波数を下げる
ことができるようにしてある。カルマン渦の周波数は流
速に比例するために、冷媒循環量も下げることができ、
通常運転時における自励音発生を抑制することができ
る。
The orifice plate 20 is attached substantially orthogonally to the axial direction of the connecting pipe 9 and the main pipe 11, that is, the direction of flow of the refrigerant.
An orifice hole 23 concentric with the main tube 11 and having a diameter smaller than the inner diameter of the connection tube 9 is provided. In order to suppress the vibration caused by the pulsation of the refrigerant and to reduce the resonance frequency of the distributor 5, it has a thick structure having a thickness in the flow direction of the refrigerant. It can be lowered. Since the frequency of Karman vortex is proportional to the flow velocity, the amount of circulating refrigerant can also be reduced,
Generation of self-excited sound during normal operation can be suppressed.

【0014】24,25はオリフィス板20のオリフィ
ス孔23に設けた第1、第2のテーパ部で、流入管7側
と流出管13側のそれぞれがR形状に形成され、また、
オリフィス孔23の厚み方向における中央部付近の最小
面積部26の近傍でエッジをなくし、滑らかな流路を確
保するようにしてある。こうして、オリフィス板20の
出口におけるカルマン渦の放出が抑制され、分配器5の
共鳴周波数とカルマン渦の周波数が一致するポイントが
存在しなくなり、自励音の発生が抑制され、流路の急拡
大、急縮小による圧力損失、冷媒の脈動音を低減するこ
とができる。なお、オリフィス板20は、流入管7側に
テーパを設けただけのものであってもよく、また、流出
管13側にテーパを設けただけのものであってもよい。
Reference numerals 24 and 25 denote first and second tapered portions provided in the orifice holes 23 of the orifice plate 20. The inflow pipe 7 side and the outflow pipe 13 side are each formed into an R shape.
Edges are eliminated near the minimum area 26 near the center of the orifice hole 23 in the thickness direction, so that a smooth flow path is ensured. In this way, the emission of the Karman vortex at the outlet of the orifice plate 20 is suppressed, and there is no point where the resonance frequency of the distributor 5 and the frequency of the Karman vortex coincide with each other. In addition, pressure loss due to rapid contraction and pulsation noise of the refrigerant can be reduced. The orifice plate 20 may have only a taper on the inflow pipe 7 side, or may have only a taper on the outflow pipe 13 side.

【0015】15は本体管11に設けた冷媒衝突部で、
オリフィス板20のオリフィス孔23に対向する位置付
近に設けられ、オリフィス板20で噴霧状にされた冷媒
をその下流に位置するこの冷媒衝突部15に衝突させ
る。
Reference numeral 15 denotes a refrigerant collision portion provided on the main body tube 11,
The refrigerant sprayed by the orifice plate 20 is provided near the position facing the orifice hole 23 of the orifice plate 20, and collides with the refrigerant collision portion 15 located downstream thereof.

【0016】こうして、分配器5内における空間部は、
オリフィス板20を介して、冷媒の速度を落として偏流
を緩和させる機能を有する流入管7側に位置する第1の
攪拌空間部16と、オリフィス板20で噴霧状にされた
冷媒を攪拌して均質流にする機能を有する流出管13側
に位置する第2の攪拌空間部17とに区分される。
Thus, the space in the distributor 5 is
Through the orifice plate 20, the first stirring space 16 located on the inflow pipe 7 side having a function of reducing the speed of the refrigerant to reduce the drift is stirred with the refrigerant sprayed by the orifice plate 20. It is divided into a second stirring space 17 located on the outflow pipe 13 side having a function of making the flow uniform.

【0017】上記の冷媒循環装置を循環する冷媒として
は、ハイドロクロロフルオロカーボン系(R22)、ハ
イドロフルオロカーボン系(R32、R134A)、混
合冷媒(R404A、R407C、R407E、R41
0A)、ハイドロカーボン系(R290、R600A、
R1270)、アンモニア系(R717)などが用いら
れるが、それぞれ冷媒密度が異なるため、同一冷媒循環
量において流速が異なる。従って、同一冷媒循環量にお
いて、カルマン渦列の渦放出周波数も異なることにな
り、冷媒の分配器5の共鳴周波数と一致する冷媒循環量
が異なることになる。そこで、それぞれの冷媒に応じて
オリフィス板20の厚みを変化させることによって、分
配器5の共鳴周波数とカルマン渦列の渦放出周波数が一
致するポイントをずらすことができ、流体力学的自励音
の発生を抑制することができる。
The refrigerant circulating in the above-mentioned refrigerant circulating device is a hydrochlorofluorocarbon type (R22), a hydrofluorocarbon type (R32, R134A), a mixed refrigerant (R404A, R407C, R407E, R41).
0A), hydrocarbon-based (R290, R600A,
R1270), ammonia-based (R717), etc. are used, but since the respective refrigerant densities are different, the flow rates are different at the same refrigerant circulation amount. Therefore, for the same refrigerant circulation amount, the vortex emission frequency of the Karman vortex street is also different, and the refrigerant circulation amount that matches the resonance frequency of the refrigerant distributor 5 is different. Therefore, by changing the thickness of the orifice plate 20 according to each refrigerant, the point where the resonance frequency of the distributor 5 matches the vortex emission frequency of the Karman vortex street can be shifted, and the hydrodynamic self-excited sound Generation can be suppressed.

【0018】特に、ハイドロフルオロカーボン系冷媒
(R410A)を使用した場合は、ハイドロクロロフル
オロカーボン系冷媒(R22)に比べて冷媒密度が大き
いため、同一冷媒循環量のときに流速が低下する。従っ
て、気液が分離しやすくなり自励音の発生が多発する傾
向にあるため、上記手段によって流体力学的自励音の発
生を抑制することができる。
In particular, when the hydrofluorocarbon-based refrigerant (R410A) is used, the refrigerant density is higher than that of the hydrochlorofluorocarbon-based refrigerant (R22), so that the flow velocity decreases at the same refrigerant circulation amount. Therefore, the gas-liquid is easily separated and the self-excited sound tends to be generated frequently. Therefore, the above-described means can suppress the generation of the hydrodynamic self-excited sound.

【0019】上記のように構成した実施の形態1の作用
を説明する。冷媒ガスは圧縮器1によって圧縮されて高
圧冷媒ガスとなり、四方切換弁2を通過した後に凝縮器
3に入り、ここで冷却ファン3aによって熱を奪われな
がら徐々に液化し、凝縮器3の出口では全冷媒が液化す
る。そして、減圧器4に入りここを通過した後、気相と
液相が混合した気液二相流となり、分配器5の分配部を
通過する。
The operation of the first embodiment configured as described above will be described. The refrigerant gas is compressed by the compressor 1 to become high-pressure refrigerant gas, passes through the four-way switching valve 2 and enters the condenser 3, where it is gradually liquefied while being deprived of heat by the cooling fan 3a. Then, all the refrigerant is liquefied. Then, after entering the decompressor 4 and passing therethrough, it becomes a gas-liquid two-phase flow in which the gas phase and the liquid phase are mixed, and passes through the distributor of the distributor 5.

【0020】次に、冷媒の分配器5における作用につい
て説明する。減圧器4を通過した気液二相流は、気相部
分と液相部分の密度、流速が異なるために、室外機に存
在する減圧器4から分配器5が存在する室内機までを接
続する冷媒用延長配管を流動する間に、配管の曲りによ
る遠心力の影響を受けて、流れが偏流する。この偏流状
態のままで冷媒を分配すると冷媒流量比が異なってしま
うので、冷媒を分配器5の流入管7から第1の攪拌空間
部16内に流入させて冷媒の流速を落とし、冷媒配管で
偏流した流れを緩和する。
Next, the operation of the refrigerant in the distributor 5 will be described. The gas-liquid two-phase flow that has passed through the pressure reducer 4 connects the pressure reducer 4 in the outdoor unit to the indoor unit in which the distributor 5 exists because the density and the flow rate of the gas phase portion and the liquid phase portion are different. While flowing through the refrigerant extension pipe, the flow is deflected under the influence of the centrifugal force due to the bending of the pipe. If the refrigerant is distributed in the deflected state, the refrigerant flow ratio will be different. Therefore, the refrigerant flows from the inflow pipe 7 of the distributor 5 into the first stirring space 16 to reduce the flow velocity of the refrigerant, and Mitigates the drifted flow.

【0021】こうして、冷媒を第1の攪拌空間部16に
通し、次に、オリフィス板20のオリフィス孔23を通
過させて縮流し、流速を上げ、気液二相流の流動状態を
噴霧状態にした後、第2の攪拌空間部17の冷媒衝突部
15に衝突させ、攪拌し、気液を混合させて均質流にし
た後、複数の流出管13に均等に分配する。こうして、
冷媒の分配性能を向上させ、流体力学的自励音の発生を
抑制する。
In this manner, the refrigerant is passed through the first stirring space 16 and then passed through the orifice hole 23 of the orifice plate 20 to be contracted, the flow velocity is increased, and the flow state of the gas-liquid two-phase flow is changed to the spray state. After that, the mixture is made to collide with the refrigerant collision part 15 of the second stirring space part 17, is stirred, mixes the gas and liquid to make a homogeneous flow, and is evenly distributed to the plurality of outlet pipes 13. Thus,
Improves refrigerant distribution performance and suppresses the generation of hydrodynamic self-excited noise.

【0022】実施の形態2 図3(a),(b)は実施の形態2の要部の側面図及び
平面図で、実施の形態1で示した分配器5の流入管7に
切り欠き部を設けたものである。18は流入管7の下流
側端部8に設けた切り欠き部で、流入管7の肉厚に相当
する深さの切り欠きが下流側端部8の円周方向に沿って
例えば等間隔に設けられている。この切り欠き部18に
よって、流入管7から第1の攪拌空間部16に流れ込む
冷媒を攪拌させ、オリフィス板20においてカルマン渦
を助長する流れを抑制する。その他の、構成、作用、効
果は、実施の形態1で示した場合と同様なので、説明を
省略する。
Embodiment 2 FIGS. 3 (a) and 3 (b) are a side view and a plan view of a main part of embodiment 2 of the present invention. Is provided. Reference numeral 18 denotes a notch provided at the downstream end 8 of the inflow pipe 7. The notch 18 has a depth corresponding to the thickness of the inflow pipe 7, for example, at equal intervals along the circumferential direction of the downstream end 8. Is provided. The notch 18 stirs the refrigerant flowing from the inflow pipe 7 into the first stirring space 16, and suppresses the flow promoting the Karman vortex in the orifice plate 20. Other configurations, operations, and effects are the same as those described in the first embodiment, and a description thereof will not be repeated.

【0023】[0023]

【発明の効果】以上の説明から明らかなように、本発明
は、冷媒ガスを圧縮して高圧冷媒ガスにする圧縮器、高
圧冷媒ガスを液化冷媒にする凝縮器、液化冷媒を気液二
相流にする減圧器、気液二相流を均質流にして流出する
冷媒分配器等からなる冷媒循環装置であって、気液二相
流が流入する流入部と、流入部の下流側に位置して下流
側方向に拡幅するテーパ空間部と、テーパ空間部の下流
側に位置して冷媒衝突部を有する拡幅空間部と、オリフ
ィス孔を有し拡幅空間部の流れ方向に厚みを持つと共に
拡幅空間部をテーパ空間部を含む第1の攪拌空間部と冷
媒衝突部を含む第2の攪拌空間部とに区画するオリフィ
ス部と、拡幅空間部の下流側に位置して均質流を流出す
る流出部とを備えたので、冷媒分配器が持つ共鳴周波数
を下げることができ、これによって、カルマン渦列の渦
放出周波数を下げることができる。カルマン渦の周波数
は流速に比例するために、冷媒循環量も下げることがで
き、通常運転時での自励音発生を抑制することができ
る。
As is apparent from the above description, the present invention provides a compressor for compressing a refrigerant gas into a high-pressure refrigerant gas, a condenser for converting a high-pressure refrigerant gas into a liquefied refrigerant, and a gas-liquid two-phase refrigerant. A refrigerant circulating device comprising a pressure reducing device, a refrigerant distributor, etc., which makes a gas-liquid two-phase flow a uniform flow and flows out, wherein an inflow part into which the gas-liquid two-phase flow flows and a downstream side of the inflow part A tapered space portion that widens in the downstream direction, a widened space portion that is located downstream of the tapered space portion and has a refrigerant collision portion, and an orifice hole that has a thickness in the flow direction of the widened space portion and widens. An orifice section that partitions the space section into a first stirring space section including a tapered space section and a second stirring space section including a refrigerant collision section, and an outflow that is located downstream of the widening space section and flows out a homogeneous flow. Section, the resonance frequency of the refrigerant distributor can be reduced. This makes it possible to reduce the vortex shedding frequency of Karman vortex street. Since the frequency of the Karman vortex is proportional to the flow velocity, the amount of circulating refrigerant can also be reduced, and the generation of self-excited noise during normal operation can be suppressed.

【0024】また、オリフィス孔の上流側にテーパを有
するオリフィス部を備えたので、圧力損失を減らすこと
ができる。さらに、オリフィス孔の下流側にテーパを有
するオリフィス部を備えたので、カルマン渦を解消し、
流体力学的自励音を解消することができる。また、オリ
フィス孔の上流側と下流側の両側にテーパを有するオリ
フィス部を備えたので、圧力損失を減らし、カルマン渦
を解消し、流体力学的自励音を解消することができる
Further, since an orifice portion having a taper is provided upstream of the orifice hole, pressure loss can be reduced. Furthermore, since an orifice part with a taper is provided downstream of the orifice hole, Karman vortex is eliminated,
The hydrodynamic self-excited sound can be eliminated. In addition, since the orifice portion having a taper on both the upstream and downstream sides of the orifice hole is provided, pressure loss can be reduced, Karman vortices can be eliminated, and hydrodynamic self-excited sound can be eliminated.

【0025】さらに、オリフィス孔の上流側と下流側の
両側にR形状のテーパを有すると共に、オリフィス孔に
おける流れ方向の中央部近傍を滑らかな構造としたオリ
フィス部を備えたので、圧力損失を減らし、カルマン渦
を解消し、流体力学的自励音を解消することができる
Further, since the orifice portion has an R-shaped taper on both the upstream and downstream sides of the orifice hole and has a smooth structure near the center in the flow direction of the orifice hole, the pressure loss is reduced. , Can eliminate Karman vortex and eliminate hydrodynamic self-excited sound

【0026】また、流入部の下流端部に流入部の肉厚に
相当する深さの切り欠き部を設けたので、流入管から放
出される流れを攪拌させ、オリフィス部でのカルマン渦
を助長する流れを抑制することができる。
Further, since a cutout portion having a depth corresponding to the thickness of the inflow portion is provided at the downstream end of the inflow portion, the flow discharged from the inflow pipe is agitated, and the Karman vortex at the orifice portion is promoted. Flow can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1の模式図である。FIG. 1 is a schematic diagram of Embodiment 1 of the present invention.

【図2】 図1の要部の縦断面図である。FIG. 2 is a longitudinal sectional view of a main part of FIG.

【図3】 本発明の実施の形態2の側面図及び平面図で
ある。
FIG. 3 is a side view and a plan view of a second embodiment of the present invention.

【図4】 従来の冷媒分配器の一例を示す縦断面図であ
る。
FIG. 4 is a longitudinal sectional view showing an example of a conventional refrigerant distributor.

【符号の説明】[Explanation of symbols]

1圧縮器、3 凝縮器、4 減圧器、5 分配器、7
流入管、9 接続管、9a 縮径部、9b 拡径部、9
c テーパ部、11 本体管、13 流出管、15 冷
媒衝突部、16 第1の攪拌空間部、17 第2の攪拌
空間部、18切り欠き部、20 オリフィス板、23
オリフィス孔、24 第1のテーパ部、25 第2のテ
ーパ部、26 最小面積部。
1 compressor, 3 condenser, 4 decompressor, 5 distributor, 7
Inflow pipe, 9 connecting pipe, 9a reduced diameter section, 9b expanded diameter section, 9
c Taper section, 11 main pipe, 13 outflow pipe, 15 refrigerant impingement section, 16 first stirring space section, 17 second stirring space section, 18 notch section, 20 orifice plate, 23
Orifice holes, 24 first taper, 25 second taper, 26 minimum area.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 聡 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Satoshi Suzuki 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷媒ガスを圧縮して高圧冷媒ガスにする
圧縮器、該高圧冷媒ガスを液化冷媒にする凝縮器、該液
化冷媒を気液二相流にする減圧器、該気液二相流を均質
流にして流出する冷媒分配器等からなる冷媒循環装置に
おいて、 前記気液二相流が流入する流入部と、該流入部の下流側
に位置して下流側方向に拡幅するテーパ空間部と、該テ
ーパ空間部の下流側に位置して冷媒衝突部を有する拡幅
空間部と、オリフィス孔を有し前記拡幅空間部の流れ方
向に厚みを持つと共に該拡幅空間部をテーパ空間部を含
む第1の攪拌空間部と冷媒衝突部を含む第2の攪拌空間
部とに区画するオリフィス部と、前記拡幅空間部の下流
側に位置して均質流を流出する流出部とを備えたことを
特徴とする冷媒分配器。
A compressor for compressing the refrigerant gas into a high-pressure refrigerant gas; a condenser for converting the high-pressure refrigerant gas into a liquefied refrigerant; a decompressor for converting the liquefied refrigerant into a gas-liquid two-phase flow; In a refrigerant circulation device including a refrigerant distributor or the like that makes a flow uniform and flows out, an inflow portion into which the gas-liquid two-phase flow flows, and a tapered space located downstream of the inflow portion and widened in a downstream direction. Part, a widened space portion having a refrigerant collision portion located downstream of the tapered space portion, and a tapered space portion having an orifice hole and having a thickness in the flow direction of the widened space portion. An orifice section partitioned into a first stirring space section including the first stirring space section and a second stirring space section including the refrigerant collision section, and an outflow section located downstream of the widening space section and flowing out a homogeneous flow. A refrigerant distributor characterized by the above-mentioned.
【請求項2】 オリフィス孔の上流側にテーパを有する
オリフィス部を備えたことを特徴とする請求項1記載の
冷媒分配器。
2. The refrigerant distributor according to claim 1, further comprising an orifice portion having a taper upstream of the orifice hole.
【請求項3】 オリフィス孔の下流側にテーパを有する
オリフィス部を備えたことを特徴とする請求項1記載の
冷媒分配器。
3. The refrigerant distributor according to claim 1, further comprising an orifice portion having a taper downstream of the orifice hole.
【請求項4】 オリフィス孔の上流側と下流側の両側に
テーパを有するオリフィス部を備えたことを特徴とする
請求項1記載の冷媒分配器。
4. The refrigerant distributor according to claim 1, further comprising an orifice portion having a taper on both the upstream side and the downstream side of the orifice hole.
【請求項5】 オリフィス孔の上流側と下流側の両側に
R形状のテーパを有すると共に前記オリフィス孔におけ
る流れ方向の中央部近傍を滑らかな構造としたオリフィ
ス部を備えたことを特徴とする請求項1記載の冷媒分配
器。
5. An orifice portion having an R-shaped taper on both the upstream and downstream sides of the orifice hole and having a smooth structure near the center in the flow direction of the orifice hole. Item 7. The refrigerant distributor according to Item 1.
【請求項6】 流入部の下流側端部に該流入部の肉厚に
相当する深さの切り欠き部を設けたことを特徴とする請
求項1〜5のいずれかに記載の冷媒分配器。
6. The refrigerant distributor according to claim 1, wherein a cutout portion having a depth corresponding to a thickness of the inflow portion is provided at a downstream end of the inflow portion. .
JP10163235A 1998-06-11 1998-06-11 Refrigerant distributor Pending JPH11351706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10163235A JPH11351706A (en) 1998-06-11 1998-06-11 Refrigerant distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10163235A JPH11351706A (en) 1998-06-11 1998-06-11 Refrigerant distributor

Publications (1)

Publication Number Publication Date
JPH11351706A true JPH11351706A (en) 1999-12-24

Family

ID=15769913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10163235A Pending JPH11351706A (en) 1998-06-11 1998-06-11 Refrigerant distributor

Country Status (1)

Country Link
JP (1) JPH11351706A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304438A (en) * 2000-04-21 2001-10-31 Daikin Ind Ltd Four way selector valve
JP2006095004A (en) * 2004-09-29 2006-04-13 Nittan Co Ltd Fire extinguishant mixing apparatus
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
US7225630B2 (en) 2001-01-31 2007-06-05 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller
KR100830301B1 (en) * 2005-02-02 2008-05-16 캐리어 코포레이션 Heat exchanger with multiple stage fluid expansion in header
JP2008115935A (en) * 2006-11-02 2008-05-22 Bridgestone Corp Air spring
JP2008196629A (en) * 2007-02-14 2008-08-28 Bridgestone Corp Air spring
US7472744B2 (en) 2005-02-02 2009-01-06 Carrier Corporation Mini-channel heat exchanger with reduced dimension header
US7562697B2 (en) 2005-02-02 2009-07-21 Carrier Corporation Heat exchanger with perforated plate in header
US7931073B2 (en) 2005-02-02 2011-04-26 Carrier Corporation Heat exchanger with fluid expansion in header
US7967061B2 (en) 2005-02-02 2011-06-28 Carrier Corporation Mini-channel heat exchanger header
JP2012172862A (en) * 2011-02-18 2012-09-10 Mitsubishi Electric Corp Multi-chamber air conditioner
JPWO2016113901A1 (en) * 2015-01-16 2017-04-27 三菱電機株式会社 Distributor and refrigeration cycle apparatus
CN107314585A (en) * 2017-08-09 2017-11-03 苏州泰隆制冷有限公司 A kind of idle call adjustable-flow distributor
CN108759189A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759187A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759190A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108981245A (en) * 2018-06-11 2018-12-11 广东美的制冷设备有限公司 Flow mixing device and household appliance

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304438A (en) * 2000-04-21 2001-10-31 Daikin Ind Ltd Four way selector valve
US7290567B2 (en) 2001-01-31 2007-11-06 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle device, air conditioner, choke, and flow rate controller
US7225630B2 (en) 2001-01-31 2007-06-05 Mitsubishi Denki Kabushiki Kaisha Refrigerating cycle apparatus, air conditioning apparatus, throttle device and flow controller
JP2006095004A (en) * 2004-09-29 2006-04-13 Nittan Co Ltd Fire extinguishant mixing apparatus
US7562697B2 (en) 2005-02-02 2009-07-21 Carrier Corporation Heat exchanger with perforated plate in header
KR100830301B1 (en) * 2005-02-02 2008-05-16 캐리어 코포레이션 Heat exchanger with multiple stage fluid expansion in header
US7472744B2 (en) 2005-02-02 2009-01-06 Carrier Corporation Mini-channel heat exchanger with reduced dimension header
US7527089B2 (en) 2005-02-02 2009-05-05 Carrier Corporation Heat exchanger with multiple stage fluid expansion in header
US7931073B2 (en) 2005-02-02 2011-04-26 Carrier Corporation Heat exchanger with fluid expansion in header
US7967061B2 (en) 2005-02-02 2011-06-28 Carrier Corporation Mini-channel heat exchanger header
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
JP2008115935A (en) * 2006-11-02 2008-05-22 Bridgestone Corp Air spring
JP2008196629A (en) * 2007-02-14 2008-08-28 Bridgestone Corp Air spring
JP2012172862A (en) * 2011-02-18 2012-09-10 Mitsubishi Electric Corp Multi-chamber air conditioner
JPWO2016113901A1 (en) * 2015-01-16 2017-04-27 三菱電機株式会社 Distributor and refrigeration cycle apparatus
CN107314585A (en) * 2017-08-09 2017-11-03 苏州泰隆制冷有限公司 A kind of idle call adjustable-flow distributor
CN108759189A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759187A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759190A (en) * 2018-06-11 2018-11-06 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108981245A (en) * 2018-06-11 2018-12-11 广东美的制冷设备有限公司 Flow mixing device and household appliance
CN108759187B (en) * 2018-06-11 2024-04-23 广东美的制冷设备有限公司 Mixer and household appliance
CN108981245B (en) * 2018-06-11 2024-05-03 广东美的制冷设备有限公司 Mixer and household appliance
CN108759189B (en) * 2018-06-11 2024-05-03 广东美的制冷设备有限公司 Mixer and household appliance

Similar Documents

Publication Publication Date Title
JPH11351706A (en) Refrigerant distributor
JP3480392B2 (en) Refrigerant distributor and refrigeration cycle device using the same
JP2006275452A (en) Expansion valve
CN106461092B (en) Expansion valve and refrigerating circulatory device
JPH0861809A (en) Refrigerant distributor, refrigerant distributing mechanism and air conditioner
JPWO2019058540A1 (en) Refrigerant distributor and air conditioner
JP2008133796A (en) Ejector and refrigerating cycle device
JP2007032979A (en) Refrigerating cycle device
JP2007032980A (en) Expansion valve
JP3435626B2 (en) Air conditioner
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
JPH10111046A (en) Air conditioner
JPH09292166A (en) Air conditioner
JP2022535640A (en) Valve silencer and its electronic expansion valve
JP4888050B2 (en) Refrigeration cycle equipment
JP3247087B2 (en) Piping structure including heat exchanger and air conditioner using the same
JP5193630B2 (en) Heat exchanger
JP2003004319A (en) Ejector cycle
WO2018173492A1 (en) Muffler, and air conditioner
EP3885690B1 (en) Heat exchanger and refrigeration cycle device
JP6715958B2 (en) Expansion valve and refrigeration cycle apparatus including the same
WO2023153309A1 (en) Refrigerant distributor, heat exchanger, and refrigeration cycle device
WO2023238234A1 (en) Heat exchanger
JP2003121029A (en) Refrigerant distributor and air conditioner with refrigerant distributor
JP3644289B2 (en) Gas-liquid two-phase fluid distributor and refrigeration cycle apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812