JP2015068548A - Refrigerant flow diverter - Google Patents

Refrigerant flow diverter Download PDF

Info

Publication number
JP2015068548A
JP2015068548A JP2013202281A JP2013202281A JP2015068548A JP 2015068548 A JP2015068548 A JP 2015068548A JP 2013202281 A JP2013202281 A JP 2013202281A JP 2013202281 A JP2013202281 A JP 2013202281A JP 2015068548 A JP2015068548 A JP 2015068548A
Authority
JP
Japan
Prior art keywords
refrigerant
phase
gas
outflow
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013202281A
Other languages
Japanese (ja)
Other versions
JP6018556B2 (en
Inventor
茂之 鳥羽
Shigeyuki Toba
茂之 鳥羽
崇生 森永
Takao Morinaga
崇生 森永
忠明 山本
Tadaaki Yamamoto
忠明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GO INTEX KK
Original Assignee
GO INTEX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GO INTEX KK filed Critical GO INTEX KK
Priority to JP2013202281A priority Critical patent/JP6018556B2/en
Publication of JP2015068548A publication Critical patent/JP2015068548A/en
Application granted granted Critical
Publication of JP6018556B2 publication Critical patent/JP6018556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant flow diverter for restricting outflow of gaseous phase fluid from outflow holes and flowing out a large amount of liquid phase fluid to the outflow holes.SOLUTION: There is provided a split flow chamber 31 having, at a base end thereof, an introduction passage 34 and having, at an extremity end thereof, a plurality of overflow passages 35. The split flow chamber 31 has a collision part 24 to which flowing-in refrigerant strikes. The refrigerant struck against the collision part 24 passes through a conducting passage, passes through a downstream chamber and flows out of the overflow passages 35. An anti-gaseous barrier wall 23 is installed among the collision part 24 and the overflow passages 35. The anti-gaseous barrier wall 23 restricts a gaseous phase flowing-in of the refrigerant with respect to the overflow passages 35 that are placed at the nearest position to the anti-gaseous barrier wall 23 to increase a flowing-in amount of refrigerant of liquid phase with respect to the overflow passages 35 that are placed at the nearest positions to the anti-gaseous barrier wall 23.

Description

本願発明は、冷凍機器や空調機器の冷凍サイクルに用いられる冷媒分流器に関するものである。   The present invention relates to a refrigerant flow divider used in a refrigeration cycle for refrigeration equipment and air conditioning equipment.

従来の冷媒分流器においては、気相液相の比率の均一性を維持しつつ、所定の分流比率に冷媒を分流させることが目的とされる。
このため、冷媒の流入管から複数の分岐管への移行の際に冷媒を衝突させる衝突面を備えて、冷媒の当該衝突面への衝突により、気相と液相との分離を抑制し均一性を確保しようとするものが提案されている。
例えば、特許文献1へ示すように、中空筒状の流入管1と、この流入管1から分岐部分4を経て分岐する複数の中空筒状の流出管2,3とを備え、この分岐部分4 が流入管1につながるように開口する流入開口11と、各流出管2,3につながるように開口する各流出開口21,31とを備えている冷媒分流器において、流入管1からの流体の流入方向に対向する分岐部分4の内壁面を、平坦な衝突面41とし、この平坦な衝突面41に隣接して上記の各流出開口21,31を設け、衝突面41と流出開口21,31の少なくとも何れか一つとの間に関42,43を形成した冷媒分流器が提案されている。
また、特許文献2にも冷媒の流入管から分岐管への移行の際に冷媒を衝突させる、衝突面を備えたものが示されている。
In the conventional refrigerant flow divider, an object is to divert the refrigerant to a predetermined diversion ratio while maintaining the uniformity of the gas phase liquid phase ratio.
For this reason, it has a collision surface that causes the refrigerant to collide when the refrigerant flows from the inlet pipe to the plurality of branch pipes, and the collision of the refrigerant with the collision surface suppresses separation of the gas phase and the liquid phase uniformly. There are proposals to ensure the sex.
For example, as shown in Patent Document 1, a hollow cylindrical inflow pipe 1 and a plurality of hollow cylindrical outflow pipes 2 and 3 branched from the inflow pipe 1 through a branching portion 4 are provided. In the refrigerant flow divider comprising the inflow opening 11 that opens to connect to the inflow pipe 1 and the outflow openings 21 and 31 that open to connect to the outflow pipes 2 and 3, The inner wall surface of the branching portion 4 facing the inflow direction is a flat collision surface 41, and the outflow openings 21, 31 are provided adjacent to the flat collision surface 41. The collision surface 41 and the outflow openings 21, 31 are provided. A refrigerant shunt has been proposed in which 42 and 43 are formed between at least one of the above.
Further, Patent Document 2 also discloses an apparatus having a collision surface that causes the refrigerant to collide when the refrigerant flows from the inflow pipe to the branch pipe.

特に分流のための案内用の凸部を内部に設けたものが種々提案されている。
例えば、特許文献3には、複数の孔が形成された分配部材と、一方側から他方側へ向かって徐々に内径が大きくなり、前記分配部材によって前記他方側の口が塞がれた分配配管であって、前記一方側の口から流入した流体を前記分配部材に形成された前記複数の孔から分配して流出させる分配配管と、前記分配配管が形成する流路の中心線に沿って移動可能に、前記分配配管内に設けられた浮子とを備える分配器が示されている。
また、特許文献4には、気液二相からなる冷媒が一端側から流入すると共に、他端側に複数の冷媒管が分岐するように接続されている入口管を備え、この入口管に流入する液冷媒を各冷媒管に分配する冷媒分配器であって、前記入口管内には、前記入口管内を通流する液冷媒を、前記入口管の上流側から下流側を見た平面視で、前記冷媒管の分岐方向に対して交差する方向に偏らせるように通流させる分流部を備える冷媒分配器が示されている。
In particular, various types of projections having guides for diversion have been proposed.
For example, Patent Document 3 discloses a distribution member in which a plurality of holes are formed, and a distribution pipe in which the inner diameter gradually increases from one side to the other side and the other side port is blocked by the distribution member. And a distribution pipe that distributes and flows out the fluid flowing in from the one-side port through the plurality of holes formed in the distribution member, and moves along the center line of the flow path formed by the distribution pipe It is possible to show a distributor with a float provided in the distribution pipe.
Further, Patent Document 4 includes an inlet pipe connected so that a refrigerant composed of two phases of gas and liquid flows from one end side and a plurality of refrigerant pipes branch to the other end side, and flows into the inlet pipe. A refrigerant distributor that distributes the liquid refrigerant to each refrigerant pipe, and in the inlet pipe, the liquid refrigerant flowing through the inlet pipe is viewed in plan view from the upstream side to the downstream side of the inlet pipe, A refrigerant distributor is shown that includes a diverter that allows the flow to be biased in a direction that intersects the direction of branching of the refrigerant pipe.

特開2001−141333号公報JP 2001-141333 A 特開2013−50221号公報JP 2013-50221 A 特開2012−255584号公報JP 2012-255584 A 特開2012−241977号公報JP 2012-241977 A

しかし、上記種々の提案は何れも、分岐する流出路の夫々に送る冷媒の分配量を調整するものであり、冷媒中の気相と液相とが均一であることを理想とし、特定の流出路へ他の流出路よりも、気相に対する液相の割合を多く送ったり、全ての流出路に向け気相よりも液相を多量に流出させるという液相と気相間の比率の大小を調整しようとするものではない。
即ち、分岐する流出路から、冷媒中の気相よりも多量の液相が流出するよう工夫がなされたものは、これまで提案されていない。
本願発明は、気相と液相の流れの相違を分析して、多量の液相を必要とする流出路から気相よりも多量の液相を流出させることを可能とする冷媒分流器の提供を目的とする。
However, each of the above-mentioned various proposals is intended to adjust the distribution amount of the refrigerant sent to each of the branched outflow paths, and ideally the gas phase and liquid phase in the refrigerant are uniform, and the specific outflow The ratio of the ratio between the liquid phase and the gas phase is adjusted so that the ratio of the liquid phase to the gas phase is sent to the passage more than the other outflow passages, or a large amount of liquid phase flows out of the gas phase toward all the outflow passages. Not trying.
That is, no device has been proposed that has been devised so that a larger amount of liquid phase flows out from the branching outflow path than the gas phase in the refrigerant.
The present invention provides a refrigerant shunt that can analyze the difference between the flow of the gas phase and the liquid phase and allow a larger amount of the liquid phase to flow out from the outflow path that requires a larger amount of the liquid phase. With the goal.

そこで本願発明は、分流室と、気相と液相とが混合した状態の冷媒を前記分流室内に導入させる導入路と、前記導入路から前記分流室内に導入された前記冷媒が衝突する衝突部と、前記衝突部の周囲に設けられた複数の流出路とを備え、前記衝突部に衝突した前記冷媒を前記複数の流出路から所定の分流割合で流出させるようにした冷媒分流器において、前記衝突部と前記流出路との間に対気相障壁が設けられ、前記対気相障壁は、前記気相障壁に最も近い位置にある前記流出路に対する前記気相の流れ込みを制限することにより、前記最も近い位置にある前記流出路に対する液相の流れ込み量を増加させるものである冷媒分流器の提供を図る。
更に本願発明では、前記分流室は、前記導入路の開口部が設けられた上流側面と、前記流出路夫々の開口部が設けられた下流側面とを備え、前記下流側面は、前記上流側面に対し前記上流側面と間隔を開けて冷媒の流れの下流側に位置して、前記上流側面と対面するものであり、前記下流側面において、導入路の前記開口部と対向する部位に前記衝突部が設けられ、前記対気相障壁は、前記下流側面に設けられて前記上流側面側へ突出するものであり、前記対気相障壁は、頂部と、前記衝突部側を臨む内側面と、衝突部と反対側を臨む外側面とにて象られたものであり、前記対気相障壁について、形状、前記下流側面からの突出幅、導入路の開口部に対する位置、表面積のうち、少なくとも1つを調整することにより、前記最も近い位置にある前記流出路に対する液相の流れ込み量を調整するものである冷媒分流器を提供できた。
Accordingly, the present invention provides a flow dividing chamber, an introduction path for introducing a refrigerant in a mixed state of a gas phase and a liquid phase into the flow dividing chamber, and a collision portion where the refrigerant introduced from the introduction path into the flow dividing chamber collides. And a plurality of outflow passages provided around the collision portion, wherein the refrigerant colliding with the collision portion is caused to flow out from the plurality of outflow passages at a predetermined diversion ratio. An anti-gas phase barrier is provided between the collision portion and the outflow path, and the anti-gas phase barrier restricts the inflow of the gas phase to the outflow path at a position closest to the gas phase barrier, It is intended to provide a refrigerant flow divider that increases the amount of liquid phase flowing into the outflow passage at the nearest position.
Further, in the present invention, the flow dividing chamber includes an upstream side surface provided with an opening portion of the introduction path and a downstream side surface provided with an opening portion of each of the outflow paths, and the downstream side surface is formed on the upstream side surface. On the other hand, it is located on the downstream side of the flow of the refrigerant with a gap from the upstream side surface, and faces the upstream side surface, and the collision portion is located at a portion facing the opening portion of the introduction path on the downstream side surface. The gas-phase barrier is provided on the downstream side surface and protrudes toward the upstream side surface. The gas-phase barrier includes an apex portion, an inner surface facing the collision portion side, and a collision portion. And at least one of the shape, the protruding width from the downstream side, the position with respect to the opening of the introduction path, and the surface area of the anti-gas phase barrier. By adjusting the Could provide refrigerant flow divider is to adjust the amount flow of the liquid phase relative to the outlet channel.

本願発明は、対気相障壁にて、当該対気相障壁と最も近い位置にある流出路に対する気相の流れ込みを制限して、当該流出路に対する液相の流れ込み量を増加させることを可能とした。   The present invention can increase the amount of liquid phase flowing into the outflow path by restricting the inflow of the gas phase to the outflow path that is closest to the antigas phase barrier at the antigas phase barrier. did.

(A)は本願発明の一実施の形態に係る冷媒分流器の縦断面図、(B)は(A)の分流室31の流出側面20の平面図、(C)は(B)において冷媒の気相及び液相の移動を説明する説明図。(A) is a longitudinal cross-sectional view of the refrigerant flow divider according to the embodiment of the present invention, (B) is a plan view of the outflow side surface 20 of the flow dividing chamber 31 of (A), and (C) is a refrigerant flow in (B). Explanatory drawing explaining the movement of a gaseous phase and a liquid phase. (A)は他の実施の形態における流出側面20の平面図、(B)は更に他の実施の形態における流出側面20の平面図、(C)はまた他の実施の形態における流出側面20の平面図。(A) is a plan view of the outflow side surface 20 according to another embodiment, (B) is a plan view of the outflow side surface 20 according to still another embodiment, and (C) is a plan view of the outflow side surface 20 according to another embodiment. Plan view. (A)は本願発明の一実施の形態に係る冷媒分流器の寸法の調整部位を示す縦断面図、(B)は(A)の要部平面図。(A) is a longitudinal cross-sectional view which shows the adjustment site | part of the dimension of the refrigerant | coolant flow distributor which concerns on one embodiment of this invention, (B) is a principal part top view of (A). (A)は効果確認用の冷媒分流器の主として分流室31内の画像を示す拡大斜視図、(B)は(A)から1分13秒経過後の分流室31内の画像を示す拡大斜視図。(A) is an enlarged perspective view mainly showing an image in the flow dividing chamber 31 of the refrigerant flow divider for effect confirmation, and (B) is an enlarged perspective view showing an image in the flow dividing chamber 31 after 1 minute and 13 seconds have elapsed since (A). Figure. (A)は図4(B)から57秒経過後の分流室31内の画像を示す拡大斜視図、(B)は(A)から1分46秒経過後の分流室31内の画像を示す拡大斜視図。FIG. 4A is an enlarged perspective view showing an image in the flow dividing chamber 31 after 57 seconds from FIG. 4B, and FIG. 4B shows an image in the flow dividing chamber 31 after 1 minute 46 seconds from FIG. FIG. (A)は図5(B)から1分2秒経過後の分流室31内の画像を示す拡大斜視図、(B)は(A)から10秒経過後の分流室31内の画像を示す拡大斜視図。FIG. 5A is an enlarged perspective view showing an image in the flow dividing chamber 31 after 1 minute and 2 seconds have elapsed from FIG. 5B, and FIG. 5B shows an image in the flow dividing chamber 31 after 10 seconds have elapsed from FIG. FIG.

以下、図面に基づき本願発明の望ましい実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(基本構成)
この冷媒分流器1は、図1(A)へ示す通り、本体100と、本体100内に設けられた分流室31と、気相と液相とが混合した状態の冷媒を分流室31内に導入させる導入路34と、導入路34から分流室31内に導入された冷媒が衝突する衝突部24と、衝突部24の周囲に設けられた複数の流出路35と、衝突部24及び流出路35の間に設けられた対気相障壁23とを備える。
(Basic configuration)
As shown in FIG. 1 (A), the refrigerant flow splitter 1 is configured so that a main body 100, a flow dividing chamber 31 provided in the main body 100, and a refrigerant in a state where a gas phase and a liquid phase are mixed are mixed in the flow dividing chamber 31. An introduction path 34 to be introduced, a collision part 24 in which the refrigerant introduced into the flow dividing chamber 31 from the introduction path 34 collides, a plurality of outflow paths 35 provided around the collision part 24, the collision part 24, and the outflow path And a gas-phase barrier 23 provided between.

(具体的構成)
図1(A)へ示す通り、この実施の形態に係る冷媒分流器1の本体100は、内部に中空部分として上記分流室31が設けられた円柱状体である。
本体100について、冷媒の流れの、上流側を基端側とし下流側を先端側とする。図1(A)において、円柱状体である本体100の、上端面が基端面11であり、下端面が先端面21である。即ち、特に断りがない限り、基端側(図1(A)の上側)が冷媒の上流側であり、先端側(図1(A)の下側)が冷媒の下流側となる。
(Specific configuration)
As shown in FIG. 1A, the main body 100 of the refrigerant flow divider 1 according to this embodiment is a cylindrical body in which the flow dividing chamber 31 is provided as a hollow portion.
In the main body 100, the upstream side of the refrigerant flow is the base end side, and the downstream side is the front end side. In FIG. 1A, the upper end surface of the main body 100 that is a cylindrical body is the proximal end surface 11, and the lower end surface is the distal end surface 21. That is, unless otherwise specified, the base end side (the upper side in FIG. 1A) is the upstream side of the refrigerant, and the front end side (the lower side in FIG. 1A) is the downstream side of the refrigerant.

本体100は、周知の方法で形成することができる。例えば、2つの有底の筒状体を用意し、一方の筒状体の底面が本体100の基端面11をなし他の一方の筒状体の底面が本体100の先端面21をなすように内外に重ねて、ろう付けにて固定することにより、本体100を形成することができる。但し本体100の製造については、このような筒状体を重ねて固定する方法に限定するものではなく、周知の他の方法を採用することができる。この実施の形態では、本体100は、互いに別体に形成された筒状体同士を内外重ねて固定するのではなく、当初より一体に成形されたものを例示する。
尚、本体100の外形は、円柱状に限定するものではなく、多角柱状やその他の形状を備えるものとしても実施できる。
上記の本体100には、次に示す通り、基端側に流入パイプ41が接続され、先端側に流出パイプ42が接続される。
The main body 100 can be formed by a known method. For example, two bottomed cylindrical bodies are prepared so that the bottom surface of one cylindrical body forms the base end surface 11 of the main body 100 and the bottom surface of the other cylindrical body forms the front end surface 21 of the main body 100. The main body 100 can be formed by superimposing it inside and outside and fixing it by brazing. However, the production of the main body 100 is not limited to such a method of stacking and fixing the cylindrical body, and other known methods can be employed. In this embodiment, the main body 100 exemplifies a body that is integrally formed from the beginning, rather than being fixed by stacking cylindrical bodies formed separately from each other.
In addition, the external shape of the main body 100 is not limited to a columnar shape, and can be implemented as a polygonal column shape or other shapes.
As shown below, the main body 100 has an inflow pipe 41 connected to the proximal end side and an outflow pipe 42 connected to the distal end side.

(導入路34)
本体100には、上記導入路34が設けられている。この導入路34は通常1個であり、導入路34の基端側は本体100の基端側の端面(基端面)に開口している。この導入路34の基端側に、1本の上記流入パイプ41の先端が挿入されてろう付けなどにて固定される。
図1(A)へ示す導入路34の先端は、分流室31に連通している。具体的には、導入部34の先端は、分流室31において後述する上流側面10に連通している。
(Introduction path 34)
The main body 100 is provided with the introduction path 34. The number of the introduction paths 34 is usually one, and the base end side of the introduction path 34 opens to the end face (base end face) on the base end side of the main body 100. The distal end of one inflow pipe 41 is inserted into the proximal end side of the introduction path 34 and fixed by brazing or the like.
The leading end of the introduction path 34 shown in FIG. 1A communicates with the flow dividing chamber 31. Specifically, the leading end of the introduction portion 34 communicates with the upstream side surface 10 described later in the flow dividing chamber 31.

(流出路35)
図1(A)へ示す通り、本体100には、複数の上記流出路35が、本体100の分流室31の後述する下流側面20と本体100の先端面21との間を軸方向に貫通して設けられている。この例では、本体100の中心軸に対して、90度毎に4個設けているが、120度毎に3個、さらに所定角度毎若しくは角度を一定にせずに、5個、6個、8個等々、設けるなど、その個数や配列は適宜変更して実施し得る。流出路35の先端側に上記の流出パイプ42が挿入されて固定される。
(Outflow channel 35)
As shown in FIG. 1A, the main body 100 has a plurality of outflow passages 35 penetrating in the axial direction between a downstream side surface 20 (to be described later) of the diversion chamber 31 of the main body 100 and the front end surface 21 of the main body 100. Is provided. In this example, four are provided every 90 degrees with respect to the central axis of the main body 100. However, three are provided every 120 degrees, and further, five, six, and eight at predetermined angles or without making the angle constant. For example, the number and arrangement thereof may be changed as appropriate. The outflow pipe 42 is inserted and fixed to the front end side of the outflow path 35.

(分流室31)
分流室31は、導入路34の開口部(以下導入口34b)が設けられた前記上流側面10と、流出路35夫々の開口部(以下流出口35b)が設けられた前記下流側面20とを備える。下流側面20は、上流側面10に対し上流側面10と間隔を開けて冷媒の流れの下流側に位置して、上流側面10と対面する。
具体的には、前記分流室31は、当該上流側面10と、下流側面20と、内周壁面とによって規定される空間である。
(Diversion room 31)
The diversion chamber 31 includes the upstream side surface 10 provided with an opening portion (hereinafter referred to as an introduction port 34b) of the introduction passage 34 and the downstream side surface 20 provided with an opening portion (hereinafter referred to as an outlet 35b) of each outflow passage 35. Prepare. The downstream side surface 20 is located on the downstream side of the flow of the refrigerant at a distance from the upstream side surface 10 with respect to the upstream side surface 10 and faces the upstream side surface 10.
Specifically, the flow dividing chamber 31 is a space defined by the upstream side surface 10, the downstream side surface 20, and the inner peripheral wall surface.

(衝突部24)
分流室31の下流側面20は上記衝突部24を備える。衝突部24は、下流側面20における、上流側面10の上記導入口34bと対応する部位に設けられている。この例では、導入口34bは、上流側面10の平面視における前後方向及び左右方向について中央に設けられている。衝突部24は、当該導入口34bと対応する、下流側面20上の図1(B)へ斑点で示す下流側面20の平面視における前後方向及び左右方向について中央の領域である。
導入路34から流入し、衝突部24に衝突した冷媒は、図1(C)へ示す通り、周囲に分散し、各流出路35から流出することによって、複数の流路に分流されるものである。このように、気液2相の冷媒は、衝突部24に衝突して周囲に分散され、分流比率の安定化を図ることができる。
この例では、衝突部24は、下流側面20の面の一部として導入路34の流入方向(この例では軸方向)に対して直交する平面とされているが、傾斜させることもできる。また、衝突部24の中心などに、凹部を形成したり、逆に凸部を形成して、衝突した流体の挙動を変化させるものであってもよい。また放射状に溝を設けるなど、その形状は冷媒の分散に適当な形状に種々変更して実施することができる。
図1(B)へ示す通り、上記衝突部24を取り囲んで、平面視円形の下流側面20には、流出路35夫々の前記流出口35bが設けられている。
(Collision part 24)
The downstream side surface 20 of the diversion chamber 31 includes the collision portion 24. The collision portion 24 is provided at a portion of the downstream side surface 20 corresponding to the introduction port 34b of the upstream side surface 10. In this example, the introduction port 34 b is provided in the center in the front-rear direction and the left-right direction in the plan view of the upstream side surface 10. The collision part 24 is a central region in the front-rear direction and the left-right direction in plan view of the downstream side surface 20 indicated by spots in FIG. 1B on the downstream side surface 20 corresponding to the introduction port 34b.
As shown in FIG. 1C, the refrigerant that has flowed in from the introduction path 34 and collided with the collision portion 24 is dispersed to the surroundings and flows out from each outflow path 35 to be divided into a plurality of flow paths. is there. As described above, the gas-liquid two-phase refrigerant collides with the collision portion 24 and is dispersed to the surroundings, so that the diversion ratio can be stabilized.
In this example, the collision portion 24 is a plane orthogonal to the inflow direction of the introduction path 34 (in this example, the axial direction) as a part of the surface of the downstream side surface 20, but can be inclined. Further, a concave portion may be formed at the center of the collision portion 24 or the like, or conversely, a convex portion may be formed to change the behavior of the collided fluid. Moreover, the shape can be variously changed to a shape suitable for the dispersion of the refrigerant, such as providing grooves radially.
As shown in FIG. 1B, the outflow passages 35b of the outflow passages 35 are provided on the downstream side surface 20 that surrounds the collision portion 24 and has a circular shape in plan view.

(対気相障壁23)
上記対気相障壁23は、分流室31の上記下流側面20において、流出口35bと衝突部24との間に設けられている。
対気相障壁23は、対気相障壁23に最も近い位置にある流出口35bに対する気相の流れ込みを制限して、対気相障壁23に最も近い位置にある前記流出口35bに対する液相の流れ込み量を増加させるものである。対気相障壁23は、言い換えると、液相流出促進部ということもできる。
図1へ示す例では、対気相障壁23は、複数ある流出口35bの1つと衝突部24との間に設けられている。即ち、図1へ示す例では、対気相障壁は、1つだけ設けられている。
対気相障壁23は、衝突部24が設けられた上記下流側面20から、上流側に向けて隆起する隆起部として形成されている。当該対気相障壁23の隆起幅は、この例では、分流室31の上流側面10と下流側面20との間の幅よりも小さく、対気相障壁23は上流側面10との間に隙間を有する。但し、対気相障壁23の隆起幅は、分流室31の上流側面10と下流側面20との間の幅と等しいものとし、対気相障壁23が上流側面10に当接するものとしてもよい。
(Anti-gas phase barrier 23)
The anti-gas phase barrier 23 is provided between the outlet 35 b and the collision part 24 on the downstream side surface 20 of the flow dividing chamber 31.
The gas-phase barrier 23 restricts the flow of the gas phase to the outlet 35 b closest to the gas-phase barrier 23, and the liquid-phase barrier 23 to the outlet 35 b closest to the gas-phase barrier 23 This increases the flow rate. In other words, the gas-phase barrier 23 can also be referred to as a liquid phase outflow promoting portion.
In the example shown in FIG. 1, the gas-phase barrier 23 is provided between one of the plurality of outlets 35 b and the collision part 24. In other words, in the example shown in FIG. 1, only one barrier to the gas phase is provided.
The gas-phase barrier 23 is formed as a raised portion that rises toward the upstream side from the downstream side surface 20 provided with the collision portion 24. In this example, the raised width of the gas-phase barrier 23 is smaller than the width between the upstream side surface 10 and the downstream side surface 20 of the branch chamber 31, and the gas-phase barrier 23 has a gap between the upstream side surface 10 and the upstream side surface 10. Have. However, the raised width of the gas-phase barrier 23 may be equal to the width between the upstream side surface 10 and the downstream side surface 20 of the flow dividing chamber 31, and the gas-phase barrier 23 may be in contact with the upstream side surface 10.

より詳しくは、対気相障壁23は、円柱状の本体100の中心軸よりも本体100の径外側へ偏心した位置に設けられる。対気相障壁23は、衝突部24側を臨む内側面23aと、本体100の径外側を臨む外側面23bと、頂部23cとにて象られている。この例では、内側面23aと外側面23bは、何れも下流側面20に対し略直角をなし、下流側面20から上流側面10へ向け垂直に伸びる。また、この例では、頂部23cは平らな面である。但し、当該頂部23cは、平らなものに限定するものではなく、山型などの曲線的な形状や凹凸を備えた形状など、平面以外の他の形状を採用することができる。
図1(B)へ示す通り、内側面23aは平面視直線的に即ち平らに形成されており、外側面23bは平面視円弧状に形成されている。外周面23bの当該円弧に対し、内側面23aはその弦をなしている。
上記の対気相障壁23に最も近い位置にある流出口35bというのは、他の流出路35よりも多量の液相の流出を必要とする流出路35の流出口35bである(以下必要に応じて液偏流出路35の液偏流出口35bと呼ぶ)。液偏流出路35は、気相の流れ込みが制限された流出路35とも言える。
対気相障壁23は、この液偏流出路35の液偏向流出口35bに、外側面23bを向ける。
図1(B)へ示す通り、液偏流出口35bは、上記円弧上の中点n1即ち上記円弧の二等分点に最も近い流出口35bである。尚、図1(B)のn2は、前記円弧及び弦の両端を示している。
液偏流出口35bは、対気相障壁23に対し分流室31の径外側であって、対気相障壁23の外側面23bにて衝突部24と画されたものであれば、上記二等分点の直近にあるものに限定されないが、上記二等分点の直近に配するのが最も効果的である。
More specifically, the gas-phase barrier 23 is provided at a position eccentric from the central axis of the cylindrical main body 100 to the outside of the diameter of the main body 100. The anti-vapor phase barrier 23 is represented by an inner side surface 23a facing the collision part 24 side, an outer side surface 23b facing the radially outer side of the main body 100, and a top part 23c. In this example, both the inner side surface 23 a and the outer side surface 23 b are substantially perpendicular to the downstream side surface 20 and extend vertically from the downstream side surface 20 toward the upstream side surface 10. Moreover, in this example, the top part 23c is a flat surface. However, the top portion 23c is not limited to a flat shape, and other shapes other than a plane such as a curved shape such as a mountain shape or a shape having unevenness can be adopted.
As shown in FIG. 1B, the inner side surface 23a is formed linearly or flatly in plan view, and the outer side surface 23b is formed in a circular arc shape in plan view. The inner surface 23a forms a string with respect to the arc of the outer peripheral surface 23b.
The outlet 35b closest to the gas-phase barrier 23 is the outlet 35b of the outlet 35 that requires a larger amount of liquid phase than the other outlets 35 (hereinafter referred to as necessary). Accordingly, it is referred to as a liquid drift outlet 35b of the liquid drift outlet 35). It can be said that the liquid uneven outflow path 35 is an outflow path 35 in which the flow of the gas phase is restricted.
The gas-phase barrier 23 faces the outer surface 23 b toward the liquid deflection outlet 35 b of the liquid uneven outflow path 35.
As shown in FIG. 1B, the liquid drift outlet 35b is the outlet 35b closest to the midpoint n1 on the arc, that is, the bisector of the arc. In addition, n2 of FIG. 1 (B) has shown the both ends of the said circular arc and a string.
If the liquid drift outlet 35b is outside the diameter of the flow dividing chamber 31 with respect to the gas-phase barrier 23 and is defined as the collision portion 24 on the outer surface 23b of the gas-phase barrier 23, the above-mentioned bisection is made. Although it is not limited to the thing in the immediate vicinity of a point, it is most effective to distribute in the immediate vicinity of the said bisection point.

平面視における内側面23aの両端n2間の幅は、この例では、等間隔に配置されて4角形の頂点をなす4つの流出口35bのうち、液偏流出口35bと隣接する2つの流出口35b同士の間隔を超えるものではない。但し、上記両端n2間の幅は、液偏流出口35bに液相を他の流出口35bより多く流出させることができるものであれば、液偏流出口35bと隣接する2つの流出口35b同士の間隔を超えるものであってもよい。
対気相障壁23の上述してきた形状は、単なる例示であり、液偏流出口35bへ他の流出口35bよりも多量の液相を送ることができれば、他の形状に変更可能である。例えば対気相障壁23について平面視した形状は、上記の半円以外に、三角形や四角形その他の多角形や、円弧以外の曲線的形状や、当該曲線的形状と多角形とを複合した形状とすることができる。また、対気相障壁23の隆起方向における各位置の横断面形状についても、当該各位置で同一とするものの他、液偏流出口35bへ他の流出口35bよりも多量の液相を送ることができれば、隆起方向について大きさや形状が異なるものとしてもよい。例えば、上記隆起方向に向けて先細りとなる形状や、逆に当該横断面が上記隆起方向に向けて広がる形状を備えるものとしてもよい。また、対気相障壁23において、各部の寸法や形状を変更することにより、表面積を調整することもできる。
In this example, the width between both ends n2 of the inner side surface 23a in plan view is the two outflow ports 35b adjacent to the liquid drift outlet 35b among the four outflow ports 35b arranged at equal intervals and forming the apex of the quadrangle. It does not exceed the distance between each other. However, as long as the width between the both ends n2 can allow the liquid phase to flow out to the liquid drift outlet 35b more than the other outlets 35b, the distance between the two liquid outlets 35b adjacent to the liquid drift outlet 35b. May be exceeded.
The above-described shape of the gas-phase barrier 23 is merely an example, and can be changed to another shape as long as a larger amount of liquid phase can be sent to the liquid drift outlet 35b than the other outlet 35b. For example, the shape of the gas-phase barrier 23 in plan view includes, in addition to the semicircle described above, a triangle, a quadrilateral and other polygons, a curvilinear shape other than an arc, and a shape in which the curvilinear shape and a polygon are combined. can do. Further, the cross-sectional shape of each position in the rising direction of the gas-phase barrier 23 is the same at each position, and a larger amount of liquid phase can be sent to the liquid drift outlet 35b than the other outlet 35b. If possible, the size and shape of the raised direction may be different. For example, it may be provided with a shape that tapers in the uplift direction or a shape in which the cross section spreads out in the uplift direction. Further, the surface area of the gas-phase barrier 23 can be adjusted by changing the size and shape of each part.

図1の例と異なり複数の対気相障壁23を設ける場合、複数の前記流出路35bの内、最も大量の液相の流入を必要とする液偏流出口35bの直近に、最も液相の流れ込みの量を大きくする即ち最も液相の流れ込みの量の大きくする効果の顕著な対気相障壁23を配置すればよい。   In the case of providing a plurality of gas-phase barriers 23 unlike the example of FIG. 1, the most liquid phase flows in the vicinity of the liquid drift outlet 35 b that requires the most liquid phase inflow among the plurality of outflow passages 35 b. What is necessary is just to arrange | position the anti-gas-phase barrier 23 with the remarkable effect of enlarging the quantity of, ie, enlarging the quantity of the most inflow of a liquid phase.

上記の液相の流れ込みの量を大きくするために、次の調整1)〜3)のうちの、少なくとも1つの調整を行うのが効果的である。また、次の1)〜3)の調整を複数組み合わせることによって、より一層の効果を求めることができる。
1)対気相障壁23の突出幅をより大きくすること(突出幅の調整)
2)平面視における対気相障壁23の外径をより大きくすること(断面積の調整)
3)分流室31の上流側面10と下流側面20との間隔をより狭くすること(上流側面10と下流側面20との間隔の調整)
また、上記の1)〜3)の何れかの調整と共に、平面視において対気相障壁23が呈する円弧の長さ(孤長)をより長くするなどの、上記の1)〜3)以外の調整を付随的に行っても効果的である。
In order to increase the amount of the liquid phase flowing in, it is effective to perform at least one of the following adjustments 1) to 3). Moreover, a further effect can be calculated | required by combining several adjustment of following 1) -3).
1) Increasing the protrusion width of the gas-phase barrier 23 (adjustment of the protrusion width)
2) Increasing the outer diameter of the gas-phase barrier 23 in plan view (adjustment of the cross-sectional area)
3) To narrow the distance between the upstream side surface 10 and the downstream side surface 20 of the flow dividing chamber 31 (adjustment of the distance between the upstream side surface 10 and the downstream side surface 20).
In addition to the adjustment of any one of 1) to 3) above, other than the above 1) to 3), such as increasing the length (arc length) of the arc presented by the gas-phase barrier 23 in plan view It is also effective to make adjustments incidentally.

導入口34bから分流室31内へ導入されて衝突部24へ衝突した冷媒は、各流出口35bへ向けて分散するのであるが、図1(C)へ示す通り、白抜きの矢印で示す冷媒気相は、対気相障壁23にて、対気相障壁23を挟んで衝突部24の反対側にある液偏流出口35bへの移動が阻まれ、主として対気相障壁23が設けられていない他の流出口35へ向かう。相対的に、黒色矢印で示す冷媒液相が、主として当該反対側にある液偏流出口35bへ対気相障壁23の左右(両脇)及び上方(頂部)から回り込んで向かう。   The refrigerant introduced into the diversion chamber 31 from the introduction port 34b and colliding with the collision part 24 is dispersed toward each outflow port 35b, but as shown in FIG. The gas phase is prevented from moving to the liquid drift outlet 35b on the opposite side of the collision part 24 across the gas phase barrier 23 by the gas phase barrier 23, and the gas phase barrier 23 is mainly not provided. Go to another outlet 35. Relatively, the refrigerant liquid phase indicated by the black arrow wraps around from the left and right sides (both sides) and the upper side (top) of the gas-phase barrier 23 to the liquid drift outlet 35b on the opposite side.

上記の対気相障壁23は、当該金属にて形成された本体100と一体に形成することによって実施することができる。
図1へ示すように、流入パイプ41の内径を3〜9mmとし、平面視における対気相障壁23の外側面23bの円弧(図3(B)の内円y1)の径はその流入パイプ41の内径の50%から150%とするのが好ましい。上流側面10の上記中央へ導入口34bを配置し、流出路35を等間隔に4つ設けて、各流出口35bの内径を2〜6mm、分流室31の内径を10〜30mm、分流室31の上流側面10と下流側面20との間隔を1〜5mmとし、対気相障壁23の隆起幅は0.3mm以上(分流室31の上流面に当たるも可)とするのが好ましい。
The anti-vapor phase barrier 23 can be implemented by being formed integrally with the main body 100 made of the metal.
As shown in FIG. 1, the inner diameter of the inflow pipe 41 is 3 to 9 mm, and the diameter of the arc (the inner circle y1 in FIG. 3B) of the outer surface 23b of the gas-phase barrier 23 in plan view is the inflow pipe 41. The inner diameter is preferably 50% to 150%. The inlet 34b is arranged at the center of the upstream side surface 10, and four outflow passages 35 are provided at equal intervals. The inner diameter of each outlet 35b is 2 to 6 mm, the inner diameter of the flow dividing chamber 31 is 10 to 30 mm, and the flow dividing chamber 31. It is preferable that the distance between the upstream side surface 10 and the downstream side surface 20 is 1 to 5 mm, and the raised width of the gas-phase barrier 23 is 0.3 mm or more (can also contact the upstream surface of the flow dividing chamber 31).

(変更例)
図1へ示す実施の形態では、本体100は液偏流出路35を1つ備えるものとし、下流側面20は、その流出口 35b即ち液偏流出口35bを1つ備えるものとした。この他、本体100は液偏流出路35を複数備えるものとしても実施できる。例えば、本体100は液偏流出路35を2つ備えるものとしても実施できる。
液偏流出路35を2つ備える場合、図2(A)(B)及び図2(E)(F)へ示すように下流側面20へ対気相障壁23を1つ設けて当該1つの対気相障壁23にて2つの液偏流出口35bに対応するものとしても、図2(C)(D)へ示すように対気相障壁23を2つ設けて2つの液偏流出口35bに対応するものとしても実施できる。
(Example of change)
In the embodiment shown in FIG. 1, the main body 100 is provided with one liquid outflow path 35, and the downstream side surface 20 is provided with one outflow port 35 b, that is, one liquid outflow outlet 35 b. In addition, the main body 100 can also be implemented as having a plurality of liquid outflow passages 35. For example, the main body 100 can also be implemented as having two liquid uneven outflow channels 35.
When two liquid outflow passages 35 are provided, as shown in FIGS. 2 (A), (B) and FIGS. 2 (E), (F), one gas-phase barrier 23 is provided on the downstream side surface 20, and the one pair Even if the gas phase barrier 23 corresponds to the two liquid drift outlets 35b, as shown in FIGS. 2C and 2D, two gas phase barriers 23 are provided to correspond to the two liquid drift outlets 35b. It can also be implemented.

図2(A)(B)へ示す冷媒分流器1は、互いに隣り合う2つの流出路35を液偏流出路35とし、両液偏流出路35を1つの対気相障壁23にて対応する。図2(A)へ示す通り、対気相障壁23の平面視円弧状の外側面23bの径外側において、両液偏流出口35bが対気相障壁23の内側面23aの垂直二等分線(仮想線)を中心として互いに線対称の位置関係を採るように、対気相障壁23が形成されている。この図2(A)(B)へ示す例では、対気相障壁23の内側面23aは、図1(B)(C)へ示す対気相障壁23と同様略平面である。一方、図2(E)(F)へ示す例では、上記内側面23aは、平面視において、直交する2つの平面と当該2つの平面がなすコーナーに形成された平面視円弧状の凹曲面とにて構成されている。図2(E)(F)に示す実施の形態において、言及しなかった他の構成については、図2(A)(B)と同様である。   In the refrigerant distributor 1 shown in FIGS. 2 (A) and 2 (B), the two outflow passages 35 adjacent to each other are used as the liquid outflow passages 35, and both liquid outflow passages 35 correspond to one gas-phase barrier 23. . As shown in FIG. 2 (A), the two liquid drift outlets 35b are perpendicular to the perpendicular bisector of the inner side surface 23a of the gas-phase barrier 23 on the outer side of the outer side surface 23b having a circular arc in plan view. The gas-phase barrier 23 is formed so as to have a line-symmetrical positional relationship with respect to a virtual line). In the example shown in FIGS. 2A and 2B, the inner side surface 23a of the vapor-phase barrier 23 is substantially flat like the vapor-phase barrier 23 shown in FIGS. On the other hand, in the example shown in FIGS. 2E and 2F, the inner side surface 23a includes two planar surfaces orthogonal to each other and a concave curved surface having a circular arc shape in plan view formed at a corner formed by the two planes. It is composed of. In the embodiment shown in FIGS. 2E and 2F, other configurations not mentioned are the same as those in FIGS. 2A and 2B.

この他、冷媒分流器1は、液偏流出路35を3つ備えるものとし、その液偏流出口35bを1つの対気相障壁23にて対応するものとしても実施できる。更に、流出路35を5個以上設ける場合、そのうちの4個以上を液偏流出路35としても実施できる。また、流出路35を、2つ又は3つとし、液偏流出路35を1つ備えるものとしても実施できる。流出路35を3つとした場合、液偏流出路35を2つとしてもよい。
上記の通り、液偏流出口35bを2つ以上設ける場合であっても、図1の実施の形態と同様、衝突部24と対気相障壁23にて画されていればよい。従って、上記線対称の配置に限定するものではない。従って、各流出口35b即ち各流出路35同士が等間隔に配置されたものに限定するものではなく、等間隔でないものも本願発明に含むものである。
In addition, the refrigerant flow divider 1 may be provided with three liquid outflow paths 35 and the liquid outflow outlet 35b corresponding to the single gas-phase barrier 23. Furthermore, when five or more outflow passages 35 are provided, four or more of them can be implemented as the liquid uneven outflow passages 35. Further, the number of outflow paths 35 may be two or three, and one liquid outflow path 35 may be provided. When there are three outflow passages 35, there may be two liquid uneven outflow passages 35.
As described above, even when two or more liquid drift outlets 35b are provided, they may be defined by the collision portion 24 and the gas-phase barrier 23 as in the embodiment of FIG. Therefore, the arrangement is not limited to the above-described line symmetry. Accordingly, the present invention is not limited to one in which the outlets 35b, that is, the outflow passages 35 are arranged at equal intervals, and those that are not equally spaced are also included in the present invention.

図2(C)(D)へ示す冷媒分流器1は、衝突部24を挟んで対向する2つの流出路35を液偏流出路35とし、各液偏流出路35夫々に対気相障壁23を1つづつ割り当てて合計2つの対気相障壁23にて対応する。即ち、図2(C)(D)へ示す冷媒分流器1は、4つの流出口35bのうち、衝突部24を挟んで対向する2つの液偏流出口35bと衝突部24との夫々の間に対気相障壁23が設けられている。
図2(A)〜(F)の各実施の形態において、特に言及しなかった事項については、図1へ示す実施の形態と同様である。
In the refrigerant distributor 1 shown in FIGS. 2C and 2D, the two outflow passages 35 facing each other with the collision portion 24 interposed therebetween are the liquid outflow passages 35, and each liquid outflow passage 35 is provided with a gas-phase barrier 23. Are assigned one by one and correspond to a total of two anti-gas phase barriers 23. That is, in the refrigerant distributor 1 shown in FIGS. 2C and 2D, among the four outlets 35b, the two liquid drift outlets 35b facing each other across the collision part 24 and the collision part 24 are provided. A gas-phase barrier 23 is provided.
In each of the embodiments of FIGS. 2A to 2F, items not particularly mentioned are the same as those of the embodiment shown in FIG.

また、図1及び図2へ示す各実施の形態において、導入口34bは、上流側面10にあって平面視における前後及び左右の中心に位置するものとし、衝突部24も導入口34bと対面すべく、下流側面20の平面視における前後及び左右の中心に位置するものとした。この他、導入口34bを上流側面10における上記中心から偏心した位置に配置し、当該導入口34bに対応して、衝突部24を下流側面20における中心から偏心し導入口34bと対面する位置に配置するものとしてもよい。
前述の通り対気相障壁23の形状や配置については、図1及び図2の夫々に示したものに限定するものではなく、他の流出口35bよりも液偏流出口35bから多量の液相を流出させることができれば、図示した以外の形状や配置に変更が可能である。
また、前述の図1(A)に示す例では、本体100の基端側即ち冷媒の上流側を上にし、本体100の先端側即ち冷媒の下流側を下にした。この他、本体100の前記基端側と先端側の上下即ち本体100の軸方向の上下の向きは、図1(A)と逆にしてもよい。
また、本体100の軸方向の向きは上記上下方向に限定するものではなく、横にしても斜めにしてもよい。
Moreover, in each embodiment shown in FIG.1 and FIG.2, the inlet 34b shall be located in the upstream side surface 10, and is located in the center of the front and back, and right and left in planar view, and the collision part 24 also faces the inlet 34b. Accordingly, the downstream side surface 20 is positioned at the front and rear and left and right centers in plan view. In addition, the introduction port 34b is arranged at a position eccentric from the center on the upstream side surface 10, and the collision portion 24 is eccentric from the center on the downstream side surface 20 and faces the introduction port 34b corresponding to the introduction port 34b. It may be arranged.
As described above, the shape and arrangement of the gas-phase barrier 23 are not limited to those shown in FIGS. 1 and 2, and a larger amount of liquid phase is generated from the liquid drift outlet 35 b than the other outlet 35 b. If it can be made to flow out, it can be changed to a shape and arrangement other than those shown in the figure.
Further, in the example shown in FIG. 1A, the base end side of the main body 100, that is, the upstream side of the refrigerant is turned up, and the front end side of the main body 100, that is, the downstream side of the refrigerant is turned down. In addition, the vertical direction of the base end side and the distal end side of the main body 100, that is, the vertical direction of the main body 100 in the axial direction may be reversed from that in FIG.
Further, the axial direction of the main body 100 is not limited to the above vertical direction, and may be horizontal or diagonal.

(実施例)
表1及び表2へ、効果を確認した冷媒分流器1のサンプルのデータを示す。
データを採取した冷媒分流器1を、図3(A)(B)へ示す。図3(A)へ示す通り、
概ね図1と同じタイプのものである。
但し、本実施例の冷媒分流器1の本体100は、外部材aと内部材bとにて形成されている点図1へ示すものと異なる。外部材aは、両端が連通する筒状をなす部材であり、内部材bは、外部材aの内部に外部材aの先端側(下端側)から挿入される部材である。
内部材bの当該挿入によって、外部材aに対し内部材bを組み付けることができる。
(Example)
Tables 1 and 2 show sample data of the refrigerant flow divider 1 whose effect has been confirmed.
The refrigerant | coolant flow divider 1 which extract | collected the data is shown to FIG. 3 (A) (B). As shown in FIG.
It is generally the same type as in FIG.
However, the main body 100 of the refrigerant flow divider 1 of the present embodiment is different from that shown in FIG. 1 in that it is formed by an outer member a and an inner member b. The outer member a is a cylindrical member whose both ends communicate with each other, and the inner member b is a member inserted into the outer member a from the front end side (lower end side) of the outer member a.
By inserting the inner member b, the inner member b can be assembled to the outer member a.

外部材aの基端部の外面が本体100の上記基端面11をなし、外部材aの基端部の内面が上記上流側面10をなす。内部材bの先端側面が主として本体100の上記先端面21をなし、内部材bの基端側面が上記下流側面20をなす。
具体的には筒状の外部材aの内周面は、分流室31を構成する基端側部分と、内部材bを受容し内部材bの外周面が重ねられる先端側部分とによりなる。
外部材a内周面において、上記基端側部分の内径は上記先端側部分の内径よりも小さく、上記基端側部分と上記先端側部分との間には段差がある。
上記にて内部材bを外部材aへ挿入した際、上記段差に内部材bが当接して、内部材bの位置決めを行うことができる。
The outer surface of the base end portion of the external material a forms the base end surface 11 of the main body 100, and the inner surface of the base end portion of the outer member a forms the upstream side surface 10. The distal end side surface of the inner member b mainly forms the distal end surface 21 of the main body 100, and the proximal end side surface of the inner member b forms the downstream side surface 20.
Specifically, the inner peripheral surface of the cylindrical outer member a is composed of a proximal end side portion constituting the flow dividing chamber 31 and a distal end side portion where the inner member b is received and the outer peripheral surface of the inner member b is overlapped.
On the inner peripheral surface of the external material a, the inner diameter of the proximal end portion is smaller than the inner diameter of the distal end portion, and there is a step between the proximal end portion and the distal end portion.
When the inner member b is inserted into the outer member a as described above, the inner member b comes into contact with the step so that the inner member b can be positioned.

表1及び表2の各サンプルにおいて、内部材bの外径t5即ち外部材aの上記先端側部分の内径は18mmである。
表1及び表2の各サンプルにおいて、分流室31の内径t1即ち外部材aの上記基端側部分の内径は、何れも16mmである。
本体100へ取り付けられた流入パイプ41の先端即ち下流側端の端面と上流側面10とは上下方向についての高低差t7は0である。
表1及び表2に示す各サンプルにおいて、冷媒分流器1の本体100における流入パイプ41の内径t3は5.4mmである(図3(A))。
In each sample of Table 1 and Table 2, the outer diameter t5 of the inner member b, that is, the inner diameter of the tip side portion of the outer member a is 18 mm.
In each sample of Table 1 and Table 2, the inner diameter t1 of the flow dividing chamber 31, that is, the inner diameter of the base end side portion of the outer member a is 16 mm.
The height difference t7 in the vertical direction between the end of the inflow pipe 41 attached to the main body 100, that is, the end surface of the downstream end and the upstream side surface 10 is zero.
In each sample shown in Table 1 and Table 2, the inner diameter t3 of the inflow pipe 41 in the main body 100 of the refrigerant flow distributor 1 is 5.4 mm (FIG. 3A).

冷媒分流器1は、冷却装置の熱交換器と連絡する各パイプに接続されて、冷媒の循環システムに組み込まれる。即ち、冷媒の循環経路の一部を前記冷媒分流器1が構成し、冷媒は熱交換後循環して繰り返し冷媒分流器1を通過する。
各実施例において、実際の冷媒に近い疑似冷媒として、水と空気の混合物を用いた。当該混合物中の水を実際の冷媒の液相に見立て、当該混合物中の空気(エアー)を実際の冷媒の気相に見立てて、実験を行った。上記の混合物は、実際の冷媒とは異なるものの類似する性質により、上記混合物から実際の冷媒の挙動の傾向を推測することができる。
上記循環システム中、冷媒循環量150kg/h(時間)とし、乾き度0.40、エアー流量50.0L(リットル)/min(分)、水流量1.17L(リットル)/min(分)に設定した。
The refrigerant flow divider 1 is connected to each pipe communicating with the heat exchanger of the cooling device, and is incorporated in the refrigerant circulation system. That is, the refrigerant flow divider 1 constitutes a part of the refrigerant circulation path, and the refrigerant circulates after the heat exchange and repeatedly passes through the refrigerant flow divider 1.
In each example, a mixture of water and air was used as a pseudo refrigerant close to an actual refrigerant. The experiment was conducted with the water in the mixture as an actual refrigerant liquid phase and the air in the mixture as an actual refrigerant gas phase. Although the above mixture is different from the actual refrigerant, the tendency of the actual refrigerant behavior can be inferred from the above mixture due to the similar properties.
In the above circulation system, the refrigerant circulation rate is 150 kg / h (hours), the dryness is 0.40, the air flow rate is 50.0 L (liters) / min (minutes), and the water flow rate is 1.17 L (liters) / min (minutes). Set.

冷媒分流器1の各部において表1及び表2の各サンプル共通の設定について説明する。
冷媒分流器1の流出路35は、等間隔に4つ設けられている。流出路35は、何れも内径t2が3mmである(図3)。
図3(B)において、y1は対気相障壁23の外側面23bの当該孤が属する円(以下必要に応じて内円と呼ぶ。)を示し、y2は当該内円y2を取り囲む4つの流出口35bが呈する円陣即ち、各流出口35bの中心を通る円(以下必要に応じて外円と呼ぶ。)を示す。
尚、各流出路35の流出口35bについて、図3(B)において、左側に配置された第1流出口35b1をパス1とし、当該流出口35b1から時計回りにて、上側へ配置された第2流出口35b2をパス2、更に右側へ配置された第3流出口35b3をパス3、下側の第4流出口35b4をパス4とする。
また、図3(B)において、t4は対気相障壁23の内側面23aと外側面23bとの間の最大厚みを示し、xは当該最大厚みt4を調整する場合に当該調整によっても変わらない基準線を示している。
Settings common to the samples in Tables 1 and 2 in each part of the refrigerant flow divider 1 will be described.
Four outflow passages 35 of the refrigerant flow divider 1 are provided at equal intervals. In each outflow channel 35, the inner diameter t2 is 3 mm (FIG. 3).
In FIG. 3B, y1 represents a circle to which the arc of the outer surface 23b of the gas-phase barrier 23 belongs (hereinafter referred to as an inner circle as necessary), and y2 represents four flows surrounding the inner circle y2. A circle formed by the outlet 35b, that is, a circle passing through the center of each outlet 35b (hereinafter referred to as an outer circle if necessary) is shown.
In addition, about the outflow port 35b of each outflow channel 35, the 1st outflow port 35b1 arrange | positioned in the left side is made into the path | pass 1 in FIG.3 (B), and the 1st arrange | positioned clockwise from the said outflow port 35b1 is carried out to the upper side. The second outlet 35b2 is referred to as path 2, the third outlet 35b3 disposed further to the right is referred to as path 3, and the lower fourth outlet 35b4 is referred to as path 4.
In FIG. 3B, t4 indicates the maximum thickness between the inner side surface 23a and the outer side surface 23b of the gas-phase barrier 23, and x does not change even when the maximum thickness t4 is adjusted. A reference line is shown.

表1及び表2の各データは、図3(A)(B)へ示すタイプの冷媒分流器1について、冷媒液相の各流出口への分流比を計測して得たものである。
表1及び表2の各データは、 本体100は、図3(A)へ示す通り、導入路34が流出路35の上方に位置するように、図3(A)の冷媒分流器1を縦に配置したもののデータである。
Each data of Table 1 and Table 2 is obtained by measuring the flow ratio of the refrigerant liquid phase to each outlet for the refrigerant flow divider 1 of the type shown in FIGS.
Each data in Table 1 and Table 2 shows that the main body 100 is arranged so that the refrigerant distributor 1 in FIG. 3 (A) is vertically moved so that the introduction path 34 is located above the outflow path 35 as shown in FIG. 3 (A). It is data of what is arranged in.

表1及び表2の各データは、パス2を液偏流出口35bとし、内円y1の直径を6mmとし、外円y2の直径を11mmとし、対気相障壁23の最大厚みt4を1.5mmとして得たものである(図3)。   Each data in Table 1 and Table 2 shows that the path 2 is the liquid drift outlet 35b, the diameter of the inner circle y1 is 6 mm, the diameter of the outer circle y2 is 11 mm, and the maximum thickness t4 of the gas-phase barrier 23 is 1.5 mm. (Fig. 3).

表1の各データは、分流室31の、上流側面10と下流側面20との間の間隔t6を2.0mmとして得たものである。
表1のデータにおける対気相障壁23の上記隆起幅t8について、No.206cは、1.5mm,No.214は1.2mm、No.215は0.9mm、No.216は0.6mmとして得たものである(図3)。
Each data in Table 1 is obtained by setting the interval t6 between the upstream side surface 10 and the downstream side surface 20 of the flow dividing chamber 31 to 2.0 mm.
Regarding the above-described raised width t8 of the gas-phase barrier 23 in the data of Table 1, No. 206c is 1.5 mm, no. 214 is 1.2 mm. 215 is 0.9 mm. 216 was obtained as 0.6 mm (FIG. 3).

表2の各データは、対気相障壁23の隆起幅t8を1.5mmとして得たものである。
表2のデータにおける上流側面10と下流側面20の間隔t6について、No.206では2mm、No.207では2.5mm、No.208では3mm、No.209では3.5mm、No.210では4mmとした。
尚、表1のNo.206cと表2のNo.206とは各部の寸法について同じ設定である。
Each data in Table 2 is obtained by setting the raised width t8 of the gas-phase barrier 23 to 1.5 mm.
With respect to the distance t6 between the upstream side surface 10 and the downstream side surface 20 in the data of Table 2, no. 206, 2 mm, no. No. 207 is 2.5 mm, no. 208, 3 mm, no. No. 209 is 3.5 mm, no. In 210, it was set to 4 mm.
In Table 1, No. 206c and No. 2 in Table 2. 206 is the same setting for the dimensions of each part.

(評価)
表1及び表2の各サンプルのデータから、液偏流出口35bであるパス2について、他のパスに比べて、多くの液相が流れ込んでいるのが分かる。
(Evaluation)
From the data of each sample in Table 1 and Table 2, it can be seen that a larger amount of liquid phase flows in the path 2 which is the liquid drift outlet 35b than in the other paths.

具体的には、表1から、対気相障壁23の上記最大厚みt4を1.5mmとし、流入パイプ41の先端と上流側面10との高低差t7を0とし、上流側面10と下流側面20との間隔t6を2とする場合、対気相障壁23の隆起幅t8を0.6mm〜1.5mmとすることによって、目的とする1つの液偏流出口35b(パス2)への液相の案内を効果的に行えることが分かる。   Specifically, from Table 1, the maximum thickness t4 of the gas-phase barrier 23 is set to 1.5 mm, the height difference t7 between the tip of the inflow pipe 41 and the upstream side surface 10 is set to 0, and the upstream side surface 10 and the downstream side surface 20 When the interval t6 between the gas phase barrier 23 and the gap t6 is set to 2, the height t8 of the gas-phase barrier 23 is set to 0.6 mm to 1.5 mm, so that the liquid phase to the target liquid drift outlet 35b (pass 2) It turns out that guidance can be performed effectively.

表2にあって、対気相障壁23の上記最大厚みt4を1.5mmとし、対気相障壁23の隆起幅t8を1.5mmとする場合、流入パイプ41の先端と上流側面10との高低差t7を0とし上流側面10と下流側面20との間隔t6を2〜4mmとすることによって、目的とする1つの液偏流出口35b(パス2)への液相の案内を効果的に行えることが分かる。   In Table 2, when the maximum thickness t4 of the gas-phase barrier 23 is 1.5 mm and the raised width t8 of the gas-phase barrier 23 is 1.5 mm, the tip of the inflow pipe 41 and the upstream side surface 10 By setting the height difference t7 to 0 and the distance t6 between the upstream side surface 10 and the downstream side surface 20 to 2 to 4 mm, the liquid phase can be effectively guided to one target liquid drift outlet 35b (pass 2). I understand that.

(視認による効果確認)
図4〜図6へ示す通り、本体100の外部材aを透明なプラスチックにて形成した冷媒分流器1における分流室31の下流側面20の状態を示す。図4〜図6は、表1のサンプルNo.206cと同じ寸法設定のものを撮影して得た。図4〜図6の各図において、第2流出口35b2(パス2)が液偏流出口35bである。当該第2流出口35b2と衝突部24との間に対気相障壁23が設けられている。
図4(A)、図4(B)、図5(A)、図5(B)、図6(A)及び図6(B)の順に時間が経過している。各図において白色に見える部分が気相である。図4〜図6の各図において、第1流出口35b1(バス1)は隠れて見えない位置にある。
図4〜図6から、気相を示す上記白色部分の第2流出口35b2への移動は極めて少なく、液相の第2流出口35b2への移動が他より多いことが分かる。例えば手前の第3流出口35b3は常時上記白色の部分に覆われており、多量の気相が流れ込んで液相の流れ込みが少ないことが分かる。
(Effect confirmation by visual recognition)
As shown in FIGS. 4 to 6, the state of the downstream side surface 20 of the flow dividing chamber 31 in the refrigerant flow divider 1 in which the outer member a of the main body 100 is formed of a transparent plastic is shown. 4 to 6 are sample Nos. It was obtained by photographing the same size as 206c. 4 to 6, the second outlet 35b2 (pass 2) is the liquid drift outlet 35b. A gas-phase barrier 23 is provided between the second outlet 35 b 2 and the collision part 24.
4A, FIG. 4B, FIG. 5A, FIG. 5B, FIG. 6A, and FIG. The portion that appears white in each figure is the gas phase. In each figure of FIGS. 4-6, the 1st outflow port 35b1 (bus 1) is in the position which is hidden and cannot be seen.
4 to 6, it can be seen that the movement of the white portion indicating the gas phase to the second outlet 35b2 is very small, and the movement of the liquid phase to the second outlet 35b2 is more than the others. For example, it can be seen that the third outlet 35b3 on the near side is always covered with the white portion, and a large amount of the gas phase flows and the liquid phase hardly flows.

10 下流側面
20 上流側面
23 対気相障壁
24 衝突部
31 分流室
34 導入路
34b 導入口
35 流出路
35b 流出口
41 流入パイプ
42 流出パイプ
100 本体
DESCRIPTION OF SYMBOLS 10 Downstream side 20 Upstream side 23 Anti-gas phase barrier 24 Collision part 31 Dividing chamber 34 Introductory path 34b Inlet 35 Outlet 35b Outlet 41 Inflow pipe 42 Outflow pipe 100 Main body

Claims (2)

分流室と、気相と液相とが混合した状態の冷媒を前記分流室内に導入させる導入路と、前記導入路から前記分流室内に導入された前記冷媒が衝突する衝突部と、前記衝突部の周囲に設けられた複数の流出路とを備え、前記衝突部に衝突した前記冷媒を前記複数の流出路から所定の分流割合で流出させるようにした冷媒分流器において、
前記衝突部と前記流出路との間に対気相障壁が設けられ、
前記対気相障壁は、前記対気相障壁に最も近い位置にある前記流出路に対する前記気相の流れ込みを制限することにより、前記最も近い位置にある前記流出路に対する液相の流れ込み量を増加させるものであることを特徴とする冷媒分流器。
A shunt chamber, an introduction path for introducing a refrigerant in a mixed state of a gas phase and a liquid phase into the shunt chamber, a collision section where the refrigerant introduced from the introduction path into the shunt chamber collides, and the collision section And a plurality of outflow paths provided around the refrigerant flow distributor, wherein the refrigerant colliding with the collision portion is caused to flow out from the plurality of outflow paths at a predetermined diversion ratio.
A gas-phase barrier is provided between the collision portion and the outflow path,
The gas-phase barrier increases the amount of liquid-phase flowing into the outflow path at the nearest position by restricting the flow of the gas phase into the outflow path at the position closest to the gas-phase barrier. A refrigerant shunt, characterized in that
前記分流室は、前記導入路の開口部が設けられた上流側面と、前記流出路夫々の開口部が設けられた下流側面とを備え、
前記下流側面は、前記上流側面に対し前記上流側面と間隔を開けて冷媒の流れの下流側に位置して、前記上流側面と対面するものであり、
前記下流側面において、導入路の前記開口部と対向する部位に前記衝突部が設けられ、
前記対気相障壁は、前記下流側面に設けられて前記上流側面側へ突出するものであり、
前記対気相障壁は、頂部と、前記衝突部側を臨む内側面と、衝突部と反対側を臨む外側面とにて象られたものであり、
前記対気相障壁について、形状、前記下流側面からの突出幅、導入路の開口部に対する位置、表面積のうち、少なくとも1つを調整することにより、前記最も近い位置にある前記流出路に対する液相の流れ込み量を調整するものであることを特徴とする請求項1記載の冷媒分流器。
The diversion chamber includes an upstream side surface provided with an opening of the introduction path, and a downstream side surface provided with an opening of each of the outflow paths,
The downstream side surface is located on the downstream side of the flow of the refrigerant at a distance from the upstream side surface with respect to the upstream side surface, and faces the upstream side surface,
In the downstream side surface, the collision portion is provided at a portion facing the opening of the introduction path,
The gas-phase barrier is provided on the downstream side surface and protrudes toward the upstream side surface,
The anti-vapor phase barrier is formed by a top portion, an inner surface facing the collision portion side, and an outer surface facing the opposite side of the collision portion,
By adjusting at least one of the shape, the protruding width from the downstream side, the position with respect to the opening of the introduction path, and the surface area, the liquid phase with respect to the outflow path at the nearest position is adjusted. The refrigerant shunt according to claim 1, wherein the flow amount of the refrigerant is adjusted.
JP2013202281A 2013-09-27 2013-09-27 Refrigerant shunt Active JP6018556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202281A JP6018556B2 (en) 2013-09-27 2013-09-27 Refrigerant shunt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202281A JP6018556B2 (en) 2013-09-27 2013-09-27 Refrigerant shunt

Publications (2)

Publication Number Publication Date
JP2015068548A true JP2015068548A (en) 2015-04-13
JP6018556B2 JP6018556B2 (en) 2016-11-02

Family

ID=52835395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202281A Active JP6018556B2 (en) 2013-09-27 2013-09-27 Refrigerant shunt

Country Status (1)

Country Link
JP (1) JP6018556B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306643B2 (en) 2018-07-31 2023-07-11 株式会社杉孝グループホールディングス Wedge binding device in scaffolding
CN110423539B (en) * 2019-08-20 2021-07-27 黄山五环科技有限公司 A high leveling 50: epoxy resin for 50-family indoor powder coating and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682125A (en) * 1992-09-07 1994-03-22 Matsushita Refrig Co Ltd Refrigrant distributor
JPH06194003A (en) * 1992-12-25 1994-07-15 Hitachi Ltd Air conditioner
JPH08254374A (en) * 1995-03-15 1996-10-01 Gou Shoji Kk Flow divider for refrigerant
JP2001208451A (en) * 2000-01-28 2001-08-03 Fuji Electric Co Ltd Refrigerant distributor
JP2001263863A (en) * 2000-03-24 2001-09-26 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682125A (en) * 1992-09-07 1994-03-22 Matsushita Refrig Co Ltd Refrigrant distributor
JPH06194003A (en) * 1992-12-25 1994-07-15 Hitachi Ltd Air conditioner
JPH08254374A (en) * 1995-03-15 1996-10-01 Gou Shoji Kk Flow divider for refrigerant
JP2001208451A (en) * 2000-01-28 2001-08-03 Fuji Electric Co Ltd Refrigerant distributor
JP2001263863A (en) * 2000-03-24 2001-09-26 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP6018556B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5376010B2 (en) Heat exchanger
EP3018441B1 (en) Laminated header, heat exchanger, and air conditioning device
US20130292104A1 (en) Heat exchanger
US10436483B2 (en) Heat exchanger for micro channel
CN104075496A (en) Heat exchanger
CN101922882B (en) Refrigerant conduit and heat exchanger with same
EP2813787B1 (en) Air conditioner
KR20130055244A (en) A heat exchanger
US20220316804A1 (en) Heat exchanger and air-conditioning apparatus including the same
CN101922883A (en) Refrigerant guide pipe and heat exchanger with same
JP6018556B2 (en) Refrigerant shunt
CN101788235B (en) Heat exchanger
JP2014228199A (en) Heat exchanger
KR200475023Y1 (en) Fluid distributor
JP2016014504A (en) Heat exchanger, and refrigeration cycle device with the same
JP5389227B2 (en) Refrigerant distributor and heat pump device
JP4879306B2 (en) Distributor and heat pump device
JP6319272B2 (en) Refrigerant shunt
CN103644688A (en) Convection type refrigerant distribution device and heat exchanger adopting same
JP2011017505A (en) Refrigerant distributor and heat pump device
JP2009002548A (en) Refrigerant flow divider
JP2009180444A (en) Coolant distributor
JP2004183955A (en) Refrigerant divider
JP7142806B1 (en) Distributors, heat exchangers and heat pump devices
JP2005345100A (en) Branching method of connecting pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160930

R150 Certificate of patent or registration of utility model

Ref document number: 6018556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250