JPH07120104A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH07120104A
JPH07120104A JP5268511A JP26851193A JPH07120104A JP H07120104 A JPH07120104 A JP H07120104A JP 5268511 A JP5268511 A JP 5268511A JP 26851193 A JP26851193 A JP 26851193A JP H07120104 A JPH07120104 A JP H07120104A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
expansion valve
distributor
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5268511A
Other languages
Japanese (ja)
Other versions
JP3041467B2 (en
Inventor
Tomomi Umeda
知巳 梅田
Ryoji Sato
良次 佐藤
Kensaku Kokuni
研作 小国
Joji Okamoto
譲治 岡本
Shinichi Shimoide
新一 下出
Taichi Sato
太一 佐藤
Hiroshi Yasuda
弘 安田
Toshihiko Fukushima
敏彦 福島
Toshiharu Sasaki
俊治 佐々木
Naoto Katsumata
直登 勝又
Hirokiyo Terada
浩清 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5268511A priority Critical patent/JP3041467B2/en
Publication of JPH07120104A publication Critical patent/JPH07120104A/en
Application granted granted Critical
Publication of JP3041467B2 publication Critical patent/JP3041467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Abstract

PURPOSE:To reduce a pressure pulsation generated by flow of refrigerant in an indoor unit and a tube vibration generated due to the pressure pulsation and to further reduce pressure pulsation and a tube vibration to be propagated to a heat exchanger which tend to promote vibration, noise. CONSTITUTION:An expansion valve 3 contained in an indoor unit 21 is so disposed that a first heat exchanger side tube of the valve becomes horizontal and a distributor side tube becomes vertical, the distributor 4 is so disposed that a tube 12 of the valve side becomes vertical, and the first exchanger side tube of the valve is connected to the tube 12 by an L-shaped tube 11 so disposed that a tube axis of one end coincides with an axis of the first exchanger side tube of the value and a tube axis of the other end becomes perpendicular to that of the tube 12. A corner of the tube 11 is rounded of 30mm of a radius, and an orifice for controlling a dust-proofing net and a flowing state of gas- liquid two-phase flow is contained in the tube 12. Thus, refrigerant flowing sound in the indoor unit is reduced, and extraordinary sound such as intermittent flowing sound, etc., is also reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、膨張弁及びこの膨張弁
に接続された分配器を備えた空気調和機に係わり、特に
室内機の冷媒配管のコンパクト化および冷媒流動音の低
減を図った空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with an expansion valve and a distributor connected to the expansion valve, and particularly, the refrigerant pipe of an indoor unit is made compact and the refrigerant flow noise is reduced. Regarding air conditioners.

【0002】[0002]

【従来の技術】冷媒の流量制御並びに減圧膨張機構とし
て膨張弁を使用している空気調和機における、膨張弁か
ら発生する冷媒流動音、キャピラリチューブからの冷媒
噴出音と伝熱管振動、および熱交換器から発生する冷媒
流動音の低減方法には、特開平4ー186071号公
報、特開昭57ー198967号公報、特開昭60ー2
07873や実開昭57ー160027号公報に開示さ
れたものがある。
2. Description of the Related Art In an air conditioner that uses an expansion valve as a refrigerant flow rate control and decompression expansion mechanism, a refrigerant flow noise generated from an expansion valve, a refrigerant ejection noise from a capillary tube and heat transfer tube vibration, and heat exchange. As a method of reducing the flow noise of the refrigerant generated from the container, Japanese Patent Laid-Open Nos. 4-186071, 57-198967 and 60-2 are available.
There are those disclosed in 07873 and Japanese Utility Model Laid-Open No. 57-160027.

【0003】特開平4ー186071号公報に記載され
ているものでは、膨張弁の上流側の流れが気液二相流で
ある場合、膨張弁の絞りを冷媒が通過するときに気液二
相流の流動様式に起因して発生する冷媒流動音を、膨張
弁の入口配管の配管軸線を重力方向に直交するように配
置して流動様式を改善することで、冷媒流動音の低減を
図っている。
According to the method disclosed in Japanese Patent Laid-Open Publication No. 4-186071, when the flow on the upstream side of the expansion valve is a gas-liquid two-phase flow, the gas-liquid two-phase flow when the refrigerant passes through the throttle of the expansion valve. The refrigerant flow noise generated due to the flow flow pattern of the flow is arranged so that the pipe axis of the inlet pipe of the expansion valve is orthogonal to the gravity direction to improve the flow pattern, thereby reducing the refrigerant flow noise. There is.

【0004】特開昭57ー198967号公報に記載さ
れているものでは、冷凍サイクルを構成するキャピラリ
ーチューブから熱交換器伝熱管に接続するまでの間の冷
媒通路面積を段階的に拡大させるように構成し、噴出
音、流体音、伝熱管振動の低減を図っている。
According to the one disclosed in Japanese Patent Laid-Open No. 57-198967, the refrigerant passage area from the capillary tube constituting the refrigeration cycle to the connection with the heat exchanger heat transfer tube is gradually increased. It is configured to reduce jet noise, fluid noise, and heat transfer tube vibration.

【0005】特開昭60ー207873号公報に記載さ
れているものでは、膨張弁入口側に、ブチルシート・パ
テ等の防振材を備えたパイプを設けることにより、冷媒
流動音の消滅を図っている。
In the one disclosed in Japanese Patent Laid-Open No. 60-207873, a pipe having a vibration-proof material such as a butyl sheet or putty is provided on the inlet side of the expansion valve to eliminate the refrigerant flow noise. ing.

【0006】実開昭57ー160027号公報に記載さ
れているものでは、熱交換器の両側から出ているU字形
のパイプより発生する冷媒音を遮音し、冷媒流動音の低
減を図っている。
In the one disclosed in Japanese Utility Model Laid-Open No. 57-160027, the noise of the refrigerant flowing from the U-shaped pipes coming out from both sides of the heat exchanger is shut off to reduce the noise of the refrigerant flow. .

【0007】[0007]

【発明が解決しようとする課題】上記従来技術は、主と
して膨張弁やキャピラリーチューブ等の減圧機構から発
生する冷媒流動音、配管振動の低減に関するものであ
り、減圧機構で冷媒流の圧力脈動が発生し、これが配管
内を圧力波として伝播、または配管振動として熱交換器
に伝わり、熱交換器がスピーカーとして冷媒流動音を拡
大しているような配管系全体の問題としての考慮はなさ
れていない。特に上記従来技術において膨張弁の配置に
関するものは、膨張弁に流入する冷媒気液二相流の流動
様式に起因する冷媒流動音に対処するものであり、膨張
弁から流出した冷媒気液二相流に起因する冷媒流動音に
関しての考慮はなされていない。キャピラリーチューブ
の下流側において段階的に冷媒通路面積を拡大すること
に関するものは、キャピラリーチューブから流出する冷
媒流が音速になる場合を考慮したものであり、キャピラ
リーチューブ以外の配管は考慮されていない。また膨張
弁入口に防振材を設けたパイプを使用することに関する
ものでは、膨張弁出口側に関しては考慮されていない。
また熱交換器の両側から出ているU字形のパイプから発
生する冷媒流動音を遮音することに関するものでは、熱
交換器に伝播する圧力脈動および配管振動を根本的に遮
断するということは考慮されていない。
The above-mentioned prior art is mainly concerned with the reduction of refrigerant flow noise and pipe vibration generated from a pressure reducing mechanism such as an expansion valve or a capillary tube, and pressure pulsation of the refrigerant flow is generated in the pressure reducing mechanism. However, it is not considered as a problem of the entire piping system in which this propagates as a pressure wave in the pipe or is transmitted to the heat exchanger as pipe vibration, and the heat exchanger expands the refrigerant flowing sound as a speaker. In particular, the arrangement of the expansion valve in the above-mentioned related art is to deal with the refrigerant flow noise caused by the flow pattern of the refrigerant gas-liquid two-phase flow flowing into the expansion valve, and the refrigerant gas-liquid two-phase flowing out from the expansion valve. No consideration is given to refrigerant flow noise due to flow. Regarding the stepwise expansion of the refrigerant passage area on the downstream side of the capillary tube, consideration is given to the case where the refrigerant flow flowing out of the capillary tube has a sonic velocity, and piping other than the capillary tube is not considered. Further, regarding the use of a pipe provided with a vibration damping material at the expansion valve inlet, no consideration is given to the expansion valve outlet side.
Further, regarding the sound insulation of the refrigerant flowing sound generated from the U-shaped pipes coming out from both sides of the heat exchanger, it is considered that the pressure pulsation and the pipe vibration propagating to the heat exchanger are basically cut off. Not not.

【0008】配管を配置する空間が狭い室内機内におい
て、膨張弁等の減圧機構部や熱交換器を含む配管系全体
から発生する冷媒流動音を低減させるためには配管系の
最適化を検討する必要がある。空気調和機の騒音で冷媒
流動音が特に問題となるのは室内機である。室内機に配
置されている配管構成要素としては、膨張弁、分配器、
第2熱交換器、これらを接続する配管、配管に内蔵され
て膨張弁の絞りの目詰まりを防ぐための防塵網、同じく
配管に内蔵された流動補正用のオリフィス等がある。ま
たこれらの配管系が納められている室内機の機械室にお
ける配管スペースも一般に狭く、曲げ等の多い配管構成
とならざるをえない状況下にある。そのため、曲げ等の
影響による流動の変動が生じ、その結果流体の圧力脈動
が発生・助長され、配管振動を誘発し、これが冷媒流動
音となって現れる。また、空気調和機の省冷媒化に伴っ
て、室内機に設置されている膨張弁に気液二相流の状態
で冷媒が流入する。気液二相流はそれ自身が非定常な流
れであり、圧力脈動を持っている。そのためにも膨張弁
後の配管系で圧力脈動を低減する必要が要求される。従
って、配管構成の最適化を行うことが冷媒流動音の低減
につながる。また、最適化された配管構成は同時にサイ
クル性能をも満足しなければならない。
In an indoor unit having a small space for arranging piping, optimization of the piping system is considered in order to reduce the refrigerant flow noise generated from the entire piping system including the pressure reducing mechanism such as the expansion valve and the heat exchanger. There is a need. It is the indoor unit that the refrigerant flow noise is particularly problematic in the noise of the air conditioner. The piping components arranged in the indoor unit include an expansion valve, a distributor,
There is a second heat exchanger, a pipe connecting these, a dustproof net built in the pipe to prevent clogging of the expansion valve throttle, and a flow correction orifice also built in the pipe. In addition, the piping space in the machine room of the indoor unit in which these piping systems are housed is generally narrow, and there is no choice but to have a piping configuration with many bends. Therefore, the flow changes due to the influence of bending, etc. As a result, the pressure pulsation of the fluid is generated and promoted, and the pipe vibration is induced, which appears as a refrigerant flow noise. Further, as the air conditioner saves refrigerant, the refrigerant flows into the expansion valve installed in the indoor unit in a gas-liquid two-phase flow state. The gas-liquid two-phase flow is an unsteady flow itself and has pressure pulsation. Therefore, it is necessary to reduce the pressure pulsation in the piping system after the expansion valve. Therefore, optimizing the piping configuration leads to a reduction in refrigerant flow noise. In addition, the optimized piping configuration must also satisfy the cycle performance.

【0009】本発明の目的は、室内機の配管系から発生
する冷媒流動音を低減するとともに異音を除去すること
にある。
It is an object of the present invention to reduce refrigerant flow noise generated from a piping system of an indoor unit and eliminate abnormal noise.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の空気調和機は、少なくとも圧縮機、
第1熱交換器、膨張弁、分配器、第2熱交換器を配管で
接続して形成され、圧縮機、第1熱交換器、膨張弁、分
配器、第2熱交換器そして再び圧縮機の順で冷媒を循環
させ、第1熱交換器で凝縮液化させた冷媒を第2熱交換
器で蒸発させて冷却を行う冷凍サイクルで構成される空
気調和機において、圧縮機から第1熱交換器までを室外
機に配置し、膨張弁から第2熱交換器までを室内機に配
置し、室内機の前記膨張弁から第2熱交換器に至る配管
において、膨張弁入り口に接続される膨張弁第1熱交換
器側配管軸を重力方向にほぼ直交するように、また膨張
弁出口に接続される膨張弁分配器側配管軸を重力方向と
ほぼ平行になるように膨張弁を配置し、また膨張弁から
第2熱交換器に至る冷媒配管上に設けられている分配器
入り口に接続されるオリフィスを内蔵した配管をその配
管軸線が重力方向とほぼ一致するように配置し、前記オ
リフィスを内蔵した配管と膨張弁出口に接続された膨張
弁分配器側配管とを少なくとも一つの曲がりのある配管
で接続し、また分配器と第2熱交換器とは複数の配管で
接続したことを特徴とする。
In order to achieve the above object, the first air conditioner of the present invention comprises at least a compressor,
A compressor, a first heat exchanger, an expansion valve, a distributor, a second heat exchanger, and a compressor again formed by connecting the first heat exchanger, the expansion valve, the distributor, and the second heat exchanger with piping. In the air conditioner including a refrigeration cycle in which the refrigerant is circulated in this order, and the refrigerant condensed and liquefied in the first heat exchanger is evaporated in the second heat exchanger for cooling, the first heat exchange from the compressor Expansion unit connected to the expansion valve inlet in the piping extending from the expansion valve to the second heat exchanger in the indoor unit. The expansion valve is arranged so that the valve first heat exchanger side piping axis is substantially orthogonal to the gravity direction, and the expansion valve distributor side piping axis connected to the expansion valve outlet is substantially parallel to the gravity direction, It is also connected to the distributor inlet on the refrigerant pipe from the expansion valve to the second heat exchanger. A pipe containing an orifice is arranged so that its pipe axis substantially coincides with the direction of gravity, and at least one pipe having the bend is provided between the pipe containing the orifice and the expansion valve distributor-side pipe connected to the expansion valve outlet. In addition, the distributor and the second heat exchanger are connected by a plurality of pipes.

【0011】また、上記目的を達成するために、本発明
の第2の空気調和機は、少なくとも圧縮機、四方弁、第
1熱交換器、膨張弁、分配器、第2熱交換器を配管で接
続して構成し、冷媒を圧縮機から順次四方弁、第1熱交
換器、膨張弁、分配器、第2熱交換器を経て、再び四方
弁を介して圧縮機に戻す順サイクルで循環させる時に、
第1熱交換器を凝縮器としてかつ第2熱交換器を蒸発器
として機能させ、また冷媒を順サイクルと逆方向の逆サ
イクルで循環させる時には、第2熱交換器を凝縮器とし
てかつ第1熱交換器を蒸発器として機能させる冷暖房サ
イクルで構成されている空気調和機において、圧縮機か
ら第1熱交換器までを室外機に配置し、膨張弁から第2
熱交換器までを室内機に配置し、前記膨張弁から第2熱
交換器に至る配管において、膨張弁の第2熱交換器側に
接続される膨張弁第1熱交換器側配管の管軸が重力方向
にほぼ直交するように、また膨張弁の分配器側に接続さ
れる膨張弁分配器側配管の管軸が重力方向とほぼ平行に
なるように膨張弁を配置し、また前記分配器の膨張弁側
に接続されるオリフィスと防塵網を内蔵した配管をその
配管軸線が重力の方向とほぼ平行になるように配置し、
前記オリフィス・防塵網内蔵配管と膨張弁分配器側配管
とを少なくとも一つの曲がりのある配管で接続し、また
分配器と第2熱交換器とは複数の配管で接続したことを
特徴とする。
In order to achieve the above object, the second air conditioner of the present invention has at least a compressor, a four-way valve, a first heat exchanger, an expansion valve, a distributor, and a second heat exchanger as pipes. The refrigerant is circulated in a forward cycle in which the refrigerant is sequentially passed from the compressor through the four-way valve, the first heat exchanger, the expansion valve, the distributor, the second heat exchanger, and then returned to the compressor via the four-way valve. When letting
When the first heat exchanger functions as a condenser and the second heat exchanger functions as an evaporator, and when the refrigerant is circulated in the reverse cycle of the forward cycle and the reverse direction, the second heat exchanger serves as the condenser and the first heat exchanger. In an air conditioner configured by a heating / cooling cycle in which a heat exchanger functions as an evaporator, a compressor to a first heat exchanger are arranged in an outdoor unit, and an expansion valve to a second heat exchanger are arranged.
In the pipe extending from the expansion valve to the second heat exchanger, the heat exchanger is arranged in the indoor unit, and the pipe axis of the expansion valve first heat exchanger side pipe connected to the second heat exchanger side of the expansion valve. Is arranged substantially perpendicular to the direction of gravity, and the expansion valve is arranged such that the pipe axis of the expansion valve distributor side pipe connected to the distributor side of the expansion valve is substantially parallel to the direction of gravity. Arrange the piping connected with the expansion valve side of the orifice and the dustproof net so that the piping axis is almost parallel to the direction of gravity,
It is characterized in that the orifice / dustproof net built-in pipe and the expansion valve distributor side pipe are connected by at least one bent pipe, and the distributor and the second heat exchanger are connected by a plurality of pipes.

【0012】また上記の目的を達成するために、本発明
の第3の空気調和機は、少なくとも圧縮機、第1熱交換
器、減圧機構、膨張弁、分配器、第2熱交換器を配管で
接続して形成され、圧縮機、第1熱交換器、減圧機構、
膨張弁、分配器、第2熱交換器そして再び圧縮機の順で
冷媒を循環させる冷凍サイクルを構成する空気調和機に
おいて、圧縮機から減圧機構までを室外機に配置し、膨
張弁から第2熱交換器までを室内機に配置し、室内機の
前記膨張弁から第2熱交換器に至る配管において、膨張
弁上流側に接続される膨張弁第1熱交換器側配管の管軸
が重力方向にほぼ直交するように、また膨張弁下流側に
接続される膨張弁分配器側配管の管軸が重力方向とほぼ
平行になるように膨張弁を配置し、また分配器と第2熱
交換器とを複数の配管で接続したことを特徴とする。
In order to achieve the above object, the third air conditioner of the present invention has at least a compressor, a first heat exchanger, a pressure reducing mechanism, an expansion valve, a distributor, and a second heat exchanger as pipes. Are connected and formed by a compressor, a first heat exchanger, a pressure reducing mechanism,
In an air conditioner that constitutes a refrigeration cycle in which a refrigerant is circulated in the order of an expansion valve, a distributor, a second heat exchanger, and a compressor again, the compressor to the decompression mechanism are arranged in an outdoor unit, and the expansion valve to the second The heat exchanger is arranged in the indoor unit, and in the pipe from the expansion valve of the indoor unit to the second heat exchanger, the pipe axis of the expansion valve first heat exchanger side pipe connected to the expansion valve upstream side is gravity. The expansion valve so that the pipe axis of the expansion valve distributor side pipe connected to the downstream side of the expansion valve is substantially parallel to the direction of gravity, and the second heat exchange with the distributor. It is characterized in that it is connected to the container with a plurality of pipes.

【0013】また上記の目的を達成するために、本発明
の第4の空気調和機は、少なくとも圧縮機、四方弁、第
1熱交換器、減圧機構、膨張弁、分配器、第2熱交換器
を配管で接続して形成され、冷媒を圧縮機から順次四方
弁、第1熱交換器、減圧機構、膨張弁、分配器、第2熱
交換器を経て、再び四方弁を介して圧縮機に戻す順サイ
クルで循環させる時に、第1熱交換器を凝縮器としてか
つ第2熱交換器を蒸発器として機能させ、また冷媒を順
サイクルと逆方向の逆サイクルで循環させる時には、第
2熱交換器を凝縮器としてかつ第1熱交換器を蒸発器と
して機能させる冷暖房サイクルを構成する空気調和機に
おいて、圧縮機から減圧機構までを室外機に配置し、膨
張弁から第2熱交換器までを室内機に配置し、室内機の
前記膨張弁から第2熱交換器に至る配管において、膨張
弁の減圧機構側に接続される膨張弁第1熱交換器側配管
の管軸が重力方向にほぼ直交するように、かつ膨張弁の
分配器側に接続される膨張弁分配器側配管の管軸が重力
方向とほぼ平行になるように膨張弁を配置し、また膨張
弁から第2熱交換器に至る冷媒配管上に設けられている
分配器に接続されるオリフィスと防塵網を内蔵した配管
をその配管軸線が重力方向とほぼ平行になるように配置
し、前記オリフィス・防塵網内蔵配管と膨張弁分配器側
配管とを少なくとも一つの曲がりのある配管で接続し、
また分配器と第2熱交換器とは複数の配管で接続したこ
とを特徴とする。
In order to achieve the above object, the fourth air conditioner of the present invention includes at least a compressor, a four-way valve, a first heat exchanger, a pressure reducing mechanism, an expansion valve, a distributor, and a second heat exchange. The compressor is connected by piping, and the refrigerant is sequentially passed from the compressor through the four-way valve, the first heat exchanger, the pressure reducing mechanism, the expansion valve, the distributor, the second heat exchanger, and again through the four-way valve. When the first heat exchanger functions as a condenser and the second heat exchanger functions as an evaporator when the refrigerant is circulated in the forward cycle, the second heat exchanger is used when the refrigerant is circulated in the reverse cycle in the reverse direction of the forward cycle. In an air conditioner that constitutes a cooling and heating cycle in which the exchanger functions as a condenser and the first heat exchanger functions as an evaporator, the compressor to the decompression mechanism are arranged in the outdoor unit, and the expansion valve to the second heat exchanger. Is placed in the indoor unit, and the In the pipe leading to the heat exchanger, the expansion valve is connected to the pressure reducing mechanism side of the expansion valve so that the pipe axis of the expansion valve first heat exchanger side pipe is substantially perpendicular to the gravity direction and to the distributor side of the expansion valve. The expansion valve is arranged so that the pipe axis of the expansion valve distributor side pipe is substantially parallel to the direction of gravity, and is connected to the distributor provided on the refrigerant pipe from the expansion valve to the second heat exchanger. The orifice and the dustproof net are installed so that the pipe axis is almost parallel to the direction of gravity, and the orifice / dustproof built-in pipe and the expansion valve distributor side pipe are at least one bent pipe. connection,
Further, the distributor and the second heat exchanger are connected by a plurality of pipes.

【0014】また上記の目的を達成するために、本発明
の別の空気調和機は、前記第1乃至第4の各空気調和機
において、膨張弁の分配器側に接続された管軸が重力方
向にほぼ平行な膨張弁分配器側配管と分配器の膨張弁側
に接続された管軸が重力方向にほぼ平行な配管とを接続
する配管の、膨張弁に最も近い曲がり部の曲率半径が少
なくとも30mmであることを特徴とする。
In order to achieve the above object, another air conditioner of the present invention is the air conditioner according to any one of the first to fourth air conditioners, wherein the pipe axis connected to the distributor side of the expansion valve is gravity. Direction of the expansion valve distributor side pipe that is substantially parallel to the direction and the pipe that connects the expansion valve side of the distributor and the pipe axis that is substantially parallel to the gravity direction It is characterized in that it is at least 30 mm.

【0015】また上記の目的を達成するために、本発明
の別の空気調和機は、前記第1乃至第4の各空気調和機
において、膨張弁の分配器側に接続された管軸が重力方
向にほぼ平行な膨張弁分配器側配管と分配器の膨張弁側
に接続された管軸が重力方向にほぼ平行な配管とを接続
する配管を少なくとも二つの曲がり部を有する曲がり配
管としたことを特徴とする。
In order to achieve the above object, another air conditioner of the present invention is the air conditioner of the first to fourth aspects, wherein the pipe shaft connected to the distributor side of the expansion valve is gravity. The pipe connecting the expansion valve distributor side pipe that is substantially parallel to the direction and the pipe whose pipe axis connected to the expansion valve side of the distributor is substantially parallel to the direction of gravity is a bent pipe that has at least two bends. Is characterized by.

【0016】また上記の目的を達成するために、本発明
の別の空気調和機は、前記第1乃至第4の各空気調和機
において、膨張弁の分配器側に接続された管軸が重力方
向にほぼ平行な膨張弁分配器側配管と分配器の膨張弁側
に接続された管軸が重力方向にほぼ平行な配管とを接続
する配管を半円弧の配管としたことを特徴とする。
In order to achieve the above object, another air conditioner of the present invention is the air conditioner according to any one of the first to fourth air conditioners, wherein the pipe shaft connected to the distributor side of the expansion valve is gravity. The pipe connecting the expansion valve distributor side pipe substantially parallel to the direction and the pipe whose pipe axis connected to the expansion valve side of the distributor is substantially parallel to the gravity direction is a semi-circular pipe.

【0017】また上記の目的を達成するために、本発明
の別の空気調和機は、前記第1乃至第4の各空気調和機
において、膨張弁の分配器側に接続された管軸が重力方
向にほぼ平行な膨張弁分配器側配管と分配器の膨張弁側
に接続された管軸が重力方向にほぼ平行な配管とを接続
する配管の径を、前記膨張弁分配器側配管の径と同一と
したことを特徴とする。
In order to achieve the above object, another air conditioner of the present invention is the air conditioner according to any one of the first to fourth air conditioners, wherein the pipe shaft connected to the distributor side of the expansion valve is gravity. Direction of the expansion valve distributor side pipe and the pipe connected to the expansion valve side of the distributor pipe axis is substantially parallel to the direction of gravity, the diameter of the pipe is the expansion valve distributor side pipe diameter It is characterized by being the same as.

【0018】また上記の目的を達成するために、本発明
の別の空気調和機は、前記第1乃至第4の各空気調和機
において、分配器と第2熱交換器とを繋ぐ複数の配管の
内径が、分配器から第2熱交換器の方向に段階的に拡大
していることを特徴とする。
In order to achieve the above object, another air conditioner of the present invention is, in each of the first to fourth air conditioners, a plurality of pipes connecting the distributor and the second heat exchanger. The inner diameter of is gradually increased from the distributor toward the second heat exchanger.

【0019】また上記の目的を達成するために、本発明
の別の空気調和機は、前項記載の空気調和機において、
分配器と第2熱交換器を繋ぐ複数の配管の内径を、分配
器近傍の配管の断面積をA1、第2熱交換器近傍の配管
の断面積をA3、分配器と第2熱交換器の中間の配管の
断面積をA2としたとき、断面積比が3.5<A2/A
1<4.5、1.9<A3/A2<2.2となるように
段階的に拡大したことを特徴とする。
In order to achieve the above object, another air conditioner of the present invention is the air conditioner described in the above paragraph,
The inner diameters of the plurality of pipes connecting the distributor and the second heat exchanger are A1, the cross-sectional area of the pipe near the distributor is A1, the cross-sectional area of the pipe near the second heat exchanger is A3, and the distributor and the second heat exchanger. The cross-sectional area ratio is 3.5 <A2 / A, where A2 is the cross-sectional area of the middle pipe
It is characterized in that it is expanded stepwise such that 1 <4.5 and 1.9 <A3 / A2 <2.2.

【0020】また上記の目的を達成するために、本発明
の別の空気調和機は、前記第1乃至第4の各空気調和機
において、分配器と第2熱交換器とを繋ぐ複数の配管の
内径が、分配器から第2熱交換器の方向に向かって、滑
らかに無段階で拡大していることを特徴とする。
In order to achieve the above object, another air conditioner of the present invention is a plurality of pipes for connecting a distributor and a second heat exchanger in each of the first to fourth air conditioners. The inner diameter of is smoothly and steplessly expanded from the distributor toward the second heat exchanger.

【0021】また上記の目的を達成するために、本発明
の別の空気調和機は、前記第1乃至第4の各空気調和機
において、分配器と第2熱交換器を繋ぐ複数の配管に、
可撓性部材を用いることを特徴とする。
In order to achieve the above-mentioned object, another air conditioner of the present invention has a plurality of pipes connecting the distributor and the second heat exchanger in each of the first to fourth air conditioners. ,
A feature is that a flexible member is used.

【0022】また上記の目的を達成するために、本発明
の別の空気調和機は、前記第1乃至第4の各空気調和機
において、第2熱交換器の出入口の配管に制振材を取り
付けたことを特徴とする。
In order to achieve the above object, another air conditioner of the present invention is the air conditioner of the first to fourth aspects, wherein a damping material is provided in the piping of the inlet and outlet of the second heat exchanger. It is characterized by being attached.

【0023】また上記の目的を達成するために、本発明
の別の空気調和機は、前記第1乃至第4の各空気調和機
において、室内機内部の膨張弁の室外機側の配管から分
配器までの配管および配管構成要素に制振材を取り付け
たことを特徴とする。
In order to achieve the above object, another air conditioner of the present invention is the air conditioner according to any one of the first to fourth air conditioners, wherein the expansion valve inside the indoor unit is distributed from the pipe on the outdoor unit side. The feature is that damping material is attached to the piping up to the vessel and the piping components.

【0024】[0024]

【作用】上記のように構成された空気調和機において、
室内機の膨張弁から第2熱交換器に至る配管において、
膨張弁の第1熱交換器側(室外機側)の膨張弁第1熱交
換器側配管の管軸を重力方向にほぼ直交するように配置
したことで、省冷媒サイクルで膨張弁入口の冷媒が気液
二相流の状態であっても、冷媒の流れが水平流となって
いるため、冷媒の流動様式が、層状流、波状流となる。
層状流、波状流では、気相と液相とがそれぞれ連続した
流れであるので、冷媒流動音のうちの最も大きい異音で
ある間欠流動音が低減される。また、流動様式に起因す
る膨張弁絞り部での圧力脈動の発生が抑制される。
In the air conditioner configured as described above,
In the pipe from the expansion valve of the indoor unit to the second heat exchanger,
By arranging the pipe axis of the expansion valve first heat exchanger side pipe of the expansion valve on the first heat exchanger side (outdoor unit side) so as to be substantially orthogonal to the gravity direction, the refrigerant at the expansion valve inlet can be saved in the refrigerant saving cycle. Even in the state of gas-liquid two-phase flow, since the refrigerant flow is horizontal, the refrigerant flow mode is a laminar flow or a wavy flow.
In the laminar flow and the wavy flow, since the gas phase and the liquid phase are continuous flows, respectively, the intermittent flow noise, which is the largest noise among the refrigerant flow noises, is reduced. Further, the occurrence of pressure pulsation in the expansion valve throttle portion due to the flow mode is suppressed.

【0025】また、膨張弁の絞りを通過した冷媒噴流は
気液二相流となるが、この気液二相流は軸線を重力方向
に合わせて配置された膨張弁分配器側配管内をまっす
ぐ、下方に向って流れるため、流れを乱されることがな
く、この段階での圧力脈動や配管の振動が避けられる。
この気液二相流は、膨張弁分配器側配管内を流れ下った
のち、減速せずに接続配管の内壁に衝突し流れ方向を変
える。そのため、流量が多くかつ流速が速くなるほど運
動量は大きくなり、その衝撃力は大きくなる。そこで接
続配管の内径を少なくとも膨張弁分配器側配管の内径と
同程度に大きくすることで流速が減速され、また接続配
管の曲がり部の曲率半径を大きくすることで急激な流れ
方向の変化が小さくなり、さらに膨張弁分配器側配管の
配管内径と接続配管の内径とを一致させることで、断面
積変化による流動の変動が少なくなる。その結果気液二
相流の不安定流動を抑制することができ、圧力脈動の発
生を低減させることができる。
Further, the refrigerant jet flow passing through the throttle of the expansion valve becomes a gas-liquid two-phase flow, and this gas-liquid two-phase flow goes straight in the expansion valve distributor side pipe arranged with its axis aligned with the direction of gravity. Since it flows downward, the flow is not disturbed, and pressure pulsation and vibration of the pipe at this stage can be avoided.
The gas-liquid two-phase flow, after flowing down in the expansion valve distributor side pipe, collides with the inner wall of the connecting pipe without decelerating and changes the flow direction. Therefore, as the flow rate increases and the flow velocity increases, the momentum increases and the impact force increases. Therefore, increasing the inner diameter of the connecting pipe at least to the same extent as the inner diameter of the expansion valve distributor side pipe slows down the flow velocity, and increasing the radius of curvature of the bent portion of the connecting pipe reduces abrupt changes in the flow direction. Furthermore, by matching the inner diameter of the expansion valve distributor side pipe with the inner diameter of the connecting pipe, the fluctuation of the flow due to the change of the cross-sectional area is reduced. As a result, the unstable flow of the gas-liquid two-phase flow can be suppressed, and the occurrence of pressure pulsation can be reduced.

【0026】さらに、分配器に流入する気液二相流の冷
媒の流動様式を制御するためのオリフィスと目詰まりを
防止するための防塵網を同一配管内に内蔵し、しかもこ
の配管をその配管軸線を重力方向とほぼ一致させるよう
に分配器の膨張弁側に設置し、さらにこの配管と軸線が
重力方向とほぼ一致している膨張弁分配器側配管とを一
つの曲がり部を有する配管で接続したことで、配管構成
が単純化されコンパクト化される。また曲がり部が一つ
であるので垂直流から水平流への変更に伴う流動状態の
変化も最小限に抑えることができ、冷媒流の流動状態が
改善される。また曲がりが一つの接続配管を用いたこと
でオリフィス・防塵網内蔵配管とは直交することにな
り、接続配管内を流れてきた冷媒流はオリフィス・防塵
網内蔵配管の管内壁に衝突することになる。しかし、膨
張弁の絞り通過時に増速された流速も接続配管内を流れ
る間に減速され流動も安定化しているため、圧力脈動の
発生・助長の点で特に問題とはならず、逆に衝突により
分離していた気相と液相の流れが混合され均質流となる
ため、分配性能の向上が図れる。
Further, an orifice for controlling the flow mode of the gas-liquid two-phase refrigerant flowing into the distributor and a dustproof net for preventing clogging are built in the same pipe, and this pipe is connected to the pipe. It is installed on the expansion valve side of the distributor so that the axis is almost in line with the direction of gravity, and this pipe and the expansion valve distributor side pipe whose axis is almost in line with the direction of gravity are pipes with one bend. By connecting, the piping configuration is simplified and made compact. Further, since there is only one curved portion, it is possible to minimize the change in the flow state due to the change from the vertical flow to the horizontal flow, and the flow state of the refrigerant flow is improved. In addition, since the connection pipe with one bend is used, it becomes orthogonal to the orifice / dust protection net built-in pipe, and the refrigerant flow flowing in the connection pipe collides with the inner wall of the orifice / dust protection net built-in pipe. Become. However, the flow velocity increased when passing through the throttle of the expansion valve is also decelerated while flowing in the connecting pipe and the flow is stabilized, so there is no particular problem in terms of generation and promotion of pressure pulsation, and conversely a collision occurs. The gas phase and the liquid phase separated by the above are mixed to form a homogeneous flow, so that the distribution performance can be improved.

【0027】また、低減されてはいるが圧力脈動が存在
するために配管振動が発生する。この配管振動が第2熱
交換器に伝播すると共振を起こし、第2熱交換器全体か
ら騒音を発生してしまうが、膨張弁前後の配管に取り付
けられた制振材によって、配管振動が低減され、また熱
交換器の出入口配管に取り付けられた制振材によって、
熱交換器への配管振動の伝播が遮断される。
Also, although reduced, pipe pulsation occurs due to the presence of pressure pulsation. When this pipe vibration propagates to the second heat exchanger, resonance occurs and noise is generated from the entire second heat exchanger. However, the vibration damping material attached to the pipes before and after the expansion valve reduces the pipe vibration. , Also, by the damping material attached to the inlet and outlet piping of the heat exchanger,
The transmission of piping vibration to the heat exchanger is blocked.

【0028】この結果、室内機に設置されている膨張弁
から第2熱交換器までの配管および伝熱管内で発生する
冷媒気液二相流に起因する圧力脈動の発生・助長が抑制
され、また膨張弁の上流側の気液二相流に起因する圧力
脈動をも低減されるため、第2熱交換器での共鳴をも抑
制される。また、前記圧力脈動により誘発される配管振
動が低減され、さらに第2熱交換器への振動伝播が遮断
されるため第2熱交換器の共振が避けられる。従って、
冷媒流の圧力脈動および配管振動により発生する冷媒流
動音が低減され、間欠流動音等の異音の発生が抑制され
る。
As a result, the generation and promotion of pressure pulsation due to the refrigerant gas-liquid two-phase flow generated in the pipe from the expansion valve installed in the indoor unit to the second heat exchanger and in the heat transfer pipe is suppressed, Further, the pressure pulsation due to the gas-liquid two-phase flow on the upstream side of the expansion valve is also reduced, so that the resonance in the second heat exchanger is also suppressed. Further, the pipe vibration induced by the pressure pulsation is reduced, and the vibration propagation to the second heat exchanger is blocked, so that the resonance of the second heat exchanger is avoided. Therefore,
The refrigerant flow noise generated by the pressure pulsation of the refrigerant flow and the pipe vibration is reduced, and the generation of abnormal noise such as intermittent flow noise is suppressed.

【0029】[0029]

【実施例】本発明は、膨張弁の上流側(室外機側)の流
動様式に起因する圧力脈動をも考慮しつつ、膨張弁から
第2熱交換器に至る配管系での流体の流動の改善を行っ
た上での実験的知見に基づき、配管内の冷媒流の圧力脈
動発生・助長の抑制および配管振動の低減を図り、かつ
第2熱交換器に伝播する流体の圧力脈動を低減するとと
もに配管振動を遮断することで前記目的を達成するもの
である。
The present invention considers the pressure pulsation due to the flow pattern on the upstream side (outdoor unit side) of the expansion valve, while considering the flow of the fluid in the piping system from the expansion valve to the second heat exchanger. Based on the experimental knowledge obtained through the improvement, the generation and promotion of pressure pulsation of the refrigerant flow in the pipe is suppressed, the pipe vibration is reduced, and the pressure pulsation of the fluid propagating to the second heat exchanger is reduced. At the same time, the above object is achieved by blocking the vibration of the pipe.

【0030】以下、本発明による空気調和機の実施例を
図面を参照して説明する。図1から図5に、本発明の実
施例の空気調和機のサイクル構成と配管構成の模式図を
示す。
Embodiments of an air conditioner according to the present invention will be described below with reference to the drawings. 1 to 5 are schematic diagrams showing a cycle configuration and a piping configuration of an air conditioner according to an embodiment of the present invention.

【0031】図1は、本発明の第1の実施例である冷房
用空気調和機の構成とその冷媒の流れを示す図である。
図示の空気調和機は、冷媒蒸気を圧縮する圧縮機1と、
該圧縮機1の出側に配管15で接続された第1熱交換器
(以下凝縮器という)2と、該凝縮器2に配管16で接
続された膨張弁3と、該膨張弁3の膨張弁分配器側配管
に接続配管11、配管12で接続された分配器4と、該
分配器4に複数の分配管14で接続された第2熱交換器
(以下蒸発器という)5と、該蒸発器5と圧縮機1の吸
い込み側を接続する配管19と、前記凝縮器2と蒸発器
5をそれぞれ冷却する室外ファン9及び室内ファン10
とを含んで構成されている。また、本実施例の空気調和
機は、室外機20と室内機21に分離しており、室外機
20には、圧縮機1、凝縮器2および室外ファン9が納
められ、室内機21には、膨張弁3、分配器4、蒸発器
5および室内ファン10が納められている。蒸発器5は
それぞれ独立した流路をなしている複数の伝熱管を備
え、各伝熱管は出側で前記配管19に接続されるととも
に、入り口側は伝熱管それぞれに別々に設けられた熱交
換器入口管30を介して前記複数の分配管14のうちの
一つにそれぞれ接続されている。
FIG. 1 is a diagram showing a structure of a cooling air conditioner according to a first embodiment of the present invention and a flow of a refrigerant thereof.
The illustrated air conditioner includes a compressor 1 for compressing refrigerant vapor,
A first heat exchanger (hereinafter referred to as a condenser) 2 connected to the outlet side of the compressor 1 by a pipe 15, an expansion valve 3 connected by a pipe 16 to the condenser 2, and an expansion of the expansion valve 3. A distributor 4 connected to the valve distributor side pipe by a connection pipe 11 and a pipe 12; a second heat exchanger (hereinafter referred to as an evaporator) 5 connected to the distributor 4 by a plurality of distribution pipes 14; A pipe 19 connecting the evaporator 5 and the suction side of the compressor 1, and an outdoor fan 9 and an indoor fan 10 for cooling the condenser 2 and the evaporator 5, respectively.
It is configured to include and. Further, the air conditioner of the present embodiment is separated into an outdoor unit 20 and an indoor unit 21, the compressor 1, the condenser 2 and the outdoor fan 9 are housed in the outdoor unit 20, and the indoor unit 21 is , Expansion valve 3, distributor 4, evaporator 5, and indoor fan 10 are housed. The evaporator 5 includes a plurality of heat transfer tubes each having an independent flow path, and each heat transfer tube is connected to the pipe 19 on the outlet side, and the heat exchange tube is provided on the inlet side separately for each heat transfer tube. Each of the plurality of distribution pipes 14 is connected via a container inlet pipe 30.

【0032】空気調和機内の冷媒は、圧縮機1で圧縮さ
れて高温高圧の冷媒蒸気となり、凝縮器2で冷却されて
凝縮液化し、膨張弁3で膨張して室内空気温度よりも低
い温度の低圧の冷媒気液二相状態となり、蒸発器5にて
室内空気から熱を奪い蒸発し、再び圧縮機1に戻るサイ
クルで循環する。図1に示すように、室内機の配管構成
要素としては、膨張弁3、L字形の接続配管(以下L字
配管という)11、気液二相流の流動様式を制御するた
めのオリフィス27及び防塵網26を内蔵した配管1
2、冷媒を蒸発器5の複数の伝熱管に分配する分配器
4、分配された冷媒が通る複数の分配管14、蒸発器5
である第2熱交換器がある。
The refrigerant in the air conditioner is compressed by the compressor 1 to become high-temperature and high-pressure refrigerant vapor, cooled by the condenser 2 to be condensed and liquefied, expanded by the expansion valve 3 and expanded at a temperature lower than the room air temperature. The low-pressure refrigerant is in a gas-liquid two-phase state, takes heat from the indoor air in the evaporator 5 to evaporate, and circulates in the cycle of returning to the compressor 1 again. As shown in FIG. 1, as the piping components of the indoor unit, an expansion valve 3, an L-shaped connecting pipe (hereinafter referred to as L-shaped pipe) 11, an orifice 27 for controlling the flow mode of gas-liquid two-phase flow, and Piping 1 with built-in dustproof net 26
2, a distributor 4 that distributes the refrigerant to a plurality of heat transfer tubes of the evaporator 5, a plurality of distribution pipes 14 through which the distributed refrigerant passes, an evaporator 5
There is a second heat exchanger that is

【0033】図2は、室内機内の膨張弁から分配器まで
の配管構成を示す図である。膨張弁3は、膨張弁本体2
2に接続されている膨張弁第1熱交換器側配管23の配
管軸線が重力方向とほぼ直交するように、かつ膨張弁本
体22に接続されている膨張弁分配器側配管24の配管
軸線が重力方向とほぼ平行になるように、配置されてい
る。本実施例における膨張弁第1熱交換器側配管23の
直線部長さは約150mmである。また膨張弁第1熱交換
器側配管23に接続する防塵網26を内蔵した配管25
も、その配管軸が重力方向とほぼ直交するように、つま
り膨張弁第1熱交換器側配管23の軸線に一致させて配
置されている。この結果、膨張弁の流入側の冷媒状態が
単相流の場合はもとより、気液二相流の場合であっても
水平流として流入するため、流動様式は気相と液相とが
それぞれ連続した流れである層状流や波状流が主流とな
るため、プラグ流等の流動様式に起因する異音である冷
媒流動音の発生を防ぐことができる。
FIG. 2 is a diagram showing the piping structure from the expansion valve to the distributor in the indoor unit. The expansion valve 3 is the expansion valve body 2
2 so that the pipe axis of the expansion valve first heat exchanger side pipe 23 that is connected to 2 is substantially orthogonal to the gravity direction, and the pipe axis of the expansion valve distributor side pipe 24 that is connected to the expansion valve main body 22 is It is placed so that it is almost parallel to the direction of gravity. The straight part length of the expansion valve first heat exchanger side pipe 23 in this embodiment is about 150 mm. Further, a pipe 25 having a built-in dustproof net 26 connected to the expansion valve first heat exchanger side pipe 23
Also, the pipe axis is arranged so as to be substantially orthogonal to the direction of gravity, that is, aligned with the axis of the expansion valve first heat exchanger side pipe 23. As a result, the refrigerant flows on the inflow side of the expansion valve as a horizontal flow not only when the refrigerant state is a single-phase flow but also when it is a gas-liquid two-phase flow. Since the laminar flow or the corrugated flow, which is the generated flow, becomes the main flow, it is possible to prevent the generation of the abnormal noise of the refrigerant due to the flow pattern such as the plug flow.

【0034】一方、膨張弁から流出する冷媒の流路をな
す膨張弁分配器側配管24の軸線は重力の方向に平行さ
せてあり、冷媒の流出方向は重力方向となっているた
め、膨張弁の絞りを通過した冷媒流は流れに無理のない
噴流となる。また、冷媒を第2熱交換器の伝熱管各パス
に分配する円筒状の分配器4の軸線と、分配器に流入す
る冷媒の流動様式を制御するためのオリフィス27や防
塵網26が内蔵された配管12の軸線は、同一線上にあ
り、かつ重力方向にほぼ平行になっていて、曲がり等の
形状変化がなく、冷媒の流動変化に対し、極力圧力脈動
の発生を抑える形状となっている。さらに同一配管にオ
リフィス27や防塵網26をまとめているため、配管の
コンパクト化が促進されている。
On the other hand, since the axis of the expansion valve distributor side pipe 24 forming the flow path of the refrigerant flowing out from the expansion valve is parallel to the direction of gravity, and the refrigerant flows out in the direction of gravity, the expansion valve The refrigerant flow that has passed through the restriction becomes a jet flow that does not impair the flow. In addition, the axis of the cylindrical distributor 4 that distributes the refrigerant to each path of the heat transfer tube of the second heat exchanger, the orifice 27 for controlling the flow mode of the refrigerant flowing into the distributor, and the dustproof net 26 are incorporated. The axis of the pipe 12 is on the same line and is substantially parallel to the direction of gravity, and there is no change in shape such as bending, and it has a shape that suppresses the occurrence of pressure pulsation as much as possible against changes in the flow of the refrigerant. . Further, since the orifice 27 and the dustproof net 26 are put together in the same pipe, downsizing of the pipe is promoted.

【0035】また膨張弁分配器側配管24の下端と配管
12の下部とを接続する接続配管には、一方の軸線を膨
張弁分配器側配管24の軸線に一致させ、他方の軸線を
配管12の軸線に直交させたL字配管11が用いられ、
曲がりによる形状変化は一つとなっている。なお、本実
施例では、前記膨張弁第1熱交換器側配管23の軸線と
L字配管11の水平部軸線の垂直距離は70〜80mmで
あり、L字配管11の水平部軸線と分配器下端の垂直距
離は約80mmであった。L字配管11の角部は丸みを帯
びた曲がりとなっており、曲がり部の曲率半径は30mm
となっている。この曲がり部の壁面には膨張弁本体22
内の絞りを通過した冷媒噴流が直接衝突する。このとき
噴流の速度分布は発達過程にあり、噴流中心部が突出し
た速度分布を持つ流れとなっている。さらに絞りを通過
した冷媒は気液二相流となっているが、噴流の中心部は
液が多い流れとなっており、その結果、運動量の大きい
流れが壁面に衝突することになる。この衝突が圧力脈動
の発生の原因となり、また圧力脈動を助長する方向とな
る。
The connecting pipe connecting the lower end of the expansion valve distributor side pipe 24 and the lower part of the pipe 12 has one axis aligned with the axis of the expansion valve distributor side pipe 24 and the other axis. L-shaped pipe 11 orthogonal to the axis of is used,
There is only one change in shape due to bending. In this embodiment, the vertical distance between the axis of the expansion valve first heat exchanger side pipe 23 and the horizontal axis of the L-shaped pipe 11 is 70 to 80 mm, and the horizontal axis of the L-shaped pipe 11 and the distributor. The vertical distance of the lower end was about 80 mm. The corner of the L-shaped pipe 11 has a rounded bend, and the radius of curvature of the bend is 30 mm.
Has become. The expansion valve main body 22 is attached to the wall surface of this bent portion.
The refrigerant jets passing through the inner throttle directly collide with each other. At this time, the velocity distribution of the jet is in the process of development, and the center of the jet has a protruding velocity distribution. Further, the refrigerant that has passed through the throttle has a gas-liquid two-phase flow, but the central part of the jet flow is a liquid-rich flow, and as a result, a flow with a large momentum collides with the wall surface. This collision causes the generation of pressure pulsation, and also promotes the pressure pulsation.

【0036】この解決策として、曲がり部の曲率半径R
を大きくする方法と、管内流速を低減させる方法とがあ
る。曲がり部の曲率半径Rは、管内径が約11mmのと
き、30mm以上にするとよい。またL字配管11と配
管12との接続部では、冷媒は配管12の内壁に衝突し
て流れ方向を90度変化させるが、この時は流れの速度
分布は発達しており突出した速度分布になっておらず、
また圧力損失により流速は減速している。このため、衝
突による影響は小さい。また、衝突により水平管で気相
と液相とに分離した流れが混合されるため、分配器での
冷媒の分配性能の向上が図れる。従って、図2に示す配
管形状により管内の圧力脈動の発生・助長が抑制され、
かつ配管振動も低減され、その結果冷媒流動音が低減さ
れる。
As a solution to this, the radius of curvature R of the bent portion is
And a method of reducing the flow velocity in the pipe. The radius of curvature R of the bent portion may be 30 mm or more when the inner diameter of the pipe is about 11 mm. At the connecting portion between the L-shaped pipe 11 and the pipe 12, the refrigerant collides with the inner wall of the pipe 12 and changes the flow direction by 90 degrees, but at this time, the flow velocity distribution has developed and has a protruding velocity distribution. Is not
Moreover, the flow velocity is decelerated due to the pressure loss. Therefore, the impact of the collision is small. Further, since the flows separated into the gas phase and the liquid phase are mixed in the horizontal tube due to the collision, the distribution performance of the refrigerant in the distributor can be improved. Therefore, the pipe shape shown in FIG. 2 suppresses the generation and promotion of pressure pulsation in the pipe,
In addition, pipe vibration is reduced, and as a result, refrigerant flow noise is reduced.

【0037】図3は、本発明の第2の実施例である冷暖
房両用空気調和機の構成とその冷房運転時の冷媒の流れ
を示す図である。空気調和機の構成として図1の冷房用
空気調和機と異なるのは、配管19と配管15を四方弁
8を介して接続し、四方弁8の他の接続口に圧縮機1の
吸い込み口と吐出口が接続されている点である。他の構
成は図1と同じであるので、同じ機能の要素に図1と同
一の符号を付し、説明は省略する。この四方弁を切り替
ることにより圧縮機1から吐出される冷媒が、配管15
に流れたり、配管19に流れたりするように構成されて
いる。なお、本実施例においては、第1熱交換器2は、
冷房時には凝縮器、暖房時には蒸発器として使用され、
第2熱交換器5は逆に、冷房時には蒸発器、暖房時には
凝縮器として使用される。
FIG. 3 is a diagram showing the structure of an air conditioner for both heating and cooling according to a second embodiment of the present invention and the flow of the refrigerant during the cooling operation. The configuration of the air conditioner is different from that of the cooling air conditioner of FIG. 1 in that the pipe 19 and the pipe 15 are connected via the four-way valve 8, and the suction port of the compressor 1 is connected to the other connection port of the four-way valve 8. That is, the discharge port is connected. Since other configurations are the same as those in FIG. 1, the elements having the same functions are designated by the same reference numerals as those in FIG. 1, and the description thereof is omitted. The refrigerant discharged from the compressor 1 by switching the four-way valve is
It is configured to flow to the pipe or to the pipe 19. In the present embodiment, the first heat exchanger 2 is
Used as a condenser during cooling and as an evaporator during heating,
On the contrary, the second heat exchanger 5 is used as an evaporator during cooling and as a condenser during heating.

【0038】冷房運転の場合、図3に示される矢印のよ
うに、圧縮機1から吐出される冷媒は配管15に流れ、
図1の場合と同様のサイクルとなる。暖房運転の場合、
四方弁8の出入口が切り替えられ、圧縮機1から吐出さ
れる冷媒が配管19に流れる。従って、暖房運転時用に
膨張弁の絞りの目詰まり防止用の防塵網を、膨張弁3の
分配器側に取り付ける必要がある。この防塵網は流れ制
御用のオリフィスが内蔵されている配管12内に一緒に
内蔵することにより、省スペース化が図れる。また、配
管形状は図1の場合と同じで変更されないため、配管振
動、冷媒流動音を抑制する効果は、第1の実施例の場合
と同じである。
In the cooling operation, the refrigerant discharged from the compressor 1 flows into the pipe 15 as shown by the arrow in FIG.
The cycle is the same as in the case of FIG. In heating operation,
The inlet and outlet of the four-way valve 8 are switched, and the refrigerant discharged from the compressor 1 flows into the pipe 19. Therefore, it is necessary to attach a dustproof mesh for preventing clogging of the expansion valve throttle to the distributor side of the expansion valve 3 during heating operation. Space saving can be achieved by incorporating this dustproof net together in the pipe 12 in which an orifice for flow control is incorporated. Further, since the pipe shape is the same as in the case of FIG. 1 and is not changed, the effect of suppressing the pipe vibration and the refrigerant flow noise is the same as that of the first embodiment.

【0039】図4および図5は、それぞれ第3及び第4
の実施例である省冷媒対応の空気調和機の構成とその冷
房運転時の冷媒の流れを示している。
FIGS. 4 and 5 show the third and fourth parts, respectively.
2 shows the configuration of the refrigerant-saving air conditioner that is the embodiment of the present invention and the flow of the refrigerant during the cooling operation.

【0040】図4に示す第3の実施例である冷房用空気
調和機では、凝縮器である第1熱交換器2と膨張弁3と
の間の配管にキャピラリーチューブ13を設けた点が前
記第1の実施例と相違し、他の構成は第1の実施例と同
じである。本実施例では、凝縮器で凝縮液化された冷媒
は、キャピラリーチューブ13で減圧され、気液二相流
となって膨張弁3に流入する。
In the cooling air conditioner of the third embodiment shown in FIG. 4, the capillary tube 13 is provided in the pipe between the first heat exchanger 2 which is the condenser and the expansion valve 3. Different from the first embodiment, the other structure is the same as that of the first embodiment. In the present embodiment, the refrigerant condensed and liquefied in the condenser is decompressed by the capillary tube 13 and flows into the expansion valve 3 as a gas-liquid two-phase flow.

【0041】図5に示す第4の実施例である冷暖房両用
空気調和機では、第1熱交換器2と膨張弁3との間の配
管にキャピラリーチューブ13を設けた点が前記第2の
実施例と相違し、他の構成は第2の実施例と同じであ
る。本実施例では、冷房運転時に第1熱交換器で凝縮液
化された冷媒は、キャピラリーチューブ13で減圧さ
れ、気液二相流となって膨張弁3に流入する。
In the air conditioner for both heating and cooling according to the fourth embodiment shown in FIG. 5, the capillary tube 13 is provided in the pipe between the first heat exchanger 2 and the expansion valve 3 to achieve the second embodiment. Different from the example, the other configuration is the same as that of the second embodiment. In this embodiment, the refrigerant condensed and liquefied in the first heat exchanger during the cooling operation is depressurized by the capillary tube 13 and becomes a gas-liquid two-phase flow and flows into the expansion valve 3.

【0042】その結果、上記図4,5記載の空気調和機
では、図1、図2記載の空気調和機で通常液冷媒のみが
流れる配管16に、気液二相流が流れることで、システ
ムの所要冷媒量が低減されている。しかし、これら図
4,5記載の空気調和機では、膨張弁3の入口は常に気
液二相流であり、圧力脈動を伴う流れである。そこで、
このような場合においても、図2に示す配管形状を用い
ることで、圧力脈動の発生・助長が抑制され、結果とし
て配管振動、冷媒流動音が低減される。
As a result, in the air conditioner shown in FIGS. 4 and 5, the gas-liquid two-phase flow flows in the pipe 16 through which only the normal liquid refrigerant flows in the air conditioner shown in FIGS. The required amount of refrigerant is reduced. However, in the air conditioners shown in FIGS. 4 and 5, the inlet of the expansion valve 3 is always a gas-liquid two-phase flow, which is a flow accompanied by pressure pulsation. Therefore,
Even in such a case, by using the pipe shape shown in FIG. 2, the generation and promotion of pressure pulsation are suppressed, and as a result, pipe vibration and refrigerant flow noise are reduced.

【0043】図6から図8に、膨張弁から分配器までの
配管形状の別の実施例を示す。図6は図2におけるL字
配管11の代わりに接続配管としてU字配管28を用い
た例を示し、膨張弁分配器側配管24に最も近い曲がり
部の曲率半径を前記のように設定して配管振動、冷媒流
動音に対応したものである。
6 to 8 show another embodiment of the pipe shape from the expansion valve to the distributor. FIG. 6 shows an example in which a U-shaped pipe 28 is used as a connecting pipe instead of the L-shaped pipe 11 in FIG. 2, and the radius of curvature of the bent portion closest to the expansion valve distributor side pipe 24 is set as described above. It corresponds to pipe vibration and refrigerant flow noise.

【0044】図7は図2におけるL字配管11の代わり
に膨張弁分配器側配管24と同じ配管内径の接続配管3
6を用いた例を示し、冷媒流路の断面積変化を無くし、
断面積変化による冷媒流動への影響を無くしたものであ
る。
FIG. 7 shows a connecting pipe 3 having the same pipe inner diameter as the expansion valve distributor side pipe 24 instead of the L-shaped pipe 11 in FIG.
6 shows an example in which the change in the cross-sectional area of the refrigerant channel is eliminated,
The effect on the refrigerant flow due to the change in cross-sectional area is eliminated.

【0045】図8は図2におけるL字配管11の代わり
に接続配管として半円弧管29を用いた例を示し、半円
弧管29の両端の軸線を膨張弁分配器側配管24の軸線
と配管12の軸線にそれぞれ一致させて配置してある。
この接続配管によれば、膨張弁3と分配器4の間の冷媒
流路の曲折を大きな半径の曲がり部一つにでき、垂直下
降流から垂直上昇流にスムーズに流れが移行できる。ま
た曲がり部の曲率半径を大きくとれるため、配管形状に
よる冷媒流動への影響が小さくなる。
FIG. 8 shows an example in which a semi-circular pipe 29 is used as a connecting pipe in place of the L-shaped pipe 11 in FIG. 2, and the axes of both ends of the semi-circular pipe 29 are connected to the axis of the expansion valve distributor side pipe 24 and the pipe. They are arranged so as to coincide with the 12 axes.
According to this connecting pipe, the bending of the refrigerant flow path between the expansion valve 3 and the distributor 4 can be made into a single bent portion having a large radius, and the flow can smoothly transition from the vertical downward flow to the vertical upward flow. Further, since the radius of curvature of the bent portion can be increased, the influence of the pipe shape on the refrigerant flow is reduced.

【0046】図9は前記第1乃至第4の実施例におい
て、分配管14と熱交換器入口管30との間に分配継手
管31を設けた変更例を示す。分配管14、分配継手管
31そして熱交換器入口管30の順に段階的に配管内断
面積が拡大している。このとき熱交換器入口管30に内
径6.8mmの管、分配継手管31に内径4.95mm及び
4.6mmの管、分配管14に内径2.36mm及び2.7
6mmの管を用いた。この結果、第2熱交換器5に流入す
るときの流速が減速されると共に、流れが急激に拡大す
るのが防がれ、拡大部での渦の発生、ひいては圧力脈動
の発生が低減された。またこの分配継手管31は圧力損
失が小さいことが望ましく、サイクル性能上問題ないこ
とが必要である。またこの分配継手管31を設けること
により、膨張弁3から分配器4までの配管の配管構造に
余裕ができるため、配管振動面においても配管構造を柔
にすることができ、第2熱交換器に伝播するはずの振動
エネルギーを膨張弁3から分配器4までの配管を揺らす
ことで発散させることができた。
FIG. 9 shows a modification in which a distribution joint pipe 31 is provided between the distribution pipe 14 and the heat exchanger inlet pipe 30 in the first to fourth embodiments. The distribution pipe 14, the distribution joint pipe 31, and the heat exchanger inlet pipe 30 gradually increase in cross-sectional area in the pipe. At this time, the heat exchanger inlet pipe 30 has an inner diameter of 6.8 mm, the distribution joint pipe 31 has inner diameters of 4.95 mm and 4.6 mm, and the distribution pipe 14 has inner diameters of 2.36 mm and 2.7.
A 6 mm tube was used. As a result, the flow velocity when flowing into the second heat exchanger 5 is reduced, the flow is prevented from expanding rapidly, and the occurrence of vortices in the expanded portion and the occurrence of pressure pulsation are reduced. . Further, it is desirable that the distribution joint pipe 31 has a small pressure loss, and that there is no problem in cycle performance. Further, since the distribution joint pipe 31 is provided, the piping structure of the piping from the expansion valve 3 to the distributor 4 can be afforded, so that the piping structure can be made flexible even in the vibration plane of the pipe, and the second heat exchanger can be provided. It was possible to diverge the vibrational energy that should propagate to the device by shaking the pipe from the expansion valve 3 to the distributor 4.

【0047】図10は図9に示すように、分配管14と
熱交換器入口管30の間に分配継手管31を設けた場合
の配管内断面積の変化率の一例を示している。熱交換器
入口管30の配管内断面積をA3、分配継手管31の配
管内断面積をA2、分配管14の配管内断面積をA1と
すると、上記配管径の場合、分配管14と分配継手管3
1との配管内断面積比A2/A1は4.40〜2.78
であり、また分配継手管31と熱交換器入口管30との
配管内断面積比A3/A2は2.19〜1.89とな
る。
FIG. 10 shows an example of the rate of change in the cross-sectional area of the pipe when the distribution joint pipe 31 is provided between the distribution pipe 14 and the heat exchanger inlet pipe 30 as shown in FIG. Assuming that the pipe inner cross-sectional area of the heat exchanger inlet pipe 30 is A3, the pipe inner cross-sectional area of the distribution joint pipe 31 is A2, and the pipe inner cross-sectional area of the distribution pipe 14 is A1, the distribution pipe 14 and the distribution pipe 14 are distributed in the case of the above pipe diameter. Joint pipe 3
The ratio A2 / A1 of the cross-sectional area in the pipe with 1. is 4.40 to 2.78
Further, the in-pipe sectional area ratio A3 / A2 between the distribution joint pipe 31 and the heat exchanger inlet pipe 30 is 2.19 to 1.89.

【0048】図11は、前記第1乃至第4の各実施例に
おいて、分配器4と熱交換器入口管30との間の分配管
14が、熱交換器入口管30側を大径側、分配器4側を
小径側とするテーパ管となっており、第2熱交換器に向
かって徐々に配管内断面積が拡大する形状をなしている
例を示す。この場合も、図9に示した例の場合と同様、
冷媒流動の急激な変化が軽減され、圧力脈動、内径拡大
部での渦の発生が低減された。
FIG. 11 shows that in each of the first to fourth embodiments, the distribution pipe 14 between the distributor 4 and the heat exchanger inlet pipe 30 has a large diameter side on the heat exchanger inlet pipe 30 side. An example is shown in which the distributor 4 side is a taper tube having a small diameter side, and the pipe cross-sectional area gradually increases toward the second heat exchanger. Also in this case, as in the case of the example shown in FIG.
The sudden change of the refrigerant flow was reduced, and the pressure pulsation and the generation of vortices in the enlarged inner diameter area were reduced.

【0049】図12は、前記第1乃至第4の各実施例に
おいて、分配器4と熱交換器入口管30との間の分配管
14に、可撓性のビニール管を用いた例を示す。これに
より膨張弁3から分配器4に至る配管で発生した配管振
動が第2熱交換器5に伝播するのが防がれ(振動絶
縁)、第2熱交換器5の共振による騒音の発生が抑制さ
れた。
FIG. 12 shows an example in which a flexible vinyl pipe is used for the distribution pipe 14 between the distributor 4 and the heat exchanger inlet pipe 30 in each of the first to fourth embodiments. . This prevents pipe vibration generated in the pipe from the expansion valve 3 to the distributor 4 from propagating to the second heat exchanger 5 (vibration isolation), and causes noise due to resonance of the second heat exchanger 5. Suppressed

【0050】図13は、前記第1乃至第4の各実施例に
おいて、熱交換器出入口配管群34の周囲にブチルゴ
ム、ブチルシートやパテなどの制振材35を取り付けた
例を示す。この例では、熱交換器出入口配管群34の周
囲を挟むようにしたサンドイッチ構造で制振材35が取
り付けられるため、取り付けが容易で作業性がよい。ま
た熱交換器出入口配管群34に制振材を取り付けたこと
により、振動の面からは、実質的には配管の肉厚を増
し、質量を増加させたことと等価であり、また制振材3
5の粘性効果によりこの部分で配管振動が吸収され、振
動エネルギーが低減されるため、第2熱交換器5に伝播
する振動エネルギーは小さくなり、その結果第2熱交換
器5の共振による騒音発生を低減させることができた。
FIG. 13 shows an example in which a damping material 35 such as butyl rubber, butyl sheet or putty is attached around the heat exchanger inlet / outlet piping group 34 in each of the first to fourth embodiments. In this example, since the damping material 35 is attached with a sandwich structure in which the periphery of the heat exchanger inlet / outlet pipe group 34 is sandwiched, the attachment is easy and the workability is good. Further, by attaching a damping material to the heat exchanger inlet / outlet piping group 34, in terms of vibration, it is substantially equivalent to increasing the wall thickness of the piping and increasing the mass. Three
Due to the viscous effect of 5, the pipe vibration is absorbed in this portion, and the vibration energy is reduced. Therefore, the vibration energy propagating to the second heat exchanger 5 becomes small, and as a result, noise is generated due to resonance of the second heat exchanger 5. Could be reduced.

【0051】図14は、前記第1乃至第4の各実施例に
おいて、室内機内に設置される膨張弁本体22の第1熱
交換器側に接続された防塵網内蔵配管25から、膨張弁
本体22を含み、分配器4までの配管及び分配器4の周
囲に制振材35を取り付けた例である。制振材35によ
り、この部分で発生している配管振動の低減を図ったも
のである。制振材35を取り付けた結果、室内機に設置
される膨張弁3から第2熱交換器分配器側入口までの配
管内で冷媒流動により発生する圧力脈動を低減させるこ
とができ、またこの圧力脈動が原因となって生じる配管
振動を低減することができた。さらに、振動、騒音を助
長しやすい熱交換器に伝播する圧力脈動と配管振動をも
低減することができた。従って、室内機において冷媒が
流れることによって発生する冷媒流動音が低減され、ま
た間欠流動音などの異音が除去されて、静音化が促進さ
れ、快適性が向上した。
FIG. 14 shows that in each of the first to fourth embodiments, the expansion valve main body 22 is connected to the first heat exchanger side of the expansion valve main body 22 installed in the indoor unit, and the expansion valve main body 22 is connected to the expansion valve main body 22. This is an example in which the damping material 35 is attached to the pipes up to the distributor 4 and around the distributor 4 including 22. The vibration damping material 35 is intended to reduce the pipe vibration generated in this portion. As a result of attaching the damping material 35, it is possible to reduce the pressure pulsation generated by the refrigerant flow in the pipe from the expansion valve 3 installed in the indoor unit to the second heat exchanger distributor side inlet, and this pressure It was possible to reduce pipe vibration caused by pulsation. Furthermore, it was possible to reduce pressure pulsation and pipe vibration propagating to the heat exchanger, which easily promotes vibration and noise. Therefore, the refrigerant flow noise generated by the refrigerant flowing in the indoor unit is reduced, and the abnormal noise such as the intermittent flow noise is removed, the noise reduction is promoted, and the comfort is improved.

【0052】上述のように、上記実施例によれば、空気
調和機の室内機に配置されている膨張弁から熱交換器ま
での配管内を流れる冷媒気液二相流の流動状態が改善さ
れ、気液二相流に起因する圧力脈動の発生・助長を抑制
することができるため、熱交換器での共鳴をも防ぐこと
ができる。さらに、前記圧力脈動により誘発される配管
振動をも制振材を用いることで低減させ、また熱交換器
への配管振動の伝播も抑制されるため熱交換器が共振を
起こすこともない。
As described above, according to the above embodiment, the flow state of the refrigerant gas-liquid two-phase flow flowing in the pipe from the expansion valve arranged in the indoor unit of the air conditioner to the heat exchanger is improved. Since the generation and promotion of pressure pulsation due to the gas-liquid two-phase flow can be suppressed, resonance in the heat exchanger can also be prevented. Further, the pipe vibration induced by the pressure pulsation is also reduced by using the damping material, and the propagation of the pipe vibration to the heat exchanger is suppressed, so that the heat exchanger does not resonate.

【0053】[0053]

【発明の効果】冷媒流動音のレベルが低減され、間欠流
動音の発生をも防ぐことができ、快適性が向上する。
EFFECT OF THE INVENTION The level of refrigerant flow noise is reduced, the occurrence of intermittent flow noise can be prevented, and comfort is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空気調和機の第1の実施例の要部構成
を示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of a main part of a first embodiment of an air conditioner of the present invention.

【図2】図1に示す実施例の部分の詳細を示す正面図で
ある。
FIG. 2 is a front view showing details of a portion of the embodiment shown in FIG.

【図3】本発明の空気調和機の第2の実施例の要部構成
を示す模式図である。
FIG. 3 is a schematic diagram showing a main configuration of a second embodiment of the air conditioner of the present invention.

【図4】本発明の空気調和機の第3の実施例の要部構成
を示す模式図である。
FIG. 4 is a schematic diagram showing a configuration of a main part of a third embodiment of the air conditioner of the present invention.

【図5】本発明の空気調和機の第4の実施例の要部構成
を示す模式図である。
FIG. 5 is a schematic diagram showing a main configuration of a fourth embodiment of the air conditioner of the present invention.

【図6】本発明の第1乃至第4の実施例の部分の変更例
を示す正面図である。
FIG. 6 is a front view showing a modified example of the portions of the first to fourth embodiments of the present invention.

【図7】本発明の第1乃至第4の実施例の部分の他の変
更例を示す正面図である。
FIG. 7 is a front view showing another modification of the portions of the first to fourth embodiments of the present invention.

【図8】本発明の第1乃至第4の実施例の部分の更に他
の変更例を示す正面図である。
FIG. 8 is a front view showing still another modification of the portions of the first to fourth embodiments of the present invention.

【図9】本発明の第1乃至第4の実施例において、分配
管と熱交換器入口管との間に分配継手管を設けた例を示
す部分斜視図である。
FIG. 9 is a partial perspective view showing an example in which a distribution joint pipe is provided between a distribution pipe and a heat exchanger inlet pipe in the first to fourth embodiments of the present invention.

【図10】図9に示す分配管と分配継手管と熱交換器入
口管の各断面積の関係を模式的に示す断面図である。
FIG. 10 is a cross-sectional view that schematically shows the relationship between the cross-sectional areas of the distribution pipe, the distribution joint pipe, and the heat exchanger inlet pipe shown in FIG.

【図11】本発明の第1乃至第4の実施例において、分
配管にテーパ管を用いた例を示す部分斜視図である。
FIG. 11 is a partial perspective view showing an example of using a tapered pipe as a distribution pipe in the first to fourth embodiments of the present invention.

【図12】本発明の第1乃至第4の実施例において、分
配管に可撓性部材を用いた例を示す部分斜視図である。
FIG. 12 is a partial perspective view showing an example in which a flexible member is used for the distribution pipe in the first to fourth embodiments of the present invention.

【図13】本発明の第1乃至第4の実施例において、熱
交換器出入口配管群に制振材を取り付けた状態を示す斜
視図である。
FIG. 13 is a perspective view showing a state in which a damping material is attached to the heat exchanger inlet / outlet pipe group in the first to fourth embodiments of the present invention.

【図14】本発明の第1の実施例において、膨張弁前後
配管に制振材を取り付けた状態を示す正面図である。
FIG. 14 is a front view showing a state in which a damping material is attached to the expansion valve front-rear piping in the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 第1熱交換器
(凝縮器) 3 膨張弁 4 分配器 5 第2熱交換器(蒸発器) 8 四方弁 9 室外ファン 10 室内ファン 11,36 接続配管(L字配管) 12 配管 13 キャピラリーチューブ 14 分配管 15,16,17,19 配管 20 室外機 21 室内機 22 膨張弁本体 23 膨張弁第1熱交換器側配管 24 膨張弁分配
器側配管 25 防塵網内蔵配管 26 防塵網 27 オリフィス 28 U字管 29 半円弧管 30 熱交換器入
口配管 31 分配継手管 34 熱交換器出
入口配管群 35 制振材 A1 分配管通路
断面積 A2 分配継手管通路断面積 A3 熱交換器入
口配管通路断面積 R 曲がり管曲率半径。
1 Compressor 2 1st heat exchanger (condenser) 3 Expansion valve 4 Distributor 5 2nd heat exchanger (evaporator) 8 Four-way valve 9 Outdoor fan 10 Indoor fan 11,36 Connection pipe (L-shaped pipe) 12 Pipe 13 Capillary Tube 14 Distribution Pipe 15, 16, 17, 19 Pipe 20 Outdoor Unit 21 Indoor Unit 22 Expansion Valve Main Body 23 Expansion Valve First Heat Exchanger Side Pipe 24 Expansion Valve Distributor Side Pipe 25 Dustproof Net Built-in Pipe 26 Dustproof Mesh 27 Orifice 28 U-shaped pipe 29 Half-arc pipe 30 Heat exchanger inlet pipe 31 Distribution joint pipe 34 Heat exchanger inlet / outlet pipe group 35 Damper A1 Minute pipe passage cross-sectional area A2 Distribution joint pipe passage cross-section A3 Heat exchanger inlet pipe passage Cross-sectional area R Curved pipe radius of curvature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 譲治 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 下出 新一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 佐藤 太一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 安田 弘 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 福島 敏彦 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 佐々木 俊治 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 勝又 直登 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 寺田 浩清 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Joji Okamoto 390 Muramatsu, Shimizu-shi, Shizuoka Hitachi, Ltd. Shimizu Plant (72) Inventor Shinichi Shimoide 502, Jinmachi, Tsuchiura-shi, Ibaraki Nitate Manufacturing Co., Ltd. Inside the Mechanical Research Laboratory (72) Taichi Sato, 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Prefecture Hiritsu Seisakusho Co., Ltd. 72) Inventor Toshihiko Fukushima 502 Jinrachicho, Tsuchiura-shi, Ibaraki, Institute of Mechanical Research, Hiritsu Seisakusho Co., Ltd. (72) Shunji Sasaki, 390 Muramatsu, Shimizu, Shizuoka Hitachi, Ltd. 390 Muramatsu, Shimizu City, Shizuoka Prefecture Inside the Shimizu Plant, Hitachi, Ltd. (72) Inventor Hiroki Terada Kiyo Shizuoka Ichimura pine 390 address Hitachi Seisakusho Shimizu in the factory

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも圧縮機、第1熱交換器、膨張
弁、分配器、第2熱交換器を配管で接続して構成され、
圧縮機、第1熱交換器、膨張弁、分配器、第2熱交換器
そして再び圧縮機の順で冷媒を循環させ、第1熱交換器
で凝縮液化させた冷媒を第2熱交換器で蒸発させて冷却
を行う冷凍サイクルで構成される空気調和機において、
圧縮機から第1熱交換器までを室外機に配置し、膨張弁
から第2熱交換器までを室内機に配置し、室内機の前記
膨張弁から第2熱交換器に至る配管において、膨張弁入
り口に接続される膨張弁第1熱交換器側配管軸を重力方
向にほぼ直交するように、また膨張弁出口に接続される
膨張弁分配器側配管軸を重力方向とほぼ平行になるよう
に膨張弁を配置し、また膨張弁から第2熱交換器に至る
冷媒配管上に設けられている分配器入り口に接続される
オリフィスを内蔵した配管をその配管軸線が重力方向と
ほぼ一致するように配置し、前記オリフィスを内蔵した
配管と膨張弁出口に接続された膨張弁分配器側配管とを
少なくとも一つの曲がりのある配管で接続し、また分配
器と第2熱交換器とは複数の配管で接続したことを特徴
とする空気調和機。
1. At least a compressor, a first heat exchanger, an expansion valve, a distributor, and a second heat exchanger are connected by piping,
The refrigerant is circulated in the order of the compressor, the first heat exchanger, the expansion valve, the distributor, the second heat exchanger, and then the compressor again, and the refrigerant condensed and liquefied by the first heat exchanger is transferred by the second heat exchanger. In an air conditioner composed of a refrigeration cycle that evaporates and cools,
The compressor to the first heat exchanger are arranged in the outdoor unit, the expansion valve to the second heat exchanger are arranged in the indoor unit, and the expansion from the expansion valve of the indoor unit to the second heat exchanger is expanded. The first heat exchanger side piping axis of the expansion valve connected to the valve inlet should be substantially orthogonal to the direction of gravity, and the expansion valve distributor side piping axis connected to the outlet of the expansion valve should be substantially parallel to the direction of gravity. An expansion valve is installed in the pipe, and a pipe having an orifice connected to the distributor inlet provided on the refrigerant pipe extending from the expansion valve to the second heat exchanger is installed so that its pipe axis is substantially aligned with the gravity direction. And the expansion valve distributor-side pipe connected to the expansion valve outlet is connected by at least one bent pipe, and the distributor and the second heat exchanger are connected to each other. An air conditioner characterized by being connected by piping
【請求項2】 少なくとも圧縮機、四方弁、第1熱交換
器、膨張弁、分配器、第2熱交換器を配管で接続して構
成し、冷媒を圧縮機から順次四方弁、第1熱交換器、膨
張弁、分配器、第2熱交換器を経て、再び四方弁を介し
て圧縮機に戻す順サイクルで循環させる時に、第1熱交
換器を凝縮器としてかつ第2熱交換器を蒸発器として機
能させ、また冷媒を順サイクルと逆方向の逆サイクルで
循環させる時には、第2熱交換器を凝縮器としてかつ第
1熱交換器を蒸発器として機能させる冷暖房サイクルで
構成されている空気調和機において、圧縮機から第1熱
交換器までを室外機に配置し、膨張弁から第2熱交換器
までを室内機に配置し、室内機の前記膨張弁から第2熱
交換器に至る配管において、膨張弁の第2熱交換器側に
接続される膨張弁第1熱交換器側配管の管軸が重力方向
にほぼ直交するように、また膨張弁の分配器側に接続さ
れる膨張弁分配器側配管の管軸が重力方向とほぼ平行に
なるように膨張弁を配置し、また前記分配器の膨張弁側
に接続されるオリフィスと防塵網を内蔵した配管をその
配管軸線が重力の方向とほぼ平行になるように配置し、
前記オリフィス・防塵網内蔵配管と膨張弁分配器側配管
とを少なくとも一つの曲がりのある配管で接続し、また
分配器と第2熱交換器とは複数の配管で接続したことを
特徴とする空気調和機。
2. At least a compressor, a four-way valve, a first heat exchanger, an expansion valve, a distributor, and a second heat exchanger are connected by piping, and refrigerant is sequentially supplied from the compressor to the four-way valve and the first heat. When the first heat exchanger is used as the condenser and the second heat exchanger is circulated in the forward cycle of passing through the exchanger, the expansion valve, the distributor, and the second heat exchanger and then back to the compressor through the four-way valve. When the refrigerant functions as an evaporator, and when the refrigerant is circulated in the reverse cycle of the forward cycle and the reverse direction, the cooling and heating cycle is configured so that the second heat exchanger functions as the condenser and the first heat exchanger functions as the evaporator. In the air conditioner, the compressor to the first heat exchanger are arranged in the outdoor unit, the expansion valve to the second heat exchanger are arranged in the indoor unit, and the expansion valve of the indoor unit is arranged in the second heat exchanger. In the leading pipe, the expansion valve first connected to the second heat exchanger side of the expansion valve 1 Expansion so that the pipe axis of the heat exchanger side pipe is almost orthogonal to the direction of gravity, and that the pipe axis of the expansion valve distributor side pipe connected to the distributor side of the expansion valve is almost parallel to the direction of gravity A valve is arranged, and a pipe having an orifice connected to the expansion valve side of the distributor and a dustproof net is arranged so that its pipe axis is substantially parallel to the direction of gravity,
The air characterized in that the orifice / dust-proof net built-in pipe and the expansion valve distributor side pipe are connected by at least one bent pipe, and the distributor and the second heat exchanger are connected by a plurality of pipes. Harmony machine.
【請求項3】 少なくとも圧縮機、第1熱交換器、減圧
機構、膨張弁、分配器、第2熱交換器を配管で接続して
形成され、圧縮機、第1熱交換器、減圧機構、膨張弁、
分配器、第2熱交換器そして再び圧縮機の順で冷媒を循
環させる冷凍サイクルを構成する空気調和機において、
圧縮機から減圧機構までを室外機に配置し、膨張弁から
第2熱交換器までを室内機に配置し、室内機の前記膨張
弁から第2熱交換器に至る配管において、膨張弁上流側
に接続される膨張弁第1熱交換器側配管の管軸が重力方
向にほぼ直交するように、また膨張弁下流側に接続され
る膨張弁分配器側配管の管軸が重力方向とほぼ平行にな
るように膨張弁を配置し、また分配器と第2熱交換器と
を複数の配管で接続したことを特徴とする空気調和機。
3. A compressor, a first heat exchanger, a pressure reducing mechanism, which is formed by connecting at least a compressor, a first heat exchanger, a pressure reducing mechanism, an expansion valve, a distributor, and a second heat exchanger with a pipe. Expansion valve,
In an air conditioner that constitutes a refrigeration cycle in which the refrigerant is circulated in the order of the distributor, the second heat exchanger, and the compressor again,
The compressor to the decompression mechanism are arranged in the outdoor unit, the expansion valve to the second heat exchanger are arranged in the indoor unit, and in the pipe from the expansion valve to the second heat exchanger in the indoor unit, the expansion valve upstream side So that the pipe axis of the expansion valve first heat exchanger side pipe connected to the is substantially orthogonal to the gravity direction, and the pipe axis of the expansion valve distributor side pipe connected to the expansion valve downstream side is substantially parallel to the gravity direction. The air conditioner is characterized in that the expansion valve is arranged so as to become, and the distributor and the second heat exchanger are connected by a plurality of pipes.
【請求項4】 少なくとも圧縮機、四方弁、第1熱交換
器、減圧機構、膨張弁、分配器、第2熱交換器を配管で
接続して形成され、冷媒を圧縮機から順次四方弁、第1
熱交換器、減圧機構、膨張弁、分配器、第2熱交換器を
経て、再び四方弁を介して圧縮機に戻す順サイクルで循
環させる時に、第1熱交換器を凝縮器としてかつ第2熱
交換器を蒸発器として機能させ、また冷媒を順サイクル
と逆方向の逆サイクルで循環させる時には、第2熱交換
器を凝縮器としてかつ第1熱交換器を蒸発器として機能
させる冷暖房サイクルを構成する空気調和機において、
圧縮機から減圧機構までを室外機に配置し、膨張弁から
第2熱交換器までを室内機に配置し、室内機の前記膨張
弁から第2熱交換器に至る配管において、膨張弁の減圧
機構側に接続される膨張弁第1熱交換器側配管の管軸が
重力方向にほぼ直交するように、かつ膨張弁の分配器側
に接続される膨張弁分配器側配管の管軸が重力方向とほ
ぼ平行になるように膨張弁を配置し、また膨張弁から第
2熱交換器に至る冷媒配管上に設けられている分配器に
接続されるオリフィスと防塵網を内蔵した配管をその配
管軸線が重力方向とほぼ平行になるように配置し、前記
オリフィス・防塵網内蔵配管と膨張弁分配器側配管とを
少なくとも一つの曲がりのある配管で接続し、また分配
器と第2熱交換器とは複数の配管で接続したことを特徴
とする空気調和機。
4. A compressor, a four-way valve, a first heat exchanger, a pressure reducing mechanism, an expansion valve, a distributor, and a second heat exchanger are connected by piping to form a refrigerant. First
When the heat exchanger, the pressure reducing mechanism, the expansion valve, the distributor, and the second heat exchanger are circulated in the forward cycle of returning to the compressor via the four-way valve, the first heat exchanger is used as the condenser and the second heat exchanger is used. When the heat exchanger is made to function as an evaporator and the refrigerant is circulated in the reverse cycle of the forward cycle and the reverse direction, a cooling and heating cycle is made in which the second heat exchanger functions as the condenser and the first heat exchanger functions as the evaporator. In the constituent air conditioners,
The compressor to the decompression mechanism are arranged in the outdoor unit, the expansion valve to the second heat exchanger are arranged in the indoor unit, and the pressure reduction of the expansion valve in the pipe from the expansion valve of the indoor unit to the second heat exchanger. The pipe axis of the expansion valve first heat exchanger side pipe connected to the mechanism side is substantially orthogonal to the gravity direction, and the pipe axis of the expansion valve distributor side pipe connected to the distributor side of the expansion valve is gravity. The expansion valve is arranged so as to be substantially parallel to the direction, and the piping connected to the distributor provided on the refrigerant pipe from the expansion valve to the second heat exchanger and having a built-in dustproof mesh is connected to the pipe. Arranged so that the axis is substantially parallel to the direction of gravity, and connecting the orifice / dust-proof net built-in pipe and the expansion valve distributor side pipe with at least one bent pipe, and the distributor and the second heat exchanger. Is an air conditioner characterized by being connected with multiple pipes
【請求項5】 膨張弁の分配器側に接続された管軸が重
力方向にほぼ平行な膨張弁分配器側配管と分配器の膨張
弁側に接続された管軸が重力方向にほぼ平行な配管とを
接続する配管の、膨張弁に最も近い曲がり部の曲率半径
が少なくとも30mmであることを特徴とする請求項
1、2、3および4のいずれかに記載の空気調和機。
5. A pipe axis connected to the distributor side of the expansion valve is substantially parallel to the direction of gravity. An expansion valve distributor side pipe and a pipe axis connected to the expansion valve side of the distributor are substantially parallel to the direction of gravity. The air conditioner according to any one of claims 1, 2, 3 and 4, wherein a radius of curvature of a bent portion of a pipe connecting to the pipe closest to the expansion valve is at least 30 mm.
【請求項6】 膨張弁の分配器側に接続された管軸が重
力方向にほぼ平行な膨張弁分配器側配管と分配器の膨張
弁側に接続された管軸が重力方向にほぼ平行な配管とを
接続する配管を少なくとも二つの曲がり部を有する曲が
り配管としたことを特徴とする請求項1、2、3および
4のいずれかに記載の空気調和機。
6. A pipe axis connected to the distributor side of the expansion valve is substantially parallel to the gravity direction. An expansion valve distributor side pipe and a pipe axis connected to the expansion valve side of the distributor are substantially parallel to the gravity direction. The air conditioner according to any one of claims 1, 2, 3 and 4, wherein the pipe connecting to the pipe is a bent pipe having at least two bent portions.
【請求項7】 膨張弁の分配器側に接続された管軸が重
力方向にほぼ平行な膨張弁分配器側配管と分配器の膨張
弁側に接続された管軸が重力方向にほぼ平行な配管とを
接続する配管を半円弧の配管としたことを特徴とする請
求項1、2、3および4のいずれかに記載の空気調和
機。
7. A pipe axis connected to the distributor side of the expansion valve is substantially parallel to the gravity direction. An expansion valve distributor side pipe and a pipe axis connected to the expansion valve side of the distributor are substantially parallel to the gravity direction. The air conditioner according to any one of claims 1, 2, 3 and 4, wherein the pipe connecting to the pipe is a semicircular pipe.
【請求項8】 膨張弁の分配器側に接続された管軸が重
力方向にほぼ平行な膨張弁分配器側配管と分配器の膨張
弁側に接続された管軸が重力方向にほぼ平行な配管とを
接続する配管の径を、前記膨張弁分配器側配管の径と同
一としたことを特徴とする請求項1、2、3および4の
いずれかに記載の空気調和機。
8. A pipe axis connected to the distributor side of the expansion valve is substantially parallel to the direction of gravity. An expansion valve distributor side pipe and a pipe axis connected to the expansion valve side of the distributor are substantially parallel to the direction of gravity. The air conditioner according to any one of claims 1, 2, 3 and 4, wherein the diameter of the pipe connecting to the pipe is the same as the diameter of the expansion valve distributor side pipe.
【請求項9】 分配器と第2熱交換器とを繋ぐ複数の配
管の内径が、分配器から第2熱交換器の方向に段階的に
拡大していることを特徴とする請求項1、2、3および
4のいずれかに記載の空気調和機。
9. The inner diameter of a plurality of pipes connecting the distributor and the second heat exchanger is increased stepwise in the direction from the distributor to the second heat exchanger. The air conditioner according to any one of 2, 3, and 4.
【請求項10】 分配器と第2熱交換器とを繋ぐ複数の
配管の内径が、分配器から第2熱交換器の方向に向かっ
て、滑らかに無段階で拡大していることを特徴とする請
求項1、2、3および4のいずれかに記載の空気調和
機。
10. An inner diameter of a plurality of pipes connecting the distributor and the second heat exchanger is smoothly and steplessly expanded from the distributor toward the second heat exchanger. The air conditioner according to any one of claims 1, 2, 3 and 4.
【請求項11】 分配器と第2熱交換器を繋ぐ複数の配
管の内径を、分配器近傍の配管の断面積をA1、第2熱
交換器近傍の配管の断面積をA3、分配器と第2熱交換
器の中間の配管の断面積をA2としたとき、断面積比が
3.5<A2/A1<4.5、1.9<A3/A2<
2.2となるように段階的に拡大したことを特徴とする
請求項9に記載の空気調和機。
11. The inner diameters of a plurality of pipes connecting the distributor and the second heat exchanger, the cross-sectional area of the pipe near the distributor is A1, the cross-sectional area of the pipe near the second heat exchanger is A3, and the distributor. When the cross-sectional area of the middle pipe of the second heat exchanger is A2, the cross-sectional area ratio is 3.5 <A2 / A1 <4.5, 1.9 <A3 / A2 <
The air conditioner according to claim 9, wherein the air conditioner is expanded stepwise so as to be 2.2.
【請求項12】 分配器と第2熱交換器を繋ぐ複数の配
管に、可撓性部材を用いることを特徴とする請求項1、
2、3および4のいずれかに記載の空気調和機。
12. The flexible member is used for a plurality of pipes that connect the distributor and the second heat exchanger.
The air conditioner according to any one of 2, 3, and 4.
【請求項13】 第2熱交換器の出入口の配管に制振材
を取り付けたことを特徴とする請求項1、2、3および
4のいずれかに記載の空気調和機。
13. The air conditioner according to any one of claims 1, 2, 3 and 4, wherein a damping material is attached to a pipe at the entrance and exit of the second heat exchanger.
【請求項14】 室内機内部の膨張弁の室外機側の配管
から分配器までの配管および配管構成要素に制振材を取
り付けたことを特徴とする請求項1、2、3および4の
いずれかに記載の空気調和機。
14. The damping material is attached to the piping and piping components from the piping on the outdoor unit side of the expansion valve inside the indoor unit to the distributor. The air conditioner described in Crab.
JP5268511A 1993-10-27 1993-10-27 Air conditioner Expired - Lifetime JP3041467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5268511A JP3041467B2 (en) 1993-10-27 1993-10-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5268511A JP3041467B2 (en) 1993-10-27 1993-10-27 Air conditioner

Publications (2)

Publication Number Publication Date
JPH07120104A true JPH07120104A (en) 1995-05-12
JP3041467B2 JP3041467B2 (en) 2000-05-15

Family

ID=17459528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5268511A Expired - Lifetime JP3041467B2 (en) 1993-10-27 1993-10-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP3041467B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313116A (en) * 1995-05-23 1996-11-29 Toshiba Corp Air conditioner
JPH1019419A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
JPH1019420A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
JPH10111046A (en) * 1996-10-08 1998-04-28 Hitachi Ltd Air conditioner
JP2003065632A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2003222440A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Air conditioner
KR100504852B1 (en) * 2002-07-19 2005-07-29 엘지전자 주식회사 Indoor unit of air conditioner with noise decrease function
JP2006200844A (en) * 2005-01-21 2006-08-03 Denso Corp Vapor compression type refrigeration device
JP2007249091A (en) * 2006-03-18 2007-09-27 Seed:Kk Silencing implement
JP2008043855A (en) * 2006-08-11 2008-02-28 Cosmo Oil Co Ltd Method and apparatus for transferring/supplying mixture fluid comprising gas and liquid
WO2008026647A1 (en) * 2006-08-31 2008-03-06 Daikin Industries, Ltd. Air conditioning apparatus
JP2010281557A (en) * 2009-06-08 2010-12-16 Ls Mtron Ltd Distributor and air conditioning device including the same
WO2016038659A1 (en) * 2014-09-08 2016-03-17 三菱電機株式会社 Refrigeration cycle apparatus
JP2016090163A (en) * 2014-11-06 2016-05-23 ダイキン工業株式会社 Refrigeration device
WO2017183444A1 (en) * 2016-04-20 2017-10-26 ダイキン工業株式会社 Refrigeration system having refrigerant flow path for flow control
WO2018198322A1 (en) * 2017-04-28 2018-11-01 三菱電機株式会社 Refrigeration cycle device and electrical machinery comprising same refrigeration cycle device
KR20180123378A (en) * 2017-05-08 2018-11-16 국제냉동(주) cooling purpose evaporator capable of refrigerant distribution equally
JP2019056555A (en) * 2018-12-10 2019-04-11 三菱電機株式会社 Refrigeration cycle device and electric device including the refrigeration cycle device
WO2019082300A1 (en) * 2017-10-25 2019-05-02 三菱電機株式会社 Refrigeration cycle device unit, and refrigeration cycle device and electrical equipment
JPWO2021064845A1 (en) * 2019-10-01 2021-04-08
US11175077B2 (en) 2017-04-28 2021-11-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus and electric apparatus including the refrigeration cycle apparatus
US11821458B2 (en) * 2017-07-21 2023-11-21 Daikin Industries, Ltd. Refrigerant-channel branching component, and refrigeration apparatus including refrigerant-channel branching component

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313116A (en) * 1995-05-23 1996-11-29 Toshiba Corp Air conditioner
JPH1019419A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
JPH1019420A (en) * 1996-06-28 1998-01-23 Sanyo Electric Co Ltd Air conditioner
JPH10111046A (en) * 1996-10-08 1998-04-28 Hitachi Ltd Air conditioner
JP2003065632A (en) * 2001-08-28 2003-03-05 Hitachi Ltd Air conditioner
JP2003222440A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Air conditioner
KR100504852B1 (en) * 2002-07-19 2005-07-29 엘지전자 주식회사 Indoor unit of air conditioner with noise decrease function
JP2006200844A (en) * 2005-01-21 2006-08-03 Denso Corp Vapor compression type refrigeration device
JP2007249091A (en) * 2006-03-18 2007-09-27 Seed:Kk Silencing implement
JP2008043855A (en) * 2006-08-11 2008-02-28 Cosmo Oil Co Ltd Method and apparatus for transferring/supplying mixture fluid comprising gas and liquid
WO2008026647A1 (en) * 2006-08-31 2008-03-06 Daikin Industries, Ltd. Air conditioning apparatus
JP2010281557A (en) * 2009-06-08 2010-12-16 Ls Mtron Ltd Distributor and air conditioning device including the same
WO2016038659A1 (en) * 2014-09-08 2016-03-17 三菱電機株式会社 Refrigeration cycle apparatus
JPWO2016038659A1 (en) * 2014-09-08 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
JP2016090163A (en) * 2014-11-06 2016-05-23 ダイキン工業株式会社 Refrigeration device
WO2017183444A1 (en) * 2016-04-20 2017-10-26 ダイキン工業株式会社 Refrigeration system having refrigerant flow path for flow control
US11175077B2 (en) 2017-04-28 2021-11-16 Mitsubishi Electric Corporation Refrigeration cycle apparatus and electric apparatus including the refrigeration cycle apparatus
WO2018198322A1 (en) * 2017-04-28 2018-11-01 三菱電機株式会社 Refrigeration cycle device and electrical machinery comprising same refrigeration cycle device
JPWO2018198322A1 (en) * 2017-04-28 2019-12-12 三菱電機株式会社 Refrigeration cycle apparatus and electrical equipment provided with the refrigeration cycle apparatus
KR20180123378A (en) * 2017-05-08 2018-11-16 국제냉동(주) cooling purpose evaporator capable of refrigerant distribution equally
US11821458B2 (en) * 2017-07-21 2023-11-21 Daikin Industries, Ltd. Refrigerant-channel branching component, and refrigeration apparatus including refrigerant-channel branching component
WO2019082300A1 (en) * 2017-10-25 2019-05-02 三菱電機株式会社 Refrigeration cycle device unit, and refrigeration cycle device and electrical equipment
JPWO2019082300A1 (en) * 2017-10-25 2020-10-22 三菱電機株式会社 Refrigeration cycle equipment unit, refrigeration cycle equipment and electrical equipment
CN111247379A (en) * 2017-10-25 2020-06-05 三菱电机株式会社 Unit for refrigeration cycle device, and electrical apparatus
JP2019056555A (en) * 2018-12-10 2019-04-11 三菱電機株式会社 Refrigeration cycle device and electric device including the refrigeration cycle device
JPWO2021064845A1 (en) * 2019-10-01 2021-04-08

Also Published As

Publication number Publication date
JP3041467B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
JP3041467B2 (en) Air conditioner
US6148631A (en) Silencer and air conditioner
JPH07146032A (en) Expansion valve
KR100598215B1 (en) The pipe structure of air conditioner outdoor unit
KR100645812B1 (en) A noise suppresser of a room cooler with a bunch fluid tube
JPH0861809A (en) Refrigerant distributor, refrigerant distributing mechanism and air conditioner
JPH0626738A (en) Air conditioning apparatus
JP5535098B2 (en) Refrigeration cycle equipment
JP3435626B2 (en) Air conditioner
WO2005033594A1 (en) Air conditioner outdoor unit, air conditioner, and compressor unit
EP1437561A1 (en) Air conditioner
JPH10111046A (en) Air conditioner
JP2002061508A (en) Noise suppressor
WO2019082300A1 (en) Refrigeration cycle device unit, and refrigeration cycle device and electrical equipment
CN211372618U (en) Air conditioner noise reduction structure and air conditioner
JPH05322379A (en) Refrigerant distributor for air-conditioning machine
JP4290544B2 (en) Air conditioner
CN102829581A (en) Gas flow-splitting/converging device with noise eliminating function used for compressor unit refrigerating system
CN217685825U (en) Silencer and air conditioner
JP3621892B2 (en) Indoor unit and air conditioner
CN220204089U (en) Exhaust pipe silencing structure, compressor and air conditioner
CN219995601U (en) Refrigerating depressurization channel for air conditioner
CN213955615U (en) Enthalpy-increasing piping and air conditioning system
CN218120179U (en) Silencer and refrigeration equipment
WO2023248709A1 (en) Air conditioning device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 14

EXPY Cancellation because of completion of term