JP2009210225A - Refrigerant divider and heat exchanger comprising the same - Google Patents

Refrigerant divider and heat exchanger comprising the same Download PDF

Info

Publication number
JP2009210225A
JP2009210225A JP2008055962A JP2008055962A JP2009210225A JP 2009210225 A JP2009210225 A JP 2009210225A JP 2008055962 A JP2008055962 A JP 2008055962A JP 2008055962 A JP2008055962 A JP 2008055962A JP 2009210225 A JP2009210225 A JP 2009210225A
Authority
JP
Japan
Prior art keywords
refrigerant
inflow
inlet
outflow
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008055962A
Other languages
Japanese (ja)
Other versions
JP5193630B2 (en
Inventor
Kensho Yamamoto
憲昭 山本
Masaru Yonezawa
勝 米澤
Shigeto Yamaguchi
成人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008055962A priority Critical patent/JP5193630B2/en
Publication of JP2009210225A publication Critical patent/JP2009210225A/en
Application granted granted Critical
Publication of JP5193630B2 publication Critical patent/JP5193630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/48Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow path resistance control on the downstream side of the diverging point, e.g. by an orifice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact refrigerant divider having stable flow dividing performance and high storage performance to an air conditioner and a refrigerating machine even if a straight portion of an inflow pipe connected with the flow divider cannot be sufficiently secured and the dryness of the refrigerant flowing into an inflow port is high. <P>SOLUTION: In this refrigerant divider 2 comprising the inflow port 4a connected with the inflow pipe having a bent portion, and a plurality of outflow ports branched from the inflow port 4a, the outflow ports are formed roughly immediately under the inflow port 4a, an inner diameter of the inflow port is smaller than an inner diameter of the inflow pipe, and the center of the inflow port 4a is eccentric in the refrigerant flow-in direction before the bent portion of the inflow pipe. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空調機器や冷凍機器等の冷凍サイクルにおける冷媒の回路を複数に分岐するための冷媒分流器及びこの冷媒分流器を備えた熱交換器に関する。   The present invention relates to a refrigerant flow divider for branching a refrigerant circuit in a refrigeration cycle such as an air conditioner or a refrigeration device into a plurality, and a heat exchanger including the refrigerant flow divider.

近年、空調機器や冷凍機器に用いられる熱交換器においては、熱交換効率の促進及び小型化のため、伝熱管の細径化が進む動きがあり、それに伴い冷媒経路数も増加する傾向がある。   In recent years, in heat exchangers used for air conditioning equipment and refrigeration equipment, there has been a trend to reduce the diameter of heat transfer tubes in order to promote heat exchange efficiency and miniaturization, and the number of refrigerant paths tends to increase accordingly. .

一般に、冷凍サイクルに用いるフロン系冷媒は、熱交換器内を密度が数十倍異なる冷媒蒸気と冷媒液が混在した気液二相となって流れる。そのため、熱交換器を設計する上で複数本の伝熱管への冷媒分配は難しい問題となっており、それを解決するため、種々の分流器の開発が行われてきた。   In general, a chlorofluorocarbon refrigerant used in a refrigeration cycle flows in a heat exchanger as a gas-liquid two-phase mixture in which refrigerant vapor and refrigerant liquid differing in density by several tens of times. Therefore, refrigerant distribution to a plurality of heat transfer tubes has become a difficult problem in designing a heat exchanger, and various shunts have been developed in order to solve this problem.

図面を参照しながら詳述すると、図6に示す分流器は、流入管103の内面に微細な溝または凹み102を設け、それにより生じた旋回流によって流出管101a,101b,101cでの冷媒流速及び流量の均一化を図っている(例えば、特許文献1参照。)。   Referring to the drawings in detail, the flow divider shown in FIG. 6 is provided with fine grooves or dents 102 on the inner surface of the inflow pipe 103, and the flow velocity of refrigerant in the outflow pipes 101a, 101b, 101c due to the swirling flow generated thereby. In addition, the flow rate is made uniform (see, for example, Patent Document 1).

また、図7に示す分流器の場合、流出管203a,203b,203cの流路断面積を変化させ、分流器202の流路断面積をあらかじめ設定しておくことで流入管201より入った冷媒の分流比率を任意に設定して流出管203a,203b,203cの冷媒流量を調節している (例えば、特許文献2参照。)。   In the case of the flow divider shown in FIG. 7, the refrigerant entering from the inflow pipe 201 is obtained by changing the flow path cross-sectional area of the outflow pipes 203a, 203b, 203c and setting the flow path cross-sectional area of the flow divider 202 in advance. Is arbitrarily set to adjust the refrigerant flow rate in the outflow pipes 203a, 203b, 203c (see, for example, Patent Document 2).

さらに、図8に示すように、流入管301と流出管302,304との間にオリフィスリング306を設け、オリフィスリング306の流通口306aを熱交換器における通風量の大となる流出管302の方向へ偏心させたものもある(例えば、特許文献3参照。)。   Further, as shown in FIG. 8, an orifice ring 306 is provided between the inflow pipe 301 and the outflow pipes 302 and 304, and the flow outlet 306 a of the orifice ring 306 is connected to the outflow pipe 302 that has a large air flow rate in the heat exchanger. Some are eccentric in the direction (see, for example, Patent Document 3).

また、図9に示すように、冷媒の壁面への衝突攪拌作用により安定した分流性能を得るようにしたものも提案されている。流入口401より入った冷媒は平坦な衝突面441に衝突し、跳ね返る。これにより気液二相の混合状態となり、隣接して開口する各流出口421,431から流出管402,403へと流出する。このとき、衝突面441と複数の流出口421,431の少なくてもいずれか1つとの間に関442,443を形成することによって、流出口421、431から流出する冷媒(気液二相の混合状態)の流出を制限する。この衝突攪拌と流出量制限により、分流器が傾斜した場合でも冷媒を均等もしくは所定の比率に分流している (例えば、特許文献4参照。)。   Moreover, as shown in FIG. 9, what has obtained the stable shunt performance by the collision stirring action to the wall surface of a refrigerant | coolant is also proposed. The refrigerant entering from the inflow port 401 collides with the flat collision surface 441 and rebounds. As a result, a gas-liquid two-phase mixed state is obtained, and the gas flows out from the outlets 421 and 431 opened adjacent to the outlet pipes 402 and 403. At this time, by forming 442 and 443 between at least one of the collision surface 441 and the plurality of outlets 421 and 431, the refrigerant (gas-liquid two-phase) flowing out from the outlets 421 and 431 is formed. Limit the spillage of the mixed state. Due to the collision stirring and the outflow amount limitation, the refrigerant is divided evenly or at a predetermined ratio even when the flow divider is inclined (see, for example, Patent Document 4).

特開平5−18638号公報JP-A-5-18638 特開2000−320929号公報JP 2000-320929 A 実開昭59−175970号公報Japanese Utility Model Publication No. 59-175970 特開平10−253197号公報JP-A-10-253197

しかしながら、上述した従来の分流器にあっては、流入管の直線部を十分に確保できず、特に流入口に流入する冷媒の乾き度が高い場合には、液相成分が流入管内を均一に流れず、安定した分流性能が得られないという問題があった。   However, in the conventional shunt described above, the straight portion of the inflow pipe cannot be sufficiently secured, and particularly when the refrigerant flowing into the inflow port has a high dryness, the liquid phase component is uniformly distributed in the inflow pipe. There was a problem that the flow did not flow and stable diversion performance could not be obtained.

また、図6あるいは図7に示す構成のものにあっては、一般的な平滑管と比較し、コストが増大するとともに加工性が悪いという問題点があった。   Further, the configuration shown in FIG. 6 or 7 has a problem that the cost is increased and the workability is poor as compared with a general smooth tube.

さらに、図8に示す構成の場合、曲げ部を有する流入管に接続されると、偏心させる方向によっては、圧力損失が増大するのみで十分な整流が困難という問題があった。   Further, in the case of the configuration shown in FIG. 8, when connected to the inflow pipe having a bent portion, there is a problem that sufficient rectification is difficult due to only an increase in pressure loss depending on the eccentric direction.

また、図9に示す構成の場合、図10に示すように流出管402,403を分流器の側面に配置する必要があるため、特に流出管の数が増加した場合、大きな収納スペースが必要となる問題があった。   In the case of the configuration shown in FIG. 9, since it is necessary to arrange the outflow pipes 402 and 403 on the side face of the flow divider as shown in FIG. 10, a large storage space is required particularly when the number of outflow pipes is increased. There was a problem.

本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、流入管の直線部を十分に確保出来ない場合や、流入口に流入する冷媒の乾き度が高い場合においても、安定した分流性能を有し、さらに空調機器や冷凍機器への収納性の高い、コンパクトな冷媒分流器を提供することを目的としている。   The present invention has been made in view of such problems of the prior art, and even when the straight portion of the inflow pipe cannot be sufficiently secured or when the dryness of the refrigerant flowing into the inlet is high. An object of the present invention is to provide a compact refrigerant flow divider that has a stable flow-dividing performance and is highly storable in air-conditioning equipment and refrigeration equipment.

上記目的を達成するために、本発明に係る冷媒分流器は、曲げ部を有する流入管に接続される流入口と、その流入口から分岐する複数の流出口とを備え、流出口を流入口の略真下に配置し、流入口の内径を流入管の内径より小さく設定し、流入口の中心を流入管の曲げ部以前の冷媒の流入方向に偏心させたものである。   In order to achieve the above object, a refrigerant distributor according to the present invention includes an inlet connected to an inlet pipe having a bent portion, and a plurality of outlets branched from the inlet, and the outlet is an inlet. The inner diameter of the inlet is set smaller than the inner diameter of the inflow pipe, and the center of the inlet is eccentric in the refrigerant inflow direction before the bent portion of the inflow pipe.

このように、流入口の内径を流入管の内径より小さくし、かつ流入口の中心を偏心させることによって、流入管と流入口の接続部に段差が生じ、この段差に流入管内を気液二相状態で流れる冷媒の液成分が衝突して攪拌されるので、安定した分流性能を発揮することができる。   As described above, by making the inner diameter of the inlet smaller than the inner diameter of the inflow pipe and decentering the center of the inflow pipe, a step is formed at the connection portion between the inflow pipe and the inflow opening. Since the liquid components of the refrigerant flowing in the phase state collide and are agitated, stable diversion performance can be exhibited.

本発明によれば、分流器に接続される流入管の直線部を十分に確保出来ない場合や、流入口に流入する冷媒の乾き度が高い場合においても、安定した分流性能が得られ、さらに空調機器や冷凍機器への収納性の高い、コンパクトな冷媒分流器を構成できる。   According to the present invention, even when the straight portion of the inflow pipe connected to the flow divider cannot be sufficiently secured or when the dryness of the refrigerant flowing into the inflow port is high, stable diversion performance can be obtained. A compact refrigerant flow divider with high storability in air conditioning equipment and refrigeration equipment can be configured.

第1の発明は、流入管から流入した冷媒を複数の流出管に分流するための冷媒分流器に、流入管が挿入される流入管挿入口と、複数の流出管が挿入される流出管挿入口と、流入管挿入口と流出管挿入口との間に形成され互いに連通する流入口及び複数の流出口とを設け、流入口の内径を流入管の内径より小さく設定し、流入口の中心を流入管挿入口に対し偏心させている。   According to a first aspect of the present invention, there is provided an inflow pipe insertion port into which an inflow pipe is inserted and an outflow pipe insertion into which a plurality of outflow pipes are inserted into a refrigerant distributor for diverting the refrigerant flowing in from the inflow pipe into a plurality of outflow pipes. And an inlet and a plurality of outlets formed between the inlet pipe inlet and the outlet pipe insertion opening and communicating with each other, the inner diameter of the inlet is set smaller than the inner diameter of the inlet pipe, the center of the inlet Is eccentric with respect to the inlet tube insertion port.

この構成により、分流器に接続される流入管の直線部を十分に確保出来ない場合や、流入口に流入する冷媒の乾き度が高い場合においても、気液二相状態で流入する冷媒の液相成分が偏る箇所に冷媒を衝突・攪拌させる不連続な領域を十分に設け、流入口の内径を最大限に確保することができるため、圧力損失が小さく、安定した分流性能を有し、さらに空調機器や冷凍機器への収納性の高い、コンパクトな冷媒分流器を構成できる。   With this configuration, even when the straight portion of the inflow pipe connected to the flow divider cannot be secured sufficiently, or when the dryness of the refrigerant flowing into the inlet is high, the refrigerant liquid flowing in the gas-liquid two-phase state is used. Sufficient discontinuous areas where the refrigerant collides and stirs at the location where the phase components are biased, and the inner diameter of the inlet can be ensured to the maximum, so that the pressure loss is small, and stable shunt performance is achieved. A compact refrigerant flow divider with high storability in air conditioning equipment and refrigeration equipment can be configured.

第2の発明は、流入口の中心から複数の流出口の中心までの距離が同一ではない構成とすることで、流入口から各流出口へ流入する流路断面積を変化させることが可能となり、冷媒分流器を取り付ける熱交換器などの風速分布や伝熱特性に応じて、各流出口への偏流調整が可能になる。   According to the second aspect of the present invention, the distance from the center of the inlet to the center of the plurality of outlets is not the same, so that the cross-sectional area of the channel flowing from the inlet to each outlet can be changed. Depending on the wind speed distribution and heat transfer characteristics of a heat exchanger or the like to which the refrigerant flow divider is attached, it is possible to adjust the drift to each outlet.

第3の発明は、流出口を異なる流路断面積とすることで、流入口から各流出口へ流入する流路断面積及び流出口の流動損失を変化させることが可能となり、冷媒分流器を取り付ける熱交換器などの風速分布や伝熱特性に応じて、各流出口への偏流調整が可能になる。   In the third aspect of the present invention, by setting the outlet to have different channel cross-sectional areas, it is possible to change the channel cross-sectional area flowing from the inlet to each outlet and the flow loss of the outlet. Depending on the wind speed distribution and heat transfer characteristics of the heat exchanger to be installed, it is possible to adjust the drift to each outlet.

第4の発明は、流出口を異なる流路長とすることで、流入口から各流出口へ流入する流路断面積及び流出口の流動損失を変化させることが可能となり、冷媒分流器を取り付ける熱交換器などの風速分布や伝熱特性に応じて、各流出口への偏流調整が可能になる。   In the fourth aspect of the invention, by setting the outlets to different flow path lengths, it is possible to change the flow passage cross-sectional area flowing from the inlet to each outlet and the flow loss of the outlet, and attach the refrigerant flow divider. It is possible to adjust the drift to each outlet according to the wind speed distribution and heat transfer characteristics of the heat exchanger.

第5の発明は、流入口と流出口と流入管挿入口と流出管挿入口を1つのピースで成形することで、流入口と流出口の組み合わせによる生産上のバラつきを最小限に抑え、流入口と流出口を接続する工数を省き、コンパクトで安価な冷媒分流器を構成できる。   In the fifth aspect of the invention, the inlet, the outlet, the inflow pipe insertion port, and the outflow pipe insertion port are formed as a single piece, thereby minimizing production variations due to the combination of the inflow port and the outflow port. A man-hour for connecting the inlet and the outlet can be saved, and a compact and inexpensive refrigerant flow divider can be configured.

第6の発明は、冷媒分流器の本体外面に切欠部を有することで、加工・組立ての際に分流器本体の固定を容易に行うことができ、流入管や流出管の挿入方向の決定が容易になる。   According to a sixth aspect of the present invention, since the cutout portion is provided on the outer surface of the refrigerant flow distributor main body, the flow divider main body can be easily fixed during processing and assembly, and the insertion direction of the inflow pipe and the outflow pipe can be determined. It becomes easy.

第7の発明は、流出口を流入口の略真下に配置し、流入口の中心を流入管の曲げ部以前の冷媒の流入方向に偏心させることで、分流器に接続される流入管の直線部を十分に確保出来ない場合や、流入口に流入する冷媒の乾き度が高い場合においても、気液二相状態で流入する冷媒の液相成分が偏る箇所に冷媒を衝突させて攪拌させる不連続な領域を十分に設け、流入口の内径を最大限に確保することが可能になる。その結果、圧力損失が小さく、安定した分流性能を有し、さらに空調機器や冷凍機器への収納性の高い、コンパクトな冷媒分流器を構成できる。   According to a seventh aspect of the present invention, the outlet is arranged substantially directly below the inlet, and the center of the inlet is decentered in the refrigerant inflow direction before the bent portion of the inlet pipe, so that the straight line of the inlet pipe connected to the flow divider Even when the sufficient amount of air cannot be secured, or when the dryness of the refrigerant flowing into the inlet is high, the refrigerant does not collide with the location where the liquid phase component of the refrigerant flowing in the gas-liquid two-phase state is biased. It is possible to sufficiently provide a continuous region and to ensure the maximum inner diameter of the inlet. As a result, a compact refrigerant flow divider having a small pressure loss, a stable flow dividing performance, and a high storability in an air conditioner or a refrigeration device can be configured.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

図1及び図2は本発明に係る冷媒分流器2の上面及び下面からの斜視図をそれぞれ示しており、図3は本発明に係る冷媒分流器2の平面図である。また、図4は本発明に係る冷媒分流器2をルームエアコンの室内熱交換器のドライブロックに搭載した場合の斜視図であり、図5は図4の線V−Vに沿った断面図である。   1 and 2 show perspective views from the upper and lower surfaces of the refrigerant distributor 2 according to the present invention, respectively, and FIG. 3 is a plan view of the refrigerant distributor 2 according to the present invention. 4 is a perspective view when the refrigerant flow distributor 2 according to the present invention is mounted on a drive lock of an indoor heat exchanger of a room air conditioner, and FIG. 5 is a cross-sectional view taken along line V-V in FIG. is there.

図1乃至図3に示すように、本発明に係る冷媒分流器2は略円柱状の本体を有し、軸方向の一端側には一つの流入管挿入口4が形成され、軸方向の他端側には断面積が等しい複数(例えば、三つ)の流出管挿入口6,8,10が分離した状態で形成されている。流入管挿入口4と流出管挿入口6,8,10との間には、流入口4aと、流路断面積が等しい複数の流出口6a,8a,10aが互いに連通した状態で形成されている。   As shown in FIGS. 1 to 3, the refrigerant flow distributor 2 according to the present invention has a substantially cylindrical body, and one inflow pipe insertion port 4 is formed on one end side in the axial direction. A plurality of (for example, three) outflow tube insertion ports 6, 8, and 10 having the same cross-sectional area are formed on the end side in a separated state. Between the inflow pipe insertion port 4 and the outflow pipe insertion ports 6, 8, 10, an inflow port 4 a and a plurality of outflow ports 6 a, 8 a, 10 a having the same cross-sectional area are formed in communication with each other. Yes.

図4に示すように、ルームエアコンの室内熱交換器のドライブロックに搭載した場合、冷媒分流器2は、流出口6a,8a,10aが流入口4aの略真下に位置するように配置され、例えば流路を略L字状に曲げる開閉自在の二方弁12が流入管14を介して接続される。このため、一端が二方弁12に接続された流入管14の他端は、流入管挿入口4に挿入されて、ロウ付けにより冷媒分流器2と接続され、冷媒分流器2の流出管挿入口6,8,10には流出管16,18,20の各端部が挿入されて、ロウ付けにより冷媒分流器2と接続される。   As shown in FIG. 4, when mounted on a drive lock of an indoor heat exchanger of a room air conditioner, the refrigerant flow divider 2 is arranged so that the outlets 6a, 8a, 10a are located almost directly below the inlet 4a, For example, an openable two-way valve 12 that bends the flow path into a substantially L shape is connected via an inflow pipe 14. For this reason, the other end of the inflow pipe 14, one end of which is connected to the two-way valve 12, is inserted into the inflow pipe insertion port 4, connected to the refrigerant distributor 2 by brazing, and the outflow pipe of the refrigerant distributor 2 is inserted. Ends of the outflow pipes 16, 18, and 20 are inserted into the ports 6, 8, and 10, and connected to the refrigerant distributor 2 by brazing.

また、図3に示すように、流入口4aの内径L1は流入管14の内径L2より小さく設定されており、流入管挿入口4の中心は冷媒分流器2の軸心と一致している。一方、流入口4aの中心は冷媒分流器2の本体軸心あるいは流入管挿入口4の中心に対し偏心して形成されており、流入管14の曲げ部(本実施の形態では二方弁12)の上流側に向かってずらすことで、気液二相冷媒のうち、特に液成分を衝突させて攪拌するための不連続な段差22(軸心に直交する衝突面)を設けている。   As shown in FIG. 3, the inner diameter L <b> 1 of the inflow port 4 a is set smaller than the inner diameter L <b> 2 of the inflow pipe 14, and the center of the inflow pipe insertion port 4 coincides with the axis of the refrigerant flow divider 2. On the other hand, the center of the inlet 4a is formed eccentrically with respect to the center of the main body of the refrigerant distributor 2 or the center of the inlet pipe insertion port 4, and a bent portion of the inlet pipe 14 (two-way valve 12 in this embodiment). In the gas-liquid two-phase refrigerant, a discontinuous step 22 (a collision surface perpendicular to the axis) is provided to cause the liquid component to collide and stir.

図5に示すように、ルームエアコンの通常の運転モード(冷房運転)の場合、二方弁12は開放状態にあり、流入管14より流入する冷媒は二方弁12を通過し、冷媒の流れ方向がL字状に曲がった時点で、遠心力により液相成分がA側に偏った状態となり、冷媒分流器2に流入口4aより流入する。A側に偏った冷媒の液成分は、流入管14と流入口4aの間に設けられた不連続な段差22に衝突して分散し、流入口4aから流入する気相及び液相が混合する。   As shown in FIG. 5, in the normal operation mode (cooling operation) of the room air conditioner, the two-way valve 12 is in an open state, and the refrigerant flowing in from the inflow pipe 14 passes through the two-way valve 12 and the refrigerant flows. When the direction is bent in an L shape, the liquid phase component is biased toward the A side due to centrifugal force, and flows into the refrigerant distributor 2 from the inlet 4a. The liquid component of the refrigerant biased toward the A side collides with the discontinuous step 22 provided between the inflow pipe 14 and the inflow port 4a and is dispersed, and the gas phase and the liquid phase flowing in from the inflow port 4a are mixed. .

ここで、段差22は冷媒の液成分が衝突するのに十分な面積を有する必要があるが、流入口4aにおける圧力損失を低減するためには、流入口4aの内径を大きくする必要がある。そのため、本実施の形態では、流入口4aの中心を流入管14の中心に一致させない構成とすることで、段差22の面積を十分に確保しながら、流入口4aの内径を大きくすることができ、圧力損失が小さい構成としている。   Here, the step 22 needs to have a sufficient area for the liquid components of the refrigerant to collide, but in order to reduce the pressure loss at the inlet 4a, it is necessary to increase the inner diameter of the inlet 4a. For this reason, in the present embodiment, by making the center of the inlet 4a not coincident with the center of the inflow pipe 14, the inner diameter of the inlet 4a can be increased while ensuring a sufficient area of the step 22. The pressure loss is small.

この構成により、冷媒分流器2に接続される流入管14の直線部を十分に確保出来ない場合や、流入口4aに流入する冷媒の乾き度が高い場合においても、最小限の圧力損失で安定した分流性能を得ることが可能となる。   With this configuration, even when the straight portion of the inflow pipe 14 connected to the refrigerant flow divider 2 cannot be secured sufficiently, or even when the dryness of the refrigerant flowing into the inlet 4a is high, it is stable with a minimum pressure loss. Can be obtained.

混合された気相及び液相の冷媒は、流入口4aを通り流出口6a,8a,10aへと流れるが、この時、冷媒分流器2が取り付けられる熱交換器の冷媒経路、風速分布に応じて、次のように設定することにより流入口4aと流出口6a,8a,10aとの連通部の面積を変えることができ、各流出口6a,8a,10aへの流量配分を適宜調節することができる。
(i)流入口4aの中心から複数の流出口6a,8a,10aの中心までの距離を変える。
(ii)流出口6a,8a,10aを異なる流路断面積とする。
(iii)流出口6a,8a,10aを異なる流路長とする。
(iv)(i)〜(iii)を適宜組み合わせる。
The mixed gas-phase and liquid-phase refrigerants flow through the inlet 4a to the outlets 6a, 8a, and 10a. At this time, depending on the refrigerant path and the wind speed distribution of the heat exchanger to which the refrigerant distributor 2 is attached. Then, by setting as follows, the area of the communication portion between the inflow port 4a and the outflow ports 6a, 8a, 10a can be changed, and the flow distribution to each of the outflow ports 6a, 8a, 10a is adjusted appropriately. Can do.
(I) The distance from the center of the inlet 4a to the center of the plurality of outlets 6a, 8a, 10a is changed.
(Ii) The outlets 6a, 8a and 10a have different channel cross-sectional areas.
(Iii) The outlets 6a, 8a and 10a have different flow path lengths.
(Iv) (i) to (iii) are appropriately combined.

本発明に係る冷媒分流器2は、流入口4aと流出口6a,8a,10aと流入管挿入口4と流出管挿入口6,8,10とを備えているため、流入口4aと流出口6a,8a,10aの変更のみで概ね流量調節が可能である。すなわち、流入管挿入口4と流出管挿入口6,8,10及びそれらに接続される流入管14や流出管16,18,20は変更する必要がないため、熱交換器の仕様変更等により、各流出経路への流量を変化させる必要が生じた場合、本発明に係る冷媒分流器2を使用すると、特に流入口4aと流出口6a,8a,10aを変更するのみで対応することができ、仕様変更に伴うコストの削減、部品の共用化を進める上で有利である。   Since the refrigerant distributor 2 according to the present invention includes the inlet 4a, the outlets 6a, 8a, and 10a, the inlet pipe insertion port 4, and the outlet pipe insertion ports 6, 8, and 10, the inlet 4a and the outlet are provided. The flow rate can be generally adjusted only by changing 6a, 8a and 10a. That is, since the inflow pipe insertion port 4 and the outflow pipe insertion ports 6, 8, 10 and the inflow pipe 14 and the outflow pipes 16, 18, 20 connected to them do not need to be changed, the specification of the heat exchanger is changed. When it is necessary to change the flow rate to each outflow path, when the refrigerant flow divider 2 according to the present invention is used, it can be dealt with by changing only the inflow port 4a and the outflow ports 6a, 8a and 10a. This is advantageous in reducing costs associated with specification changes and sharing parts.

なお、本実施の形態のように、流入口4aと流出口6a,8a,10aと流入管挿入口4と流出管挿入口6,8,10を1つのピースで成形することで、流入口4aと流出口6a,8a,10aの組み合わせによる生産上のバラツキを最小限に抑え、流入口4aと流出口6a,8a,10aを接続する工数を省き、コンパクトで安価な冷媒分流器2を構成することが可能である。   As in the present embodiment, the inflow port 4a, the outflow ports 6a, 8a, 10a, the inflow tube insertion port 4, and the outflow tube insertion ports 6, 8, 10 are formed as a single piece, so that the inflow port 4a. And the outlets 6a, 8a, and 10a are combined to minimize production variations, and the number of steps for connecting the inlet 4a and the outlets 6a, 8a, and 10a is reduced, thereby forming a compact and inexpensive refrigerant distributor 2. It is possible.

また、冷媒分流器2の本体外面の両側に切欠部24を形成することで、加工や組立ての際に分流器本体のジグへの固定を容易とし、本実施の形態のように、流入管14や流出管16,18,20に指向性が有る場合においては、挿入方向の決定も容易になり、加工性あるいは組立て性が良好な冷媒分流器2を構成できる。   Further, by forming the notches 24 on both sides of the outer surface of the main body of the refrigerant flow distributor 2, it is easy to fix the flow distributor body to the jig during processing and assembly, and the inflow pipe 14 as in the present embodiment. When the outflow pipes 16, 18, and 20 have directivity, the insertion direction can be easily determined, and the refrigerant distributor 2 having good workability or assembly can be configured.

なお、図4に示すように冷媒分流器2が取り付けられると、流出口6a,8a,10aは流入口4aの略真下に位置することになるが、本発明に係る冷媒分流器2は水平方向に取り付けることも可能で、この場合、冷媒液と冷媒蒸気の密度差を考慮して段差22を流入口4aの真下に配置し、冷媒液を段差22に衝突させることになる。   As shown in FIG. 4, when the refrigerant distributor 2 is attached, the outlets 6a, 8a, and 10a are positioned almost directly below the inlet 4a. However, the refrigerant distributor 2 according to the present invention is in the horizontal direction. In this case, in consideration of the density difference between the refrigerant liquid and the refrigerant vapor, the step 22 is disposed directly below the inflow port 4a, and the refrigerant liquid collides with the step 22.

なお、本発明は上記の実施の形態に限らず、種々変更して実施し得るものである。   The present invention is not limited to the above-described embodiment, and can be implemented with various modifications.

本発明に係る冷媒分流器は、冷媒分流器に接続される流入管の直線部を十分に確保出来ない場合や、流入口に流入する冷媒の乾き度が高い場合においても、安定した分流性能が得られ、コンパクトな構成が可能となるので、ルームエアコンのみならず小型化が要求される冷蔵庫やヒートポンプ乾燥方式を採用した洗濯乾燥機の熱交換器等の用途にも適用できる。   The refrigerant shunt according to the present invention has stable shunting performance even when the straight portion of the inflow pipe connected to the refrigerant shunt cannot be sufficiently secured or when the dryness of the refrigerant flowing into the inlet is high. As a result, a compact configuration is possible, so that the present invention can be applied not only to a room air conditioner but also to a refrigerator or a heat exchanger for a washer / dryer that employs a heat pump drying method that requires downsizing.

本発明に係る冷媒分流器の上面からの斜視図The perspective view from the upper surface of the refrigerant | coolant flow divider which concerns on this invention 図1の冷媒分流器の下面からの斜視図The perspective view from the lower surface of the refrigerant | coolant shunt of FIG. 図1の冷媒分流器の平面図FIG. 1 is a plan view of the refrigerant flow divider of FIG. 図1の冷媒分流器をルームエアコンの室内熱交換器の一部に搭載した場合の斜視図The perspective view at the time of mounting the refrigerant | coolant shunt of FIG. 1 in a part of indoor heat exchanger of a room air conditioner 図4の線V−Vに沿った断面図Sectional view along line VV in FIG. 従来の冷媒分流器の部分断面正面図Partial sectional front view of a conventional refrigerant flow divider 別の従来の冷媒分流器の分解斜視図Exploded perspective view of another conventional refrigerant distributor さらに別の従来の冷媒分流器の断面図Sectional view of yet another conventional refrigerant flow divider さらに別の従来の冷媒分流器の断面図Sectional view of yet another conventional refrigerant flow divider 図9の冷媒分流器の斜視図FIG. 9 is a perspective view of the refrigerant shunt of FIG.

符号の説明Explanation of symbols

2 冷媒分流器、
4 流入管挿入口、
4a 流入口、
6,8,10 流出管挿入口、
6a,8a,10a 流出口、
12 二方弁、
14 流入管、
16,18,20 流出管、
22 段差、
24 切欠部。
2 refrigerant shunt,
4 Inlet pipe insertion port,
4a inlet,
6, 8, 10 Outlet tube insertion port,
6a, 8a, 10a outlet,
12 Two-way valve,
14 Inflow pipe,
16, 18, 20 Outflow pipe,
22 steps,
24 Notch.

Claims (7)

流入管と複数の流出管に接続され前記流入管から流入した冷媒を前記複数の流出管に分流するための冷媒分流器であって、
前記流入管が挿入される流入管挿入口と、前記複数の流出管が挿入される流出管挿入口と、前記流入管挿入口と前記流出管挿入口との間に形成され互いに連通する流入口及び複数の流出口とを備え、前記流入口の内径は前記流入管の内径より小さく設定され、前記流入口の中心は前記流入管挿入口に対し偏心していることを特徴とする冷媒分流器。
A refrigerant distributor connected to an inflow pipe and a plurality of outflow pipes for diverting the refrigerant flowing in from the inflow pipe to the plurality of outflow pipes;
An inflow tube insertion port into which the inflow tube is inserted, an outflow tube insertion port into which the plurality of outflow tubes are inserted, and an inflow port formed between the inflow tube insertion port and the outflow tube insertion port and communicating with each other And a plurality of outlets, wherein the inner diameter of the inlet is set smaller than the inner diameter of the inlet pipe, and the center of the inlet is eccentric with respect to the inlet inlet.
前記流入口の中心から前記複数の流出口の中心までの距離が同一ではないことを特徴とする請求項1に記載の冷媒分流器。 The refrigerant distributor according to claim 1, wherein distances from the center of the inlet to the centers of the plurality of outlets are not the same. 前記流出口は異なる流路断面積を有することを特徴とする請求項1あるいは2に記載の冷媒分流器。 The refrigerant flow divider according to claim 1 or 2, wherein the outlet has different channel cross-sectional areas. 前記流出口は異なる流路長を有することを特徴とする請求項1乃至3のいずれか1項に記載の冷媒分流器。 The refrigerant flow divider according to any one of claims 1 to 3, wherein the outlet has different flow path lengths. 前記流入口と前記流出口と前記流入管挿入口と前記流出管挿入口は1つのピースで成形されたことを特徴とする請求項1乃至4のいずれか1項に記載の冷媒分流器。 5. The refrigerant distributor according to claim 1, wherein the inflow port, the outflow port, the inflow tube insertion port, and the outflow tube insertion port are formed as a single piece. 本体外面に切欠部を有することを特徴とする請求項1乃至5のいずれか1項に記載の冷媒分流器。 The refrigerant distributor according to any one of claims 1 to 5, further comprising a notch on the outer surface of the main body. 請求項1乃至6のいずれか1項に記載の冷媒分流器を有する熱交換器であって、
前記流入管挿入口に挿入され冷媒流入側に曲げ部を有する流入管と、前記複数の流出管挿入口に挿入される複数の流出管とを備え、前記複数の流出口は前記流入口の略真下に配置され、前記流入口の中心は前記流入管の曲げ部の上流側に向かって偏心していることを特徴とする熱交換器。
A heat exchanger comprising the refrigerant flow divider according to any one of claims 1 to 6,
An inflow pipe inserted into the inflow pipe insertion port and having a bent portion on the refrigerant inflow side; and a plurality of outflow pipes inserted into the plurality of outflow pipe insertion ports, wherein the plurality of outflow ports are substantially the same as the inflow ports. The heat exchanger, which is arranged directly below and has an eccentric center toward the upstream side of the bent portion of the inflow pipe.
JP2008055962A 2008-03-06 2008-03-06 Heat exchanger Expired - Fee Related JP5193630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008055962A JP5193630B2 (en) 2008-03-06 2008-03-06 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055962A JP5193630B2 (en) 2008-03-06 2008-03-06 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2009210225A true JP2009210225A (en) 2009-09-17
JP5193630B2 JP5193630B2 (en) 2013-05-08

Family

ID=41183561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055962A Expired - Fee Related JP5193630B2 (en) 2008-03-06 2008-03-06 Heat exchanger

Country Status (1)

Country Link
JP (1) JP5193630B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112315A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
WO2014127964A1 (en) * 2013-02-20 2014-08-28 Behr Gmbh & Co. Kg Heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110296555B (en) * 2019-07-11 2020-11-10 珠海格力电器股份有限公司 Liquid separating mechanism with uniform liquid separating function, mounting method thereof and air conditioning system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294061A (en) * 1994-04-28 1995-11-10 Sharp Corp Refrigerant distributor
JP2002130868A (en) * 2000-10-20 2002-05-09 Daikin Ind Ltd Refrigerant distributor and air conditioner employing the same
JP2006125652A (en) * 2004-10-26 2006-05-18 Mitsubishi Electric Corp Heat exchanger
JP2007155308A (en) * 2005-11-09 2007-06-21 Fujitsu General Ltd Flow divider and refrigeration cycle device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294061A (en) * 1994-04-28 1995-11-10 Sharp Corp Refrigerant distributor
JP2002130868A (en) * 2000-10-20 2002-05-09 Daikin Ind Ltd Refrigerant distributor and air conditioner employing the same
JP2006125652A (en) * 2004-10-26 2006-05-18 Mitsubishi Electric Corp Heat exchanger
JP2007155308A (en) * 2005-11-09 2007-06-21 Fujitsu General Ltd Flow divider and refrigeration cycle device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112315A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
WO2014127964A1 (en) * 2013-02-20 2014-08-28 Behr Gmbh & Co. Kg Heat exchanger

Also Published As

Publication number Publication date
JP5193630B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
EP2144028B1 (en) Heat exchanger and refrigerating air conditioner
EP2212639B1 (en) Heat exchanger having baffled manifolds
JP6202451B2 (en) Heat exchanger and air conditioner
JP6843256B2 (en) Refrigerant distributor and air conditioner
JP2001074388A (en) Refrigerant evaporator
JPH0861809A (en) Refrigerant distributor, refrigerant distributing mechanism and air conditioner
JP2006349229A (en) Refrigerant flow divider
JP2001116396A (en) Refrigerant distributor, refrigeration cycle and air conditioner using it
JP2007155308A (en) Flow divider and refrigeration cycle device using the same
JP5193630B2 (en) Heat exchanger
EP2982924A1 (en) Heat exchanger
JP2021124226A (en) Microchannel heat exchanger and air conditioner
JP4560939B2 (en) Refrigerant shunt and air conditioner using the same
JP2009092305A (en) Refrigerant flow divider
JP2000320929A (en) Refrigerant distributor
JP2004257727A (en) Expansion valve
JP2003214727A (en) Fluid distributor and air conditioner with the same
WO2014155518A1 (en) Expansion valve and cooling cycle device using same
JP2006349238A (en) Refrigerant flow divider
JPH09292166A (en) Air conditioner
JP2019095073A (en) Heat exchanger and heat pump device using the same
JP5189386B2 (en) Heat exchanger
JP5045252B2 (en) Air conditioner
JP2012137223A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

R150 Certificate of patent or registration of utility model

Ref document number: 5193630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees