JPH06201208A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH06201208A
JPH06201208A JP5000022A JP2293A JPH06201208A JP H06201208 A JPH06201208 A JP H06201208A JP 5000022 A JP5000022 A JP 5000022A JP 2293 A JP2293 A JP 2293A JP H06201208 A JPH06201208 A JP H06201208A
Authority
JP
Japan
Prior art keywords
indoor unit
solenoid valve
way solenoid
indoor
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5000022A
Other languages
Japanese (ja)
Inventor
Yasuhiro Arai
康弘 新井
Tetsuji Yamashita
哲司 山下
Akihiro Noguchi
明裕 野口
Takayoshi Iwanaga
隆喜 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5000022A priority Critical patent/JPH06201208A/en
Publication of JPH06201208A publication Critical patent/JPH06201208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To devise an optimal matching of a refrigerating cycle associated with an outdoor machine in accordance with a manner, in which an indoor machine is connected to the outdoor machine. CONSTITUTION:A restriction, in which a capillary 9 and a two-way solenoid valve 8 are connected in parallel to each other, is connected to a piping midway between an expansion valve 6 in an outdoor machine 1 and an indoor machine 10 and on a side toward the indoor machine 10, and a liquid storage tank 7 is connected to the piping on a side toward the expansion valve 6 whereby switching control of the two-way solenoid valve 8 during a heating operation is determined depending on a difference in a form in which the indoor machine is combined with the outdoor machine 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、空気と冷媒間
で熱交換を行い、室内の冷暖房を行うヒートポンプ式冷
凍サイクルを備えた空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with a heat pump type refrigeration cycle for performing heat exchange between air and a refrigerant to cool and heat a room.

【0002】[0002]

【従来の技術】例えば、空気調和機における冷凍サイク
ルの中には冷暖房の熱源として大気の熱源を利用するも
のが多い。一般にはこのヒートポンプ式空気調和機は、
暖房時には室外機で大気の熱を汲み取り、室内機で熱を
放出し、逆に冷房時には室内機で大気の熱を汲み取り、
室外機で大気に熱を捨ている。ところで、ハウジングエ
アコンの室内機形態は、最近の住宅事情に関係し、壁掛
けタイプから天カセタイプまで様々な形態が要求され、
また存在している。冷凍サイクルを原理的に見ると、ど
の機種も一様に、暖房時は室外機の熱交換器内部を流れ
る低圧、低温の冷媒が、室外送風機により回りの大気と
熱交換して蒸発し、圧縮機で高温、高圧の過熱蒸気にな
り、室内機の熱交換器で室内送風機により室内空気で冷
却、凝縮され、絞り機構により低温、低圧の2相流に戻
ってサイクルが一巡する。ところが、どの機種も全くサ
イクルが一様であるかと言えば細かい箇所で微妙に異な
り、例えば絞りの大きさ、室内外送風量、室内外熱交換
器大きさ、冷媒封入量等は機種によって一様でない。即
ち、たとえ冷暖房能力が同一クラスであっても各室内機
形態に対応した室外機開発が必要になっている。この原
因は、最近の室内機のコンパクト化に伴い、天カセタイ
プ等に比べて壁掛けタイプの室内機熱交換器容積が極端
に小さくなっていることが大きい。熱交容積が異なった
状態で冷凍サイクルの最適マッチングを図ろうとすれ
ば、室内外機の熱バランス等から自ずと冷媒封入量、圧
縮機定格運転Hz等が異なってしまう。一般的には、室
内機熱交容積が小さい場合、冷媒量が多いと能力を出そ
うとする際、高圧側が上昇、圧縮機吐出温度が異常に上
昇してしまうので冷媒封入量を少なくする。また、室内
機熱交容積ばかりでなく、室内機の送風量が少ない場合
も同様の問題が生じる。
2. Description of the Related Art For example, many refrigeration cycles in air conditioners utilize the heat source of the atmosphere as a heat source for cooling and heating. Generally, this heat pump type air conditioner
When heating, the outdoor unit draws heat from the atmosphere, and indoor units release it. On the contrary, when cooling, the indoor unit draws heat from the atmosphere,
The outdoor unit dissipates heat into the atmosphere. By the way, regarding the indoor unit type of the housing air conditioner, various types are required from the wall-mounted type to the top-cassed type due to the recent housing situation.
It also exists. When the refrigeration cycle is viewed in principle, the low-pressure, low-temperature refrigerant flowing inside the heat exchanger of the outdoor unit during heating uniformly evaporates by exchanging heat with the surrounding atmosphere by the outdoor blower when compressed. It becomes high-temperature, high-pressure superheated steam in the machine, is cooled and condensed by indoor air by the indoor blower in the heat exchanger of the indoor unit, and returns to the low-temperature, low-pressure two-phase flow by the throttling mechanism to complete the cycle. However, speaking of the fact that all models have the same cycle, there are subtle differences in the details, such as the size of the throttle, the amount of indoor / outdoor air blowing, the size of the indoor / outdoor heat exchanger, and the amount of refrigerant charged. Not. That is, even if the cooling and heating capacities are in the same class, it is necessary to develop an outdoor unit corresponding to each indoor unit type. The cause of this is that the volume of the wall-mounted indoor unit heat exchanger has become extremely smaller than that of the ceiling-cassed type and the like due to the recent compacting of the indoor unit. If an attempt is made to optimally match the refrigeration cycle in a state where the heat exchange volumes are different, the refrigerant charge amount, the compressor rated operation Hz, etc. will naturally differ due to the heat balance of the indoor and outdoor units. In general, when the indoor unit heat exchange volume is small, the high pressure side rises and the compressor discharge temperature abnormally rises when the capacity is attempted when the amount of refrigerant is large, so the amount of refrigerant to be enclosed is reduced. In addition to the indoor unit heat exchange volume, the same problem occurs when the amount of air blown from the indoor unit is small.

【0003】[0003]

【発明が解決しようとする課題】上述のように、従来の
空気調和機は各室内機形態に対応した室外機開発が必要
であり、開発リードタイムの短縮化が図れず、開発の労
力、時間、費用は莫大になる等の種々の問題が残ってい
た。
As described above, the conventional air conditioner requires the development of the outdoor unit corresponding to each indoor unit type, and the development lead time cannot be shortened. However, various problems such as huge cost remained.

【0004】そこで、本発明の目的とするところは、接
続される様々な室内機形態に対応して冷凍サイクルの最
適マッチングを図ることが可能な室外機を有する空気調
和機を提供することにある。
Therefore, an object of the present invention is to provide an air conditioner having an outdoor unit capable of optimally matching refrigeration cycles in accordance with various connected indoor unit types. .

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、第1に、室外機における膨張弁と室内機
とを結ぶ配管途中の当該室内機側にキャピラリと二方電
磁弁を並列接続した絞り部を接続し、前記膨張弁側には
冷媒を貯溜する液溜タンクを接続し、暖房運転時には前
記室外機に組み合わせる前記室内機形態の違いによって
前記二方電磁弁の開閉制御を決定するように構成してな
ることを要旨とする。
In order to solve the above-mentioned problems, the present invention firstly proposes a capillary and a two-way solenoid valve on the side of the indoor unit in the middle of piping connecting the expansion valve in the outdoor unit and the indoor unit. Is connected in parallel, the expansion valve side is connected to a liquid storage tank for storing refrigerant, and the opening / closing control of the two-way solenoid valve is performed according to the difference in the indoor unit configuration combined with the outdoor unit during heating operation. The gist is that it is configured to determine.

【0006】第2に、上記第1の構成において、冷房運
転時には、前記二方電磁弁を開け、前記室内機の過熱度
制御を行うように構成してなることを要旨とする。
Secondly, the gist of the first configuration is that the two-way solenoid valve is opened during the cooling operation to control the superheat of the indoor unit.

【0007】第3に、上記第1の構成において、暖房運
転時には、前記室内機の熱交容量が当該室内機の基準容
量より小さく前記室内機形態が小さいと判断されたとき
は前記二方電磁弁を開け、前記室内機の熱交容量が前記
基準容量より大きく前記室内機形態が大きいと判断され
たときは前記二方電磁弁を閉じ、前記室外機の過熱度制
御を行うように構成してなることを要旨とする。
Thirdly, in the above-mentioned first configuration, when it is determined that the heat exchange capacity of the indoor unit is smaller than the reference capacity of the indoor unit and the indoor unit configuration is small during the heating operation, the two-way electromagnetic A valve is opened, and when it is determined that the heat exchange capacity of the indoor unit is larger than the reference capacity and the indoor unit configuration is large, the two-way solenoid valve is closed and the superheat control of the outdoor unit is performed. The main point is to become.

【0008】[0008]

【作用】上記構成において、第1に、暖房運転時には室
外機に組み合わせる室内機形態の違いによって二方電磁
弁の開閉制御が決定されることにより、液溜タンクに貯
溜される冷媒量が調整される。これにより冷凍サイクル
を流れる冷媒量が最適量に制御され、組み合わされる室
内機形態に対応して能力、効率が高く最適にマッチング
のとれた冷凍サイクルが実現される。
In the above structure, first, during heating operation, the opening / closing control of the two-way solenoid valve is determined depending on the form of the indoor unit combined with the outdoor unit, thereby adjusting the amount of refrigerant stored in the liquid storage tank. It As a result, the amount of refrigerant flowing through the refrigeration cycle is controlled to an optimum amount, and a refrigeration cycle with high capacity and efficiency and optimal matching is realized in accordance with the combined indoor unit configuration.

【0009】第2に、冷房運転時には、もともと室内機
容積に比べて凝縮器である室外機の熱交容積は大きいこ
ともあり、冷凍サイクル内での冷媒封入量は多い方が望
ましく、蒸発器である室内機形態の違いの影響は小さく
なる。従って、二方電磁弁が開けられることにより液溜
タンクに貯溜される冷媒量が少なく調整され、能力、効
率の高い冷凍サイクルが実現される。
Secondly, during the cooling operation, since the heat exchange volume of the outdoor unit, which is the condenser, is originally larger than the volume of the indoor unit, it is desirable that the amount of refrigerant enclosed in the refrigeration cycle is large. Therefore, the influence of the difference in the indoor unit form is small. Therefore, by opening the two-way solenoid valve, the amount of refrigerant stored in the liquid storage tank is adjusted to a small amount, and a refrigeration cycle with high capacity and efficiency is realized.

【0010】第3に、暖房運転時における二方電磁弁の
開閉制御は、具体的には室内機形態が小さいと判断され
たときは二方電磁弁は開けられ、室内機形態が大きいと
判断されたときは二方電磁弁は閉じられて液溜タンクに
貯溜される冷媒量が調整され、組み合わされる室内機形
態に対応して適確にマッチングのとれた冷凍サイクルが
実現される。
Thirdly, regarding the opening / closing control of the two-way solenoid valve during the heating operation, specifically, when it is determined that the indoor unit type is small, the two-way electromagnetic valve is opened, and it is determined that the indoor unit type is large. When this is done, the two-way solenoid valve is closed and the amount of refrigerant stored in the liquid storage tank is adjusted, so that a refrigeration cycle can be realized that is appropriately matched in accordance with the combined indoor unit configuration.

【0011】[0011]

【実施例】以下、本発明の実施例を図1及び図2に基づ
いて説明する。図1は冷凍サイクルを概略的に示してお
り、二方電磁弁、液溜タンク等の位置関係を示してい
る。また図2は暖房時及び冷房時の運転制御方法を示し
ている。図1において、室外機1は、室外熱交換器2、
室外送風機3、圧縮機4、四方弁5、膨張弁6、液溜タ
ンク7、二方電磁弁8及びキャピラリ9等の主要部品か
ら構成され、また室内機10は、室内熱交換器11及び
室内送風機12等より構成されている。二方電磁弁8と
キャピラリ9とを並列接続した絞り部は、膨張弁6と室
内機10とを結ぶ配管途中における室内機10側に接続
され、液溜タンク7はその配管途中の膨張弁6側に接続
されている。なお、図1中、実線矢印は暖房モードの冷
媒流れ方向を示し、破線矢印は冷房モードの冷媒流れ方
向を示している。上記の冷凍サイクルにおいて、暖房運
転時に、室外機1における圧縮器4より吐出された高
温、高圧の気化冷媒は、四方弁5を通過した後、室内機
10に導かれ、室内熱交換器11を流れる間に室内送風
機12により室内空気と熱交換することで、室内に熱を
放出し、凝縮する。凝縮し液化した冷媒は、室外機1に
戻るが以下に述べる室内機形態を判定する条件により室
外機1での冷凍サイクルは異なったものとなる。これを
図2(a)のフローチャートを用いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 schematically shows a refrigeration cycle, and shows a positional relationship between a two-way solenoid valve, a liquid storage tank, and the like. Further, FIG. 2 shows an operation control method during heating and during cooling. In FIG. 1, the outdoor unit 1 includes an outdoor heat exchanger 2,
The outdoor blower 3, the compressor 4, the four-way valve 5, the expansion valve 6, the liquid storage tank 7, the two-way solenoid valve 8 and the capillary 9, and other main components, and the indoor unit 10, the indoor heat exchanger 11 and the room It is composed of a blower 12 and the like. The throttle part in which the two-way solenoid valve 8 and the capillary 9 are connected in parallel is connected to the indoor unit 10 side in the middle of the pipe connecting the expansion valve 6 and the indoor unit 10, and the liquid storage tank 7 is connected to the expansion valve 6 in the middle of the pipe. Connected to the side. In addition, in FIG. 1, the solid line arrow indicates the refrigerant flow direction in the heating mode, and the broken line arrow indicates the refrigerant flow direction in the cooling mode. In the above refrigeration cycle, during heating operation, the high-temperature, high-pressure vaporized refrigerant discharged from the compressor 4 in the outdoor unit 1 is introduced into the indoor unit 10 after passing through the four-way valve 5, and the indoor heat exchanger 11 By exchanging heat with the indoor air by the indoor blower 12 while flowing, heat is released into the room and condensed. The condensed and liquefied refrigerant returns to the outdoor unit 1, but the refrigeration cycle in the outdoor unit 1 differs depending on the conditions for determining the indoor unit form described below. This will be described with reference to the flowchart of FIG.

【0012】暖房運転時において、室内機10の熱交容
量が当該室内機10の基準容量より小さい、あるいは室
内機送風量が当該室内機10の基準送風量より少ない等
の情報で室内機形態がコンパクトで室内風量が少ない機
種であると判断されると(ステップ21のYes)、二
方電磁弁8が開けられる(ステップ22)。このため、
室外機1に戻った冷媒は二方電磁弁8が開かれた状態な
ので、絞りの大きいキャピラリ9には殆んど流れず、二
方電磁弁8が設けられた配管にバイパスする。そして、
液溜タンク7を通過した冷媒は膨張弁6で絞られ、減圧
された後、室外熱交換器2で室外送風機3による室外空
気と熱交換し、蒸発過程を完了する。加熱された低圧の
気化冷媒は、再び圧縮機4に入り高温、高圧の気化冷媒
となって吐出され、暖房時の1サイクルが終了する。こ
の過程で膨張弁6は、圧縮機4のサクション温度と室外
熱交換器2を通過する冷媒の蒸発温度との温度差で規定
する過熱度制御を行っているが(ステップ24)、温度
式でも電動式でも構わない。この場合、液溜タンク7を
通過する冷媒は、モリエル線図的に見ると高温、高圧の
液状態に位置するのでほぼ満液に近い状態で液溜タンク
7に貯溜される。上記と反対に、室内機形態が大きい、
あるいは室内風量が多い機種であると判断されると(ス
テップ21のNo)、二方電磁弁8は閉じられる(ステ
ップ23)。このため、室外機1に戻った冷媒は、二方
電磁弁8が閉じられた状態なので絞りの大きいキャピラ
リ9を流れ、液溜タンク7を通過した後、膨張弁6でさ
らに絞られ、減圧された後、室外熱交換器2で室外送風
機3による室外空気と熱交換し、蒸発過程を終了する。
この場合、液溜タンク7を通過する冷媒は、モリエル線
図的に見るとキャピラリ9で絞られ比較的低圧の2相状
態に位置するので液溜タンク7には殆んど貯溜されな
い。
During the heating operation, the indoor unit form is determined by the information that the heat exchange capacity of the indoor unit 10 is smaller than the reference capacity of the indoor unit 10 or the air blowing amount of the indoor unit 10 is smaller than the reference air blowing amount of the indoor unit 10. When it is determined that the model is compact and has a small indoor air volume (Yes in step 21), the two-way solenoid valve 8 is opened (step 22). For this reason,
The refrigerant that has returned to the outdoor unit 1 is in a state in which the two-way solenoid valve 8 is open, so that it hardly flows into the capillary 9 having a large throttle, and is bypassed to the pipe in which the two-way solenoid valve 8 is provided. And
The refrigerant having passed through the liquid storage tank 7 is throttled by the expansion valve 6 and decompressed, and then the outdoor heat exchanger 2 exchanges heat with the outdoor air by the outdoor blower 3 to complete the evaporation process. The heated low-pressure vaporized refrigerant again enters the compressor 4 and is discharged as high-temperature, high-pressure vaporized refrigerant, and one cycle of heating is completed. In this process, the expansion valve 6 performs superheat degree control defined by the temperature difference between the suction temperature of the compressor 4 and the evaporation temperature of the refrigerant passing through the outdoor heat exchanger 2 (step 24). It may be electric. In this case, the refrigerant passing through the liquid storage tank 7 is in a liquid state of high temperature and high pressure as seen in the Mollier diagram, and therefore is stored in the liquid storage tank 7 in a state of being almost full. Contrary to the above, the indoor unit type is large,
Alternatively, when it is determined that the model has a large indoor air volume (No in step 21), the two-way solenoid valve 8 is closed (step 23). Therefore, the refrigerant returned to the outdoor unit 1 flows through the capillary 9 having a large throttle because the two-way solenoid valve 8 is closed, and after passing through the liquid storage tank 7, the refrigerant is further throttled by the expansion valve 6 and depressurized. After that, the outdoor heat exchanger 2 exchanges heat with the outdoor air by the outdoor blower 3, and the evaporation process ends.
In this case, the refrigerant passing through the liquid storage tank 7 is almost not stored in the liquid storage tank 7 because it is located in a relatively low-pressure two-phase state as narrowed down by the capillary 9 as seen in the Mollier diagram.

【0013】次いで、冷房運転時の冷凍サイクルを図2
(b)のフローチャートを用いて説明する。冷房時にお
いて、室外機1における圧縮機4から吐出された高温高
圧の冷媒は、四方弁5を通過した後、室外熱交換器2に
導かれ、室外送風機3による室外空気により、冷却され
て凝縮過程が完了する。高圧の液となった冷媒は、膨張
弁6で絞られ、減圧され、液溜タンク7を通過した後、
二方電磁弁8が開かれた状態となっているので(ステッ
プ25)、絞りの大きいキャピラリ9には殆んど流れ
ず、二方電磁弁8が設けられた配管にバイパスする。そ
して、室内機10に導かれ、室内熱交換器11で室内送
風機12による室内空気と熱交換することで、蒸発過程
で室内空気の熱を奪い、冷房を行う。低圧の気化された
冷媒は、室外機1の圧縮機4に入り、再び高温、高圧の
気化冷媒となって吐出され、冷房時の1サイクルが終了
する。この過程で膨張弁6は、圧縮機4のサクション温
度と室内熱交換器11を通過する冷媒の蒸発温度との温
度差で規定する過熱度制御を行っているが(ステップ2
6)、温度式でも電動式でも構わない。このように冷房
運転時は、室内機形態に関係なく二方電磁弁8は常に開
いた状態での運転である。この場合、液溜タンク7を通
過する冷媒は、モリエル線図的に見ると膨張弁6で絞ら
れて比較的低圧の2相状態に位置するので液溜タンク7
には殆んど貯溜されない。
Next, the refrigerating cycle during the cooling operation is shown in FIG.
This will be described with reference to the flowchart of (b). During cooling, the high-temperature and high-pressure refrigerant discharged from the compressor 4 of the outdoor unit 1 is guided to the outdoor heat exchanger 2 after passing through the four-way valve 5, and is cooled and condensed by the outdoor air by the outdoor blower 3. The process is complete. The high-pressure liquid refrigerant is throttled by the expansion valve 6, decompressed, and passed through the liquid storage tank 7,
Since the two-way solenoid valve 8 is in the open state (step 25), it hardly flows into the capillary 9 having a large throttle and bypasses the pipe in which the two-way solenoid valve 8 is provided. Then, by being guided to the indoor unit 10 and exchanging heat with the indoor air by the indoor blower 12 in the indoor heat exchanger 11, the heat of the indoor air is taken in the evaporation process to perform cooling. The low-pressure vaporized refrigerant enters the compressor 4 of the outdoor unit 1 and is discharged again as high-temperature, high-pressure vaporized refrigerant, and one cycle of cooling is completed. In this process, the expansion valve 6 performs superheat control which is regulated by the temperature difference between the suction temperature of the compressor 4 and the evaporation temperature of the refrigerant passing through the indoor heat exchanger 11 (step 2).
6), temperature type or electric type may be used. Thus, during the cooling operation, the two-way solenoid valve 8 is always open regardless of the indoor unit type. In this case, the refrigerant passing through the liquid storage tank 7 is located in a relatively low-pressure two-phase state by being squeezed by the expansion valve 6 as seen in the Mollier diagram.
Is hardly stored in.

【0014】上述した冷凍サイクルにおいては、次のよ
うなメリットが多い。まず、暖房時は、室内機形態に応
じて液溜タンク7に貯溜される冷媒量を制御でき、例え
ば壁掛け室内機のように室内熱交換器が小さく、室内送
風量が少ない場合は液溜タンク7に冷媒が貯溜されるの
で、液溜タンクが無い場合に比べて高圧側が低くなり、
圧縮機吐出温度の異常上昇が抑えられ、効率が高く、安
定な冷凍サイクルが得られる。反対に、天カセ室内機の
ように室内熱交換器が大きく、室内送風量が多い場合は
室内機過冷却度を大きくとれるので暖房能力を向上させ
ることが可能となる。一方、冷房時は、もともと室内機
容積、室内送風量に比べて凝縮器である室外機熱交容積
が大きく、室外送風量が多いこともあり冷凍サイクル内
での冷媒封入量は多い方が望ましく、蒸発器である室内
機形態の違いの影響は小さい。従って、本実施例の冷凍
サイクルでは液溜タンク7に貯溜される冷媒量は少なく
能力、効率ともに向上する。したがって、本実施例によ
れば、組み合わされる様々な室内機形態に対応して冷凍
サイクルの最適マッチングを図ることが可能な室外機を
有する空気調和機を提供することが可能となる。
The above refrigeration cycle has many advantages as follows. First, during heating, the amount of refrigerant stored in the liquid storage tank 7 can be controlled according to the indoor unit type. For example, when the indoor heat exchanger is small and the amount of air blown indoors is small as in a wall-mounted indoor unit, the liquid storage tank is small. Refrigerant is stored in 7, so the high-pressure side becomes lower than when there is no liquid tank,
An abnormal rise in compressor discharge temperature is suppressed, and a highly efficient and stable refrigeration cycle can be obtained. On the other hand, when the indoor heat exchanger is large and the amount of air blown in the room is large, as in the case cassette indoor unit, the degree of supercooling of the indoor unit can be made large, so that the heating capacity can be improved. On the other hand, during cooling, the heat exchange volume of the outdoor unit, which is a condenser, is larger than the indoor unit volume and the indoor air flow rate, and the outdoor air flow rate is large in some cases. The effect of the difference in the form of the indoor unit that is the evaporator is small. Therefore, in the refrigeration cycle of the present embodiment, the amount of refrigerant stored in the liquid storage tank 7 is small and both the capacity and the efficiency are improved. Therefore, according to the present embodiment, it is possible to provide an air conditioner having an outdoor unit capable of optimally matching refrigeration cycles in accordance with various combined indoor unit configurations.

【0015】なお、本発明は、本実施例に限られたもの
ではなく、例えば、図1の冷凍サイクルにおいて、二方
電磁弁8が設けられた配管途中に絞りの小さいキャピラ
リを設けてもよい。
The present invention is not limited to this embodiment, and for example, in the refrigeration cycle of FIG. 1, a capillary with a small throttle may be provided in the middle of the pipe in which the two-way solenoid valve 8 is provided. .

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
第1に、室外機における膨張弁と室内機とを結ぶ配管途
中のその室内機側にキャピラリと二方電磁弁を並列接続
した絞り部を接続し、膨張弁側には液溜タンクを接続
し、暖房運転時には室外機に組み合わせる室内機形態の
違いによって二方電磁弁の開閉制御を決定するようにし
たため、組み合わされる室内機形態に対応して液溜タン
クに貯溜される冷媒量を調整し、冷凍サイクルを流れる
冷媒量を最適量に制御することができて能力、効率が高
く最適マッチングのとれた冷凍サイクルを実現すること
ができる。
As described above, according to the present invention,
First, in the middle of the pipe connecting the expansion valve in the outdoor unit and the indoor unit, the indoor unit side is connected to the throttle section in which the capillary and the two-way solenoid valve are connected in parallel, and the expansion valve side is connected to the liquid reservoir tank. Since the opening / closing control of the two-way solenoid valve is determined by the difference in the indoor unit form combined with the outdoor unit during the heating operation, the amount of refrigerant stored in the liquid storage tank is adjusted according to the combined indoor unit form, The amount of refrigerant flowing through the refrigeration cycle can be controlled to an optimum amount, and a refrigeration cycle with high capacity and efficiency and optimal matching can be realized.

【0017】第2に、冷房運転時には、二方電磁弁を開
けるようにしたため、もともと室内機容積に比べて凝縮
器である室外機の熱交容積は大きいこともあり、冷凍サ
イクル内での冷媒封入量は多い方が望ましく、蒸発器で
ある室内機形態の違いの影響は少なくなるので、液溜タ
ンクに貯溜される冷媒量が少なく調整されて能力、効率
の高い冷凍サイクルを実現することができる。
Secondly, since the two-way solenoid valve is opened during the cooling operation, the heat exchange volume of the outdoor unit, which is the condenser, may be large compared to the volume of the indoor unit, and the refrigerant in the refrigeration cycle may be large. It is desirable to have a large amount of filling, and the influence of the difference in the form of the indoor unit that is the evaporator will be small, so the amount of refrigerant stored in the liquid storage tank can be adjusted to a small amount and a refrigeration cycle with high capacity and efficiency can be realized. it can.

【0018】第3に、暖房運転時における二方電磁弁の
開閉制御を、具体的には、室内機形態が小さいと判断さ
れたときは二方電磁弁を開け、室内機形態が大きいと判
断されたときは二方電磁弁を閉じるようにしたため、組
み合わされる室内機形態の大、小に応じて液溜タンクに
貯溜される冷媒量が最適に調整され、適確にマッチング
のとれた冷凍サイクルを実現することができる。
Thirdly, regarding the opening / closing control of the two-way solenoid valve during the heating operation, specifically, when it is determined that the indoor unit type is small, the two-way electromagnetic valve is opened and it is determined that the indoor unit type is large. Since the two-way solenoid valve is closed when it is operated, the amount of refrigerant stored in the liquid storage tank is optimally adjusted according to the size of the indoor unit to be combined, and the refrigeration cycle is matched accurately. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空気調和機の実施例における冷凍
サイクルを示す図である。
FIG. 1 is a diagram showing a refrigeration cycle in an embodiment of an air conditioner according to the present invention.

【図2】上記実施例における暖房冷房時の運転制御方法
を説明するためのフローチャートである。
FIG. 2 is a flowchart for explaining an operation control method during heating and cooling in the above embodiment.

【符号の説明】[Explanation of symbols]

1 室外機 6 膨張弁 7 液溜タンク 8 二方電磁弁 9 キャピラリ 10 室内機 1 Outdoor unit 6 Expansion valve 7 Liquid storage tank 8 Two-way solenoid valve 9 Capillary 10 Indoor unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩永 隆喜 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayoshi Iwanaga 8 Shinsita-cho, Isogo-ku, Yokohama, Kanagawa Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 室外機における膨張弁と室内機とを結ぶ
配管途中の当該室内機側にキャピラリと二方電磁弁を並
列接続した絞り部を接続し、前記膨張弁側には冷媒を貯
溜する液溜タンクを接続し、暖房運転時には前記室外機
に組み合わせる前記室内機形態の違いによって前記二方
電磁弁の開閉制御を決定するように構成してなることを
特徴とする空気調和機。
1. A throttle part, in which a capillary and a two-way solenoid valve are connected in parallel, is connected to the indoor unit side of a pipe connecting the expansion valve of the outdoor unit and the indoor unit, and refrigerant is stored on the expansion valve side. An air conditioner connected to a liquid storage tank and configured to determine opening / closing control of the two-way solenoid valve according to a difference in a form of the indoor unit combined with the outdoor unit during heating operation.
【請求項2】 冷房運転時には、前記二方電磁弁を開
け、前記室内機の過熱度制御を行うように構成してなる
ことを特徴とする請求項1記載の空気調和機。
2. The air conditioner according to claim 1, wherein during the cooling operation, the two-way solenoid valve is opened to control the superheat of the indoor unit.
【請求項3】 暖房運転時には、前記室内機の熱交容量
が当該室内機の基準容量より小さく前記室内機形態が小
さいと判断されたときには前記二方電磁弁を開け、前記
室内機の熱交容量が前記基準容量より大きく前記室内機
形態が大きいと判断されたときは前記二方電磁弁を閉
じ、前記室外機の過熱度制御を行うように構成してなる
ことを特徴とする請求項1記載の空気調和機。
3. During the heating operation, when it is determined that the heat exchange capacity of the indoor unit is smaller than the reference capacity of the indoor unit and the form of the indoor unit is small, the two-way solenoid valve is opened and the heat exchange of the indoor unit is performed. When the capacity is larger than the reference capacity and it is judged that the indoor unit type is large, the two-way solenoid valve is closed to control the superheat degree of the outdoor unit. Air conditioner described.
JP5000022A 1993-01-04 1993-01-04 Air-conditioner Pending JPH06201208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5000022A JPH06201208A (en) 1993-01-04 1993-01-04 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5000022A JPH06201208A (en) 1993-01-04 1993-01-04 Air-conditioner

Publications (1)

Publication Number Publication Date
JPH06201208A true JPH06201208A (en) 1994-07-19

Family

ID=11462780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5000022A Pending JPH06201208A (en) 1993-01-04 1993-01-04 Air-conditioner

Country Status (1)

Country Link
JP (1) JPH06201208A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408064B1 (en) * 2001-07-16 2003-12-03 엘지전자 주식회사 Method for high speed heating control of inverter airconditioner
JP2007187407A (en) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp Refrigeration cycle device and operation method for refrigeration cycle device
WO2015056635A1 (en) * 2013-10-17 2015-04-23 日立アプライアンス株式会社 Air conditioner
CN111094876A (en) * 2017-08-29 2020-05-01 东芝开利株式会社 Multi-connected air conditioning system and indoor unit
WO2023243517A1 (en) * 2022-06-14 2023-12-21 ダイキン工業株式会社 Air conditioning device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408064B1 (en) * 2001-07-16 2003-12-03 엘지전자 주식회사 Method for high speed heating control of inverter airconditioner
JP2007187407A (en) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp Refrigeration cycle device and operation method for refrigeration cycle device
WO2015056635A1 (en) * 2013-10-17 2015-04-23 日立アプライアンス株式会社 Air conditioner
JP2015078792A (en) * 2013-10-17 2015-04-23 日立アプライアンス株式会社 Air conditioning device
CN111094876A (en) * 2017-08-29 2020-05-01 东芝开利株式会社 Multi-connected air conditioning system and indoor unit
WO2023243517A1 (en) * 2022-06-14 2023-12-21 ダイキン工業株式会社 Air conditioning device

Similar Documents

Publication Publication Date Title
US7918098B2 (en) Air conditioning system
WO2014141374A1 (en) Air conditioner
KR100511286B1 (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
JP3352469B2 (en) Air conditioner
WO2007026620A1 (en) Air conditioner
US20060123817A1 (en) Air conditioner
US20110192181A1 (en) Refrigerant system
JPWO2003087681A1 (en) Heat source unit of air conditioner and air conditioner
KR20100096857A (en) Air conditioner
KR19980084034A (en) Air conditioner
JPH06201208A (en) Air-conditioner
JPH10205933A (en) Air conditioner
KR100505238B1 (en) Air-conditioner
JPH078999Y2 (en) Air source heat pump
WO2021156901A1 (en) Refrigeration cycle device
JP2536172B2 (en) Heat pump system
JPH03170758A (en) Air conditioner
KR101404105B1 (en) Air conditioner
CN210951964U (en) Air-cooled heat pump unit
JPH02118365A (en) Air conditioner
JP2018173198A (en) Refrigeration device
JPH08178450A (en) Air conditioner
JPH05322352A (en) Air conditioner
JP3213992B2 (en) Air conditioner
JP2001174089A (en) Multiple-chamber-type air-conditioner