JP2001208451A - Refrigerant distributor - Google Patents

Refrigerant distributor

Info

Publication number
JP2001208451A
JP2001208451A JP2000019877A JP2000019877A JP2001208451A JP 2001208451 A JP2001208451 A JP 2001208451A JP 2000019877 A JP2000019877 A JP 2000019877A JP 2000019877 A JP2000019877 A JP 2000019877A JP 2001208451 A JP2001208451 A JP 2001208451A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
gas
pipe
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000019877A
Other languages
Japanese (ja)
Inventor
Toshiaki Tsuchiya
敏章 土屋
Shinichi Nakayama
伸一 中山
Yuuji Fujimoto
裕地 藤本
Osamu Ishiyama
修 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000019877A priority Critical patent/JP2001208451A/en
Publication of JP2001208451A publication Critical patent/JP2001208451A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/48Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow path resistance control on the downstream side of the diverging point, e.g. by an orifice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Abstract

PROBLEM TO BE SOLVED: To equally distribute liquid refrigerant in a gas-liquid two-phase refrigerant into a plurality of refrigerant outlet pipes. SOLUTION: Gas-liquid two-phase refrigerant flowing in from a refrigerant inlet pipe 10 collides against a baffle wall 11. A circular groove 18 of at least the same internal diameter as that of the pipe 10 is provided at the center of the baffle wall 11. Linear grooves are provided to connect the center of the groove 18 and the respective centers of a plurality of refrigerant outlets 14 provided around the external periphery of the wall 11. Even when liquid refrigerant of the gas-liquid two-phase refrigerant collides against a part deviated from the center of the baffle wall 11, the liquid refrigerant is diffused in the circular groove 18 and equally distributed to the plurality of outlets 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和器、冷
凍機器、蓄熱システムなどに用いられる冷凍機に関し、
特に気液二相冷媒を分配する冷媒分配器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator used for an air conditioner, a refrigerator, a heat storage system, and the like.
In particular, the present invention relates to a refrigerant distributor for distributing a gas-liquid two-phase refrigerant.

【0002】[0002]

【従来の技術】図3に上記冷媒分配器(以下、単に分配
器という。)を有する冷凍回路図、図4に従来の分配器
の縦断面図を示す。図3において、1は冷媒を圧縮し、
高温高圧の気相状態にする圧縮機、2は気相冷媒の熱を
大気に放出し、低温高圧の液冷媒にする凝縮器、3は液
冷媒を断熱膨張させて気液二相にする膨張機構、4は気
液二相冷媒を複数に分配する冷媒分配器、5は分配器で
分配された冷媒を各配管に導く流出管、6は低温の冷媒
と外部との熱交換を行い、外部を冷却する蒸発器、7は
冷媒を気液に分離して気相冷媒のみを圧縮機1に戻すア
キュムレータ、8は冷媒の状態を確認するサイトグラ
ス、9は各部を接続して冷凍回路を形成する配管であ
る。
2. Description of the Related Art FIG. 3 is a refrigeration circuit diagram having the above-described refrigerant distributor (hereinafter simply referred to as a distributor), and FIG. 4 is a longitudinal sectional view of a conventional distributor. In FIG. 3, 1 compresses the refrigerant,
Compressor for high-temperature and high-pressure gas-phase state, 2 condenser for releasing heat of gas-phase refrigerant to atmosphere and low-temperature and high-pressure liquid refrigerant, 3 expansion for adiabatic expansion of liquid refrigerant to two-phase gas-liquid A mechanism 4 is a refrigerant distributor for distributing a gas-liquid two-phase refrigerant to a plurality of refrigerants, 5 is an outlet pipe for guiding the refrigerant distributed by the distributor to each pipe, and 6 is a heat exchange between a low-temperature refrigerant and the outside. , An accumulator that separates the refrigerant into gas-liquid and returns only the gas-phase refrigerant to the compressor 1, 8 is a sight glass that checks the state of the refrigerant, and 9 is a refrigeration circuit that connects each part. Pipe.

【0003】また、図4において、10は分配器4内に
冷媒を流入させる流入管、11は流入管10の管軸に垂
直な平面を有する衝突壁、12は流入管10と衝突壁1
1との間に形成された円筒状の空間からなる攪拌室、1
3は攪拌室12を囲う接続壁、14は衝突壁13の外周
部に等ピッチで設けられた複数の冷媒流出口、5は冷媒
流出口14に接続された流出管である。流入管10に
は、攪拌室12に流入させる冷媒の流速を速くする縮流
部10aが設けられている。
In FIG. 4, reference numeral 10 denotes an inflow pipe through which a refrigerant flows into the distributor 4, 11 denotes a collision wall having a plane perpendicular to the pipe axis of the inflow pipe 10, and 12 denotes an inflow pipe 10 and the collision wall 1
A stirring chamber comprising a cylindrical space formed between
Reference numeral 3 denotes a connection wall surrounding the stirring chamber 12, reference numeral 14 denotes a plurality of refrigerant outlets provided at an equal pitch on an outer peripheral portion of the collision wall 13, and reference numeral 5 denotes an outlet pipe connected to the refrigerant outlet 14. The inflow pipe 10 is provided with a contraction portion 10 a for increasing the flow rate of the refrigerant flowing into the stirring chamber 12.

【0004】次に、上記冷凍回路及び分配器4の動作を
説明する。冷凍回路に封入された冷媒は、圧縮機1で圧
縮され、高温高圧の気相冷媒となる。この気相冷媒は、
凝縮器2で外部に熱を放出し、その出口で高温高圧の液
冷媒となる。この液冷媒は、膨張機構3で断熱膨張し、
気相と液相の混合した低温低圧の二相冷媒となる。気液
の混合した二相冷媒は、流入管10から分配器4に流入
し、攪拌室12で気液が混合され、複数の流出管5に分
配される。流出管5から蒸発器6に流れた冷媒は、外部
の熱を吸収して冷媒自体は低温低圧の気相状態となる。
その後、アキュムレータ7に流入して気相と液相が分離
され、気相のみ圧縮機1に戻って再び圧縮される。
Next, the operation of the refrigeration circuit and the distributor 4 will be described. The refrigerant sealed in the refrigeration circuit is compressed by the compressor 1 and becomes a high-temperature and high-pressure gas-phase refrigerant. This gas-phase refrigerant
The condenser 2 emits heat to the outside, and becomes a high-temperature and high-pressure liquid refrigerant at the outlet. This liquid refrigerant is adiabatically expanded by the expansion mechanism 3, and
It becomes a low-temperature and low-pressure two-phase refrigerant in which a gas phase and a liquid phase are mixed. The gas-liquid mixed two-phase refrigerant flows into the distributor 4 from the inflow pipe 10, where the gas-liquid is mixed in the stirring chamber 12 and distributed to the plurality of outflow pipes 5. The refrigerant flowing from the outflow pipe 5 to the evaporator 6 absorbs external heat, and the refrigerant itself becomes a low-temperature and low-pressure gas phase.
Thereafter, the gas flows into the accumulator 7, where the gas phase and the liquid phase are separated, and only the gas phase returns to the compressor 1 and is compressed again.

【0005】ここで、膨張機構3で断熱膨張した冷媒は
気相と液相が均一に混合されていない状態で分配器4に
流入し、縮流部10aに到達する。縮流部10aは管径
が絞られており、冷媒の流速が速くなる。縮流部10a
を通過した高速の冷媒は衝突壁11に衝突し、攪拌室1
2内で気液冷媒が攪拌され、気液が均一に混合されて、
流出口14から流出する。
Here, the refrigerant adiabatically expanded by the expansion mechanism 3 flows into the distributor 4 in a state where the gas phase and the liquid phase are not uniformly mixed, and reaches the contraction section 10a. The diameter of the contraction section 10a is reduced, and the flow rate of the refrigerant increases. Contraction part 10a
The high-speed refrigerant that has passed through collides with the collision wall 11 and
The gas-liquid refrigerant is agitated in 2 and the gas-liquid is uniformly mixed,
It flows out of the outlet 14.

【0006】[0006]

【発明が解決しようとする課題】図5は、分配器4に流
入する冷媒の状態を原理的に示す縦断面図、図6は図4
のVI-VI線に沿って分配器内の冷媒衝突状態を示す断面
図である。図5に示すように、冷媒15は、気相冷媒が
多い流れ15aと、液相冷媒が多い流れ15bに大別さ
れる。液相冷媒が多い流れ15bは、管内をほとんど満
たす状態で流れているため、衝突壁11の中心近傍に衝
突して攪拌され、気液が均一となって流出管5へと流れ
る。ところが、気相冷媒が多い流れ15aは、含まれる
液冷媒の量が少なく、気相冷媒の中に点在している。そ
のため、図6に示すように、衝突壁11の中心16の近
傍に衝突するとは限らず、中心16からずれた位置に液
冷媒17が衝突する場合がある。このとき、矢印で示す
ように、液相冷媒17は衝突した位置に近い流出口14
(斜線を施して示す。)に多く流れるため、複数の流出
管5に流入する冷媒の気液割合が均等にならず、液相割
合が多く流れる流出管5と、気相割合が多く流れる流出
管5との間で分配不良が発生する。
FIG. 5 is a longitudinal sectional view showing the state of the refrigerant flowing into the distributor 4 in principle, and FIG.
FIG. 6 is a cross-sectional view showing a refrigerant collision state in the distributor along the line VI-VI of FIG. As shown in FIG. 5, the refrigerant 15 is roughly classified into a flow 15 a having a large amount of gas-phase refrigerant and a flow 15 b having a large amount of liquid-phase refrigerant. Since the flow 15b containing a large amount of the liquid-phase refrigerant flows in a state that almost completely fills the inside of the pipe, the flow 15b collides with the vicinity of the center of the collision wall 11 and is agitated. However, the stream 15a containing a large amount of the gaseous refrigerant contains a small amount of the liquid refrigerant and is scattered in the gaseous refrigerant. Therefore, as shown in FIG. 6, the liquid refrigerant 17 does not always collide with the vicinity of the center 16 of the collision wall 11, and may collide with a position shifted from the center 16. At this time, as indicated by the arrow, the liquid-phase refrigerant 17 flows out of the outlet 14 close to the collision position.
(Shown by oblique lines), the gas-liquid ratio of the refrigerant flowing into the plurality of outlet pipes 5 is not uniform, and the outlet pipe 5 flows more in the liquid phase ratio and the outlet flow flows more in the gas phase ratio. Poor distribution occurs with the pipe 5.

【0007】分配不良が発生すると、蒸発器6(図3)
で冷媒が多く流れる配管は所定の熱交換が行われるが、
冷媒の少ない配管は所定の熱交換が行われず、全体の熱
交換能力が低下し、また冷媒が過剰に流れる配管は液戻
りが生じる。更に、蓄熱槽の場合は、分配不良が発生す
ると、氷が成長しない配管ができる。一般に蓄熱槽は、
中の水面位置により氷の量を制御しているため、全体の
蓄氷量が設定量に達しないと製氷動作が完了しない。そ
のため、氷が成長していない配管があると、その分、氷
が成長する配管で多くの氷を作らなければならないが、
配管の周りに氷を多く成長させると、水が密閉されて配
管の変形や破損が生じる。そこで、この発明の課題は、
分配器による冷媒の分配をより均等化することにある。
When a distribution failure occurs, the evaporator 6 (FIG. 3)
In the pipe through which a lot of refrigerant flows, predetermined heat exchange is performed,
Predetermined heat exchange is not performed in a pipe with a small amount of refrigerant, and the overall heat exchange capacity is reduced. In a pipe in which the refrigerant flows excessively, liquid returns. Furthermore, in the case of a heat storage tank, when a distribution failure occurs, a pipe in which ice does not grow can be formed. Generally, the heat storage tank
Since the amount of ice is controlled by the middle water surface position, the ice making operation is not completed unless the total ice storage amount reaches the set amount. Therefore, if there is a pipe where ice does not grow, a lot of ice must be made in the pipe where ice grows,
If a lot of ice grows around the pipe, the water is sealed and the pipe is deformed or damaged. Therefore, an object of the present invention is to
It is to make the distribution of the refrigerant by the distributor more even.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、冷媒流入管と、その管軸に垂直な平面
を有する衝突壁との間に攪拌室が形成され、前記冷媒流
入管から流入した気液二相冷媒を前記攪拌室で攪拌し、
前記衝突壁外周部の複数の冷媒流出口に接続された冷媒
流出管に分配する冷媒分配器において、前記衝突壁の内
壁面に、前記冷媒流入管の内径と同じか、それよりも大
きい内径の円形溝を前記冷媒流入管と同心に設けるとと
もに、この円形溝の中心と前記各冷媒流出口の中心とを
それぞれ結ぶ直線に沿わせて直線溝を設けるものとす
る。
According to the present invention, a stirring chamber is formed between a refrigerant inflow pipe and an impingement wall having a plane perpendicular to the pipe axis. The gas-liquid two-phase refrigerant flowing from the pipe is stirred in the stirring chamber,
In the refrigerant distributor that distributes to a refrigerant outflow pipe connected to a plurality of refrigerant outlets of the collision wall outer peripheral portion, the inner wall surface of the collision wall has an inner diameter equal to or larger than the inner diameter of the refrigerant inflow pipe. A circular groove is provided concentrically with the refrigerant inflow pipe, and a linear groove is provided along a straight line connecting the center of the circular groove and the center of each of the refrigerant outlets.

【0009】[0009]

【発明の実施の形態】図1はこの発明の実施の形態を示
す分配器の縦断面図、図2は図1のII-II線に沿う断面
図である。図1及び図2において、従来と相違している
のは、衝突壁11の内壁面に、冷媒流入管10と同心に
円形溝18が設けられ、更にこの円形溝18の中心と冷
媒流出口14の中心とをそれぞれ結ぶ直線に沿って、直
線溝19が設けられている点である。ここで、円形溝1
8の内径は、冷媒流入管10の内径と同じか、それより
も大きくされている。
1 is a longitudinal sectional view of a distributor according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line II-II of FIG. 1 and 2, the difference from the prior art is that a circular groove 18 is provided concentrically with the refrigerant inflow pipe 10 on the inner wall surface of the collision wall 11, and the center of the circular groove 18 and the refrigerant outlet 14 are provided. The point is that a straight groove 19 is provided along a straight line connecting the centers of the two. Here, the circular groove 1
The inner diameter of 8 is the same as or larger than the inner diameter of the refrigerant inlet pipe 10.

【0010】このような分配器において、流入管10か
ら流入する冷媒の気相割合が多い場合、含まれる液相冷
媒17が図2に示すように、衝突壁11に中心16から
離れて衝突しても、円形溝18の内径は冷媒流入管10
の内径と同じか、それよりも大きくなっているので、液
相冷媒17は円形溝18の内側に衝突する。この衝突し
た液相冷媒17は、複数の流出口14のうち、衝突した
位置から最も近い流出口14に流れようとするが、直線
溝19が抵抗となり流れにくいため、液相冷媒17は円
形溝18内に拡散する。流入管10からは冷媒が連続的
に流入しているため、円形溝18内に拡散した液相冷媒
17は円形溝18内に滞留することはなく、他の流出口
14にも押し出され、その流出管5から流出する。その
結果、複数の流出管5には、気液割合がほぼ一定となっ
た気液二相冷媒が流れる。
In such a distributor, when the ratio of the gas phase of the refrigerant flowing from the inflow pipe 10 is large, the contained liquid phase refrigerant 17 collides with the collision wall 11 away from the center 16 as shown in FIG. However, the inner diameter of the circular groove 18 is
The liquid-phase refrigerant 17 collides with the inside of the circular groove 18 because it is equal to or larger than the inner diameter of. The colliding liquid-phase refrigerant 17 tends to flow out of the plurality of outlets 14 to the outlet 14 closest to the collision position. Diffusion into 18. Since the refrigerant continuously flows in from the inflow pipe 10, the liquid-phase refrigerant 17 diffused in the circular groove 18 does not stay in the circular groove 18, but is pushed out to the other outlet 14 as well. It flows out of the outflow pipe 5. As a result, a gas-liquid two-phase refrigerant having a substantially constant gas-liquid ratio flows through the plurality of outlet pipes 5.

【0011】[0011]

【発明の効果】以上の通り、この発明によれば、気液二
相冷媒を複数の配管に均等に分配することができ、分配
不良による熱交換不足や液戻り、蓄熱槽の製氷不良など
がなくなる。
As described above, according to the present invention, the gas-liquid two-phase refrigerant can be evenly distributed to a plurality of pipes, and insufficient heat exchange and liquid return due to poor distribution, defective ice making in the heat storage tank, and the like can be achieved. Disappears.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す冷媒分配器の縦断
面図である。
FIG. 1 is a longitudinal sectional view of a refrigerant distributor showing an embodiment of the present invention.

【図2】図1のII-II線に沿う断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】冷媒分配器を有する冷凍機の回路図である。FIG. 3 is a circuit diagram of a refrigerator having a refrigerant distributor.

【図4】従来の冷媒分配器の縦断面図である。FIG. 4 is a longitudinal sectional view of a conventional refrigerant distributor.

【図5】図4の分配器に流入する冷媒の状態を原理的に
示す縦断面図である。
FIG. 5 is a longitudinal sectional view showing a state of a refrigerant flowing into the distributor of FIG. 4 in principle.

【図6】図4のVI-VI線に沿って分配器内の冷媒衝突状
態を示す断面図である。
6 is a cross-sectional view showing a refrigerant collision state in the distributor along a line VI-VI in FIG. 4;

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 膨張機構 4 冷媒分配器 5 冷媒流出管 6 蒸発器 7 アキュムレータ 8 サイトグラス 10 冷媒配管 11 衝突壁 12 攪拌室 14 冷媒流出口 15 冷媒 15a 気相冷媒の流れ 15b 液相冷媒の流れ 16 衝突壁中心 17 液冷媒 18 円形溝 19 直線溝 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion mechanism 4 Refrigerant distributor 5 Refrigerant outflow pipe 6 Evaporator 7 Accumulator 8 Sight glass 10 Refrigerant piping 11 Collision wall 12 Stirring chamber 14 Refrigerant outlet 15 Refrigerant 15a Gas-phase refrigerant flow 15b Liquid-phase refrigerant Flow 16 collision wall center 17 liquid refrigerant 18 circular groove 19 straight groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤本 裕地 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 石山 修 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 3H019 BA44  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Fujimoto 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Osamu Ishiyama 1 Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture No. 1 Fuji Electric Co., Ltd. F-term (reference) 3H019 BA44

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷媒流入管と、その管軸に垂直な平面を有
する衝突壁との間に攪拌室が形成され、前記冷媒流入管
から流入した気液二相冷媒を前記攪拌室で攪拌し、前記
衝突壁外周部の複数の冷媒流出口に接続された冷媒流出
管に分配する冷媒分配器において、 前記衝突壁の内壁面に、前記冷媒流入管の内径と同じ
か、それよりも大きい内径の円形溝を前記冷媒流入管と
同心に設けるとともに、この円形溝の中心と前記各冷媒
流出口の中心とをそれぞれ結ぶ直線に沿わせて直線溝を
設けたことを特徴とする冷媒分配器。
1. A stirring chamber is formed between a refrigerant inflow pipe and a collision wall having a plane perpendicular to the pipe axis, and a gas-liquid two-phase refrigerant flowing from the refrigerant inflow pipe is stirred in the stirring chamber. A refrigerant distributor for distributing refrigerant to a refrigerant outlet pipe connected to a plurality of refrigerant outlets on an outer peripheral portion of the collision wall, wherein an inner diameter of the inner wall of the collision wall is equal to or larger than an inner diameter of the refrigerant inflow pipe. A refrigerant groove provided concentrically with the refrigerant inflow pipe and a linear groove provided along a straight line connecting the center of the circular groove and the center of each of the refrigerant outlets.
JP2000019877A 2000-01-28 2000-01-28 Refrigerant distributor Pending JP2001208451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000019877A JP2001208451A (en) 2000-01-28 2000-01-28 Refrigerant distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000019877A JP2001208451A (en) 2000-01-28 2000-01-28 Refrigerant distributor

Publications (1)

Publication Number Publication Date
JP2001208451A true JP2001208451A (en) 2001-08-03

Family

ID=18546510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000019877A Pending JP2001208451A (en) 2000-01-28 2000-01-28 Refrigerant distributor

Country Status (1)

Country Link
JP (1) JP2001208451A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141108A (en) * 2011-01-05 2012-07-26 Toshiba Carrier Corp Flow divider, and refrigeration cycle device
JP2014081143A (en) * 2012-10-17 2014-05-08 Hitachi Appliances Inc Refrigerant distributor, and refrigeration cycle device including the same
JP2015068548A (en) * 2013-09-27 2015-04-13 郷インテックス株式会社 Refrigerant flow diverter
CN107084557A (en) * 2017-06-14 2017-08-22 珠海格力电器股份有限公司 Knockout and the refrigeration system with it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141108A (en) * 2011-01-05 2012-07-26 Toshiba Carrier Corp Flow divider, and refrigeration cycle device
JP2014081143A (en) * 2012-10-17 2014-05-08 Hitachi Appliances Inc Refrigerant distributor, and refrigeration cycle device including the same
JP2015068548A (en) * 2013-09-27 2015-04-13 郷インテックス株式会社 Refrigerant flow diverter
CN107084557A (en) * 2017-06-14 2017-08-22 珠海格力电器股份有限公司 Knockout and the refrigeration system with it

Similar Documents

Publication Publication Date Title
EP1797378B1 (en) Refrigerant distribution device and method
US7770412B2 (en) Integrated unit for refrigerant cycle device and manufacturing method of the same
US7654108B2 (en) Unit for refrigerant cycle device
US20090282861A1 (en) Air conditioning apparatus
JP2827404B2 (en) Refrigerant condenser
CN101589278B (en) Multi-channel heat exchanger with multi-stage expansion device
JP2002130868A (en) Refrigerant distributor and air conditioner employing the same
JP2001208451A (en) Refrigerant distributor
WO2014155816A1 (en) Expansion valve and cooling cycle device using same
JP2003214727A (en) Fluid distributor and air conditioner with the same
KR200259605Y1 (en) Integral Condenser
JP5193630B2 (en) Heat exchanger
KR101619182B1 (en) Liquid refrigerant supercooling device for air conditioner system of vehicle
WO2021214849A1 (en) Air conditioner, freezer, and distributor
JP2005134009A (en) Refrigerant distributor
EP1835241A1 (en) Refrigerating apparatus
KR20050064191A (en) Distributor for dividing refrigerant in air conditioner
JP3326930B2 (en) Refrigerant shunt
JP2012137224A (en) Flow divider of heat exchanger, refrigerating cycle device provided with the flow divider, and air conditioner
JPS5918277Y2 (en) Refrigeration equipment
KR200204604Y1 (en) Accumulator of refrigerator
JP2008304100A (en) Refrigerant flow divider
JPH0271065A (en) Branching device
KR100479733B1 (en) Refrigerant distributor for split-type air conditioner
JPS5822861A (en) Decompression device