JPH09292166A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09292166A
JPH09292166A JP8106845A JP10684596A JPH09292166A JP H09292166 A JPH09292166 A JP H09292166A JP 8106845 A JP8106845 A JP 8106845A JP 10684596 A JP10684596 A JP 10684596A JP H09292166 A JPH09292166 A JP H09292166A
Authority
JP
Japan
Prior art keywords
flow
expansion valve
pipe
refrigerant
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8106845A
Other languages
Japanese (ja)
Inventor
Tomomi Umeda
知巳 梅田
Kensaku Kokuni
研作 小国
Takashi Sano
孝 佐野
Atsuyasu Kobayashi
敦泰 小林
Hideki Okuzono
秀樹 奥園
Kazuyuki Kuroyanagi
和之 黒柳
Masamichi Hanada
正道 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Shimizu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Shimizu Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP8106845A priority Critical patent/JPH09292166A/en
Publication of JPH09292166A publication Critical patent/JPH09292166A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Details Of Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the intermittent flowing noise generated from an expansion valve which is one of elements to constitute the cycle of an air conditioner. SOLUTION: The inner sectional area A3 of a piping 6 to be connected to a connection pipe 13 of an expansion valve 4 is not more than the inner sectional area A1 of the connection pipe 13, and the inner sectional areas A4, A5, A6 of the piping 7 to be connected to a connection pipe 14 of the expansion valve 4 are not more than the inner sectional area A2 of the connection pipe 14. Thus, in a heat pump cycle capable of heating and cooling operation, the inner sectional areas of both pipings to be connected to the expansion valve 4 are not more than the inner sectional area of each connection pipe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍機および空気
調和機用冷凍サイクルに係り、膨張弁の騒音低減に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle for a refrigerator and an air conditioner, and relates to noise reduction of an expansion valve.

【0002】[0002]

【従来の技術】特開昭57−129371号公報(以
下、文献1という)では、主減圧手段である絞り部上部
に、主減圧手段に導入される冷媒に所定の乾き度を持た
せる補助減圧手段を配設している。この補助減圧手段と
して、オリフィス、多孔オリフィス、また冷媒の流れを
撹乱する手段として、コイルばねを用いたものが開示さ
れている。
2. Description of the Related Art In Japanese Unexamined Patent Publication No. 57-129371 (hereinafter referred to as Document 1), an auxiliary decompression for giving a predetermined dryness to a refrigerant introduced into the main decompression means is provided above a throttle portion which is the main decompression means. Means are provided. As the auxiliary depressurizing means, an orifice, a multi-hole orifice, and a means for disturbing the flow of the refrigerant using a coil spring are disclosed.

【0003】また、実開昭60−69970号公報(文
献2)では、凝縮器の出口から膨張弁のオリフィスに至
るまでの間に、冷媒圧力を受けて開口面積を変える可変
オリフィスを設けている。なお、可変オリフィスの形状
として、円板状の本体の中心部に絞り孔が形成されたも
のと、中心部の絞り孔の周囲に扇状または円形の連通孔
が形成されたものが開示されている。
Further, in Japanese Utility Model Laid-Open No. 60-69970 (reference 2), a variable orifice that changes the opening area by receiving the refrigerant pressure is provided between the outlet of the condenser and the orifice of the expansion valve. . As the shape of the variable orifice, there are disclosed a disk-shaped main body in which a throttle hole is formed in the central portion and a disk-shaped main body in which a fan-shaped or circular communication hole is formed around the central throttle hole. .

【0004】さらに、実開平1−88278号公報(文
献3)では、膨張弁の入口管継ぎ手と出口管継ぎ手内に
絞り装置を内蔵している。また当膨張弁には、圧縮機停
止時の圧力バランスをとるため、膨張弁の絞りの上流側
と下流側を接続するバイパス通路が設けられている。
Further, in Japanese Utility Model Laid-Open No. 1-88278 (Reference 3), a throttle device is built in the inlet pipe joint and the outlet pipe joint of the expansion valve. Further, the expansion valve is provided with a bypass passage that connects the upstream side and the downstream side of the expansion valve throttle in order to balance the pressure when the compressor is stopped.

【0005】[0005]

【発明が解決しようとする課題】一般に冷凍サイクルに
おいて、圧縮機を出た高温高圧のガス冷媒は、凝縮器で
放熱し高温の液冷媒となる。この高温の液冷媒が減圧装
置としての膨張弁に流入し、ここで室温よりも低い温度
の気液二相状態の冷媒となる。この気液二相冷媒が蒸発
において吸熱し蒸発して、低温のガス冷媒となり圧縮機
に戻る。
Generally, in the refrigeration cycle, the high temperature and high pressure gas refrigerant discharged from the compressor radiates heat in the condenser and becomes a high temperature liquid refrigerant. This high-temperature liquid refrigerant flows into an expansion valve as a pressure reducing device, where it becomes a gas-liquid two-phase refrigerant having a temperature lower than room temperature. This vapor-liquid two-phase refrigerant absorbs heat during evaporation and evaporates to become a low-temperature gas refrigerant and returns to the compressor.

【0006】最近パッケージエアコンやルームエアコン
等で主流となっている空気調和機はセパレート形で室外
機と室内機とに分離している。このとき減圧膨張装置で
ある膨張弁は、空気調和機の性能、機能向上のため室内
機に設置されることが多くなっている。
Air conditioners, which have recently become the mainstream in package air conditioners, room air conditioners, etc., are of a separate type and are separated into an outdoor unit and an indoor unit. At this time, an expansion valve, which is a decompression expansion device, is often installed in an indoor unit to improve the performance and function of the air conditioner.

【0007】膨張弁には、前述したように通常液冷媒が
流入するのであるが、圧縮機の回転数などの空気調和機
の運転条件や外気温度と言った室内外条件、また室外機
と室内機とを結ぶ配管の長さが長い場合、その圧力降下
により冷媒が気液二相状態となることがある。また例え
ば1台の室外機に複数台の室内機が接続するマルチ空気
調和機の場合、運転される室内機の状態によって、各室
内機に流れる冷媒量が異なり、気液二相流の状態となる
ことが多くある。この気液二相状態の冷媒が膨張弁に流
入するとき、大きな音(以後、流動音と称する。)を発
生する。また、この流動音は、気液二相流の流動様式に
密接に関係して発生するため、その音の大きさともに、
異音として快適性を損ねる。例えば、流れの中に気泡が
断続的に存在しているスラグ流やフロス流が膨張弁に流
入する場合、間欠的に流動音が発生し、非常に耳障りな
音となっている。
As described above, the liquid refrigerant normally flows into the expansion valve. However, the operating conditions of the air conditioner such as the number of revolutions of the compressor, indoor and outdoor conditions such as the outside air temperature, and the outdoor unit and the indoor unit. When the length of the pipe connecting to the machine is long, the refrigerant may be in a gas-liquid two-phase state due to the pressure drop. Further, for example, in the case of a multi-air conditioner in which a plurality of indoor units are connected to one outdoor unit, the amount of refrigerant flowing in each indoor unit differs depending on the state of the indoor unit being operated, and the state of gas-liquid two-phase flow Often becomes. When the refrigerant in the gas-liquid two-phase state flows into the expansion valve, a loud noise (hereinafter referred to as flowing noise) is generated. In addition, this flow sound is generated in close relation to the flow pattern of the gas-liquid two-phase flow, so the volume of the sound is
As a strange noise, it impairs comfort. For example, when a slug flow or a floss flow in which air bubbles are intermittently present in the flow flows into the expansion valve, a flow sound is intermittently generated, which is a very offensive sound.

【0008】ところで、文献1においては、主減圧装置
の上流側に補助減圧装置としてオリフィスを設けている
ため、補助減圧装置下流の流れは、改善され、主減圧装
置で発生する流動音の改善が見込まれる。しかしなが
ら、補助減圧装置に関しては、この部分が絞りとなって
おり、補助減圧装置が無い場合に主減圧装置で生じてい
た状況と同じであると考えられる。即ち、今度は補助減
圧装置にて流動音が発生してしまうことが考えられる。
まして、運転条件や室内外の温度条件により、減圧装置
の上流側で気液二相流になってしまう場合は、補助減圧
装置から顕著に流動音が発生することが考えられる。
In Reference 1, since an orifice is provided as an auxiliary pressure reducing device on the upstream side of the main pressure reducing device, the flow downstream of the auxiliary pressure reducing device is improved and the flow noise generated in the main pressure reducing device is improved. Expected However, with respect to the auxiliary decompression device, this portion is a throttle, and it is considered that the situation is the same as that occurring in the main decompression device when there is no auxiliary decompression device. That is, it is conceivable that the auxiliary decompression device may generate a flowing sound.
Furthermore, when the gas-liquid two-phase flow is formed on the upstream side of the pressure reducing device due to operating conditions and indoor / outdoor temperature conditions, it is conceivable that a significant flow noise is generated from the auxiliary pressure reducing device.

【0009】また、文献2では、凝縮器の出口から膨張
弁のオリフィスに至るまでの間に、冷媒圧力を受けて開
口面積を変える可変オリフィスを設けているため、可変
オリフィス下流の流れは改善され、膨張弁からの流動音
の改善が見込まれる。しかし、前述したように、可変オ
リフィス上流側の流れが改善されていないため、今度は
可変オリフィスから流動音の発生が懸念される。また、
可変オリフィスの形状として、円板状の本体の中心部に
絞り孔が形成されたものと、中心部の絞り孔の周囲に扇
状または円形の連通孔が形成されたものがあるが、どち
らも中心部に絞り孔が存在しているため、流れがスラグ
流やプラグ流といった場合、気泡が中心部の絞り孔をそ
のまま素通りしてしまい、流れ改善の効果が低減するこ
とも懸念される。
Further, in Reference 2, since a variable orifice that changes the opening area by receiving the refrigerant pressure is provided between the outlet of the condenser and the orifice of the expansion valve, the flow downstream of the variable orifice is improved. , Improvement of flow noise from expansion valve is expected. However, as described above, since the flow on the upstream side of the variable orifice has not been improved, there is a concern that a flow noise will be generated from the variable orifice this time. Also,
As the shape of the variable orifice, there are a disk-shaped body with a throttle hole formed in the center and a shape with a fan-shaped or circular communication hole formed around the center throttle hole. Since there is a throttle hole in the portion, when the flow is a slag flow or a plug flow, bubbles may pass through the throttle hole at the center as it is, which may reduce the effect of improving the flow.

【0010】さらに、文献3では、膨張弁の入口管継ぎ
手と出口管継ぎ手内に絞り装置を内蔵している。この場
合も前述したように、絞り装置上流側の流れが改善され
ていないため、今度は絞り装置から流動音の発生が懸念
される。また、絞り装置の形状が中心部に絞り孔が形成
されたものであるため、流れがスラグ流やプラグ流とい
った場合、気泡が中心部の絞り孔をそのまま素通りして
しまい、流れ改善の効果が低減することも懸念される。
さらに当膨張弁には、圧縮機停止時の圧力バランスをと
るため、膨張弁の絞りの上流側と下流側を接続するバイ
パス通路が設けられているため、締め切り性が要求され
るマルチ機用の膨張弁としては使用できない。
Further, in Reference 3, a throttle device is built in the inlet pipe joint and the outlet pipe joint of the expansion valve. Also in this case, as described above, the flow on the upstream side of the expansion device has not been improved, so that there is a concern that the expansion device may generate a flowing sound. Further, since the shape of the expansion device is the one in which a restriction hole is formed in the central portion, when the flow is a slag flow or a plug flow, bubbles pass through the central restriction hole as it is, and the effect of improving flow is obtained. There is also concern about reduction.
Further, this expansion valve is provided with a bypass passage connecting the upstream side and the downstream side of the expansion valve throttle in order to balance the pressure when the compressor is stopped. It cannot be used as an expansion valve.

【0011】そこで、本発明では、冷媒気液二相流が原
因で膨張弁から間欠的に発生する流動音を低減できる空
気調和機(ヒートポンプサイクルおよび冷凍サイクル)
を提供することを目的とする。
Therefore, in the present invention, the air conditioner (heat pump cycle and refrigeration cycle) capable of reducing the flow noise intermittently generated from the expansion valve due to the refrigerant gas-liquid two-phase flow.
The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】上記目的は、冷房専用機
としては、冷媒を圧縮する圧縮機と、この圧縮された冷
媒と外気との間で熱交換を行う第1熱交換器と、膨張弁
を介して流入した冷媒と内気との間で熱交換を行う第2
熱交換器とを備えた空気調和機において、前記第1熱交
換器と膨張弁間の配管のうち少なくとも膨張弁側の配管
の径を前記圧縮機と前記第1熱交換器間の配管の径より
も細くすることにより達成される。
Means for Solving the Problems The above-mentioned object is, as a cooling-only machine, a compressor for compressing a refrigerant, a first heat exchanger for exchanging heat between the compressed refrigerant and the outside air, and an expansion. The second that performs heat exchange between the refrigerant flowing through the valve and the inside air
In an air conditioner including a heat exchanger, at least the diameter of the pipe on the expansion valve side of the pipes between the first heat exchanger and the expansion valve is set to the diameter of the pipe between the compressor and the first heat exchanger. It is achieved by making it thinner.

【0013】また、冷暖房可能な空気調和機として、上
記目的は、圧縮機と、この圧縮機に接続された四方弁
と、この四方弁に接続された第1熱交換器と、膨張弁を
介してこの第1熱交換器と接続され、前記四方弁に接続
された第2熱交換器とを備え、前記四方弁を切り替える
ことにより冷房運転及び暖房運転を行う空気調和機にお
いて、前記膨張弁に接続される配管の径を前記圧縮機に
接続される配管の径よりも細くすることにより達成され
る。
Further, as an air conditioner capable of cooling and heating, the above-mentioned object is achieved through a compressor, a four-way valve connected to the compressor, a first heat exchanger connected to the four-way valve, and an expansion valve. An air conditioner that is connected to a first lever heat exchanger and is connected to the four-way valve, and that performs a cooling operation and a heating operation by switching the four-way valve. This is achieved by making the diameter of the pipe to be connected smaller than the diameter of the pipe to be connected to the compressor.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施例を、図面
を参照して説明する。まずサイクルについて図8を用い
て説明する。本図は本発明の一実施の形態である空調機
のサイクルを示した図である。サイクルは、圧縮機1、
四方弁2、第1熱交換器3、膨張弁4、分流合流器8お
よび第2熱交換器5を配管7、11a、11b、11
c、11d、分岐管9a、9bで各々接続して構成す
る。なお、本実施例では当該膨張弁と当該分流合流器と
の間の配管7の形状は2つの曲がり部を有するU字形状
の配管となっている。また膨張弁に最も近い曲がり部出
口に各々抵抗体19及び抵抗体21を設置している。冷
房運転時には、圧縮機1から吐出された高温高圧のガス
冷媒は第1熱交換器3にてファン10aで送られる空気
により冷却され、高圧の液冷媒となる。この冷媒が膨張
弁4に流入し、室内空気温度よりも低い温度の気液二相
状態の冷媒となり、第2熱交換器5においてファン10
bで送られる室内空気から熱を奪い蒸発し、再び圧縮機
1に戻る。また暖房運転時には、四方弁2を切り替える
ことで、冷媒の循環方向を逆転させる。即ち、冷媒は圧
縮機1、四方弁2、第2熱交換器5、膨張弁4、第1熱
交換器3、四方弁2の順に流れ再び圧縮機1に戻る。こ
の時、運転条件の影響で、冷房運転時では第1熱交換器
3で凝縮しきれず、また暖房運転時では第2熱交換器5
で凝縮しきれずに、気液二相の状態で流出することがあ
る。この場合、膨張弁4に気液二相流の状態で冷媒が流
入するため、この膨張弁4から間欠的な流動音が発生す
る。この間欠的に発生する流動音は冷媒の流動様式に関
係しており、膨張弁4に気液二相の冷媒と液冷媒とが交
互に、または気液二相状態と液冷媒状態とが交互に流入
することで発生している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. First, the cycle will be described with reference to FIG. This figure is a diagram showing a cycle of an air conditioner according to an embodiment of the present invention. The cycle is compressor 1,
The four-way valve 2, the first heat exchanger 3, the expansion valve 4, the diversion / merger 8 and the second heat exchanger 5 are connected to the pipes 7, 11a, 11b, 11
c, 11d, and branch pipes 9a, 9b, respectively. In this embodiment, the shape of the pipe 7 between the expansion valve and the flow divider / combiner is a U-shaped pipe having two bent portions. Also, a resistor 19 and a resistor 21 are installed at the bent portion outlets closest to the expansion valve. During the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is cooled by the air sent by the fan 10a in the first heat exchanger 3 to become a high-pressure liquid refrigerant. This refrigerant flows into the expansion valve 4, becomes a refrigerant in a gas-liquid two-phase state having a temperature lower than the indoor air temperature, and the fan 10 in the second heat exchanger 5 is used.
The heat is taken from the indoor air sent in b to evaporate and return to the compressor 1 again. Further, during the heating operation, the circulation direction of the refrigerant is reversed by switching the four-way valve 2. That is, the refrigerant flows in the order of the compressor 1, the four-way valve 2, the second heat exchanger 5, the expansion valve 4, the first heat exchanger 3, and the four-way valve 2 and returns to the compressor 1 again. At this time, due to the operating conditions, the first heat exchanger 3 cannot fully condense during the cooling operation, and the second heat exchanger 5 during the heating operation.
In some cases, the gas does not completely condense and flows out in a gas-liquid two-phase state. In this case, since the refrigerant flows into the expansion valve 4 in a gas-liquid two-phase flow state, an intermittent flow noise is generated from the expansion valve 4. This intermittently generated flow sound is related to the flow mode of the refrigerant, and the expansion valve 4 alternates between the gas-liquid two-phase refrigerant and the liquid refrigerant, or alternates between the gas-liquid two-phase state and the liquid refrigerant state. It is caused by flowing into.

【0015】図中の破線で囲まれた部分12が冷媒流動
音を低減するための工夫を施した部分であり、図1から
図7にその実施の形態を示す。
A portion 12 surrounded by a broken line in the drawing is a portion devised to reduce the refrigerant flow noise, and its embodiment is shown in FIGS. 1 to 7.

【0016】図1は、本発明の一実施の形態である膨張
弁に接続される配管の設定例を示した図である。図中一
点鎖線中の部分が膨張弁4である。膨張弁4は、弁体1
6、弁棒17、弁棒17を上下に駆動させるモーター1
5および弁体の両入口に取り付けられている継ぎ手管1
3と継ぎ手管14から構成されている。図1において、
冷房運転時には冷媒は配管6側から膨張弁4に流入す
る。また暖房運転時には、配管7側から膨張弁4に流入
する。運転条件によって、冷房運転時、暖房運転時とも
気液二相流の状態で膨張弁4に流入することがある。こ
の時、膨張弁4から間欠的な流動音が発生する。 この
流動音を低減させるために、本発明の一実施の形態で
は、膨張弁4に接続される配管の内断面積を以下のよう
に設定する。ここで配管の内断面積とは、内径基準の断
面積のことである。図1中の内断面積A1、A2、A
3、A4、A5、A6、A7は各々の部分で、配管軸線
に直交する面での内断面積の大きさを模式的に示してい
る。即ち、冷房運転時を想定すると、膨張弁4の継ぎ手
管13に接続される配管6の内断面積A3を、継ぎ手管
13(図示しない第1熱交換器3からの配管)の内断面
積A1以下にする。また、暖房運転時を想定すると、膨
張弁4の継ぎ手管14に接続される配管7の内断面積A
4、A5、A6を、継ぎ手管14(図示しない圧縮機2
から第2熱交換器5に至る配管)の内断面積A2以下に
する。従って、冷暖房運転が可能なヒートポンプサイク
ルでは、膨張弁4に接続される双方の配管の内断面積が
各々継ぎ手管の内断面積以下となる。この結果、継ぎ手
管と接続配管の内断面積が同じである場合、膨張弁4に
流入される冷媒流は、配管の形状変化を伴わないため圧
力脈動の増加がなく、また安定した流れとして膨張弁4
に流入させることができる。
FIG. 1 is a diagram showing a setting example of piping connected to an expansion valve which is an embodiment of the present invention. The part in the chain line in the figure is the expansion valve 4. The expansion valve 4 is the valve body 1
6, valve rod 17, motor 1 for driving the valve rod 17 up and down
5 and joint pipe 1 attached to both inlets of the valve body
3 and a joint pipe 14. In FIG.
During the cooling operation, the refrigerant flows into the expansion valve 4 from the pipe 6 side. Further, during the heating operation, it flows into the expansion valve 4 from the pipe 7 side. Depending on the operating conditions, the gas may flow into the expansion valve 4 in a gas-liquid two-phase state during both the cooling operation and the heating operation. At this time, intermittent flow noise is generated from the expansion valve 4. In order to reduce this flow noise, in one embodiment of the present invention, the inner cross-sectional area of the pipe connected to the expansion valve 4 is set as follows. Here, the inner cross-sectional area of the pipe is a cross-sectional area based on the inner diameter. Inner cross-sectional areas A1, A2, A in FIG.
3, A4, A5, A6, and A7 are respective portions, which schematically show the size of the inner cross-sectional area in the plane orthogonal to the pipe axis. That is, assuming a cooling operation, the inner cross-sectional area A3 of the pipe 6 connected to the joint pipe 13 of the expansion valve 4 is the inner cross-sectional area A1 of the joint pipe 13 (the pipe from the first heat exchanger 3 not shown). Below. Further, assuming heating operation, the inner cross-sectional area A of the pipe 7 connected to the joint pipe 14 of the expansion valve 4 is
4, A5, A6 to the joint pipe 14 (compressor 2 not shown
To the second heat exchanger 5), the inner cross-sectional area A2 or less. Therefore, in a heat pump cycle capable of cooling and heating operation, the inner cross-sectional areas of both pipes connected to the expansion valve 4 are equal to or less than the inner cross-sectional area of the joint pipe. As a result, when the joint pipe and the connecting pipe have the same inner cross-sectional area, the refrigerant flow flowing into the expansion valve 4 does not cause a change in the shape of the pipe so that pressure pulsation does not increase and the refrigerant expands as a stable flow. Valve 4
Can be flowed into.

【0017】しかし、空調機に膨張弁や配管を実装する
際、全ての配管を一直線に接続していくことは不可能で
あるため、図1に示すように、配管を曲げた部分が必ず
発生する。この時、膨張弁4の継ぎ手管と接続配管の内
断面積が同じであっても、配管の曲がり部分で流れる冷
媒流の流動状態が変化し、特に気液二相流の場合、流動
様式の変化および曲がり部分に気相が滞留し大きな気泡
となりやすく、それを液冷媒が押し出すことによって圧
力脈動、流量変動を発生させる。これらの流れ変動を有
する冷媒流がそのまま膨張弁4の弁棒17と弁体16と
の隙間で構成される絞りに流入すると間欠的な流動音が
発生してしまう。
However, when the expansion valve and the pipes are mounted on the air conditioner, it is impossible to connect all the pipes in a straight line. Therefore, as shown in FIG. 1, a bent portion of the pipe is always generated. To do. At this time, even if the joint pipe of the expansion valve 4 and the connecting pipe have the same inner cross-sectional area, the flow state of the refrigerant flow flowing in the bent portion of the pipe changes, and particularly in the case of gas-liquid two-phase flow, the flow mode is changed. The vapor phase tends to stay in the change and bend portions to form large bubbles, and the liquid refrigerant pushes them out to cause pressure pulsation and flow rate fluctuations. If the refrigerant flow having these flow fluctuations directly flows into the throttle formed by the gap between the valve rod 17 and the valve body 16 of the expansion valve 4, an intermittent flow noise is generated.

【0018】そこで、接続する配管の内断面積を膨張弁
4の継ぎ手管の内断面積よりも小さく設定する。即ち、
接続配管6の内断面積A3は継ぎ手管の内断面積A1よ
りも小さく、また接続配管7の内断面積A4、A5およ
びA6は継ぎ手管14の内断面積A4よりも小さく設定
する。
Therefore, the inner cross-sectional area of the pipe to be connected is set smaller than the inner cross-sectional area of the joint pipe of the expansion valve 4. That is,
The inner sectional area A3 of the connecting pipe 6 is set smaller than the inner sectional area A1 of the joint pipe, and the inner sectional areas A4, A5 and A6 of the connecting pipe 7 are set smaller than the inner sectional area A4 of the joint pipe 14.

【0019】流動音の発生原因は、膨張弁を通過する流
体の圧力変化であり、この圧力変化が最も大きい流動様
式は、管路断面を満たすような大きい砲弾型の気泡と小
気泡を含む液体部分が交互に存在する流れであるスラグ
流やプラグ流である。この流れが膨張弁を通過する際、
圧力変化の大きい気相部分と変化の小さい液相部分が交
互に通過するので、耳障りな間欠的な異音が発生する。
本実施形態においては、室内機における配管(または、
室内の配管)径を室外機から室内までの配管径よりも細
くしているので、気液二相流の状態で室内に流入してき
たとしても、配管の内断面積が減少していることで、冷
媒流の流速が増速され、上記したスラグ流やプラグ流と
いった流れが、管壁に液膜が管断面中心付近に気相流が
存在する環状流の流動様式に変更される。このため、膨
張弁のオリフィスの付近では細かい気泡が液中に十分混
在する状態となり、その状態で膨張弁を通過する。この
ため、大きい気泡と液相が交互に通過するスラグ流とは
異なり、気相と液相とが各々連続となって、圧力変化が
少なくなるので、間欠的な流動音を低減することができ
る。さらに、膨張弁を通過する冷媒音の周波数が高くな
るので、膨張弁の周囲に吸音材等を施すことにより、低
周波数の間欠音よりも低騒音化することができる。
The cause of the flow noise is the change in pressure of the fluid passing through the expansion valve, and the flow mode with the largest change in pressure is a liquid containing large shell-shaped bubbles and small bubbles that fills the pipe section. It is a slug flow or plug flow, which is a flow in which parts alternate. When this flow passes through the expansion valve,
Since the gas phase portion having a large change in pressure and the liquid phase portion having a small change pass alternately, an annoying intermittent noise is generated.
In the present embodiment, the piping in the indoor unit (or,
Since the diameter of the indoor piping) is made smaller than the diameter of the piping from the outdoor unit to the indoor, even if it enters the room in a gas-liquid two-phase flow state, the internal cross-sectional area of the piping is reduced. The flow velocity of the refrigerant flow is increased, and the flow such as the slug flow and the plug flow described above is changed into a flow mode of an annular flow in which a liquid film is present on the pipe wall and a vapor phase flow exists near the center of the pipe cross section. Therefore, in the vicinity of the orifice of the expansion valve, fine air bubbles are sufficiently mixed in the liquid and pass through the expansion valve in that state. Therefore, unlike a slug flow in which large bubbles and a liquid phase pass alternately, the gas phase and the liquid phase are continuous with each other, and the pressure change is small, so that intermittent flow noise can be reduced. . Further, since the frequency of the refrigerant sound passing through the expansion valve becomes high, by providing a sound absorbing material or the like around the expansion valve, it is possible to reduce noise rather than intermittent sound at low frequency.

【0020】また、図1に示した如く、膨張弁4の継ぎ
手管13及び14の管径が配管6及び7よりも太い場合
も、冷媒は、環状流の流動様式で配管6又は7から継ぎ
手管13又は14に流入する際に、噴流となって継ぎ手
管13又は14に流入する。この際、やはり、液と気泡
が十分に混在された冷媒が膨張弁を通過する。しかし
て、通過する際に冷媒圧力変動が小さくなるので、異音
の発生を防止することができる。
Also, as shown in FIG. 1, when the pipe diameters of the joint pipes 13 and 14 of the expansion valve 4 are larger than those of the pipes 6 and 7, the refrigerant is connected from the pipes 6 or 7 in a flow mode of an annular flow. When flowing into the pipe 13 or 14, it becomes a jet flow and flows into the joint pipe 13 or 14. At this time, again, the refrigerant in which the liquid and the air bubbles are sufficiently mixed passes through the expansion valve. Then, since the fluctuation of the refrigerant pressure becomes small when passing through, it is possible to prevent the generation of abnormal noise.

【0021】ところで上記した実施形態においては、膨
張弁4を挟む第1熱交換器3及び第2熱交換器5の間の
配管であって室内部分の配管6及び7の管径を細くする
ものとしたが、熱交換器から膨張弁に至る配管内におけ
る冷媒の流動様式を環状流の流動様式とすれば耳障りな
異音の発生を防止することができるのであるから、室内
外にこだわらず、膨張弁4を挟む第1熱交換器3及び第
2熱交換器5の間の配管径を、圧縮機を挟む第1熱交換
器3及び第2熱交換器5の間の配管径よりも細くしても
同様の効果が期待される。膨張弁4を挟む第1熱交換器
3及び第2熱交換器5の間の配管には本来二相流が流れ
ないものであり、何らかの原因で二相流となったとして
もこの部分における流速を増大させておけば、スラグ流
等の異音発生原因となる間欠的な流れには移行しない。
この場合、室内外配管の接続部を必要としないという効
果がある。
By the way, in the above-mentioned embodiment, the pipes between the first heat exchanger 3 and the second heat exchanger 5 which sandwich the expansion valve 4 and in which the pipe diameters of the pipes 6 and 7 in the indoor part are reduced. However, since it is possible to prevent the generation of annoying noise by setting the flow mode of the refrigerant in the pipe from the heat exchanger to the expansion valve to the flow mode of the annular flow, without sticking to the indoors or outdoors, The pipe diameter between the first heat exchanger 3 and the second heat exchanger 5 sandwiching the expansion valve 4 is made smaller than the pipe diameter between the first heat exchanger 3 and the second heat exchanger 5 sandwiching the compressor. Even if the same effect is expected. The two-phase flow originally does not flow in the pipe between the first heat exchanger 3 and the second heat exchanger 5 that sandwich the expansion valve 4, and even if the two-phase flow occurs for some reason, the flow velocity in this part Is increased, the flow does not shift to an intermittent flow such as a slag flow that causes abnormal noise.
In this case, there is an effect that a connecting portion for indoor and outdoor piping is not required.

【0022】次に、暖房運転時の場合を詳細に説明す
る。第2熱交換器からの冷媒は、分岐管9aおよび9b
を通り、分流合流器8で合流し接続配管7に流入し膨張
弁4に流れる。分流合流器8には、冷房運転時におい
て、冷媒流の分流を向上させるために、オリフィス18
(または絞り)が設けられている。このオリフィス18
の冷媒通路23の内断面積A7を接続配管7の内断面積
A6、A5、A4よりも小さくすることで、さらに流れ
の安定化を促進させることが可能となる。暖房運転時に
は先に述べたように、分岐管9a、9bから来る冷媒流
は分流合流器8の空間34で衝突、混合を生じており、
非常に乱れた状態にある。この乱れた状態の冷媒流が接
続配管7に流入した場合、流速の増速による効果だけで
は、状況によっては配管長を長くとる必要が生じる。し
かし、実際の空調機において、配管の配置に使用できる
空間は一般に非常に狭く、必要な長さ分の配管長を取る
ことができない。そこで、オリフィス18の冷媒通路2
3の内断面積A7を冷媒通路7の内断面積A6、A5、
A4よりも小さくすることで、オリフィス18から噴流
の状態で接続配管7に流入させ、流れの安定化と気液の
均一な混合を行う。この結果、接続配管長を最小な長さ
とすることができ、かつ流動音も低減される。
Next, the case of heating operation will be described in detail. The refrigerant from the second heat exchanger is divided into branch pipes 9a and 9b.
Through the branching and merging unit 8 to flow into the connecting pipe 7 and flow into the expansion valve 4. The diversion / merging unit 8 has an orifice 18 for improving the diversion of the refrigerant flow during the cooling operation.
(Or diaphragm) is provided. This orifice 18
By making the inner cross-sectional area A7 of the refrigerant passage 23 smaller than the inner cross-sectional areas A6, A5, and A4 of the connection pipe 7, it becomes possible to further promote the stabilization of the flow. During the heating operation, as described above, the refrigerant flows coming from the branch pipes 9a and 9b collide with each other and mix in the space 34 of the diversion / merging unit 8,
Very disturbed. When the refrigerant flow in the turbulent state flows into the connection pipe 7, it is necessary to increase the length of the pipe depending on the situation only by the effect of increasing the flow velocity. However, in an actual air conditioner, the space that can be used for arranging the pipes is generally very small, and it is not possible to take the necessary pipe length. Therefore, the refrigerant passage 2 of the orifice 18
3 is the inner cross-sectional area A7 of the refrigerant passage 7
By making it smaller than A4, it is made to flow from the orifice 18 into the connection pipe 7 in a jet state, and the flow is stabilized and gas and liquid are uniformly mixed. As a result, the length of the connecting pipe can be minimized and the flow noise can be reduced.

【0023】図2は本発明の一実施の形態である膨張弁
に接続される配管に抵抗体を設けた場合を示した図であ
る。
FIG. 2 is a diagram showing a case in which a resistor is provided in the pipe connected to the expansion valve according to the embodiment of the present invention.

【0024】先の実施の形態で説明したように、実際の
空調機では配管の設置スペースが非常に狭い空間である
ため、曲がり部分の曲率半径が非常に小さい場合があ
る。曲率半径が小さいと、特に気液二相流の場合、曲が
り部分に気相が滞留しやすくなり、このことは曲がり部
で流れを阻害する要因となり、気相を液冷媒が押し出す
ことによって大きな圧力脈動、流量変動が発生しやすく
なる。特に水平配管から垂直配管へ、または垂直配管か
ら水平配管への移行、流れ的には水平流から垂直上昇流
への移行において顕著となる。そのため、曲率半径は大
きく取るか、曲がり部を通過した後の直線配管を長くす
ることが望ましいが、設置上不可能な場合が多々ある。
そこで図2に示すように、冷媒の流れ方向に対し曲がり
部の出口に抵抗体を設け、曲がり部で生じた流れの乱れ
の補正を行う。即ち、本実施の形態の場合、冷房運転時
では、配管11c側から膨張弁4に流入する。そこで抵
抗体19を曲がり部35の下流側、即ち曲がり部35と
継ぎ手管13との間に設置する。同様に、暖房運転時で
は、分流合流器8側から膨張弁4に流入する。そこで、
抵抗体21を曲がり部36と継ぎ手管14との間に設け
る。この時、対象とする曲がり部は、流入する膨張弁に
最も近いものを選択することが効果的である。
As described in the previous embodiment, in actual air conditioners, the pipe installation space is very narrow, so the radius of curvature of the bent portion may be very small. When the radius of curvature is small, especially in the case of gas-liquid two-phase flow, the gas phase tends to stay in the bent portion, which becomes a factor that obstructs the flow in the bent portion, and the liquid refrigerant pushes out the gas phase, resulting in a large pressure. Pulsations and flow rate fluctuations are likely to occur. In particular, it becomes remarkable in the transition from horizontal pipe to vertical pipe, or from vertical pipe to horizontal pipe, and in terms of flow, from horizontal flow to vertical upward flow. Therefore, it is desirable to have a large radius of curvature or to lengthen the straight pipe after passing through the bent portion, but this is often impossible in terms of installation.
Therefore, as shown in FIG. 2, a resistor is provided at the outlet of the curved portion in the flow direction of the refrigerant to correct the flow turbulence generated at the curved portion. That is, in the case of the present embodiment, during the cooling operation, the gas flows into the expansion valve 4 from the pipe 11c side. Therefore, the resistor 19 is installed on the downstream side of the bent portion 35, that is, between the bent portion 35 and the joint pipe 13. Similarly, during the heating operation, it flows into the expansion valve 4 from the side of the flow divider / combiner 8. Therefore,
The resistor 21 is provided between the bent portion 36 and the joint pipe 14. At this time, it is effective to select the target bent portion that is closest to the inflowing expansion valve.

【0025】なお、抵抗体を設置する位置は、曲がり部
の入口に設置してもよい。しかし、曲がり部において、
必ず流れは乱れるため、曲がり部出口に設置した場合よ
りも効果は劣る。
The resistor may be installed at the entrance of the bent portion. However, at the bend,
Since the flow is always turbulent, it is less effective than when installed at the exit of the bend.

【0026】抵抗体としては、多孔板等が有効である。
多孔板の各孔の総面積は配管の内断面積と同程度であっ
ても、多孔となることで一つの孔から流出する冷媒流は
噴流となり、乱れた流れも抵抗体を通過することによっ
て流れの安定化が図れる。また、流れにとっては多孔と
なることで、濡れ縁長さが長くなり抵抗が増し、この効
果によっても流れの安定化が図れる。
A perforated plate or the like is effective as the resistor.
Even if the total area of each hole of the perforated plate is about the same as the inner cross-sectional area of the pipe, the perforation makes the refrigerant flow out of one hole into a jet flow, and the turbulent flow also passes through the resistor. The flow can be stabilized. Further, since the flow becomes porous, the wetting edge length becomes long and the resistance increases, and this effect also stabilizes the flow.

【0027】図3から図7に抵抗体の形状の一実施の形
態を示す。
3 to 7 show one embodiment of the shape of the resistor.

【0028】図3は抵抗体の配管軸と平行な断面を示し
た図である。冷媒通路は25a、25bである。特徴は
配管軸すなわち中心部に冷媒が通る孔が無いことであ
る。これは、例えば垂直上昇流の場合、気泡(気相)は
配管中心部に集まっているため、中心部に孔があると気
泡がそのまま通過してしまい、流れの改善が図れないた
めである。
FIG. 3 is a view showing a cross section parallel to the piping axis of the resistor. The refrigerant passages are 25a and 25b. The feature is that there is no hole through which the refrigerant passes in the pipe axis, that is, in the center. This is because, for example, in the case of a vertically rising flow, the bubbles (gas phase) are gathered in the central part of the pipe, and if there is a hole in the central part, the bubbles pass through as they are, and the flow cannot be improved.

【0029】図4は、抵抗体の配管軸と直行する断面を
示した図である。抵抗体26は8つの孔が同心円上に設
けられている。冷媒通路は27aから27hである。な
お中心部には孔は無い。図5は、5孔とした抵抗体28
である。図4の8孔の抵抗体26と5孔の抵抗体28の
開孔面積を同じとした場合、濡れ縁長さは8孔の場合の
方が長いため、抵抗体28よりも抵抗体26の方が流動
抵抗は大きい。図6および図7は、円形状の孔に代わり
扇形状の孔を用いた場合である。この場合も中心部には
孔は無い。
FIG. 4 is a view showing a cross section perpendicular to the pipe axis of the resistor. The resistor 26 has eight holes provided concentrically. The refrigerant passages are 27a to 27h. There is no hole in the center. FIG. 5 shows a resistor 28 having five holes.
It is. When the open areas of the 8-hole resistor 26 and the 5-hole resistor 28 in FIG. 4 are the same, the wetting edge length is longer in the case of 8 holes, so that the resistor 26 is larger than the resistor 28. However, the flow resistance is large. 6 and 7 show a case where a fan-shaped hole is used instead of the circular hole. Also in this case, there is no hole in the center.

【0030】図1から図8で説明した本発明の一実施の
形態の空調機において、単一冷媒を使用する場合は基よ
り、多種の冷媒が混合している混合冷媒や沸点の異なる
多種の冷媒が混合している非共沸混合冷媒を使用してい
る場合においても、膨張弁から発生する間欠的な流動音
の原因となる気液二相冷媒流の流動様式は変わらず、ま
た本発明による流動の改善の効果は同様に得られる。
In the air conditioner according to one embodiment of the present invention described with reference to FIGS. 1 to 8, when a single refrigerant is used, mixed refrigerant in which various refrigerants are mixed and various kinds of refrigerants having different boiling points are used. Even when using a non-azeotropic mixed refrigerant in which the refrigerant is mixed, the flow pattern of the gas-liquid two-phase refrigerant flow that causes the intermittent flow noise generated from the expansion valve does not change, and the present invention The effect of improving the flow by is similarly obtained.

【0031】また記載した空調機において、圧縮機は、
一定速機でも、インバータによる過変速機でもよい。ま
た記載した空調機において、サイクルは冷暖房運転が可
能なヒートポンプサイクルでも、冷房または暖房運転の
いずれか一方が可能な冷凍サイクルでもよい。上記の本
発明の実施の形態により、ヒートポンプサイクル及び冷
凍サイクルにおいて、運転状況によって凝縮器として使
用される第1熱交換器または第2熱交換器で凝縮しきれ
ずに気液二相流の冷媒状態となった場合でも、本発明に
より実際の空調機の配管形状において、気液の均一化を
促進することで圧力脈動、流量変動を小さくし、流れの
安定化を図れるため、膨張弁から間欠的に発生する流動
音を低減することができる。その結果、空調機の静音化
が促進され、快適性の向上が図れる。
In the air conditioner described above, the compressor is
It may be a constant speed machine or an overspeed machine using an inverter. In the air conditioner described above, the cycle may be a heat pump cycle capable of cooling / heating operation or a refrigeration cycle capable of either cooling or heating operation. According to the embodiment of the present invention described above, in the heat pump cycle and the refrigeration cycle, the refrigerant state of the gas-liquid two-phase flow cannot be completely condensed in the first heat exchanger or the second heat exchanger used as the condenser depending on the operating conditions. Even in the case of, the present invention can reduce the pressure pulsation and the flow rate fluctuation by promoting the homogenization of gas-liquid in the actual air-conditioner piping shape, and stabilize the flow, so that the expansion valve can be intermittently operated. It is possible to reduce the flow noise generated in the. As a result, noise reduction of the air conditioner is promoted, and comfort can be improved.

【0032】[0032]

【発明の効果】本発明の空調機によると、気液二相流の
場合、管内を流れる冷媒流の流速が増速され気液の均一
化が促進されるとともに安定化し、また気液各々の流速
が上がるため、例えばスラグ流やフロス流といった気液
が不連続な流動様式が気液が連続した環状流へ移行す
る。また、膨張弁入口に最も近い曲がり部に出口に抵抗
体を設置し、曲がり部で乱れた流れを抵抗体で補正して
いるため、配管曲げが多い実装時の配管の場合にも、流
れ改善の効果を維持することができる。その結果、膨張
弁は基より、配管から発生している気液二相流に起因す
る流動音を低減することができ、静音性を維持でき快適
性を向上することができる。
According to the air conditioner of the present invention, in the case of gas-liquid two-phase flow, the flow velocity of the refrigerant flowing in the pipe is increased to promote the stabilization of the gas-liquid and stabilize it. Since the flow velocity increases, for example, a gas-liquid discontinuous flow pattern such as a slag flow or a floss flow shifts to a continuous gas-liquid annular flow. In addition, a resistor is installed at the outlet at the bend closest to the inlet of the expansion valve, and the flow turbulent at the bend is corrected by the resistor. The effect of can be maintained. As a result, the expansion valve can reduce the flow noise caused by the gas-liquid two-phase flow generated from the pipe, and the quietness can be maintained and the comfort can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】膨張弁に接続する配管の内断面積及び分流合流
器内のオリフィスの内断面積を膨張弁の継ぎ手管の内断
面積よりも小さくした本発明の一実施の形態の空調機の
部分図。
FIG. 1 shows an air conditioner according to an embodiment of the present invention in which an inner cross-sectional area of a pipe connected to an expansion valve and an inner cross-sectional area of an orifice in a shunt junction are smaller than an inner cross-sectional area of a joint pipe of the expansion valve. Partial view.

【図2】配管の曲がり部の出口に抵抗体を設けた本発明
の一実施の形態の空調機の部分図。
FIG. 2 is a partial view of an air conditioner according to an embodiment of the present invention in which a resistor is provided at the outlet of the bent portion of the pipe.

【図3】本発明の一実施の形態の抵抗体の断面図。FIG. 3 is a sectional view of a resistor according to an embodiment of the present invention.

【図4】本発明の一実施の形態の円形状の8孔の抵抗体
の図。
FIG. 4 is a diagram of a circular 8-hole resistor according to an embodiment of the present invention.

【図5】本発明の一実施の形態の円形状の5孔の抵抗体
の図。
FIG. 5 is a diagram of a circular five-hole resistor according to an embodiment of the present invention.

【図6】本発明の一実施の形態の扇形状の2孔の抵抗体
の図。
FIG. 6 is a diagram of a fan-shaped two-hole resistor according to an embodiment of the present invention.

【図7】本発明の一実施の形態の扇形状の4孔の抵抗体
の図。
FIG. 7 is a diagram of a fan-shaped 4-hole resistor according to an embodiment of the present invention.

【図8】本発明の一実施の形態の空調機のサイクル図。FIG. 8 is a cycle diagram of the air conditioner according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…四方弁、3…第1熱交換器、4…膨張
弁、5…第2熱交換器、6、7…接続配管、8…分流合
流器、9a、9b…分岐管、10a、10b…ファン、
11a、11b、11c、11d…配管、12…膨張弁
の周辺部分、13、14…継ぎ手管、15…モーター、
16…弁体、17…弁棒、18…オリフィス(絞り)、
19、21、24、26、28、30、32…抵抗体、
20a、20b、22a、22b、25a、25b、2
7a、27b、27c、27d、27e、27f、27
g、27h、29a、29b、29c、29d、29
e、31a、31b、33a、33b、33c、33d
…冷媒通路、23…オリフィス内冷媒通路、34…合流
混合空間、35、36…配管曲がり部、A1、A2…継
ぎ手管内断面積、A3、A4、A5、A6…接続配管内
断面積、A7…オリフィス(絞り)内断面積。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four-way valve, 3 ... 1st heat exchanger, 4 ... Expansion valve, 5 ... 2nd heat exchanger, 6, 7 ... Connection piping, 8 ... Diverging / combining machine, 9a, 9b ... Branch pipe 10a, 10b ... fans,
11a, 11b, 11c, 11d ... Piping, 12 ... Expansion valve peripheral part, 13, 14 ... Joint pipe, 15 ... Motor,
16 ... Valve body, 17 ... Valve rod, 18 ... Orifice (throttle),
19, 21, 24, 26, 28, 30, 32 ... Resistors,
20a, 20b, 22a, 22b, 25a, 25b, 2
7a, 27b, 27c, 27d, 27e, 27f, 27
g, 27h, 29a, 29b, 29c, 29d, 29
e, 31a, 31b, 33a, 33b, 33c, 33d
... Refrigerant passage, 23 ... Intra-orifice refrigerant passage, 34 ... Combined mixing space, 35, 36 ... Pipe bend, A1, A2 ... Joint pipe inner cross-sectional area, A3, A4, A5, A6 ... Connection pipe inner cross-sectional area, A7 ... Internal cross-sectional area of the orifice (throttle).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐野 孝 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 小林 敦泰 静岡県清水市村松390番地 日立清水エン ジニアリング株式会社内 (72)発明者 奥園 秀樹 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 黒柳 和之 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 (72)発明者 花田 正道 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Sano 390 Muramatsu, Shimizu-shi, Shizuoka Hitachi Air Conditioning Systems Division (72) Inventor Atsushi Kobayashi 390 Muramatsu, Shimizu-shi, Hitachi Hitachi Shimizu Engineering Co., Ltd. In-house (72) Hideki Okuzono, 390 Muramatsu, Shimizu City, Shizuoka Prefecture, Hitachi, Ltd., Air Conditioning Systems Division, Hitachi, Ltd. (72) Kazuyuki Kuroyanagi, 390, Muramatsu, Shimizu City, Shizuoka, Hitachi, Ltd. ) Masamichi Hanada Inventor Masamichi 390 Muramatsu, Shimizu City, Shizuoka Prefecture Hitachi Ltd. Air Conditioning Systems Division

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】冷媒を圧縮する圧縮機と、この圧縮された
冷媒と外気との間で熱交換を行う第1熱交換器と、膨張
弁を介して流入した冷媒と内気との間で熱交換を行う第
2熱交換器とを備えた空気調和機において、前記第1熱
交換器と膨張弁間の配管のうち少なくとも膨張弁側の配
管の径を前記圧縮機と前記第1熱交換器間の配管の径よ
りも細くした空気調和機。
Claim: What is claimed is: 1. A compressor for compressing a refrigerant, a first heat exchanger for exchanging heat between the compressed refrigerant and the outside air, and a heat flow between the refrigerant flowing through an expansion valve and the inside air. In an air conditioner provided with a second heat exchanger for exchanging, of the pipes between the first heat exchanger and the expansion valve, at least the diameter of the pipe on the expansion valve side is set to the compressor and the first heat exchanger. An air conditioner that is thinner than the diameter of the pipe between them.
【請求項2】請求項1において、前記膨張弁に接続され
る配管の最も膨張弁に近い曲がり部の出口に抵抗体を設
けた空気調和機。
2. The air conditioner according to claim 1, wherein a resistance is provided at the outlet of the bent portion of the pipe connected to the expansion valve, which is closest to the expansion valve.
【請求項3】請求項2において、前記抵抗体は、配管断
面の外周部に前記冷媒が通過する孔を設けたものである
空気調和機。
3. The air conditioner according to claim 2, wherein the resistor is provided with a hole through which the refrigerant passes in an outer peripheral portion of a pipe cross section.
【請求項4】圧縮機と、この圧縮機に接続された四方弁
と、この四方弁に接続された第1熱交換器と、膨張弁を
介してこの第1熱交換器と接続され、前記四方弁に接続
された第2熱交換器とを備え、前記四方弁を切り替える
ことにより冷房運転及び暖房運転を行う空気調和機にお
いて、前記膨張弁に接続される配管の径を前記圧縮機に
接続される配管の径よりも細くした空気調和機。
4. A compressor, a four-way valve connected to this compressor, a first heat exchanger connected to this four-way valve, and a first heat exchanger connected via an expansion valve, An air conditioner that includes a second heat exchanger connected to a four-way valve, and performs a cooling operation and a heating operation by switching the four-way valve, in which a diameter of a pipe connected to the expansion valve is connected to the compressor. An air conditioner that is thinner than the diameter of the pipe to be used.
【請求項5】請求項4において、前記膨張弁に接続され
る配管の最も膨張弁に近い曲がり部の出口に抵抗体を設
けた空気調和機。
5. The air conditioner according to claim 4, wherein a resistance is provided at the outlet of the bent portion of the pipe connected to the expansion valve closest to the expansion valve.
【請求項6】請求項5において、前記抵抗体は、配管断
面の外周部に前記冷媒が通過する孔を設けられたもので
ある空気調和機。
6. The air conditioner according to claim 5, wherein the resistor is provided with a hole through which the refrigerant passes in an outer peripheral portion of a pipe cross section.
JP8106845A 1996-04-26 1996-04-26 Air conditioner Pending JPH09292166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8106845A JPH09292166A (en) 1996-04-26 1996-04-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8106845A JPH09292166A (en) 1996-04-26 1996-04-26 Air conditioner

Publications (1)

Publication Number Publication Date
JPH09292166A true JPH09292166A (en) 1997-11-11

Family

ID=14443999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8106845A Pending JPH09292166A (en) 1996-04-26 1996-04-26 Air conditioner

Country Status (1)

Country Link
JP (1) JPH09292166A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098443A (en) * 2000-09-25 2002-04-05 Mitsubishi Electric Corp Refrigeration cycle system
JP2006097947A (en) * 2004-09-29 2006-04-13 Fuji Koki Corp Motor operated valve
JP2007024384A (en) * 2005-07-15 2007-02-01 Fuji Koki Corp Motor operated valve
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
JP2007162851A (en) * 2005-12-14 2007-06-28 Fuji Koki Corp Motor operated valve
JP2012154529A (en) * 2011-01-25 2012-08-16 Mitsubishi Electric Corp Refrigerating cycle device, and expansion valve
JP2016090163A (en) * 2014-11-06 2016-05-23 ダイキン工業株式会社 Refrigeration device
WO2018062184A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
WO2019044661A1 (en) 2017-08-29 2019-03-07 東芝キヤリア株式会社 Multi-type air conditioning system and indoor unit
WO2023243022A1 (en) * 2022-06-16 2023-12-21 三菱電機株式会社 Heat pump device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098443A (en) * 2000-09-25 2002-04-05 Mitsubishi Electric Corp Refrigeration cycle system
JP2006097947A (en) * 2004-09-29 2006-04-13 Fuji Koki Corp Motor operated valve
JP2007024384A (en) * 2005-07-15 2007-02-01 Fuji Koki Corp Motor operated valve
JP2007107623A (en) * 2005-10-14 2007-04-26 Fuji Koki Corp Motor operated valve
JP2007162851A (en) * 2005-12-14 2007-06-28 Fuji Koki Corp Motor operated valve
JP2012154529A (en) * 2011-01-25 2012-08-16 Mitsubishi Electric Corp Refrigerating cycle device, and expansion valve
JP2016090163A (en) * 2014-11-06 2016-05-23 ダイキン工業株式会社 Refrigeration device
WO2018062184A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
JP2018054238A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Air conditioner
US11022354B2 (en) 2016-09-30 2021-06-01 Daikin Industries, Ltd. Air conditioner
WO2019044661A1 (en) 2017-08-29 2019-03-07 東芝キヤリア株式会社 Multi-type air conditioning system and indoor unit
WO2023243022A1 (en) * 2022-06-16 2023-12-21 三菱電機株式会社 Heat pump device

Similar Documents

Publication Publication Date Title
JP5665981B2 (en) Air conditioner
JP6704507B2 (en) Air conditioner
JP6104893B2 (en) Heat exchanger, refrigeration cycle apparatus, air conditioner, and heat exchange method
CN106461092B (en) Expansion valve and refrigerating circulatory device
JP2001116396A (en) Refrigerant distributor, refrigeration cycle and air conditioner using it
JPH09292166A (en) Air conditioner
JP3435626B2 (en) Air conditioner
JP2021124226A (en) Microchannel heat exchanger and air conditioner
JP3435621B2 (en) Air conditioner
JP3395761B2 (en) Throttling device, refrigeration cycle device.
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
JP6650335B2 (en) Refrigerant splitter-coupled expansion valve and refrigeration cycle device and air conditioner using the same
JP2003214727A (en) Fluid distributor and air conditioner with the same
CN112066522A (en) Control method of air conditioner, air conditioner and computer readable storage medium
CN113994149A (en) Air conditioner
JP2012137223A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
CN112856588B (en) Air conditioner indoor unit and air conditioner
JP2661781B2 (en) Refrigeration cycle control method for multi air conditioner
JP5193630B2 (en) Heat exchanger
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JPH08244446A (en) Refrigerating cycle of air conditioner for vehicle
JP2001336861A (en) Air conditioner
WO2013061365A1 (en) Air conditioning device
JP2012137224A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
CN112856866B (en) Throttling element, throttling liquid-separating assembly and air conditioner indoor unit