WO2019044661A1 - Multi-type air conditioning system and indoor unit - Google Patents

Multi-type air conditioning system and indoor unit Download PDF

Info

Publication number
WO2019044661A1
WO2019044661A1 PCT/JP2018/031203 JP2018031203W WO2019044661A1 WO 2019044661 A1 WO2019044661 A1 WO 2019044661A1 JP 2018031203 W JP2018031203 W JP 2018031203W WO 2019044661 A1 WO2019044661 A1 WO 2019044661A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expansion valve
pipe
capillaries
heat exchanger
Prior art date
Application number
PCT/JP2018/031203
Other languages
French (fr)
Japanese (ja)
Inventor
シノトク タナウィット
トンチューム パユンデッド
将嗣 山元
Original Assignee
東芝キヤリア株式会社
トウシバ・キヤリア(タイランド)・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社, トウシバ・キヤリア(タイランド)・カンパニー・リミテッド filed Critical 東芝キヤリア株式会社
Priority to JP2019539432A priority Critical patent/JP6828176B2/en
Priority to CN201880056328.1A priority patent/CN111094876A/en
Priority to EP18849549.3A priority patent/EP3677856A4/en
Publication of WO2019044661A1 publication Critical patent/WO2019044661A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/32Supports for air-conditioning, air-humidification or ventilation units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • Embodiments of the present invention relate to a multi-type air conditioning system and an indoor unit.
  • the amount of refrigerant supplied to each indoor unit changes every moment depending on the room temperature or the usage condition of the indoor units. For this reason, the refrigerant supplied from the outdoor unit to the indoor unit may change from the liquid phase flow to the gas-liquid two-phase flow state depending on the flow conditions of the refrigerant to the plurality of indoor units.
  • the refrigerant flow noise depends on the flow mode of the gas-liquid two-phase flow, and the slag flow or the floss flow in which uneven bubbles are intermittently present in the refrigerant flow is accompanied by pressure pulsations and the expansion valve
  • the expansion valve intermittently generates a loud noise.
  • the diameter of the expansion valve is made smaller than the inner diameter of the refrigerant pipe, or in the refrigerant pipe at a position upstream of the expansion valve. It has been tried to provide a branching / joining portion for once joining the refrigerant flow after branching the flow of refrigerant once.
  • the flow of the refrigerant led to the expansion valve can shift from the slag flow or the flog flow to a more stable continuous flow, and the refrigerant flow noise caused by the gas-liquid two-phase flow can be reduced.
  • An object of the present invention is to provide a multi-type air conditioning system having an indoor unit capable of quiet operation, which can reduce refrigerant flow noise generated when refrigerant flows into an expansion valve in a gas-liquid two-phase flow state. It is in.
  • the multi-type air conditioning system includes an outdoor unit having an outdoor heat exchanger for performing heat exchange between the refrigerant compressed by the compressor and the air, and the refrigerant having passed through the outdoor heat exchanger flowing in And a plurality of indoor units having an indoor heat exchanger for performing heat exchange between the expansion valve and the refrigerant decompressed by the expansion valve and the air, and a plurality of the indoor units connected in parallel to the outdoor unit. And a refrigerant pipe through which a refrigerant circulating between the outdoor unit and the indoor unit flows.
  • the refrigerant pipe positioned in the indoor unit has a plurality of capillaries at a location upstream of the expansion valve along the refrigerant flow direction, and the capillaries are connected in parallel to the refrigerant pipe. .
  • FIG. 1 is a circuit diagram showing a refrigeration cycle of a multi-type air conditioning system according to an embodiment.
  • FIG. 2 is a perspective view of a wall-mounted indoor unit used in the multi-type air conditioning system.
  • FIG. 3 is a cross-sectional view of the wall-mounted indoor unit.
  • FIG. 4 is a plan view of the indoor unit showing the positional relationship between the indoor heat exchanger, the expansion valve, and the capillary part.
  • FIG. 5 is a cross-sectional view of the expansion valve used in the multi-type air conditioning system. 6 is a plan view showing the capillary part of FIG. 4 in an enlarged manner.
  • FIG. 1 is a circuit diagram showing a refrigeration cycle of a multi-type air conditioning system 1 used for, for example, a low-rise building or a store building.
  • the multi-type air conditioning system 1 according to the present embodiment includes one outdoor unit 2, three indoor units 3, and a refrigerant pipe 4 through which a refrigerant circulating between the outdoor unit 2 and the indoor unit 3 flows.
  • the outdoor unit 2 includes a hermetic compressor 5, a four-way valve 6, an outdoor heat exchanger 7, a first expansion valve 8 and an accumulator 9.
  • the discharge port of the hermetic compressor 5 is connected to the first port 6 a of the four-way valve 6.
  • the second port 6 b of the four-way valve 6 is connected to the outdoor heat exchanger 7.
  • the outdoor heat exchanger 7 is connected to the first expansion valve 8.
  • the third port 6 c of the four-way valve 6 is connected to the accumulator 9.
  • the accumulator 9 is connected to the suction port of the hermetic compressor 5 via a suction cup 10.
  • the three indoor units 3 are connected in parallel between the fourth port 6 d of the four-way valve 6 and the first expansion valve 8.
  • Each indoor unit 3 has a second expansion valve 12 and an indoor heat exchanger 13.
  • the second expansion valve 12 is interposed between the first expansion valve 8 and the indoor heat exchanger 13, and is connected to the first expansion valve 8 and the indoor heat exchanger 13.
  • the indoor heat exchanger 13 is connected to the fourth port 6 d of the four-way valve 6.
  • the four-way valve 6 is switched so that the first port 6a communicates with the second port 6b and the third port 6c communicates with the fourth port 6d.
  • the cooling operation is started, the high temperature / high pressure gas phase refrigerant compressed by the hermetic compressor 5 is discharged to the refrigerant pipe 4.
  • the high temperature and high pressure gas phase refrigerant is led to the outdoor heat exchanger 7 functioning as a condenser via the four-way valve 6.
  • the gas phase refrigerant led to the outdoor heat exchanger 7 is condensed by heat exchange with the outdoor air sent from the blower fan 11, and changes to a high pressure liquid phase refrigerant.
  • the high-pressure liquid-phase refrigerant is decompressed in the process of passing through the first expansion valve 8 and then distributed to the three indoor units 3.
  • the refrigerant that has passed through the first expansion valve 8 is decompressed again in the process of passing through the second expansion valve 12 of each indoor unit 3, and changes to a low pressure gas-liquid two-phase flow.
  • the gas-liquid two-phase refrigerant is led to the indoor heat exchanger 13 which functions as an evaporator.
  • the gas-liquid two-phase refrigerant introduced to the indoor heat exchanger 13 exchanges heat with indoor air sent from the blower fan 14 in the process of passing through the indoor heat exchanger 13.
  • the gas-liquid two-phase refrigerant takes heat from the air in the room and evaporates, and changes to a low-temperature low-pressure gas-phase refrigerant.
  • the air passing through the indoor heat exchanger 13 is cooled by the latent heat of evaporation of the liquid-phase refrigerant, becomes cold air, and is blown into the room to be cooled.
  • the low-temperature low-pressure gas-phase refrigerant that has passed through the indoor heat exchanger 13 is sucked into the hermetic compressor 5 from the four-way valve 6 via the accumulator 9 and the suction cup 10.
  • the gas phase refrigerant sucked into the hermetic compressor 5 is compressed again into a high temperature and high pressure gas phase refrigerant and discharged to the refrigerant pipe 4.
  • the four-way valve 6 is switched so that the first port 6a communicates with the fourth port 6d and the second port 6b communicates with the third port 6c.
  • the heating operation is started, the high-temperature high-pressure gas-phase refrigerant compressed by the hermetic compressor 5 is distributed to the indoor heat exchangers 13 of the three indoor units 3 via the four-way valve 6, and condensed. In the process of passing through the indoor heat exchanger 13 functioning as a heat exchanger, heat is exchanged with the indoor air sent from the blower fan 14.
  • the gas phase refrigerant passing through the indoor heat exchanger 13 condenses by heat exchange with the air in the room, and changes to a high pressure liquid phase refrigerant.
  • the air passing through the indoor heat exchanger 13 is heated by heat exchange with the gas phase refrigerant, becomes warm air, and is blown into the room to be heated.
  • the high-pressure liquid-phase refrigerant that has passed through the indoor heat exchanger 13 is decompressed in the process of passing through the second expansion valve 12 and the first expansion valve 8 and changes to a low-pressure gas-liquid two-phase flow.
  • the gas-liquid two-phase refrigerant is led to the outdoor heat exchanger 7 functioning as an evaporator, and is evaporated here by heat exchange with the outdoor air sent from the blower 11 to change to a low temperature low pressure gas phase refrigerant .
  • the low-temperature low-pressure gas-phase refrigerant having passed through the outdoor heat exchanger 7 is sucked from the four-way valve 6 into the hermetic compressor 5 via the accumulator 9 and the suction cup 10 as in the cooling operation.
  • the operation shifts to a defrosting operation for removing the frost.
  • the defrosting operation the four-way valve 6 is switched from the heating operation to the cooling operation, and the blower fan 11 is stopped.
  • the high temperature gas phase refrigerant compressed by the hermetic compressor 5 is led to the outdoor heat exchanger 7 and the frost adhering to the outdoor heat exchanger 7 is melted.
  • the indoor unit 3 of the present embodiment is of a wall mounted type installed on the top of the wall W of the room R to be air conditioned, and has a housing 20 fixed to the wall W ing.
  • the housing 20 is a box-shaped element having a front panel 21, a back panel 22 and left and right side panels 23.
  • the housing 20 protrudes from the wall surface W into the room R to be air-conditioned, and extends laterally along the wall surface W.
  • the housing 20 has an inlet 24 and an outlet 25.
  • the suction port 24 is opened on the top surface of the housing 20.
  • the blower outlet 25 is opened at the lower surface of the housing 20.
  • a horizontal louver 26 changes the blowing direction of the air-conditioned air in the vertical direction of the housing 20 in the air outlet 25 and a plurality of vertical louvers 27 changes the blowing direction of the air-conditioned air in the left-right direction of the housing 20. Only one is shown.
  • the inside of the housing 20 is divided into a heat exchange chamber 28 and a pipe storage chamber 29.
  • the heat exchange chamber 28 occupies a large area inside the housing 20, and the suction port 24 and the air outlet 25 are in communication with the heat exchange chamber 28.
  • the piping storage chamber 29 is separated from the heat exchange chamber 28 by being surrounded by the cover 30.
  • the pipe storage chamber 29 is offset to one side along the width direction of the housing 20 with respect to the heat exchange chamber 28 and is located behind the upper portion of the heat exchange chamber 28.
  • the indoor heat exchanger 13, the blower fan 14 and the filter 33 are accommodated in the heat exchange chamber 28.
  • the indoor heat exchanger 13 is a plate-like element erected behind the front panel 21 and includes a plurality of cooling fins 34 and a plurality of heat transfer tubes 35 through which a refrigerant flows.
  • the cooling fins 34 extend in the height direction of the housing 20 and are arranged in a line at intervals in the width direction of the housing 20.
  • the heat transfer tubes 35 are arranged at intervals in the height direction and the depth direction of the housing 20, and define a plurality of mutually independent refrigerant flow paths (paths). Furthermore, the heat transfer tube 35 is thermally connected to the cooling fin 34.
  • the blower fan 14 is disposed horizontally in the width direction of the housing 20 behind the indoor heat exchanger 13. Therefore, in the present embodiment, the indoor heat exchanger 13 is interposed between the blower fan 14 and the suction port 24 of the housing 20, and the blower outlet 25 having the horizontal louver 26 and the vertical louver 27 directly below the blower fan 14 is provided. It is located.
  • the filter 33 is removably supported by the heat exchange chamber 28 so as to face the front panel 21 and the suction port 24 of the housing 20.
  • the air in the room R to be air conditioned is sucked into the heat exchange chamber 28 from the suction port 24.
  • the air sucked into the heat exchange chamber 28 is filtered by the filter 33 and then led to the indoor heat exchanger 13.
  • the air having passed through the indoor heat exchanger 13 is blown out into the room R to be air conditioned from the blowout port 25 after the blowout direction is changed by the vertical louvers 27 and the horizontal louvers 26.
  • the second expansion valve 12 and the liquid side pipe 37 are accommodated in the pipe accommodating chamber 29 of the housing 20.
  • the liquid side pipe 37 constitutes a portion connecting the first expansion valve 8 of the refrigerant pipe 4 and the indoor heat exchanger 13 of the indoor unit 3.
  • the second expansion valve 12 is connected to an intermediate portion of the liquid side pipe 37.
  • the second expansion valve 12 divides the liquid side piping 37 into an inlet pipe portion 37a and an outlet pipe portion 37b.
  • the inlet pipe portion 37 a and the outlet pipe portion 37 b extend horizontally in the width direction of the housing 20 in the pipe housing chamber 29 and are arranged parallel to each other in the height direction of the housing 20.
  • the downstream end of the inlet pipe portion 37a is bent upward at a right angle.
  • the second expansion valve 12 includes a valve body 40 and a drive unit 41.
  • a refrigerant passage 42 is formed in the valve body 40.
  • the refrigerant passage 42 includes a refrigerant introduction portion 42 a and a refrigerant discharge portion 42 b.
  • the downstream end of the inlet pipe portion 37a of the liquid side pipe 37 is connected to the refrigerant introducing portion 42a.
  • the upstream end of the outlet pipe portion 37b of the liquid side pipe 37 is connected to the refrigerant lead-out portion 42b.
  • the refrigerant introduction part 42 a and the refrigerant lead-out part 42 b cross each other in the valve main body 40.
  • a valve seat 43 is formed at the intersection of the refrigerant introduction portion 42a and the refrigerant lead-out portion 42b.
  • the valve main body 40 of the present embodiment has a needle support portion 44 which is protruded toward the opposite side to the refrigerant lead-out portion 42 b.
  • a needle insertion hole 45 is formed inside the needle support portion 44.
  • the needle insertion hole 45 is located coaxially with the refrigerant lead-out portion 42b.
  • a needle 47 as a valve body is axially slidably inserted in the needle insertion hole 45.
  • the needle 47 is supported by the needle support 44 so as to be movable between a fully closed position and an open position.
  • the tapered head portion 47a located at one end along the axial direction of the needle 47 is seated on the valve seat 43, and cuts off the communication between the refrigerant introducing portion 42a and the refrigerant discharging portion 42b.
  • the head 47 a of the needle 47 separates from the valve seat 43, and the area of the passage between the head 47 a and the valve seat 43 is increased or decreased.
  • the flow rate of the refrigerant flowing from the refrigerant introduction portion 42a toward the refrigerant lead-out portion 42b is controlled.
  • the drive portion 41 of the second expansion valve 12 is an element for moving the needle 47 in the axial direction, and includes a motor 48 and an electromagnet 49 as main elements.
  • the motor 48 is fixed to the outer peripheral surface of the cylindrical rotor portion 51 screwed to the outer peripheral surface of the needle support portion 44, the cylindrical spacer 52 fitted to the outer peripheral surface of the rotor portion 51, and the spacer 52 And an electromagnet 53.
  • the tip of the rotor portion 51 is connected to an end 47 b of the needle 47 opposite to the head 47 a via an engaging element 54.
  • the motor 48 is covered by the case 55 together with the needle support 44.
  • the electromagnet 49 surrounds the electromagnet 53 from the outside of the case 55.
  • the rotor portion 51 of the motor 48 rotates in accordance with the amount of energization of the electromagnet 49.
  • the rotor portion 51 is screwed into the needle support portion 44, and thus moves in the axial direction of the needle support portion 44 by rotation.
  • the motion of the rotor portion 51 is transmitted to the needle 47, so that the needle 47 linearly moves between the fully closed position and the open position.
  • the flow rate control of the refrigerant flowing from the refrigerant introduction portion 42a toward the refrigerant lead-out portion 42b is performed.
  • a capillary section 60 is provided in the middle of the inlet pipe section 37a of the liquid side pipe 37.
  • the capillary unit 60 is positioned upstream of the second expansion valve 12 along the flow direction of the refrigerant during the cooling operation.
  • the capillary unit 60 includes two capillaries 61 a and 61 b, a branch pipe 62 and a merging pipe 63.
  • the capillaries 61a and 61b are each formed of a straight pipe having a predetermined length L and an inner diameter d2.
  • the length L of the capillaries 61a and 61b is set to 80 mm
  • the inner diameter d2 of the capillaries 61a and 61b is set to 2 mm.
  • the branch pipe portion 62 includes one first connection port 64 to which the liquid side piping 37 is connected, and a pair of second connection ports 65 a and 65 b branched into two from the first connection port 64.
  • the merging pipe portion 63 includes one third connection port 66 to which the inlet pipe portion 37a is connected, and a pair of fourth connection ports 67a and 67b branched into two from the third connection port 66. Have.
  • One capillary 61 a is bridged between the second connection port 65 a of the branch pipe portion 62 and the fourth connection port 67 a of the merging pipe portion 63.
  • the other capillary 61 b is bridged between the second connection port 65 b of the branch pipe portion 62 and the fourth connection port 67 b of the junction pipe portion 63. Therefore, the capillaries 61a and 61b are arranged in parallel to the inlet pipe portion 37a of the liquid side pipe 37 so as to be parallel to each other with an interval in the height direction of the housing 20, for example.
  • the inner diameter d2 of each of the capillaries 61a and 61b is set equal to or larger than the diameter d1 of the refrigerant introduction portion 42a of the second expansion valve 12, and the inlet pipe of the liquid side pipe 37 The diameter is set smaller than the inner diameter d3 of the portion 37a. Furthermore, when d1, d2 and d3 are n, the number of capillaries 61a and 61b is d1 ⁇ d2 ⁇ n ⁇ d3 It is desirable to satisfy
  • the outlet pipe portion 37 b of the liquid side pipe 37 is connected to the plurality of branch pipes 71 via the distributor 70.
  • the branch pipe 71 corresponds to the number of the plurality of refrigerant flow paths (passes) that the indoor heat exchanger 13 has, and the branch pipe 71 is connected to the inlet of the refrigerant flow path.
  • the outlets of the plurality of refrigerant flow paths (paths) of the indoor heat exchanger 13 are connected to the gas side pipe 73 via the header 72 after being merged into one by the header 72.
  • the gas side pipe 73 constitutes a portion connecting the indoor heat exchanger 13 of the indoor unit 3 and the fourth port 6 d of the four-way valve 6 in the refrigerant pipe 4.
  • the refrigerant having passed through the first expansion valve 8 has a flow mode in which nonuniform bubbles are intermittently included in the flow, for example, like a slag flow. If the refrigerant passes through the gap between the head 47 a of the needle 47 of the second expansion valve 12 and the valve seat 43, unpleasant refrigerant flow noise is generated.
  • a capillary section 60 having two capillaries 61a and 61b is provided on the upstream side along the flow direction of the refrigerant than the second expansion valve 12. Therefore, when the refrigerant of gas-liquid two-phase flow including non-uniform bubbles reaches the capillary section 60, the refrigerant is branched into two flows by the branch pipe section 62 and then flows into the capillaries 61a and 61b.
  • the flow velocity of the branched refrigerant is increased by the throttling effect of the capillaries 61a and 61b.
  • the flow of the refrigerant passing through the capillaries 61a, 61b is changed from the slag flow to the stable flow pattern of the spray flow. That is, as the flow velocity increases, the flow of the refrigerant becomes continuous, and the intermittent flow of the refrigerant that is a cause of the refrigerant flow noise is eliminated.
  • the refrigerant transferred to the continuous spray flow in the process of passing through the capillaries 61a and 61b merges with each other in the merging pipe portion 63.
  • the mixing of the gas and liquid contained in the refrigerant is promoted, and the bubbles contained in the refrigerant from the merging pipe portion 63 to the second expansion valve 12 form a uniform flow of the subdivided refrigerant. it can.
  • the indoor unit 3 when the multi-type air conditioning system 1 starts up, even when the flow rate of the gas-liquid two-phase flow refrigerant flowing through the liquid side pipe 37 is not sufficient, such as when heating operation shifts to defrosting operation, the indoor unit 3
  • the refrigerant flow noise emitted by the second expansion valve 12 can be efficiently reduced, and silent operation is possible.
  • the bore diameter of the second expansion valve 12 is d1
  • the inner diameter of the capillaries 61a and 61b is d2
  • the inner diameter of the inlet pipe portion 37a of the liquid side pipe 37 is d3
  • the number of the capillaries 61a and 61b is n.
  • the sum of the cross sectional areas of the passages of the capillaries 61a and 61b can be sufficiently secured with respect to the diameter d1 of the second expansion valve 12, and unnecessary pressure loss when the refrigerant passes through the capillaries 61a and 61b. It can prevent.
  • each of the capillaries 61a and 61b is smaller than the inner diameter d3 of the inlet pipe portion 37a of the liquid side pipe 37, the refrigerant throttling effect by the capillaries 61a and 61b can be sufficiently exhibited. Therefore, the flow velocity of the refrigerant passing through the capillaries 61a and 61b is increased, which is advantageous in making the flow of the refrigerant introduced to the second expansion valve 12 more uniform.
  • the number of outdoor units of the multi-type air conditioning system is not limited to one, and may be two or three, and the number of outdoor units and indoor units is not particularly limited.
  • the number of capillaries is two in the above embodiment, the number of capillaries is not limited.
  • the inner diameters of the capillaries do not have to be identical to each other, and the inner diameters of a plurality of capillaries may be made different from each other as long as the diameter is smaller than the inlet pipe portion of the liquid side piping.
  • the capillary is not limited to being arranged horizontally, and for example, the capillary may be erected in the housing if a sufficient space can be secured in the housing.
  • SYMBOLS 1 multi type air conditioning system, 2 ... outdoor unit, 3 ... indoor unit, 4 ... refrigerant piping, 5 ... compressor (sealed type compressor), 7 ... outdoor heat exchanger, 12 ... expansion valve (2nd expansion valve 13) indoor heat exchanger 61a, 61b capillary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The multi-type air conditioning system according to the present invention includes: an outdoor unit having an outside air heat exchanger; a plurality of indoor units each having an expansion valve into which a refrigerant flows after passing through the outdoor heat exchanger, and an indoor heat exchanger which exchanges heat between the refrigerant decompressed by the expansion valve and air; and a refrigerant pipe which connects the plurality of indoor units in parallel to the outdoor unit and through which the refrigerant flows. The refrigerant pipe located inside each of the indoor units has a plurality of capillaries at the location upstream of the expansion valve and along the flow direction of the refrigerant, and the capillaries are connected in parallel to the refrigerant pipe.

Description

マルチタイプ空調システムおよび室内ユニットMulti-type air conditioning system and indoor unit
 本発明の実施形態は、マルチタイプ空調システムおよび室内ユニットに関する。 Embodiments of the present invention relate to a multi-type air conditioning system and an indoor unit.
 例えば一つの室外ユニットに複数の室内ユニットが接続されたマルチタイプ空調システムでは、各室内ユニットに供給される冷媒の量が室温あるいは室内ユニットの使用状況等により刻々と変化する。このため、複数の室内ユニットに対する冷媒の流れ具合によっては、室外ユニットから室内ユニットに供給される冷媒が液相流から気液二相流の状態に変化することがあり得る。 For example, in a multi-type air conditioning system in which a plurality of indoor units are connected to one outdoor unit, the amount of refrigerant supplied to each indoor unit changes every moment depending on the room temperature or the usage condition of the indoor units. For this reason, the refrigerant supplied from the outdoor unit to the indoor unit may change from the liquid phase flow to the gas-liquid two-phase flow state depending on the flow conditions of the refrigerant to the plurality of indoor units.
 気液二相流の冷媒が室内ユニットの膨張弁に流入すると、耳障りな冷媒流動音が発生することが知られている。すなわち、冷媒流動音は、気液二相流の流動様式に依存しており、冷媒の流れの中に不均一の気泡が断続的に存在するスラグ流あるいはフロス流が圧力脈動を伴いながら膨張弁に流入した時に、当該膨張弁から間欠的に大きな異音が発生する。 It is known that when the gas-liquid two-phase refrigerant flows into the expansion valve of the indoor unit, an unpleasant refrigerant flow noise is generated. That is, the refrigerant flow noise depends on the flow mode of the gas-liquid two-phase flow, and the slag flow or the floss flow in which uneven bubbles are intermittently present in the refrigerant flow is accompanied by pressure pulsations and the expansion valve When the air flows into the valve, the expansion valve intermittently generates a loud noise.
 膨張弁が発する冷媒流動音を低減させるため、従来の室内ユニットでは、膨張弁の口径を冷媒配管の内径よりも小さくしたり、あるいは冷媒配管のうち膨張弁よりも上流側に位置する箇所に、冷媒の流れを一旦複数に分岐した後、再度合流させる分岐合流部を設けることが試されている。 In order to reduce the refrigerant flow noise emitted by the expansion valve, in the conventional indoor unit, the diameter of the expansion valve is made smaller than the inner diameter of the refrigerant pipe, or in the refrigerant pipe at a position upstream of the expansion valve. It has been tried to provide a branching / joining portion for once joining the refrigerant flow after branching the flow of refrigerant once.
 この構成によれば、膨張弁に導かれる冷媒の流れがスラグ流あるいはフログ流からより安定した連続的な流れに移行し、気液二相流に起因する冷媒流動音を低減することができる。 According to this configuration, the flow of the refrigerant led to the expansion valve can shift from the slag flow or the flog flow to a more stable continuous flow, and the refrigerant flow noise caused by the gas-liquid two-phase flow can be reduced.
特開平9-292166号公報Japanese Patent Laid-Open No. 9-291166 特開平9-318198号公報Unexamined-Japanese-Patent No. 9-318198
 しかしながら、例えば冷媒を室内ユニットに送り出す圧縮機の回転数が低下したり、暖房運転中に除霜運転に移行した時のように、冷媒配管内の急激な圧力変化により冷媒の気液二相化が生じた場合に、単に膨張弁の口径を小径化するだけの対応では、冷媒流動音を抑制することが困難となるのを否めない。 However, for example, as when the number of revolutions of the compressor for delivering the refrigerant to the indoor unit decreases or when the operation shifts to the defrosting operation during the heating operation, the gas-liquid two-phase of the refrigerant is caused by the rapid pressure change in the refrigerant piping In the case of simply reducing the diameter of the expansion valve, it is difficult to suppress the refrigerant flow noise.
 さらに、例えばマルチタイプ空調システムの起動時あるいは暖房運転中に除霜運転に移行した時のように、冷媒配管を流れる冷媒の流速が十分でない場合は、膨張弁の上流側に位置する分岐合流部において気液を十分に混合させることが困難となることが予測される。 Furthermore, when the flow velocity of the refrigerant flowing through the refrigerant pipe is not sufficient, for example, when the defrosting operation is started during startup or heating operation of the multi-type air conditioning system, a branch junction located upstream of the expansion valve It is predicted that it will be difficult to mix the gas and liquid sufficiently.
 本発明の目的は、冷媒が気液二相流の状態で膨張弁に流入した時に生じる冷媒流動音を低減させることができ、静粛な運転が可能な室内ユニットを有するマルチタイプ空調システムを得ることにある。 An object of the present invention is to provide a multi-type air conditioning system having an indoor unit capable of quiet operation, which can reduce refrigerant flow noise generated when refrigerant flows into an expansion valve in a gas-liquid two-phase flow state. It is in.
 実施形態によれば、マルチタイプ空調システムは、圧縮機で圧縮された冷媒と空気との間で熱交換を行なう室外熱交換器を有する室外ユニットと、前記室外熱交換器を通過した冷媒が流入する膨張弁および当該膨張弁で減圧された冷媒と空気との間で熱交換を行なう室内熱交換器を有する複数の室内ユニットと、前記室外ユニットに対し複数の前記室内ユニットを並列に接続するとともに、前記室外ユニットと前記室内ユニットとの間で循環する冷媒が流れる冷媒配管と、を備えている。 According to the embodiment, the multi-type air conditioning system includes an outdoor unit having an outdoor heat exchanger for performing heat exchange between the refrigerant compressed by the compressor and the air, and the refrigerant having passed through the outdoor heat exchanger flowing in And a plurality of indoor units having an indoor heat exchanger for performing heat exchange between the expansion valve and the refrigerant decompressed by the expansion valve and the air, and a plurality of the indoor units connected in parallel to the outdoor unit. And a refrigerant pipe through which a refrigerant circulating between the outdoor unit and the indoor unit flows.
 前記室内ユニット内に位置する前記冷媒配管は、前記膨張弁よりも冷媒の流れ方向に沿う上流側の箇所に複数本のキャピラリを有し、当該キャピラリが前記冷媒配管に対し並列に接続されている。 The refrigerant pipe positioned in the indoor unit has a plurality of capillaries at a location upstream of the expansion valve along the refrigerant flow direction, and the capillaries are connected in parallel to the refrigerant pipe. .
図1は、実施形態に係るマルチタイプ空調システムの冷凍サイクルを示す回路図である。FIG. 1 is a circuit diagram showing a refrigeration cycle of a multi-type air conditioning system according to an embodiment. 図2は、マルチタイプ空調システムに用いる壁掛け形の室内ユニットの斜視図である。FIG. 2 is a perspective view of a wall-mounted indoor unit used in the multi-type air conditioning system. 図3は、壁掛け形の室内ユニットの断面図である。FIG. 3 is a cross-sectional view of the wall-mounted indoor unit. 図4は、室内熱交換器、膨張弁およびキャピラリ部の位置関係を示す室内ユニットの平面図である。FIG. 4 is a plan view of the indoor unit showing the positional relationship between the indoor heat exchanger, the expansion valve, and the capillary part. 図5は、マルチタイプ空調システムに用いる膨張弁の断面図である。FIG. 5 is a cross-sectional view of the expansion valve used in the multi-type air conditioning system. 図6は、図4のキャピラリ部を拡大して示す平面図である。6 is a plan view showing the capillary part of FIG. 4 in an enlarged manner.
 以下、実施形態について図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 図1は、例えば中低層ビルあるいは店舗用建物に用いられるマルチタイプ空調システム1の冷凍サイクルを示す回路図である。本実施形態に係るマルチタイプ空調システム1は、一台の室外ユニット2、三台の室内ユニット3および室外ユニット2と室内ユニット3との間を循環する冷媒が流れる冷媒配管4を備えている。 FIG. 1 is a circuit diagram showing a refrigeration cycle of a multi-type air conditioning system 1 used for, for example, a low-rise building or a store building. The multi-type air conditioning system 1 according to the present embodiment includes one outdoor unit 2, three indoor units 3, and a refrigerant pipe 4 through which a refrigerant circulating between the outdoor unit 2 and the indoor unit 3 flows.
 具体的に述べると、室外ユニット2は、密閉形圧縮機5、四方弁6、室外熱交換器7、第1の膨張弁8およびアキュームレータ9を含んでいる。図1に示すように、密閉形圧縮機5の吐出口は、四方弁6の第1ポート6aに接続されている。四方弁6の第2ポート6bは、室外熱交換器7に接続されている。室外熱交換器7は、第1の膨張弁8に接続されている。さらに、四方弁6の第3ポート6cは、アキュームレータ9に接続されている。アキュームレータ9は、サクションカップ10を介して密閉形圧縮機5の吸入口に接続されている。 Specifically, the outdoor unit 2 includes a hermetic compressor 5, a four-way valve 6, an outdoor heat exchanger 7, a first expansion valve 8 and an accumulator 9. As shown in FIG. 1, the discharge port of the hermetic compressor 5 is connected to the first port 6 a of the four-way valve 6. The second port 6 b of the four-way valve 6 is connected to the outdoor heat exchanger 7. The outdoor heat exchanger 7 is connected to the first expansion valve 8. Furthermore, the third port 6 c of the four-way valve 6 is connected to the accumulator 9. The accumulator 9 is connected to the suction port of the hermetic compressor 5 via a suction cup 10.
 三台の室内ユニット3は、四方弁6の第4ポート6dと第1の膨張弁8との間に並列に接続されている。各室内ユニット3は、第2の膨張弁12および室内熱交換器13を有している。第2の膨張弁12は、第1の膨張弁8と室内熱交換器13との間に介在されているとともに、第1の膨張弁8および室内熱交換器13に接続されている。室内熱交換器13は、四方弁6の第4ポート6dに接続されている。 The three indoor units 3 are connected in parallel between the fourth port 6 d of the four-way valve 6 and the first expansion valve 8. Each indoor unit 3 has a second expansion valve 12 and an indoor heat exchanger 13. The second expansion valve 12 is interposed between the first expansion valve 8 and the indoor heat exchanger 13, and is connected to the first expansion valve 8 and the indoor heat exchanger 13. The indoor heat exchanger 13 is connected to the fourth port 6 d of the four-way valve 6.
 マルチタイプ空調システム1が冷房運転を行う場合、四方弁6は、第1ポート6aが第2ポート6bに連通し、第3ポート6cが第4ポート6dに連通するように切り替わる。冷房運転が開始されると、密閉形圧縮機5で圧縮された高温・高圧の気相冷媒が冷媒配管4に吐出される。高温・高圧の気相冷媒は、四方弁6を経由して凝縮器として機能する室外熱交換器7に導かれる。 When the multi-type air conditioning system 1 performs the cooling operation, the four-way valve 6 is switched so that the first port 6a communicates with the second port 6b and the third port 6c communicates with the fourth port 6d. When the cooling operation is started, the high temperature / high pressure gas phase refrigerant compressed by the hermetic compressor 5 is discharged to the refrigerant pipe 4. The high temperature and high pressure gas phase refrigerant is led to the outdoor heat exchanger 7 functioning as a condenser via the four-way valve 6.
 室外熱交換器7に導かれた気相冷媒は、送風ファン11から送られる室外の空気との熱交換により凝縮し、高圧の液相冷媒に変化する。高圧の液相冷媒は、第1の膨張弁8を通過する過程で減圧された後に、三台の室内ユニット3に分配される。 The gas phase refrigerant led to the outdoor heat exchanger 7 is condensed by heat exchange with the outdoor air sent from the blower fan 11, and changes to a high pressure liquid phase refrigerant. The high-pressure liquid-phase refrigerant is decompressed in the process of passing through the first expansion valve 8 and then distributed to the three indoor units 3.
 すなわち、第1の膨張弁8を通過した冷媒は、各室内ユニット3の第2の膨張弁12を通過する過程で再び減圧されて低圧の気液二相流に変化する。気液二相冷媒は、蒸発器として機能する室内熱交換器13に導かれる。室内熱交換器13に導かれた気液二相冷媒は、室内熱交換器13を通過する過程で送風ファン14から送られる室内の空気と熱交換する。 That is, the refrigerant that has passed through the first expansion valve 8 is decompressed again in the process of passing through the second expansion valve 12 of each indoor unit 3, and changes to a low pressure gas-liquid two-phase flow. The gas-liquid two-phase refrigerant is led to the indoor heat exchanger 13 which functions as an evaporator. The gas-liquid two-phase refrigerant introduced to the indoor heat exchanger 13 exchanges heat with indoor air sent from the blower fan 14 in the process of passing through the indoor heat exchanger 13.
 この結果、気液二相冷媒は、室内の空気から熱を奪って蒸発し、低温・低圧の気相冷媒に変化する。室内熱交換器13を通過する空気は、液相冷媒の蒸発潜熱により冷やされ、冷風となって冷房すべき室内に送風される。 As a result, the gas-liquid two-phase refrigerant takes heat from the air in the room and evaporates, and changes to a low-temperature low-pressure gas-phase refrigerant. The air passing through the indoor heat exchanger 13 is cooled by the latent heat of evaporation of the liquid-phase refrigerant, becomes cold air, and is blown into the room to be cooled.
 室内熱交換器13を通過した低温・低圧の気相冷媒は、四方弁6からアキュームレータ9およびサクションカップ10を経由して密閉形圧縮機5に吸い込まれる。密閉形圧縮機5に吸い込まれた気相冷媒は、再び高温・高圧の気相冷媒に圧縮されて冷媒配管4に吐出される。 The low-temperature low-pressure gas-phase refrigerant that has passed through the indoor heat exchanger 13 is sucked into the hermetic compressor 5 from the four-way valve 6 via the accumulator 9 and the suction cup 10. The gas phase refrigerant sucked into the hermetic compressor 5 is compressed again into a high temperature and high pressure gas phase refrigerant and discharged to the refrigerant pipe 4.
 一方、マルチタイプ空調システム1が暖房運転を行う場合、四方弁6は、第1ポート6aが第4ポート6dに連通し、第2ポート6bが第3ポート6cに連通するように切り替わる。暖房運転が開始されると、密閉形圧縮機5で圧縮された高温・高圧の気相冷媒は、四方弁6を経由して三台の室内ユニット3の室内熱交換器13に分配され、凝縮器として機能する室内熱交換器13を通過する過程で送風ファン14から送られる室内の空気と熱交換する。 On the other hand, when the multi-type air conditioning system 1 performs a heating operation, the four-way valve 6 is switched so that the first port 6a communicates with the fourth port 6d and the second port 6b communicates with the third port 6c. When the heating operation is started, the high-temperature high-pressure gas-phase refrigerant compressed by the hermetic compressor 5 is distributed to the indoor heat exchangers 13 of the three indoor units 3 via the four-way valve 6, and condensed. In the process of passing through the indoor heat exchanger 13 functioning as a heat exchanger, heat is exchanged with the indoor air sent from the blower fan 14.
 この結果、室内熱交換器13を通過する気相冷媒は、室内の空気と熱交換することにより凝縮し、高圧の液相冷媒に変化する。室内熱交換器13を通過する空気は、気相冷媒との熱交換により加熱され、温風となって暖房すべき室内に送風される。 As a result, the gas phase refrigerant passing through the indoor heat exchanger 13 condenses by heat exchange with the air in the room, and changes to a high pressure liquid phase refrigerant. The air passing through the indoor heat exchanger 13 is heated by heat exchange with the gas phase refrigerant, becomes warm air, and is blown into the room to be heated.
 室内熱交換器13を通過した高圧の液相冷媒は、第2の膨張弁12および第1の膨張弁8を通過する過程で減圧されて、低圧の気液二相流に変化する。気液二相冷媒は、蒸発器として機能する室外熱交換器7に導かれるとともに、ここで送風機11から送られる室外の空気との熱交換により蒸発し、低温・低圧の気相冷媒に変化する。室外熱交換器7を通過した低温・低圧の気相冷媒は、冷房運転の時と同様に、四方弁6からアキュームレータ9およびサクションカップ10を経由して密閉形圧縮機5に吸い込まれる。 The high-pressure liquid-phase refrigerant that has passed through the indoor heat exchanger 13 is decompressed in the process of passing through the second expansion valve 12 and the first expansion valve 8 and changes to a low-pressure gas-liquid two-phase flow. The gas-liquid two-phase refrigerant is led to the outdoor heat exchanger 7 functioning as an evaporator, and is evaporated here by heat exchange with the outdoor air sent from the blower 11 to change to a low temperature low pressure gas phase refrigerant . The low-temperature low-pressure gas-phase refrigerant having passed through the outdoor heat exchanger 7 is sucked from the four-way valve 6 into the hermetic compressor 5 via the accumulator 9 and the suction cup 10 as in the cooling operation.
 暖房運転中に室外熱交換器7に霜が付着した場合、霜を取り除く除霜運転に移行する。除霜運転では、四方弁6が暖房運転から冷房運転の状態に切り替わるとともに、送風ファン11が停止する。これにより、密閉形圧縮機5で圧縮された高温の気相冷媒が室外熱交換器7に導かれ、室外熱交換器7に付着した霜を溶かす。 If frost adheres to the outdoor heat exchanger 7 during the heating operation, the operation shifts to a defrosting operation for removing the frost. In the defrosting operation, the four-way valve 6 is switched from the heating operation to the cooling operation, and the blower fan 11 is stopped. As a result, the high temperature gas phase refrigerant compressed by the hermetic compressor 5 is led to the outdoor heat exchanger 7 and the frost adhering to the outdoor heat exchanger 7 is melted.
 図2および図3に示すように、本実施形態の室内ユニット3は、空調すべき室Rの壁面Wの上部に据え付けられた壁掛け形であり、壁面Wに固定された筐体20を有している。筐体20は、前面パネル21、背面パネル22および左右の側面パネル23を有する箱形の要素である。筐体20は、壁面Wから空調すべき室R内に突出されているとともに、壁面Wに沿って横方向に延びている。 As shown in FIG. 2 and FIG. 3, the indoor unit 3 of the present embodiment is of a wall mounted type installed on the top of the wall W of the room R to be air conditioned, and has a housing 20 fixed to the wall W ing. The housing 20 is a box-shaped element having a front panel 21, a back panel 22 and left and right side panels 23. The housing 20 protrudes from the wall surface W into the room R to be air-conditioned, and extends laterally along the wall surface W.
 さらに、筐体20は、吸込口24および吹出口25を有している。吸込口24は、筐体20の上面に開口されている。吹出口25は、筐体20の下面に開口されている。吹出口25には、空調された空気の吹き出し方向を筐体20の上下方向に変化させる水平ルーバ26と、空調された空気の吹き出し方向を筐体20の左右方向に変化させる複数の縦ルーバ27(一つのみを図示)が配置されている。 Furthermore, the housing 20 has an inlet 24 and an outlet 25. The suction port 24 is opened on the top surface of the housing 20. The blower outlet 25 is opened at the lower surface of the housing 20. A horizontal louver 26 changes the blowing direction of the air-conditioned air in the vertical direction of the housing 20 in the air outlet 25 and a plurality of vertical louvers 27 changes the blowing direction of the air-conditioned air in the left-right direction of the housing 20. Only one is shown.
 図3に示すように、筐体20の内部は、熱交換室28と配管収容室29とに区分けされている。熱交換室28は、筐体20の内部の多くの領域を占有するとともに、当該熱交換室28に吸込口24および吹出口25が連通されている。配管収容室29は、カバー30で囲うことにより、熱交換室28から隔てられている。配管収容室29は、熱交換室28に対し筐体20の幅方向に沿う一方側にずれているとともに、熱交換室28の上部の背後に位置されている。 As shown in FIG. 3, the inside of the housing 20 is divided into a heat exchange chamber 28 and a pipe storage chamber 29. The heat exchange chamber 28 occupies a large area inside the housing 20, and the suction port 24 and the air outlet 25 are in communication with the heat exchange chamber 28. The piping storage chamber 29 is separated from the heat exchange chamber 28 by being surrounded by the cover 30. The pipe storage chamber 29 is offset to one side along the width direction of the housing 20 with respect to the heat exchange chamber 28 and is located behind the upper portion of the heat exchange chamber 28.
 前記室内熱交換器13、前記送風ファン14およびフィルタ33が熱交換室28に収容されている。室内熱交換器13は、前面パネル21の背後で起立された板状の要素であって、複数の冷却フィン34および冷媒が流れる複数の伝熱管35を備えている。 The indoor heat exchanger 13, the blower fan 14 and the filter 33 are accommodated in the heat exchange chamber 28. The indoor heat exchanger 13 is a plate-like element erected behind the front panel 21 and includes a plurality of cooling fins 34 and a plurality of heat transfer tubes 35 through which a refrigerant flows.
 冷却フィン34は、筐体20の高さ方向に延びるとともに、筐体20の幅方向に間隔を存して一列に並んでいる。伝熱管35は、筐体20の高さ方向および奥行方向に間隔を存して並んでいるとともに、互いに独立した複数の冷媒流路(パス)を規定している。さらに、伝熱管35は、冷却フィン34に熱的に接続されている。 The cooling fins 34 extend in the height direction of the housing 20 and are arranged in a line at intervals in the width direction of the housing 20. The heat transfer tubes 35 are arranged at intervals in the height direction and the depth direction of the housing 20, and define a plurality of mutually independent refrigerant flow paths (paths). Furthermore, the heat transfer tube 35 is thermally connected to the cooling fin 34.
 送風ファン14は、室内熱交換器13の背後で筐体20の幅方向に水平に配置されている。そのため、本実施形態では、送風ファン14と筐体20の吸込口24との間に室内熱交換器13が介在され、送風ファン14の真下に水平ルーバ26および縦ルーバ27を有する吹出口25が位置されている。 The blower fan 14 is disposed horizontally in the width direction of the housing 20 behind the indoor heat exchanger 13. Therefore, in the present embodiment, the indoor heat exchanger 13 is interposed between the blower fan 14 and the suction port 24 of the housing 20, and the blower outlet 25 having the horizontal louver 26 and the vertical louver 27 directly below the blower fan 14 is provided. It is located.
 フィルタ33は、筐体20の前面パネル21および吸込口24と向かい合うように熱交換室28に取り外し可能に支持されている。送風ファン14が運転を開始すると、空調すべき室R内の空気が吸込口24から熱交換室28に吸い込まれる。熱交換室28に吸い込まれた空気は、フィルタ33で濾過された後、室内熱交換器13に導かれる。室内熱交換器13を通過した空気は、縦ルーバ27および水平ルーバ26で吹き出し方向が変更された後、吹出口25から空調すべき室R内に吐き出される。 The filter 33 is removably supported by the heat exchange chamber 28 so as to face the front panel 21 and the suction port 24 of the housing 20. When the blower fan 14 starts operation, the air in the room R to be air conditioned is sucked into the heat exchange chamber 28 from the suction port 24. The air sucked into the heat exchange chamber 28 is filtered by the filter 33 and then led to the indoor heat exchanger 13. The air having passed through the indoor heat exchanger 13 is blown out into the room R to be air conditioned from the blowout port 25 after the blowout direction is changed by the vertical louvers 27 and the horizontal louvers 26.
 図3および図4に示すように、前記第2の膨張弁12および液側配管37が筐体20の配管収容室29に収容されている。液側配管37は、冷媒配管4のうち第1の膨張弁8と室内ユニット3の室内熱交換器13との間を結ぶ部分を構成している。 As shown in FIGS. 3 and 4, the second expansion valve 12 and the liquid side pipe 37 are accommodated in the pipe accommodating chamber 29 of the housing 20. The liquid side pipe 37 constitutes a portion connecting the first expansion valve 8 of the refrigerant pipe 4 and the indoor heat exchanger 13 of the indoor unit 3.
 図4および図5に示すように、第2の膨張弁12は、液側配管37の中間部に接続されている。第2の膨張弁12は、液側配管37を入口管部37aと出口管部37bとに区分けしている。入口管部37aおよび出口管部37bは、配管収容室29内で筐体20の幅方向に水平に延びているとともに、筐体20の高さ方向に互いに間隔を平行に配置されている。入口管部37aの下流端部は、上向きに直角に折り曲げられている。 As shown in FIGS. 4 and 5, the second expansion valve 12 is connected to an intermediate portion of the liquid side pipe 37. The second expansion valve 12 divides the liquid side piping 37 into an inlet pipe portion 37a and an outlet pipe portion 37b. The inlet pipe portion 37 a and the outlet pipe portion 37 b extend horizontally in the width direction of the housing 20 in the pipe housing chamber 29 and are arranged parallel to each other in the height direction of the housing 20. The downstream end of the inlet pipe portion 37a is bent upward at a right angle.
 第2の膨張弁12は、弁本体40および駆動部41を備えている。弁本体40の内部に冷媒通路42が形成されている。冷媒通路42は、冷媒導入部42aおよび冷媒導出部42bを有している。冷媒導入部42aに液側配管37の入口管部37aの下流端が接続されている。冷媒導出部42bに液側配管37の出口管部37bの上流端が接続されている。 The second expansion valve 12 includes a valve body 40 and a drive unit 41. A refrigerant passage 42 is formed in the valve body 40. The refrigerant passage 42 includes a refrigerant introduction portion 42 a and a refrigerant discharge portion 42 b. The downstream end of the inlet pipe portion 37a of the liquid side pipe 37 is connected to the refrigerant introducing portion 42a. The upstream end of the outlet pipe portion 37b of the liquid side pipe 37 is connected to the refrigerant lead-out portion 42b.
 さらに、冷媒導入部42aおよび冷媒導出部42bは、弁本体40の内部で互いに交差されている。冷媒導入部42aおよび冷媒導出部42bが交差する箇所には、弁座43が形成されている。 Furthermore, the refrigerant introduction part 42 a and the refrigerant lead-out part 42 b cross each other in the valve main body 40. A valve seat 43 is formed at the intersection of the refrigerant introduction portion 42a and the refrigerant lead-out portion 42b.
 本実施形態の弁本体40は、冷媒導出部42bとは反対側に向けて突出されたニードル支持部44を有している。ニードル挿通孔45がニードル支持部44の内部に形成されている。ニードル挿通孔45は、冷媒導出部42bと同軸状に位置されている。 The valve main body 40 of the present embodiment has a needle support portion 44 which is protruded toward the opposite side to the refrigerant lead-out portion 42 b. A needle insertion hole 45 is formed inside the needle support portion 44. The needle insertion hole 45 is located coaxially with the refrigerant lead-out portion 42b.
 弁体としてのニードル47がニードル挿通孔45に軸方向に摺動可能に挿入されている。ニードル47は、全閉位置と開放位置との間で移動可能にニードル支持部44に支持されている。 A needle 47 as a valve body is axially slidably inserted in the needle insertion hole 45. The needle 47 is supported by the needle support 44 so as to be movable between a fully closed position and an open position.
 全閉位置では、ニードル47の軸方向に沿う一端に位置する先細り状の頭部47aが弁座43に着座し、冷媒導入部42aと冷媒導出部42bとの間の連通を遮断する。開放位置では、ニードル47の頭部47aが弁座43から離脱するとともに、頭部47aと弁座43との間の通路面積が増減される。これにより、冷媒導入部42aから冷媒導出部42bに向けて流れる冷媒の流量が制御される。 In the fully closed position, the tapered head portion 47a located at one end along the axial direction of the needle 47 is seated on the valve seat 43, and cuts off the communication between the refrigerant introducing portion 42a and the refrigerant discharging portion 42b. In the open position, the head 47 a of the needle 47 separates from the valve seat 43, and the area of the passage between the head 47 a and the valve seat 43 is increased or decreased. Thus, the flow rate of the refrigerant flowing from the refrigerant introduction portion 42a toward the refrigerant lead-out portion 42b is controlled.
 第2の膨張弁12の駆動部41は、ニードル47を軸方向に移動させる要素であって、モータ48および電磁石49を主要な要素として備えている。モータ48は、ニードル支持部44の外周面にねじ込まれた筒状のロータ部51と、ロータ部51の外周面に嵌合された筒状のスペーサ52と、スペーサ52の外周面に固定された電磁石53と、を有している。ロータ部51の先端は、ニードル47の頭部47aとは反対側の端部47bに係合子54を介して連結されている。 The drive portion 41 of the second expansion valve 12 is an element for moving the needle 47 in the axial direction, and includes a motor 48 and an electromagnet 49 as main elements. The motor 48 is fixed to the outer peripheral surface of the cylindrical rotor portion 51 screwed to the outer peripheral surface of the needle support portion 44, the cylindrical spacer 52 fitted to the outer peripheral surface of the rotor portion 51, and the spacer 52 And an electromagnet 53. The tip of the rotor portion 51 is connected to an end 47 b of the needle 47 opposite to the head 47 a via an engaging element 54.
 さらに、モータ48は、ニードル支持部44と共にケース55で覆われている。電磁石49は、ケース55の外側から電磁石53を取り囲んでいる。 Furthermore, the motor 48 is covered by the case 55 together with the needle support 44. The electromagnet 49 surrounds the electromagnet 53 from the outside of the case 55.
 モータ48のロータ部51は、電磁石49への通電量に応じて回転する。ロータ部51は、ニードル支持部44にねじ込まれているので、回転することでニードル支持部44の軸方向に移動する。当該ロータ部51の動きがニードル47に伝わることで、ニードル47が全閉位置と開放位置との間で直線的に移動する。これにより、冷媒導入部42aから冷媒導出部42bに向けて流れる冷媒の流量制御が行なわれる。 The rotor portion 51 of the motor 48 rotates in accordance with the amount of energization of the electromagnet 49. The rotor portion 51 is screwed into the needle support portion 44, and thus moves in the axial direction of the needle support portion 44 by rotation. The motion of the rotor portion 51 is transmitted to the needle 47, so that the needle 47 linearly moves between the fully closed position and the open position. Thus, the flow rate control of the refrigerant flowing from the refrigerant introduction portion 42a toward the refrigerant lead-out portion 42b is performed.
 図4および図6に示すように、液側配管37の入口管部37aの途中にキャピラリ部60が設けられている。キャピラリ部60は、第2の膨張弁12に対し、冷房運転時の冷媒の流れ方向に沿う上流側に位置されている。 As shown in FIGS. 4 and 6, a capillary section 60 is provided in the middle of the inlet pipe section 37a of the liquid side pipe 37. The capillary unit 60 is positioned upstream of the second expansion valve 12 along the flow direction of the refrigerant during the cooling operation.
 キャピラリ部60は、二本のキャピラリ61a,61b、分岐管部62および合流管部63を備えている。キャピラリ61a,61bは、夫々予め決められた長さLおよび内径d2を有する直管で構成されている。本実施形態では、キャピラリ61a,61bの長さLが80mm、キャピラリ61a,61bの内径d2が2mmに設定されている。 The capillary unit 60 includes two capillaries 61 a and 61 b, a branch pipe 62 and a merging pipe 63. The capillaries 61a and 61b are each formed of a straight pipe having a predetermined length L and an inner diameter d2. In the present embodiment, the length L of the capillaries 61a and 61b is set to 80 mm, and the inner diameter d2 of the capillaries 61a and 61b is set to 2 mm.
 分岐管部62は、液側配管37が接続された一つの第1の接続口64と、第1の接続口64から二つに分岐された一対の第2の接続口65a,65bと、を有している。合流管部63は、入口管部37aが接続された一つの第3の接続口66と、第3の接続口66から二つに分岐された一対の第4の接続口67a,67bと、を有している。 The branch pipe portion 62 includes one first connection port 64 to which the liquid side piping 37 is connected, and a pair of second connection ports 65 a and 65 b branched into two from the first connection port 64. Have. The merging pipe portion 63 includes one third connection port 66 to which the inlet pipe portion 37a is connected, and a pair of fourth connection ports 67a and 67b branched into two from the third connection port 66. Have.
 一方のキャピラリ61aは、分岐管部62の第2の接続口65aと合流管部63の第4の接続口67aとの間に架け渡されている。他方のキャピラリ61bは、分岐管部62の第2の接続口65bと合流管部63の第4の接続口67bとの間に架け渡されている。そのため、キャピラリ61a,61bは、例えば筐体20の高さ方向に互いに間隔を存して平行となるように、液側配管37の入口管部37aに対し並列に配置されている。 One capillary 61 a is bridged between the second connection port 65 a of the branch pipe portion 62 and the fourth connection port 67 a of the merging pipe portion 63. The other capillary 61 b is bridged between the second connection port 65 b of the branch pipe portion 62 and the fourth connection port 67 b of the junction pipe portion 63. Therefore, the capillaries 61a and 61b are arranged in parallel to the inlet pipe portion 37a of the liquid side pipe 37 so as to be parallel to each other with an interval in the height direction of the housing 20, for example.
 本実施形態では、各キャピラリ61a,61bの内径d2は、第2の膨張弁12の冷媒導入部42aの口径d1と同等か、それよりも大きく設定されているとともに、液側配管37の入口管部37aの内径d3よりも小さく設定されている。さらに、d1、d2およびd3は、キャピラリ61a,61bの本数をnとした時、
d1<d2×n<d3
の関係を満たすことが望ましい。
In the present embodiment, the inner diameter d2 of each of the capillaries 61a and 61b is set equal to or larger than the diameter d1 of the refrigerant introduction portion 42a of the second expansion valve 12, and the inlet pipe of the liquid side pipe 37 The diameter is set smaller than the inner diameter d3 of the portion 37a. Furthermore, when d1, d2 and d3 are n, the number of capillaries 61a and 61b is
d1 <d2 × n <d3
It is desirable to satisfy
 図4に示すように、液側配管37の出口管部37bは、分配器70を介して複数の枝管71に接続されている。枝管71は、室内熱交換器13が有する複数の冷媒流路(パス)の数に対応しており、当該枝管71が冷媒流路の入口に接続されている。 As shown in FIG. 4, the outlet pipe portion 37 b of the liquid side pipe 37 is connected to the plurality of branch pipes 71 via the distributor 70. The branch pipe 71 corresponds to the number of the plurality of refrigerant flow paths (passes) that the indoor heat exchanger 13 has, and the branch pipe 71 is connected to the inlet of the refrigerant flow path.
 さらに、室内熱交換器13の複数の冷媒流路(パス)の出口は、ヘッダ72で一つに合流された後、当該ヘッダ72を介してガス側配管73に接続されている。ガス側配管73は、前記冷媒配管4のうち室内ユニット3の室内熱交換器13と四方弁6の第4ポート6dとの間を結ぶ部分を構成している。 Furthermore, the outlets of the plurality of refrigerant flow paths (paths) of the indoor heat exchanger 13 are connected to the gas side pipe 73 via the header 72 after being merged into one by the header 72. The gas side pipe 73 constitutes a portion connecting the indoor heat exchanger 13 of the indoor unit 3 and the fourth port 6 d of the four-way valve 6 in the refrigerant pipe 4.
 マルチタイプ空調システム1を冷房運転している状態において、第1の膨張弁8を通過した冷媒が、例えばスラグ流のように流れの中に不均一な気泡が断続的に含まれた流動様式であるとすると、当該冷媒が第2の膨張弁12のニードル47の頭部47aと弁座43との間の隙間を通過する際に不快な冷媒流動音が発生する。 In a state where the multi-type air conditioning system 1 is in a cooling operation, the refrigerant having passed through the first expansion valve 8 has a flow mode in which nonuniform bubbles are intermittently included in the flow, for example, like a slag flow. If the refrigerant passes through the gap between the head 47 a of the needle 47 of the second expansion valve 12 and the valve seat 43, unpleasant refrigerant flow noise is generated.
 本実施形態の室内ユニット3では、第2の膨張弁12よりも冷媒の流れ方向に沿う上流に二本のキャピラリ61a,61bを有するキャピラリ部60が設けられている。このため、不均一な気泡を含む気液二相流の冷媒がキャピラリ部60に到達すると、冷媒は、分岐管部62で二つの流れに分岐された後、キャピラリ61a,61bに流入する。 In the indoor unit 3 of the present embodiment, a capillary section 60 having two capillaries 61a and 61b is provided on the upstream side along the flow direction of the refrigerant than the second expansion valve 12. Therefore, when the refrigerant of gas-liquid two-phase flow including non-uniform bubbles reaches the capillary section 60, the refrigerant is branched into two flows by the branch pipe section 62 and then flows into the capillaries 61a and 61b.
 キャピラリ61a,61bの内径d2は、液側配管37の入口管部37aの内径d3よりも小さいので、キャピラリ61a,61bによる絞り効果で二つの流れに分岐された冷媒の流速が増大する。 Since the inner diameter d2 of the capillaries 61a and 61b is smaller than the inner diameter d3 of the inlet pipe portion 37a of the liquid side pipe 37, the flow velocity of the branched refrigerant is increased by the throttling effect of the capillaries 61a and 61b.
 これにより、キャピラリ61a,61bを通過する冷媒の流れがスラグ流から安定的な噴霧流の流動様式に変更される。すなわち、流速の増大に伴い、冷媒の流れが連続的となり、冷媒流動音の発生要因となる冷媒の間欠的な流れが解消される。 As a result, the flow of the refrigerant passing through the capillaries 61a, 61b is changed from the slag flow to the stable flow pattern of the spray flow. That is, as the flow velocity increases, the flow of the refrigerant becomes continuous, and the intermittent flow of the refrigerant that is a cause of the refrigerant flow noise is eliminated.
 さらに、キャピラリ61a,61bを通過する過程で連続的な噴霧流に移行した冷媒は、合流管部63で互いに合流する。これにより、冷媒中に含まれる気液の混合が促進され、合流管部63から第2の膨張弁12に向かう冷媒中に含まれる気泡が細分化された均一な冷媒の流れを形成することができる。 Furthermore, the refrigerant transferred to the continuous spray flow in the process of passing through the capillaries 61a and 61b merges with each other in the merging pipe portion 63. Thereby, the mixing of the gas and liquid contained in the refrigerant is promoted, and the bubbles contained in the refrigerant from the merging pipe portion 63 to the second expansion valve 12 form a uniform flow of the subdivided refrigerant. it can.
 この結果、冷媒が第2の膨張弁12のニードル47の頭部47aと弁座43との間の隙間の付近に到達した時点では、冷媒は、細かな気泡が液中に万遍なく連続的に混在するような流動様式に移行し、冷媒が前記隙間を通過する際の圧力変化を小さく抑えることができる。 As a result, at the time when the refrigerant reaches near the gap between the head 47 a of the needle 47 of the second expansion valve 12 and the valve seat 43, fine refrigerant is continuously continuous in the liquid. It is possible to shift to a flow mode in which the refrigerant is mixed, and to minimize the pressure change when the refrigerant passes through the gap.
 したがって、例えばマルチタイプ空調システム1の起動時、暖房運転から除霜運転に移行した時のように、液側配管37を流れる気液二相流の冷媒の流速が十分でない場合でも、室内ユニット3の第2の膨張弁12が発する冷媒流動音を効率よく低減させることができ、静粛な運転が可能となる。 Therefore, for example, when the multi-type air conditioning system 1 starts up, even when the flow rate of the gas-liquid two-phase flow refrigerant flowing through the liquid side pipe 37 is not sufficient, such as when heating operation shifts to defrosting operation, the indoor unit 3 The refrigerant flow noise emitted by the second expansion valve 12 can be efficiently reduced, and silent operation is possible.
 しかも、本実施形態では、第2の膨張弁12の口径をd1、キャピラリ61a,61bの内径をd2、液側配管37の入口管部37aの内径をd3、キャピラリ61a,61bの本数をnとした時、
d1<d2×n<d3
の関係を満たしている。
Moreover, in this embodiment, the bore diameter of the second expansion valve 12 is d1, the inner diameter of the capillaries 61a and 61b is d2, the inner diameter of the inlet pipe portion 37a of the liquid side pipe 37 is d3, and the number of the capillaries 61a and 61b is n. When you
d1 <d2 × n <d3
Meet the relationship.
 これにより、第2の膨張弁12の口径d1に対しキャピラリ61a,61bの通路断面積の総和を十分に確保することができ、冷媒がキャピラリ61a,61bを通過する際の不必要な圧力損失を防ぐことができる。 As a result, the sum of the cross sectional areas of the passages of the capillaries 61a and 61b can be sufficiently secured with respect to the diameter d1 of the second expansion valve 12, and unnecessary pressure loss when the refrigerant passes through the capillaries 61a and 61b. It can prevent.
 加えて、個々のキャピラリ61a,61bの内径d2が液側配管37の入口管部37aの内径d3よりも小さいので、キャピラリ61a,61bによる冷媒の絞り効果を十分に発揮させることができる。したがって、キャピラリ61a,61bを通過する冷媒の流速が高まり、第2の膨張弁12に導かれる冷媒を流れをより均一化する上で好都合となる。 In addition, since the inner diameter d2 of each of the capillaries 61a and 61b is smaller than the inner diameter d3 of the inlet pipe portion 37a of the liquid side pipe 37, the refrigerant throttling effect by the capillaries 61a and 61b can be sufficiently exhibited. Therefore, the flow velocity of the refrigerant passing through the capillaries 61a and 61b is increased, which is advantageous in making the flow of the refrigerant introduced to the second expansion valve 12 more uniform.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While certain embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.
 例えばマルチタイプ空調システムの室外ユニットは、一台に限らず二台あるいは三台であってもよく、室外ユニットおよび室内ユニットの数に特に制約はない。 For example, the number of outdoor units of the multi-type air conditioning system is not limited to one, and may be two or three, and the number of outdoor units and indoor units is not particularly limited.
 さらに、前記実施形態では、キャピラリの本数を二本としたが、キャピラリの本数に関しても制約はない。それとともに、キャピラリの内径は互いに同一である必要はなく、液側配管の入口管部よりも小径であれば、複数のキャピラリの内径を互いに異ならせてもよい。 Furthermore, although the number of capillaries is two in the above embodiment, the number of capillaries is not limited. At the same time, the inner diameters of the capillaries do not have to be identical to each other, and the inner diameters of a plurality of capillaries may be made different from each other as long as the diameter is smaller than the inlet pipe portion of the liquid side piping.
 加えて、キャピラリは水平に配置することに限らず、筐体内に十分なスペースを確保できるのであれば、例えばキャピラリを筐体内で起立させるようにしてもよい。 In addition, the capillary is not limited to being arranged horizontally, and for example, the capillary may be erected in the housing if a sufficient space can be secured in the housing.
 1…マルチタイプ空調システム、2…室外ユニット、3…室内ユニット、4…冷媒配管、5…圧縮機(密閉形圧縮機)、7…室外熱交換器、12…膨張弁(第2の膨張弁)、13…室内熱交換器、61a,61b…キャピラリ。 DESCRIPTION OF SYMBOLS 1 ... multi type air conditioning system, 2 ... outdoor unit, 3 ... indoor unit, 4 ... refrigerant piping, 5 ... compressor (sealed type compressor), 7 ... outdoor heat exchanger, 12 ... expansion valve (2nd expansion valve 13) indoor heat exchanger 61a, 61b capillary.

Claims (10)

  1.  圧縮機で圧縮された冷媒と空気との間で熱交換を行なう室外熱交換器を有する室外ユニットと、
     前記室外熱交換器を通過した冷媒が流入する膨張弁と、当該膨張弁で減圧された冷媒と空気との間で熱交換を行なう室内熱交換器と、を有し、空調すべき室内に露出される複数の室内ユニットと、
     前記室外ユニットに対し複数の前記室内ユニットを並列に接続するとともに、前記室外ユニットと前記室内ユニットとの間で循環する冷媒が流れる冷媒配管と、を備えたマルチタイプ空調システムにおいて、
     前記室内ユニット内に位置する前記冷媒配管は、前記膨張弁よりも冷媒の流れ方向に沿う上流側の箇所に複数本のキャピラリを有し、当該キャピラリが前記冷媒配管に対し並列に接続されたマルチタイプ空調システム。
    An outdoor unit having an outdoor heat exchanger for performing heat exchange between the refrigerant compressed by the compressor and the air;
    The expansion valve into which the refrigerant that has passed through the outdoor heat exchanger flows in, and the indoor heat exchanger that exchanges heat between the refrigerant and the air whose pressure has been reduced by the expansion valve, and is exposed to the room to be air conditioned Multiple indoor units to be
    A multi-type air conditioning system comprising: a plurality of indoor units connected in parallel to the outdoor unit; and a refrigerant pipe through which a refrigerant circulating between the outdoor unit and the indoor unit flows.
    The refrigerant pipe located in the indoor unit has a plurality of capillaries at a location upstream of the expansion valve along the flow direction of the refrigerant, and the capillary is connected in parallel to the refrigerant pipe. Type air conditioning system.
  2.  前記キャピラリは、予め決められた全長を有する直管であって、前記膨張弁に向けて流れる冷媒の流速を増加させる請求項1に記載のマルチタイプ空調システム。 The multi-type air conditioning system according to claim 1, wherein the capillary is a straight pipe having a predetermined total length, and the flow velocity of the refrigerant flowing toward the expansion valve is increased.
  3.  前記キャピラリの上流端と前記冷媒配管との間を接続する分岐管部と、前記キャピラリの下流端と前記冷媒配管との間を接続する合流管部と、をさらに備えた請求項1又は請求項2に記載のマルチタイプ空調システム。 The branch pipe portion for connecting between the upstream end of the capillary and the refrigerant pipe, and the junction pipe portion for connecting between the downstream end of the capillary and the refrigerant pipe. The multi-type air conditioning system according to 2.
  4.  前記室内ユニットは、空調すべき室内に露出された壁掛け形であり、複数の前記キャピラリが互いに間隔を存して水平に配置された請求項2に記載のマルチタイプ空調システム。 The multi-type air conditioning system according to claim 2, wherein the indoor unit is a wall hanging type exposed in a room to be air conditioned, and the plurality of capillaries are horizontally arranged at intervals.
  5.  前記膨張弁の口径をd1、前記キャピラリの内径をd2、前記分岐管部に接続された前記冷媒配管の内径をd3および前記キャピラリの本数をnとした時、
    d1<d2×n<d3
    の関係を満たす請求項3に記載のマルチタイプ空調システム。
    Assuming that the diameter of the expansion valve is d1, the inner diameter of the capillary is d2, the inner diameter of the refrigerant pipe connected to the branch pipe is d3, and the number of capillaries is n,
    d1 <d2 × n <d3
    The multi-type air conditioning system according to claim 3, which satisfies the following relationship:
  6.  冷房運転時および除霜運転時においては、前記室外熱交換器を通過した冷媒の流れが複数の前記キャピラリに分岐されるとともに、複数の前記キャピラリを通過した冷媒が互いに合流した状態で前記膨張弁に導かれる請求項1に記載のマルチタイプ空調システム。 During the cooling operation and the defrosting operation, the flow of the refrigerant passing through the outdoor heat exchanger is branched into the plurality of capillaries, and the expansion valve is performed in a state where the refrigerant passing through the plurality of capillaries merges with each other The multi-type air conditioning system according to claim 1, wherein
  7.  膨張弁と、
     当該膨張弁に室外ユニットで熱交換された冷媒を導く冷媒配管と、
     前記膨張弁で減圧された冷媒との間で熱交換を行なう室内熱交換器と、を有し、
     前記冷媒配管のうち前記膨張弁よりも冷媒の流れ方向に沿う上流側の箇所に、前記冷媒配管に対し並列に接続された複数本のキャピラリが設けられた室内ユニット。
    An expansion valve,
    A refrigerant pipe for guiding the refrigerant heat-exchanged by the outdoor unit to the expansion valve;
    An indoor heat exchanger for exchanging heat with the refrigerant decompressed by the expansion valve;
    An indoor unit provided with a plurality of capillaries connected in parallel to the refrigerant pipe at a location on the refrigerant pipe upstream of the expansion valve along the flow direction of the refrigerant.
  8.  前記キャピラリは、予め決められた全長を有する直管であって、前記膨張弁に向けて流れる冷媒の流速を増加させる請求項7に記載の室内ユニット。 The indoor unit according to claim 7, wherein the capillary is a straight pipe having a predetermined total length, and the flow velocity of the refrigerant flowing toward the expansion valve is increased.
  9.  前記キャピラリの上流端と前記冷媒配管との間を接続する分岐管部と、前記キャピラリの下流端と前記冷媒配管との間を接続する合流管部と、をさらに備えた請求項7又は請求項8に記載の室内ユニット The branch pipe portion for connecting between the upstream end of the capillary and the refrigerant pipe, and the junction pipe portion for connecting between the downstream end of the capillary and the refrigerant pipe. The indoor unit described in 8
  10.  前記膨張弁の口径をd1、前記キャピラリの内径をd2、前記分岐管部に接続された前記冷媒配管の内径をd3および前記キャピラリの本数をnとした時、
    d1<d2×n<d3
    の関係を満たす請求項9に記載の室内ユニット。
    Assuming that the diameter of the expansion valve is d1, the inner diameter of the capillary is d2, the inner diameter of the refrigerant pipe connected to the branch pipe is d3, and the number of capillaries is n,
    d1 <d2 × n <d3
    The indoor unit according to claim 9, satisfying the following relationship:
PCT/JP2018/031203 2017-08-29 2018-08-23 Multi-type air conditioning system and indoor unit WO2019044661A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019539432A JP6828176B2 (en) 2017-08-29 2018-08-23 Multi-type air conditioning system and indoor unit
CN201880056328.1A CN111094876A (en) 2017-08-29 2018-08-23 Multi-connected air conditioning system and indoor unit
EP18849549.3A EP3677856A4 (en) 2017-08-29 2018-08-23 Multi-type air conditioning system and indoor unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-164559 2017-08-29
JP2017164559 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044661A1 true WO2019044661A1 (en) 2019-03-07

Family

ID=65525403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031203 WO2019044661A1 (en) 2017-08-29 2018-08-23 Multi-type air conditioning system and indoor unit

Country Status (4)

Country Link
EP (1) EP3677856A4 (en)
JP (1) JP6828176B2 (en)
CN (1) CN111094876A (en)
WO (1) WO2019044661A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611120A (en) * 2020-12-23 2021-04-06 南通常测机电设备有限公司 Water chiller for new energy motor and adjusting method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678769U (en) * 1993-04-09 1994-11-04 三菱重工業株式会社 Refrigeration cycle throttling structure
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JPH09292166A (en) 1996-04-26 1997-11-11 Hitachi Ltd Air conditioner
JPH09318198A (en) 1996-06-04 1997-12-12 Hitachi Ltd Air conditioner
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP2001304721A (en) * 2000-04-14 2001-10-31 Mitsubishi Electric Corp Air conditioner
JP2001311573A (en) * 2000-04-27 2001-11-09 Mitsubishi Electric Corp Metering device and freezing cycle device
JP2004257596A (en) * 2003-02-24 2004-09-16 Toshiba Kyaria Kk Air conditioner
JP2004354026A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Air conditioner
JP2009228975A (en) * 2008-03-24 2009-10-08 Hitachi Appliances Inc Remote condenser type air conditioner
US20100089079A1 (en) * 2006-12-22 2010-04-15 Bsh Bosch Und Siemens Hausgerate Gmbh Cooling furniture comprising at least two thermally separate compartments
WO2011099052A1 (en) * 2010-02-09 2011-08-18 株式会社E・T・L Refrigeration system
JP2014228224A (en) * 2013-05-24 2014-12-08 日立アプライアンス株式会社 Air conditioner

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201208A (en) * 1993-01-04 1994-07-19 Toshiba Corp Air-conditioner
JP3554384B2 (en) * 1994-12-09 2004-08-18 東芝キヤリア株式会社 Indoor unit of air conditioner
CN1209590C (en) * 2002-01-24 2005-07-06 顾雏军 Cooling and heating air conditioner in new structure
CN2660363Y (en) * 2003-09-15 2004-12-01 河南新飞电器有限公司 Air conditioning system
KR100645811B1 (en) * 2005-01-28 2006-11-23 엘지전자 주식회사 A noise suppresser of a room cooler with multi fluid tube
KR100645812B1 (en) * 2005-01-28 2006-11-23 엘지전자 주식회사 A noise suppresser of a room cooler with a bunch fluid tube
JP4818154B2 (en) * 2007-02-15 2011-11-16 三菱電機株式会社 Expansion valve mechanism and flow path switching device
CN104165487A (en) * 2014-07-31 2014-11-26 上海理工大学 Independent-control refrigeration and dehumidification device and method
CN104848497A (en) * 2015-06-10 2015-08-19 广东志高暖通设备股份有限公司 Air conditioner

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678769U (en) * 1993-04-09 1994-11-04 三菱重工業株式会社 Refrigeration cycle throttling structure
JPH07146032A (en) * 1993-11-26 1995-06-06 Matsushita Seiko Co Ltd Expansion valve
JPH09292166A (en) 1996-04-26 1997-11-11 Hitachi Ltd Air conditioner
JPH09318198A (en) 1996-06-04 1997-12-12 Hitachi Ltd Air conditioner
JPH11325655A (en) * 1998-05-14 1999-11-26 Matsushita Seiko Co Ltd Silencer and air conditioner
JP2001304721A (en) * 2000-04-14 2001-10-31 Mitsubishi Electric Corp Air conditioner
JP2001311573A (en) * 2000-04-27 2001-11-09 Mitsubishi Electric Corp Metering device and freezing cycle device
JP2004257596A (en) * 2003-02-24 2004-09-16 Toshiba Kyaria Kk Air conditioner
JP2004354026A (en) * 2003-05-30 2004-12-16 Matsushita Electric Ind Co Ltd Air conditioner
US20100089079A1 (en) * 2006-12-22 2010-04-15 Bsh Bosch Und Siemens Hausgerate Gmbh Cooling furniture comprising at least two thermally separate compartments
JP2009228975A (en) * 2008-03-24 2009-10-08 Hitachi Appliances Inc Remote condenser type air conditioner
WO2011099052A1 (en) * 2010-02-09 2011-08-18 株式会社E・T・L Refrigeration system
JP2014228224A (en) * 2013-05-24 2014-12-08 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
JPWO2019044661A1 (en) 2020-05-28
EP3677856A4 (en) 2021-05-19
JP6828176B2 (en) 2021-02-10
EP3677856A1 (en) 2020-07-08
CN111094876A (en) 2020-05-01

Similar Documents

Publication Publication Date Title
JP6352401B2 (en) Air conditioner
US8205470B2 (en) Indoor unit for air conditioner
US20090025409A1 (en) Multichannel heat exchanger
KR20090096600A (en) Multichannel heat exchanger with dissimilar multichannel tubes
EP3767218B1 (en) Heat exchanger and air-conditioning device
JPWO2018116413A1 (en) Distributor, heat exchanger, and refrigeration cycle device
KR20160016436A (en) Air conditioner
JP2011033281A (en) Refrigerant flow divider and refrigerant circuit including the same
EP2568247B1 (en) Air conditioner
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JP2016142457A (en) Air conditioner
JP6828176B2 (en) Multi-type air conditioning system and indoor unit
JP7113974B2 (en) air conditioner
JP2019027614A (en) Heat exchanging device and air conditioner
JP2003214727A (en) Fluid distributor and air conditioner with the same
JP2015055411A (en) Heat exchanger and air conditioner
US20230288145A1 (en) Heat exchanger
JPWO2016121124A1 (en) Heat exchanger and refrigeration cycle apparatus
JP2007064489A (en) Air conditioner
WO2018073894A1 (en) Refrigeration cycle device
JP6963098B2 (en) Heat exchangers, heat exchange modules, and refrigeration cycle equipment
JP6788763B2 (en) Heat exchangers, indoor units, outdoor units, and air conditioners
JP2012202636A (en) Air conditioner outdoor unit
JP2017141999A (en) Header distributor, outdoor machine mounted with header distributor, and air conditioner
JP6817996B2 (en) Header for heat exchanger, heat exchanger, outdoor unit and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539432

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018849549

Country of ref document: EP

Effective date: 20200330