JP2004354026A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004354026A
JP2004354026A JP2003155343A JP2003155343A JP2004354026A JP 2004354026 A JP2004354026 A JP 2004354026A JP 2003155343 A JP2003155343 A JP 2003155343A JP 2003155343 A JP2003155343 A JP 2003155343A JP 2004354026 A JP2004354026 A JP 2004354026A
Authority
JP
Japan
Prior art keywords
pipe
refrigerant gas
capillary tube
air conditioner
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003155343A
Other languages
Japanese (ja)
Inventor
Masakazu Nomura
正和 野村
Katsutoshi Ono
勝利 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003155343A priority Critical patent/JP2004354026A/en
Publication of JP2004354026A publication Critical patent/JP2004354026A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive air conditioner capable of reducing a refrigerant gas sound and a pipe vibration and improving the workability by reduction in the number of part items by simplifying a structure for a capillary tube and stabilizing the circulation of the refrigerant gas. <P>SOLUTION: This air conditioner comprises an indoor unit and an outdoor unit mutually connected through a gas pipe and a liquid pipe. The outdoor unit comprises a compressor for compressing the refrigerant gas, a four-way valve for switching the supplying destination of the refrigerant gas, a heat exchanger for heat-exchanging the refrigerant gas, and a pressure reducing device for reducing the pressure of the refrigerant gas circulating in a refrigeration cycle, which is constituted by use of an expansion valve and a capillary tube. The pressure reducing device includes a pressure reducing capillary tube part 16 corresponding to the capillary tube, and a conduit having a double-tapered pipe shape in which tapered parts 17 formed at both ends of the capillary tube part so as to extend the diameter of the tube and refrigerant gas circulating dissimilar diameter pipe parts 18 and 19 formed continuously to the taper parts are formed in an integrated manner. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、室内機と室外機とからなるヒ−トポンプ式空気調和機、特に室外機に減圧装置としてキャピラリチュ−ブ及び膨張弁を適用した空気調和機に関する。
【0002】
【従来の技術】
従来の空気調和機における冷凍サイクルは、例えば特許文献1に記載されているように、図3に示すような基本構成を有する。この構成において、室内ユニット1と室外ユニット2は、液配管3とガス配管4で接続されている。室外ユニット2は、冷媒ガスを圧縮する圧縮機5と、冷媒ガスの供給先を切り替える四方弁6と、冷媒ガスを熱交換させる熱交換器7と、冷凍サイクル内部を循環する冷媒ガスを減圧する手段である膨張弁8およびキャピラリチューブ9を組み合わせた減圧装置とを備える。
【0003】
膨張弁8及びキャピラリチューブ9を組み合わせた減圧装置では、キャピラリチューブ9に冷媒ガスを循環させる事により、冷媒ガスをある程度減圧し、主として膨張弁の開度により冷媒ガスの流量制御が行われる。
【0004】
膨張弁8とキャピラリチューブ9を組み合わせた減圧装置は、配管径の異なる冷媒ガス循環用配管11a、11b、11c、11dを用いて接続され、各接続部はロウ付け部10により接合されている。図4に、キャピラリチューブ9の周辺の構造を詳細に示す。キャピラリチューブ9は円形状に曲げ加工されている。その一端は、熱交換器7より引き出される配管11aと接続された配管11bに接続されている。他端は、膨張弁8より引き出される配管11dと接続された配管11cと接続されている。キャピラリチューブ9と配管11b,11cは、樹脂製バンド12により結束固定されている。さらに、キャピラリチューブ9と配管11b,11cは、コルテープ13に挟み込みこまれ、外観を覆われた構成となっている。
【0005】
【特許文献1】
特開平6−294551号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、図4に示すキャピラリチューブ9とその両端を接続する配管11b,11cのロウ付け部10に、以下のような問題があった。
【0007】
図5に示すように、配管11b(11cも同様)の先端には、テーパ部14が形成されている。それにより、キャピラリチューブ9の先端を配管11bに挿入しロウ付けを行った際、キャピラリチューブ9先端部の外周面と、配管11bのテーパ部14の内壁との間に間隙が生じる。そのため、冷媒ガスを循環させた際に冷媒ガスが前記間隙に滞留し、冷媒ガスの流れに乱れが生じて、配管重複部15より冷媒ガス音や配管振動が発生する。
【0008】
またキャピラリチューブを前後にした冷凍サイクルは、配管11b、11c、11dを接続した複数の部品から構成されているため、ロウ付け加工などの組立工数が多く、作業性が良好ではなかった。
【0009】
さらに、上述のような配管振動を防止するために、キャピラリチューブ9と配管11b、11cを固定する樹脂製バンド12及び、配管重複部15からの冷媒ガス音を低減させるためのコルテープ13を追加することにより、部品点数が増加してコストが高騰する原因となっていた。
【0010】
本発明は、このような従来の課題を解決するものであり、キャピラリチュ−ブに係る構成を簡素化して、冷媒ガスの循環の安定化を図ることにより、冷媒ガス音及び配管振動を低減し、併せて部品点数の削減により作業性向上を図って、安価な空気調和機を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の空気調和機は、ガス配管と液配管により互いに接続された室内ユニットおよび室外ユニットを含み、前記室外ユニットは、冷媒ガスを圧縮する圧縮機と、冷媒ガスの供給先を切り替える四方弁と、冷媒ガスを熱交換させる熱交換機と、冷凍サイクル内部を循環する冷媒ガスを減圧する膨張弁及びキャピラリチュ−ブを用いて構成された減圧装置とを備える。上記課題を解決するために、前記減圧装置は、前記キャピラリチュ−ブに相当する減圧用細管部と、前記減圧用細管部の両端に管径を拡大するように形成されたテーパ部と、前記テーパ部に連続して形成された冷媒ガス循環用の異径配管部とが一体に形成された両側テ−パ管形の管路を含んで構成される。
【0012】
【発明の実施の形態】
上記構成の本発明の空気調和機によれば、従来例のキャピラリチュ−ブと冷媒ガス循環用の異径配管がテーパ部を介して一体となった両側テ−パ管形の管路を構成することにより、キャピラリチューブの両端と異径配管のロウ付け部が不要となる。その結果、冷媒ガスの循環が円滑になって冷媒ガス音および配管振動の低減が図られるとともに、冷凍サイクル構成を簡素化することができる。
【0013】
好ましくは、両側テ−パ管形の管路を構成する異径配管部の膨張弁側の端部にテーパ部が設けられ、膨張弁が一体に形成された構成とする。
【0014】
また、両側テ−パ管形の管路における減圧細管部が、直線状に配置された構成とすることもできる。それにより、更に減圧細管部における配管抵抗を軽減し、冷媒ガスの流れを円滑にするとともに、室外機の冷凍サイクルスペ−スの小型化を図ることができる。
【0015】
以下本発明の実施の形態について、図面を参照して具体的に説明する。
【0016】
(実施の形態1)
図1は、実施の形態1における空気調和機の減圧装置を構成する両側テ−パ管形の管路を示す図である。本実施の形態の空気調和機は、図3に示した従来例と同様の基本構成を有する。本実施の形態における従来例との相違点は、従来例におけるキャピラリチュ−ブが、本実施の形態では減圧用細管部16として両側テ−パ管形の管路の一部を形成していることである。
【0017】
図1に示される円形状に曲げ加工された減圧用細管部16は、キャピラリチュ−ブと同様の機能を有する。減圧用細管部16の両端には、径を拡大させるテ−パ部17が形成されている。テーパ部17に連続して、冷媒ガス循環用の異径配管部18、19が一体的に形成されている。
【0018】
異径配管部19は、図3に示した熱交換器7より引き出される配管11aと接続される。異径配管部18の側には、図3に示した膨張弁8が接続される。そのため、異径配管部18にはテーパ部20が設けられ、テーパ部20に連続して径大の接続配管部21が一体に形成されている。したがって異径配管部18の側では、図4に示した配管11cと、膨張弁8より直接引き出された配管11dが、連続して一体に形成された構造を有する。
【0019】
以上のように、減圧用細管部16、その両端のテ−パ部17、異径配管部18、19、テ−パ部20および接続配管部21を含む、両側テ−パ管形状の管路が構成されている。減圧用細管部16の長さおよび径は、自由に調整することができる。
【0020】
本実施の形態の構造によれば、減圧用細管部16、その両端のテ−パ部17、および異径配管部18、19が一体であるため、従来例のようなキャピラリチューブとその両端を接続する異径配管のロウ付け部が不要となる。したがって、キャピラリチューブの両端と異径配管の接続部に間隙が形成されることはなく、冷媒ガスの循環が円滑になる。その結果、冷媒ガス音、および配管振動が低減されるとともに、部品点数の削減により作業性向上とコスト低減が可能となる。
【0021】
なお、テーパ部20および接続配管部21を一体に形成せず、減圧用細管部16、その両端のテ−パ部17および異径配管部18、19のみを一体に形成した場合であっても、実用的には十分に上述の効果を奏することが可能である。
【0022】
(実施の形態2)
図2は、実施の形態2における空気調和機の減圧装置を構成する両側テ−パ管形の管路を示す。本実施の形態の空気調和機は、図3に示した従来例と同様の基本構成を有し、また、実施の形態1と同様、従来例におけるキャピラリチュ−ブ9が、減圧用細管部16として両側テ−パ管形の管路の一部を形成している。
【0023】
本実施の形態が実施の形態1と相違する点は、両側テ−パ管形の管路の減圧用細管部16が、直線的に配置されていることである。減圧用細管部16の両端のテ−パ部17、および異径配管部18、19も直線状に配置されている。
【0024】
この構成によれば、冷媒ガスは異径配管部19よりテーパ部17に沿って減圧用細管部16へ流れこみ、さらにテーパ部17に沿って異径配管部18に円滑に循環し、異径配管間に発生する冷媒ガスの滞留及び乱れを防止し、配管振動及び冷媒ガス音を低減することができる。したがって、音・振動対策用部品の使用が不要となりコスト低減を図れる。
【0025】
また減圧用細管部16の長さ調節、配管径調節及び両者を同時に調節することにより、効果的な減圧制御を行うことが可能である。
【0026】
さらに両側テ−パ管形状の管路と膨張弁を一体成形する事により、冷凍サイクル構成の簡素化を図り、組立時の作業工数を削減し、作業性を向上することができる。
【0027】
【発明の効果】
本発明の空気調和機によれば、キャピラリチュ−ブを両端にテーパ部を設けた減圧用細管とし、テーパ部に連続して冷媒ガス循環用の異径配管部を形成した両側テ−パ管形の管路を含んで減圧装置を構成することにより、冷凍サイクル構成を簡素化することができる。それにより、冷媒ガスの循環が安定化し、冷媒ガス音及び配管振動が低減されるとともに、部品点数の削減により組み立ての作業性が向上し、安価な空気調和機を提供することが可能となる。
【図面の簡単な説明】
【図1】実施の形態1における空気調和機の減圧装置を構成する両側テ−パ管形の管路を示す平面図
【図2】実施の形態2における空気調和機の減圧装置を構成する両側テ−パ管形の管路を示す平面図
【図3】従来例の空気調和機の冷凍サイクル系統図
【図4】従来例の空気調和機におけるキャピラリチュ−ブを搭載した減圧装置の拡大平面図
【図5】図4におけるキャピラリチュ−ブと冷媒ガス循環用異径配管の接続部を示す断面図
【符号の説明】
1 室内ユニット
2 室外ユニット
3 液配管
4 ガス配管
5 圧縮機
6 四方弁
7 熱交換器
8 膨張弁
9 キャピラリチュ−ブ
10 ロウ付け部
11a,11b,11c,11d 冷媒ガス循環用配管
12 バンド
13 コルテ−プ
14 テーパ部
15 配管重複部
16 減圧用細管部
17 テーパ部
18、19 異径配管部
20 テーパ部
21 接続配管部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump type air conditioner including an indoor unit and an outdoor unit, and more particularly to an air conditioner in which a capillary tube and an expansion valve are applied to an outdoor unit as a pressure reducing device.
[0002]
[Prior art]
A refrigeration cycle in a conventional air conditioner has a basic configuration as shown in FIG. 3 as described in Patent Document 1, for example. In this configuration, the indoor unit 1 and the outdoor unit 2 are connected by a liquid pipe 3 and a gas pipe 4. The outdoor unit 2 includes a compressor 5 for compressing the refrigerant gas, a four-way valve 6 for switching the supply destination of the refrigerant gas, a heat exchanger 7 for exchanging heat of the refrigerant gas, and a decompression of the refrigerant gas circulating inside the refrigeration cycle. A decompression device in which an expansion valve 8 and a capillary tube 9 are combined.
[0003]
In the decompression device in which the expansion valve 8 and the capillary tube 9 are combined, the refrigerant gas is reduced to some extent by circulating the refrigerant gas through the capillary tube 9, and the flow rate of the refrigerant gas is controlled mainly by the opening degree of the expansion valve.
[0004]
The decompression device in which the expansion valve 8 and the capillary tube 9 are combined is connected by using refrigerant gas circulation pipes 11a, 11b, 11c, and 11d having different pipe diameters, and each connection part is joined by a brazing part 10. FIG. 4 shows the structure around the capillary tube 9 in detail. The capillary tube 9 is bent into a circular shape. One end thereof is connected to a pipe 11b connected to a pipe 11a drawn from the heat exchanger 7. The other end is connected to a pipe 11c connected to a pipe 11d drawn from the expansion valve 8. The capillary tube 9 and the pipes 11b and 11c are bound and fixed by a resin band 12. Further, the capillary tube 9 and the pipes 11b and 11c are sandwiched between col tapes 13 to cover the outer appearance.
[0005]
[Patent Document 1]
JP-A-6-294551
[Problems to be solved by the invention]
However, in the above-described conventional configuration, there are the following problems in the brazing portion 10 of the capillary tube 9 shown in FIG. 4 and the pipes 11b and 11c connecting both ends thereof.
[0007]
As shown in FIG. 5, a tapered portion 14 is formed at the tip of the pipe 11b (similarly, 11c). Thus, when the tip of the capillary tube 9 is inserted into the pipe 11b and brazed, a gap is generated between the outer peripheral surface of the tip of the capillary tube 9 and the inner wall of the tapered portion 14 of the pipe 11b. For this reason, when the refrigerant gas is circulated, the refrigerant gas stays in the gap, and the flow of the refrigerant gas is disturbed.
[0008]
Further, since the refrigeration cycle having the capillary tubes in front and behind is composed of a plurality of parts connected to the pipes 11b, 11c and 11d, the number of assembly steps such as brazing is large, and the workability is not good.
[0009]
Further, in order to prevent the above-described pipe vibration, a resin band 12 for fixing the capillary tube 9 and the pipes 11b and 11c and a coltape 13 for reducing the refrigerant gas noise from the pipe overlapping portion 15 are added. This has led to an increase in the number of parts and an increase in cost.
[0010]
SUMMARY OF THE INVENTION The present invention solves such a conventional problem, and reduces the refrigerant gas noise and piping vibration by simplifying the configuration of the capillary tube and stabilizing the circulation of the refrigerant gas. Another object of the present invention is to provide an inexpensive air conditioner by improving workability by reducing the number of parts.
[0011]
[Means for Solving the Problems]
The air conditioner of the present invention includes an indoor unit and an outdoor unit connected to each other by a gas pipe and a liquid pipe, wherein the outdoor unit is a compressor that compresses a refrigerant gas, and a four-way valve that switches a supply destination of the refrigerant gas. A heat exchanger for exchanging heat of the refrigerant gas, and a decompression device constituted by using an expansion valve and a capillary tube for decompressing the refrigerant gas circulating in the refrigeration cycle. In order to solve the above-mentioned problems, the decompression device includes a decompression thin tube portion corresponding to the capillary tube, a tapered portion formed at both ends of the decompression thin tube portion so as to increase a pipe diameter, The taper section includes a double-sided tape-pipe-shaped pipe formed integrally with a refrigerant gas circulating pipe having a different diameter for circulating the refrigerant gas.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the air conditioner of the present invention having the above-described structure, a double-sided tapered pipe is formed by integrating a conventional capillary tube and a pipe having a different diameter for circulating refrigerant gas through a tapered portion. This eliminates the need for brazing the ends of the capillary tube and the different diameter pipe. As a result, the circulation of the refrigerant gas becomes smooth, the noise of the refrigerant gas and the vibration of the piping are reduced, and the configuration of the refrigeration cycle can be simplified.
[0013]
Preferably, a tapered portion is provided at the expansion valve side end of the different-diameter pipe portion forming the double-sided tapered pipe line, and the expansion valve is integrally formed.
[0014]
Further, a configuration in which the depressurizing thin tube portions in the tapered pipe line on both sides are linearly arranged may be employed. This further reduces the pipe resistance in the pressure reducing narrow tube portion, smoothes the flow of the refrigerant gas, and can reduce the size of the refrigeration cycle space of the outdoor unit.
[0015]
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
[0016]
(Embodiment 1)
FIG. 1 is a diagram illustrating a double-sided tape-pipe-shaped conduit constituting a decompression device of an air conditioner according to Embodiment 1. The air conditioner of the present embodiment has the same basic configuration as the conventional example shown in FIG. The difference between the present embodiment and the conventional example is that the capillary tube in the conventional example forms a part of a double-sided tapered pipe as the depressurizing thin tube portion 16 in the present embodiment. That is.
[0017]
The depressurized thin tube portion 16 bent into a circular shape shown in FIG. 1 has the same function as a capillary tube. Taper portions 17 for increasing the diameter are formed at both ends of the depressurizing thin tube portion 16. Continuing with the tapered portion 17, different-diameter piping portions 18 and 19 for circulating refrigerant gas are formed integrally.
[0018]
The different diameter pipe section 19 is connected to the pipe 11a drawn from the heat exchanger 7 shown in FIG. The expansion valve 8 shown in FIG. 3 is connected to the side of the different diameter pipe portion 18. Therefore, a tapered portion 20 is provided in the different diameter pipe portion 18, and a large-diameter connection pipe portion 21 is formed integrally with the tapered portion 20. Therefore, on the side of the different-diameter pipe portion 18, the pipe 11c shown in FIG. 4 and the pipe 11d drawn directly from the expansion valve 8 have a structure formed continuously and integrally.
[0019]
As described above, a double-sided tape-pipe-shaped pipe including the depressurizing narrow tube portion 16, the taper portions 17 at both ends thereof, the different-diameter pipe portions 18, 19, the taper portion 20, and the connection pipe portion 21. Is configured. The length and diameter of the depressurizing capillary 16 can be freely adjusted.
[0020]
According to the structure of the present embodiment, the capillary tube 16 for decompression, the taper portion 17 at both ends thereof, and the different-diameter piping portions 18 and 19 are integrated, so that the conventional capillary tube and both ends thereof are connected. A brazing portion for connecting different diameter pipes is not required. Therefore, no gap is formed between the both ends of the capillary tube and the connecting portion between the different diameter pipes, and the circulation of the refrigerant gas is smooth. As a result, refrigerant gas noise and piping vibration are reduced, and workability is improved and cost is reduced by reducing the number of parts.
[0021]
Even when the tapered portion 20 and the connecting pipe portion 21 are not integrally formed, only the depressurizing narrow tube portion 16, the taper portions 17 at both ends thereof, and the different-diameter pipe portions 18 and 19 are integrally formed. In practice, the above-mentioned effects can be sufficiently obtained.
[0022]
(Embodiment 2)
Fig. 2 shows a double-sided tape-pipe-shaped pipe constituting a decompression device of an air conditioner according to the second embodiment. The air conditioner of the present embodiment has the same basic configuration as that of the conventional example shown in FIG. 3, and similarly to the first embodiment, the capillary tube 9 of the conventional example includes And form a part of a tapered pipe line on both sides.
[0023]
This embodiment is different from the first embodiment in that the depressurizing narrow tube portion 16 of the tapered double-sided pipe is linearly arranged. The taper portions 17 at both ends of the depressurizing thin tube portion 16 and the different-diameter piping portions 18 and 19 are also arranged linearly.
[0024]
According to this configuration, the refrigerant gas flows from the different-diameter pipe section 19 along the tapered section 17 to the depressurizing narrow pipe section 16, and further smoothly circulates along the tapered section 17 to the different-diameter pipe section 18, and has a different diameter. The stagnation and turbulence of the refrigerant gas generated between the pipes can be prevented, and the pipe vibration and the refrigerant gas noise can be reduced. Therefore, it is not necessary to use parts for noise and vibration countermeasures, and cost can be reduced.
[0025]
Further, by adjusting the length of the depressurizing thin tube section 16 and the pipe diameter at the same time, it is possible to perform effective depressurizing control.
[0026]
Further, by integrally forming the expansion pipe and the pipe having a tapered pipe shape on both sides, the refrigeration cycle configuration can be simplified, the number of work steps during assembly can be reduced, and workability can be improved.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the air conditioner of this invention, the double-sided taper pipe which formed the capillary tube into the narrow tube for decompression provided with the taper part at both ends, and formed the different diameter piping part for refrigerant gas circulation continuously to the taper part By configuring the pressure reducing device including the shape of the pipeline, the configuration of the refrigeration cycle can be simplified. Thereby, the circulation of the refrigerant gas is stabilized, the refrigerant gas noise and the piping vibration are reduced, and the workability of the assembly is improved by reducing the number of parts, so that an inexpensive air conditioner can be provided.
[Brief description of the drawings]
FIG. 1 is a plan view showing a double-sided tapered pipe forming a pressure reducing device of an air conditioner according to a first embodiment; FIG. 2 is a plan view showing both sides forming a pressure reducing device of an air conditioner according to a second embodiment; FIG. 3 is a plan view of a refrigeration cycle of a conventional air conditioner. FIG. 4 is an enlarged plan view of a pressure reducing device equipped with a capillary tube in a conventional air conditioner. FIG. 5 is a cross-sectional view showing a connecting portion between the capillary tube and the refrigerant gas circulating pipe of different diameter in FIG.
DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Outdoor unit 3 Liquid piping 4 Gas piping 5 Compressor 6 Four-way valve 7 Heat exchanger 8 Expansion valve 9 Capillary tube 10 Brazing parts 11a, 11b, 11c, 11d Refrigerant gas circulation piping 12 Band 13 Corte -Step 14 Taper part 15 Pipe overlap part 16 Depressurizing narrow pipe part 17 Taper parts 18 and 19 Different diameter pipe part 20 Taper part 21 Connection pipe part

Claims (3)

ガス配管と液配管により互いに接続された室内ユニットおよび室外ユニットを含み、前記室外ユニットは、冷媒ガスを圧縮する圧縮機と、冷媒ガスの供給先を切り替える四方弁と、冷媒ガスを熱交換させる熱交換機と、冷凍サイクル内部を循環する冷媒ガスを減圧する膨張弁及びキャピラリチュ−ブを用いて構成された減圧装置とを備えた空気調和機において、
前記減圧装置は、前記キャピラリチュ−ブに相当する減圧用細管部と、前記減圧用細管部の両端に管径を拡大するように形成されたテーパ部と、前記テーパ部に連続して形成された冷媒ガス循環用の異径配管部とが一体に形成された両側テ−パ管形の管路を含んで構成された空気調和機。
An indoor unit and an outdoor unit connected to each other by a gas pipe and a liquid pipe, wherein the outdoor unit includes a compressor that compresses a refrigerant gas, a four-way valve that switches a supply destination of the refrigerant gas, and a heat exchanger that exchanges heat of the refrigerant gas. An air conditioner including an exchanger, a decompression device configured using an expansion valve and a capillary tube for decompressing a refrigerant gas circulating in the refrigeration cycle,
The decompression device is formed continuously with the depressurized thin tube portion corresponding to the capillary tube, a tapered portion formed at both ends of the depressurized thin tube portion so as to increase the diameter of the tube, and the tapered portion. An air conditioner comprising a double-sided tape-pipe-shaped pipe formed integrally with a different-diameter pipe section for circulating refrigerant gas.
前記両側テ−パ管形の管路を構成する前記異径配管部の前記膨張弁側の端部にテーパ部が設けられ、前記膨張弁が一体に形成された請求項1に記載の空気調和機。2. The air conditioner according to claim 1, wherein a tapered portion is provided at an end on the expansion valve side of the different-diameter pipe portion forming the double-sided tapered pipe line, and the expansion valve is formed integrally. 3. Machine. 前記両側テ−パ管形の管路を構成する前記減圧細管部が直線状に配置された請求項1または2に記載の空気調和機。The air conditioner according to claim 1 or 2, wherein the reduced-pressure narrow tube portion forming the double-sided tape-shaped pipe is linearly arranged.
JP2003155343A 2003-05-30 2003-05-30 Air conditioner Pending JP2004354026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155343A JP2004354026A (en) 2003-05-30 2003-05-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155343A JP2004354026A (en) 2003-05-30 2003-05-30 Air conditioner

Publications (1)

Publication Number Publication Date
JP2004354026A true JP2004354026A (en) 2004-12-16

Family

ID=34049748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155343A Pending JP2004354026A (en) 2003-05-30 2003-05-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP2004354026A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202892A (en) * 2007-02-21 2008-09-04 Yanmar Co Ltd Air conditioner
EP2236959A1 (en) * 2009-03-18 2010-10-06 Liebherr-Hausgeräte Lienz GmbH Capillary tube for a fridge and/or freezer, fridge and/or freezer and method for securing and/or reducing the noise of a capillary tube for a fridge and/or freezer
WO2019044661A1 (en) * 2017-08-29 2019-03-07 東芝キヤリア株式会社 Multi-type air conditioning system and indoor unit
JP2020020521A (en) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 Outdoor unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202892A (en) * 2007-02-21 2008-09-04 Yanmar Co Ltd Air conditioner
EP2236959A1 (en) * 2009-03-18 2010-10-06 Liebherr-Hausgeräte Lienz GmbH Capillary tube for a fridge and/or freezer, fridge and/or freezer and method for securing and/or reducing the noise of a capillary tube for a fridge and/or freezer
WO2019044661A1 (en) * 2017-08-29 2019-03-07 東芝キヤリア株式会社 Multi-type air conditioning system and indoor unit
CN111094876A (en) * 2017-08-29 2020-05-01 东芝开利株式会社 Multi-connected air conditioning system and indoor unit
JPWO2019044661A1 (en) * 2017-08-29 2020-05-28 東芝キヤリア株式会社 Multi-type air conditioning system and indoor unit
JP2020020521A (en) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 Outdoor unit
JP7308434B2 (en) 2018-07-31 2023-07-14 パナソニックIpマネジメント株式会社 Outdoor unit

Similar Documents

Publication Publication Date Title
JP2001201275A (en) Double tube heat exchanger
JP2007085647A (en) Air conditioning device
JP2005106367A (en) Air conditioner outdoor unit, air conditioner and compressor unit
JP2004354026A (en) Air conditioner
JP2005083732A (en) Piping device for air conditioner
JP2008057860A (en) Heat exchanger
JP5160792B2 (en) Air conditioner heat exchanger
KR100803774B1 (en) Pipe of air conditioner
JP2007177848A (en) Piping
JP2007064489A (en) Air conditioner
US11326786B2 (en) Air conditioner
JP3807217B2 (en) Air conditioner
JP2005233455A (en) Pipe vibration preventing structure
JP2010196857A (en) Four-way selector valve
KR20160005446A (en) Combination structure of suction pipe and capillary tube and evaporator for refrigerating cycle and combination method thereof
JPWO2008102815A1 (en) Branch pipe device
CN105180524A (en) Connecting tube assembly and refrigerator
CN219776047U (en) Refrigerant pipe, compressor assembly and heating ventilation equipment
JP2006317098A (en) Flow divider
CN216977257U (en) A extension subassembly, air conditioner for air conditioner
JP7049310B2 (en) Refrigeration equipment
KR200145426Y1 (en) Pipe connector of compress for multi-airconditioner
JPH0725531Y2 (en) Air conditioner outdoor unit
JP2001174106A (en) Check valve for refrigeration cycle
WO2021019910A1 (en) Freezing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071101