JP3409371B2 - 極低温予冷装置の制御方法 - Google Patents

極低温予冷装置の制御方法

Info

Publication number
JP3409371B2
JP3409371B2 JP17591993A JP17591993A JP3409371B2 JP 3409371 B2 JP3409371 B2 JP 3409371B2 JP 17591993 A JP17591993 A JP 17591993A JP 17591993 A JP17591993 A JP 17591993A JP 3409371 B2 JP3409371 B2 JP 3409371B2
Authority
JP
Japan
Prior art keywords
refrigerant
valve
temperature
heat exchanger
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17591993A
Other languages
English (en)
Other versions
JPH06117713A (ja
Inventor
隆 三ツ本
斎 近藤
明良 平野
哲 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP17591993A priority Critical patent/JP3409371B2/ja
Publication of JPH06117713A publication Critical patent/JPH06117713A/ja
Application granted granted Critical
Publication of JP3409371B2 publication Critical patent/JP3409371B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、極低温予冷装置に関す
るもので、例えば超電導磁石等の被冷却体を冷却収容す
る極低温容器に液体ヘリウムを注入する前に、被冷却体
及び極低温容器を予冷するために用いられる。
【0002】
【従来の技術】超電導磁石は、その超電導特性を確保す
るために数K程度に冷却される。このとき、超電導磁石
は極低温容器に収容され、容器内に液体ヘリウム等の冷
媒が注入される。しかし、超電導磁石や極低温容器の温
度が高いと注入された冷媒は直ちに蒸発してしまい、超
電導磁石や極低温容器を数K程度に冷却するには非常に
多量の冷媒が必要となる。
【0003】そこで、超電導磁石や極低温容器を予冷装
置を用いて予め極低温領域まで予冷する予冷装置が、低
温工学協会1986年発行の「第36回低温工学研究発
表会予稿集B3−10、128頁」にて開示されてい
る。これを図6に基づいて説明すると、圧縮機51にて
圧縮、吐出された常温の冷媒(ヘリウム)は吐出管54
を流れ、精製器52を通って精製された後、対向流熱交
換器53にて吸入管55を流れる冷媒と熱交換し1次冷
却される。そして、冷凍機(スターリング冷凍機やギフ
ォードマクマホン冷凍機等)56にて冷媒が極低温領域
まで2次冷却され、超電導磁石等の被冷却体57が収容
される極低温容器58に注入される。ここで、極低温領
域まで冷却された冷媒によって被冷却体57及び極低温
容器58が予冷されていく。また、被冷却体57及び極
低温容器58を予冷して昇温した冷媒は、吸入管55か
ら対向流熱交換器53を介して圧縮機51に吸入されて
いく。
【0004】一般に、冷媒循環回路における圧力損失は
冷媒温度の低下に伴って低下していく。従って、予冷装
置の運転開始後、時間の経過に伴って冷媒温度が低下し
ていくと、極低温容器58内の内部圧力も低下してい
く。また、予冷速度は冷媒流量の増加に伴って速くなる
こともよく知られている。従って、予冷を速くすすめる
ためには極低温容器の温度低下に伴って冷媒流量を増や
してやることが望ましい。しかし、極低温容器の耐圧は
低く、その破損を防ぐためには吐出管54の開口部の直
上流に配設された開閉弁59の開度を手動にて開度制御
し、極低温容器58内の圧力を制限値以下に制御しなけ
ればならない。更に、予冷開始後しばらくの間は、吸入
管55を圧縮機51へと向かって流れる冷媒の温度が高
く、対向流熱交換器53の吸入管側流路における圧力損
失が大きくなり、結果的に極低温容器58に供給される
冷媒量が減少して、同様に予冷時間が長くなってしま
う。
【0005】
【発明が解決しようとする課題】そこで、本発明では、
冷却容器内の圧力を最大許容圧力以下に制御した上で、
冷却容器の予冷時間を短縮することを、その技術的課題
とする。
【0006】
【課題を解決するための手段】前述した本発明の技術的
課題を解決するために講じた本発明の技術的手段は、
冷却体を収容する冷却容器の出入口に接続され且つ冷媒
を圧縮する圧縮機を有する冷媒配管と、該冷媒配管の往
路側と復路側とを熱接触させる第1と第2の対向流熱交
換器と、両対向流熱交換器間の前記冷媒配管の往路側と
熱接触する第1冷凍部前記第2対向流熱交換器と前
記冷却容器との間の前記冷媒配管の往路側と熱接触する
第2冷凍部と、冷媒配管の往路側に配されかつ前記圧縮
機からの冷媒量を制御する流量制御弁と、前記第2対向
流熱交換器の上流側を前記第2対向流熱交換器と前記第
1対向流熱交換器との間にバイパスさせるバイパス配管
と、該バイパス管に設けた第1開閉弁と、前記冷却容器
の下流側の冷媒の温度を測定する温度検出手段と、を有
する極低温予冷装置のための制御方法であって、前記冷
却容器の予冷開始時には、前記第1開閉弁を開状態とし
て予冷を開始し、前記温度検出手段の検出する冷媒温度
が所定値以下となった際には、前記流量制御弁の開度を
小さくした後に前記第1開閉弁を閉じるようにしたこと
である。
【0007】さらに、本発明は、前記極冷温予冷装置
は、前記第2対向流熱交換器の復路側の上流側に第2開
閉弁を有するものであり、前記冷却容器の予冷開始時に
は、前記第2開閉弁を閉状態とする一方で前記第1開閉
弁を開状態として予冷を開始し、前記温度検出手段の検
出する冷媒温度が所定値以下となった際には、開状態に
ある前記第1開閉弁に加えて前記第2開閉弁も開状態と
し、前記流量制御弁の開度を小さくした後に前記第1開
閉弁を閉じるようにしたことを特徴とする
【0008】
【作用】上述した本発明の技術的手段によれば、冷却容
器の予冷開始時には、第2開閉弁を閉状態とする一方で
第1開閉弁を開状態として、第1対向流熱交換器のみ熱
交換作用をもたせた状態で予冷を開始し、温度検出手段
の検出する冷媒温度が所定値以下となった際には、開状
態にある第1開閉弁に加えて第2開閉弁も開状態とし、
流量制御弁の開度を小さくした後に第1開閉弁を閉じる
ことで、第1対向流熱交換器に加えて第2対向流熱交換
器にも熱交換作用をもたせて予冷を行う。
【0009】一方、冷却容器の定常予冷時には、流量制
御弁の開度を制御することで冷却容器の耐圧を超えない
程度に冷媒が冷却容器内に供給される。
【0010】図5の実施例によって代表される発明は、
冷媒配管の吸入側即ち復路側は常に圧縮機に連通してい
るので、開閉弁の故障があっても、冷却容器内の圧力を
異常上昇させない冷媒の循環が可能である。
【0011】
【実施例】図1に示す極低温予冷装置10において、圧
縮機11の吐出側11aと冷却容器12の入口側12a
とは往路用冷媒配管13によって接続され、圧縮機11
の吸込側11bと冷却容器12の出口側12bとは往路
用冷媒配管14によって接続されている。ここで、圧縮
機11は例えばHe等の作動冷媒を圧縮し、冷却容器1
2は例えば液体ヘリウム容器等であり図示しない被冷却
物として例えば超電導磁石等を収容する。この極低温予
冷装置10は、冷却容器12への極低温冷媒注入に先立
って、冷却容器12及び被冷却物を数K程度の極低温領
域近くまで予冷する。
【0012】往路用冷媒配管13上には、圧縮機11側
から順次、第1対向流熱交換器20の往路側20a、第
1冷凍部21、第2対向流熱交換器22の往路側22
a、第2冷凍部23及び流量制御弁24が配設されてい
る。ここで、第1冷凍部21は極低温冷凍機25の高温
側コールドヘッド25aと熱的に結合され、第2冷凍部
23は極低温冷凍機25の低温側コールドヘッド25b
や略同温度の低温側蓄冷器25cと熱的に結合されてい
る。尚、極低温冷凍機25としては例えばスターリング
冷凍機等がある。一方、復路用冷媒配管14上には、冷
却容器12側から順次、第2開閉弁26、第2対向流熱
交換器22の復路側22b及び第1対向流熱交換器20
の復路側20bが配設されている。そして、復路用冷媒
配管14上の第2開閉弁26上流部と第2対向流熱交換
器22の復路側22b下流部との間は、バイパス配管2
7によりバイパスされ、このバイパス配管27上には第
1開閉弁28が配設されている。
【0013】ここで、往路用冷媒配管13の第1対向流
熱交換器20を含むその下流側と復路用冷媒配管14の
第1対向流熱交換器20を含むその上流側は、真空断熱
容器29内に収容されている。更に、往路用冷媒配管1
3の第1対向流熱交換器20の下流側と復路用冷媒配管
14の第1対向流熱交換器20の上流側は、輻射シール
ド板30内に収容され、輻射シールド板30は2つの第
1冷凍部21,21間の往路用冷媒配管13上に配設さ
れた熱交換器31と熱的に結合されている。
【0014】往路用冷媒配管13の流量制御弁24上流
部の冷媒温度は温度検出手段32により検出され、復路
用冷媒配管14の第2開閉弁26上流部の冷媒温度は温
度検出手段33により検出される。尚、温度検出手段3
2,33としては例えば温度センサや温度スイッチ等が
用いられる。また、復路用冷媒配管上の第2開閉弁上流
部の冷媒圧力は圧力検出手段34により検出される。
尚、圧力検出手段34としては例えば圧力センサや圧力
スイッチ等が用いられる。但し、本実施例では、圧力検
出手段34が復路用冷媒配管上の第2開閉弁上流部と同
圧の冷媒配管35上に配設されている。また、冷媒配管
35上に配設された開閉弁36は、通常運転時において
常時閉状態を保たれる。尚、38,39はカップリング
を示す。
【0015】図2に示すように、前述した温度検出手段
32,33及び圧力検出手段34の出力情報や他の出力
情報は制御装置37に入力され、制御装置37は各種出
力情報に基づいて流量制御弁24の開度を制御したり、
第1開閉弁28及び第2開閉弁26の開閉状態を制御す
る。
【0016】以上の構成を有する極低温予冷装置10の
作動について説明する。極低温予冷装置10により予冷
される冷却容器12の温度は、図3に示すように常温T
0から予冷完了温度T2まで徐々に低下していく。ま
た、予冷開始t0から予冷完了t2までの時間は、例え
ばリニアモーターカーの超電導磁石を冷却する場合、数
日程度である。
【0017】まず、冷却容器12の予冷開始時、即ち極
低温予冷装置10の始動時には、第2開閉弁26を閉状
態とする一方で第1開閉弁28を開状態とするように、
制御装置37が各開閉弁26,28を開閉制御し、あわ
せて圧縮機11及び極低温冷凍機25を始動する。そし
て、圧縮機11から吐出された冷媒は往路用冷媒配管1
3上の第1対向流熱交換器20の往路側20a、第1冷
凍部21、第2対向流熱交換器22の往路側22a、第
2冷凍部23及び流量制御弁24を順次流れ、冷却容器
12内へと至る。ここで、極低温予冷装置10の始動開
始直後には第1対向流熱交換器20の復路側20bを流
れる冷媒温度はほぼ常温であり、冷媒が第1対向流熱交
換器20の往路側20aを流れても冷却されない。次
に、冷媒が第1冷凍部21を流れる際には、極低温冷凍
機25の冷凍能力が非常に高いので高温側コールドヘッ
ド25aの温度は直ちに低温領域となっており、冷媒が
第1段階の低温まで冷却される。次いで、冷媒は第2対
向流熱交換器22の往路側22aを流れるが、いま第2
対向流熱交換器22の復路側22bには冷媒が流れてい
ないため、極低温予冷装置10の始動開始直後には、む
しろ冷媒が第2対向流熱交換器22のもつ熱容量によっ
て昇温する。そして、冷媒が第2冷凍部23を流れる際
には、低温側コールドヘッド25b及び低温側蓄冷器2
5cの温度も直ちに低温領域となっており、冷媒が第2
段階の低温(<第1段階の低温)まで冷却される。最後
に、流量制御弁24の開度に応じて冷却容器12内へと
流入していく。ここで、流量制御弁24の開度は、圧力
検出手段34の検出する冷媒圧力が図4に示す冷媒圧力
P1となるように制御される。この図4において、(P
0−P1)が冷却容器12による圧損分である。
【0018】一方、冷却容器12内を流れた冷媒は、復
路用冷媒配管14上のバイパス配管27及び第1対向流
熱交換器20の復路側20bを順次流れ、圧縮機11の
吸込側11bへと至る。
【0019】極低温予冷装置10の始動後しばらく経過
すると(時間t0とt1の間)、復路用冷媒配管14を
流れる冷媒も常温以下の低温(温度T1以上T0以下)
になってくる。従って、第1対向流熱交換器20の復路
側20bを流れる冷媒温度は常温以下の低温となり、冷
媒が第1対向流熱交換器20の往路側20aを流れる際
に、復路側20bを流れる冷媒によって冷却される。ま
た、輻射シールド板30は熱交換器31を介して往路用
冷媒配管13を流れる冷媒によって冷却される。尚、極
低温予冷装置10の定常運転状態では、高温側コールド
ヘッド25aの温度は80〜100K程度であり、低温
側コールドヘッド25b及び低温側蓄冷器25cの温度
は20〜50K程度である。
【0020】極低温予冷装置10の始動時に第2開閉弁
26を閉状態として、第2対向流熱交換器22の復路側
22bに冷媒を流さないようにする理由には2つある。
第1に、復路用冷媒配管14を流れる冷媒温度が、第1
冷凍部21によって冷却される冷媒温度よりも高い状態
では、第2対向流熱交換器22において復路側22bを
流れる冷媒が往路側22aを流れる冷媒によって冷却さ
れてしまい、本来冷却されるべき往路側22aを流れる
冷媒が昇温してしまうからである。そして、第2に、冷
媒は低温時に比べて高温時にはその粘度が高く、第1対
向流熱交換器20の復路側20bと第2対向流熱交換器
22の復路側22bの両方に冷媒を流すと、各復路側2
0b,22bにおける冷媒の圧力損失が大きく、極低温
予冷装置10の冷媒流量がかせげないために冷却容器1
2の予冷時間が長くなってしまうためである。
【0021】そこで、復路用冷媒配管14を流れる冷媒
温度が、第1冷凍部21によって冷却される冷媒温度よ
りも低くなったこと、又は復路用冷媒配管14を流れる
冷媒温度がある切替温度値T1よりも低くなったことを
制御装置37が判断すると、この温度領域では冷媒の粘
性も低くなっており、第1対向流熱交換器20の復路側
20bに加えて第2対向流熱交換器22の復路側22b
に冷媒を流しても、そこでの圧損は小さくなっているの
で、制御装置37が第2開閉弁26を開いた後、第1開
閉弁28を閉じるよう切替制御する。尚、第1冷凍部2
1によって冷却される冷媒温度は、往路用冷媒配管13
上の第2対向流熱交換器22の往路側22a付近等に配
設された図示しない温度検出手段により検出すればよ
い。また、切替温度値T1は、復路用冷媒配管14を流
れる冷媒温度が、第1冷凍部21によって冷却される冷
媒温度よりも低くなった時の復路用冷媒配管14を流れ
る冷媒温度を予め計測しておくことで設定できる。
【0022】図4に従って制御装置37による流量制御
弁24及び各開閉弁26,28の開閉制御を説明する
と、まずに示す状態は極低温予冷装置10の定常予冷
時の状態であり、切替制御前なので、第1開閉弁28が
開状態及び第2開閉弁26が閉状態のもとで、圧力検出
手段34の検出する冷媒圧力が最大許容圧力P1となる
ように、制御装置37が流量制御弁24の開度を制御す
る。尚、流量制御弁24の開度は、極低温予冷装置10
の始動後徐々に開かれていく。
【0023】次に、に示す時点が前述の切替制御時の
開始時であり、開状態にある第1開閉弁28に加えて第
2開閉弁26が開状態とされる。従って、復路用冷媒配
管14では、第1対向流熱交換器20の復路側20bに
至る冷媒の流路が、バイパス配管27に加えて第2対向
流熱交換器22の復路側22bの分だけ増えるので冷媒
の圧力損失が低下し、圧力検出手段34の検出する冷媒
圧力が圧力P2まで低下する。
【0024】この後、第1開閉弁28が閉じられると、
冷媒は第2対向流熱交換器22の復路側22b及び第1
対向流熱交換器20の復路側20bを流れるようになる
ため、切替制御前には第1対向流熱交換器20の復路側
20bだけを流れていた時に比べて、復路用冷媒配管1
4における圧力損失が増大すると予想できる。そこで、
に示す時点から流量制御弁24の開度を絞って圧力検
出手段34の検出する冷媒圧力を圧力P3まで低下させ
る。
【0025】そして、に示す時点で制御装置37は第
1開閉弁28を閉状態とする。この結果、復路用冷媒配
管14における圧力損失が増大していき、圧力検出手段
34の検出する冷媒圧力が圧力P4まで上昇していく。
【0026】最後に、に示す状態で圧力検出手段34
の検出する冷媒圧力が再び最大許容圧力P1となるよう
に、制御装置37が流量制御弁24の開度を制御し、定
常予冷が行われる。
【0027】以上のようにして各開閉弁26,28の切
替制御が完了すると、第2対向流熱交換器22の往路側
22aを流れる冷媒が、その復路側22bを流れる冷媒
によって冷却されるようになる。そして、冷却容器12
内の温度はどんどん低下していき、温度検出手段の検出
する冷媒温度が予冷完了温度T2になると予冷が終了
し、極低温予冷装置10の運転を停止する。この運転停
止後にはカップリング38,39によって極低温予冷装
置10を圧縮機11及び冷却容器12から切り離し、極
低温予冷装置10に変えて図示しない液体ヘリウム生成
装置を圧縮機11及び冷却容器12に接続し、被冷却物
を数K程度の極低温状態に保持してその作動を保証す
る。尚、往路13中の圧力検出手段としての圧力計40
を冷却容器12の入口側12aの上流に配してもよい。
【0028】図5に示す本発明の第2実施例は、図1に
示す本発明の第1実施例と基本構成を同一とする部分が
多いので、同一構成部分についてはその説明を省略す
る。冷却容器12の出口側12bの復路用冷媒配管14
を第2対向流熱交換器の入口に直接接続し、バイパス管
27を、第1と第2の対向流熱交換器20,22の間の
復路用冷媒配管に、バイパス弁28を介して接続する。
バイパス管27は圧縮機11の吸入口側へ直接接続しな
い。往路側13の流量制御弁24は、真空槽29の外側
に配しているので、流量制御弁24を駆動する手段(た
とえば、ソレノイド、モータ)への電気配線を真空槽2
9の壁を介して真空槽29内へもってくる必要がない。
これは、壁と電気配線との間の気密と断熱のための手段
を設ける必要がない利点を示す。
【0029】前述した例の操作手順は、図1の例と実質
的に同じなのでその説明を省略する。図5に示す前述例
では、冷媒配管の復路側が圧縮機11の吸入口に常時連
通しているので、圧縮機11が正常に動いている限り、
開閉弁としてのバイパス弁28が故障しても、冷却容器
12内の圧を不必要に上昇させることはない。
【0030】
【発明の効果】上述したように本発明の極低温予冷装置
では、冷却容器の予冷開始時には、第2開閉弁を閉状態
とする一方で第1開閉弁を開状態として、第1対向流熱
交換器のみ熱交換作用をもたせた状態で予冷を開始する
ので、圧損を生じる部分が第1対向流熱交換器だけとな
って冷媒流量をかせぐことができ、極低温予冷装置の予
冷能力が高い。そして、温度検出手段の検出する冷媒温
度が所定値以下となった際には、開状態にある第1開閉
弁に加えて第2開閉弁も開状態とし、流量制御弁の開度
を小さくした後に第1開閉弁を閉じることで、第1対向
流熱交換器に加えて第2対向流熱交換器にも熱交換作用
をもたせて予冷を行う。従って、第1開閉弁を閉じた際
に冷媒圧力が系の最大許容圧力を超えることなく、第
1、第2開閉弁の切替制御ができ、第1、第2対向流熱
交換器が共に熱交換作用をもつことができるので、極低
温予冷装置の予冷能力が高い。一方、冷却容器の定常予
冷時には、流量制御弁の開度を制御することで冷却容器
の耐圧を超えない程度に冷媒が冷却容器内に供給され、
冷媒を最大限冷却容器に供給でき、極低温予冷装置の予
冷能力が高い。
【0031】さらに、図5の例のように第2開閉弁を廃
止させ、冷却容器の出口と圧縮機の吸入口とを常時連通
させると、バイパス弁としての開閉弁が故障しても冷却
容器内の圧変化を最小とさせ得る。加えて、制御回路を
簡単にさせ、装置の小型化が可能となる。
【図面の簡単な説明】
【図1】本発明実施例の極低温予冷装置の構成図を示
す。
【図2】図1における制御装置の入出力関係図を示す。
【図3】図1における予冷温度特性図を示す。
【図4】図1における冷媒圧力特性図を示す。
【図5】本発明の別の実施例の極低温予冷装置の構成図
を示す。
【図6】従来技術の極低温予冷装置の構成図を示す。
【符号の説明】
10 極低温予冷装置 11 圧縮機 12 冷却容器 13 往路用冷媒配管 14 復路用冷媒配管 20 第1対向流熱交換器 21 第1冷凍部 22 第2対向流熱交換器 23 第2冷凍部 24 流量制御弁 26 第2開閉弁 27 バイパス配管 28 第1開閉弁 33 温度検出手段 34 圧力検出手段
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 哲 愛知県刈谷市朝日町2丁目1番地 アイ シン精機株式会社内 (56)参考文献 特開 昭63−210573(JP,A) 特開 昭62−129658(JP,A) 特開 昭60−36849(JP,A) 特開 昭60−196564(JP,A) 特開 昭59−215557(JP,A) 特公 昭58−21186(JP,B1) (58)調査した分野(Int.Cl.7,DB名) F25B 9/00 395 F25B 9/02

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 被冷却体を収容する冷却容器の出入口に
    接続され且つ冷媒を圧縮する圧縮機を有する冷媒配管
    と、該冷媒配管の往路側と復路側とを熱接触させる第1と第
    2の対向流熱交換器と、 両対向流熱交換器間の前記冷媒配管の往路側と熱接触す
    第1冷凍部前記第2対向流熱交換器と前記冷却容器との間の前記冷
    媒配管の往路側と熱接触する 第2冷凍部と、 冷媒配管の往路側に配されかつ前記圧縮機からの冷媒量
    を制御する 流量制御弁と、 前記第2対向流熱交換器の上流側を前記第2対向流熱交
    換器と前記第1対向流熱交換器との間にバイパスさせ
    バイパス配管と、該バイパス管に設けた 第1開閉弁と、前記冷却容器の下流側の冷媒の温度を測定する 温度検出
    手段と、を有する極低温予冷装置のための制御方法であ
    って、 前記冷却容器の予冷開始時には、前記第1開閉弁を開状
    態として予冷を開始し、前記温度検出手段の検出する冷
    媒温度が所定値以下となった際には、前記流量制御弁の
    開度を小さくした後に前記第1開閉弁を閉じるようにし
    たことを特徴とする極低温予冷装置の制御方法
  2. 【請求項2】 前記極冷温予冷装置は、前記第2対向流
    熱交換器の復路側の上流側に第2開閉弁を有するもので
    あり、 前記冷却容器の予冷開始時には、前記第2開閉弁を閉状
    態とする一方で前記第1開閉弁を開状態として予冷を開
    始し、前記温度検出手段の検出する冷媒温度が所定値以
    下となった際には、開状態にある前記第1開閉弁に加え
    て前記第2開閉弁も開状態とし、前記流量制御弁の開度
    を小さくした後に前記第1開閉弁を閉じるようにしたこ
    とを特徴とする請求項1に記載の極低温予冷装置の制御
    方法。
JP17591993A 1992-08-20 1993-06-24 極低温予冷装置の制御方法 Expired - Fee Related JP3409371B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17591993A JP3409371B2 (ja) 1992-08-20 1993-06-24 極低温予冷装置の制御方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-221264 1992-08-20
JP22126492 1992-08-20
JP17591993A JP3409371B2 (ja) 1992-08-20 1993-06-24 極低温予冷装置の制御方法

Publications (2)

Publication Number Publication Date
JPH06117713A JPH06117713A (ja) 1994-04-28
JP3409371B2 true JP3409371B2 (ja) 2003-05-26

Family

ID=26497021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17591993A Expired - Fee Related JP3409371B2 (ja) 1992-08-20 1993-06-24 極低温予冷装置の制御方法

Country Status (1)

Country Link
JP (1) JP3409371B2 (ja)

Also Published As

Publication number Publication date
JPH06117713A (ja) 1994-04-28

Similar Documents

Publication Publication Date Title
US6385981B1 (en) Capacity control of refrigeration systems
JP3409371B2 (ja) 極低温予冷装置の制御方法
JP3573384B2 (ja) 極低温冷凍装置
JPH09113052A (ja) 冷凍装置
JP3158787B2 (ja) 冷凍装置の運転制御装置
JPH0726775B2 (ja) 二元冷凍機
JP3589434B2 (ja) 極低温冷凍装置
JPH07104059B2 (ja) 二元冷凍装置
JP2894010B2 (ja) 極低温冷却装置
JP2000046426A (ja) パルス管冷凍機の昇温方法
JP2000266416A (ja) 極低温冷凍装置
JPH0420754A (ja) 冷凍機及びその冷凍能力の調整方法
JP3596825B2 (ja) 極低温冷凍機の低圧制御装置
JPH0289963A (ja) 極低温冷凍機
JPH11108476A (ja) 極低温冷却装置
JP3247721B2 (ja) 蓄冷式冷凍サイクル装置
JP2707624B2 (ja) 極低温冷凍装置
JPH05172408A (ja) 冷凍装置
JPS61110851A (ja) ジユ−ルトムソン冷凍装置
JPS61240061A (ja) ヘリウム冷凍装置
JPS61235648A (ja) ヘリウム冷凍装置
JPH065572Y2 (ja) 冷凍装置
JPS61235649A (ja) ヘリウム冷凍装置
JPH04151467A (ja) 極低温冷凍装置
JPS6217570A (ja) 冷房装置の制御方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees