JP3348365B2 - 疲労特性に優れた耐熱軟化性を有する加工用熱延高強度鋼板およびその製造方法 - Google Patents

疲労特性に優れた耐熱軟化性を有する加工用熱延高強度鋼板およびその製造方法

Info

Publication number
JP3348365B2
JP3348365B2 JP19541894A JP19541894A JP3348365B2 JP 3348365 B2 JP3348365 B2 JP 3348365B2 JP 19541894 A JP19541894 A JP 19541894A JP 19541894 A JP19541894 A JP 19541894A JP 3348365 B2 JP3348365 B2 JP 3348365B2
Authority
JP
Japan
Prior art keywords
ferrite
strength
phase
hot
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19541894A
Other languages
English (en)
Other versions
JPH0860305A (ja
Inventor
治 河野
淳一 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19541894A priority Critical patent/JP3348365B2/ja
Publication of JPH0860305A publication Critical patent/JPH0860305A/ja
Application granted granted Critical
Publication of JP3348365B2 publication Critical patent/JP3348365B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は自動車、産業用機械等に
使用することを企図した疲労特性に優れた耐熱軟化性を
有する加工用熱延高強度鋼板及びその製造方法に関する
ものである。
【0002】
【従来の技術】自動車用鋼板の軽量化と衝突時の安全確
保を主な背景として、高強度鋼板の需要が増大してい
る。しかし、高強度鋼板といえども、その加工性に対す
る要求は厳しく、優れた加工性を有する鋼強度鋼板が望
まれている。さらに高強度化に伴う軽量化(板厚減少)
による疲労強度不足が顕在化してきており、優れた加工
性のみならず、優れた疲労強度をも兼ね備えた高強度鋼
板が強く望まれている。また、車体組立手段として溶接
が多用されており、耐熱軟化性を有することも必要であ
る。すなわち、加工性、疲労特性及び耐熱軟化性の3つ
の特性を同時に満たすことが要求されている。
【0003】従来、耐熱軟化性が要求される高強度部材
(例えばホイールリム)にはNb添加鋼(フェライトと
ベイナイトで主に構成される)が主に用いられてきた。
しかし、Nb添加鋼は加工性が劣り、ホイールリム成形
時に不具合が発生する場合がある。例えば、均一伸び不
足に起因する拡管時のネッキング発生、降伏比過大に起
因する巻き工程での寸法不具合である。一方、優れた加
工性と疲労特性を有する鋼板としてはDP鋼(フェライ
トとマルテンサイトで主に構成される)、γ鋼(フェラ
イト、ベイナイト及び残留オーステナイトで主に構成さ
れる)に代表される低温変態生成物を活用した鋼が知ら
れているが、低温変態生成物が焼き戻されるため、熱軟
化が大きい。すなわち、従来技術では加工性、疲労特性
及び耐熱軟化性の3つの特性を同時に充分満足するもの
が得られていないのが実状である。
【0004】
【発明が解決しようとする課題】本発明は上記問題を解
決すべく、疲労特性に優れた耐熱軟化性を有する加工用
熱延高強度鋼板及びその製造方法を提供することを目的
とする。
【0005】
【課題を解決するための手段】本発明は上記した課題を
達成するため、以下に示す構成を手段とする。 (1)重量比でC :0.03〜0.20%、 A
l:1.0〜5.0%、Mn:0.5〜3.5%、
Si≦5.0%、P ≦0.05%、
S ≦0.01% 残部Feと不可避的成分を含み、ミクロ組織として第一
相であるフェライトと第二相で構成され、フェライト占
積率が50%以上、かつ、フェライトと第二相のミクロ
ビッカース硬さ比(第二相硬さ/フェライト硬さ)が
1.5以下であり、特性として 引張強さ(TS)≧400MPa、 強度−全伸びバランス(引張強さ×全伸び)≧1800
0(MPa・%) 強度−均一伸びバランス(引張強さ×均一伸び)≧12
000(MPa・%) 疲労限度比≧0.50 を具備することを特徴とする疲労特性に優れた耐熱軟化
性を有する加工用熱延高強度鋼板。
【0006】(2)重量比でC :0.03〜0.20
%、 Al:1.0〜5.0%、Mn:0.5〜3.
5%、 Si≦5.0%、P ≦0.05%、
S ≦0.01% 残部Feと不可避的成分を含む鋼片を用いて、800℃
〜1000℃で熱間圧延を行い、550℃〜700℃で
巻き取ることを特徴とする疲労特性に優れた耐熱軟化性
を有する加工用熱延高強度鋼板の製造方法。
【0007】(3)重量比でC :0.03〜0.20
%、 Al:1.0〜5.0%、Mn:0.5〜3.
5%、 Si≦5.0%、P ≦0.05%、
S ≦0.01%、Ca:0.0005〜
0.01%または、REM:0.005〜0.05% 残部Feと不可避的成分を含み、ミクロ組織として第一
相であるフェライトと第二相で構成され、フェライト占
積率が50%以上、かつ、フェライトと第二相のミクロ
ビッカース硬さ比(第二相硬さ/フェライト硬さ)が
1.5以下であり、特性として 引張強さ(TS)≧400MPa、 強度−全伸びバランス(引張強さ×全伸び)≧1800
0(MPa・%) 強度−均一伸びバランス(引張強さ×均一伸び)≧12
000(MPa・%) 疲労限度比≧0.50 を具備することを特徴とする疲労特性に優れた耐熱軟化
性を有する加工用熱延高強度鋼板。
【0008】(4)重量比でC :0.03〜0.20
%、 Al:1.0〜5.0%、Mn:0.5〜3.
5%、 Si≦5.0%、P ≦0.05%、
S ≦0.01%、Ca:0.0005〜
0.01%または、REM:0.005〜0.05% 残部Feと不可避的成分を含む鋼片を用いて、800℃
〜1000℃で熱間圧延を行い、550℃〜700℃で
巻き取ることを特徴とする疲労特性に優れた耐熱軟化性
を有する加工用熱延高強度鋼板の製造方法。
【0009】(5)重量比でC :0.03〜0.20
%、 Al:1.0〜5.0%、Mn:0.5〜3.
5%、 Si≦5.0%、P ≦0.05%、
S ≦0.01%、Nb:0.005〜
0.050% 残部Feと不可避的成分を含み、ミクロ組織として第一
相であるフェライトと第二相で構成され、フェライト占
積率が50%以上、かつ、フェライトと第二相のミクロ
ビッカース硬さ比(第二相硬さ/フェライト硬さ)が
1.5以下であり、特性として 引張強さ(TS)≧400MPa、 強度−全伸びバランス(引張強さ×全伸び)≧1800
0(MPa・%) 強度−均一伸びバランス(引張強さ×均一伸び)≧12
000(MPa・%) 疲労限度比≧0.50 を具備することを特徴とする疲労特性に優れた耐熱軟化
性を有する加工用熱延高強度鋼板。
【0010】(6)重量比でC :0.03〜0.20
%、 Al:1.0〜5.0%、Mn:0.5〜3.
5%、 Si≦5.0%、P ≦0.05%、
S ≦0.01%、Nb:0.005〜
0.050% 残部Feと不可避的成分を含む鋼片を用いて、800℃
〜1000℃で熱間圧延を行い、550℃〜700℃で
巻き取ることを特徴とする疲労特性に優れた耐熱軟化性
を有する加工用熱延高強度鋼板の製造方法。
【0011】(7)重量比でC :0.03〜0.20
%、 Al:1.0〜5.0%、Mn:0.5〜3.
5%、 Si≦5.0%、P ≦0.05%、
S ≦0.01%、Nb:0.005〜
0.050%、Ca:0.0005〜0.01%また
は、REM:0.005〜0.05% 残部Feと不可避的成分を含み、ミクロ組織として第一
相であるフェライトと第二相で構成され、フェライト占
積率が50%以上、かつ、フェライトと第二相のミクロ
ビッカース硬さ比(第二相硬さ/フェライト硬さ)が
1.5以下であり、特性として 引張強さ(TS)≧400MPa、 強度−全伸びバランス(引張強さ×全伸び)≧1800
0(MPa・%) 強度−均一伸びバランス(引張強さ×均一伸び)≧12
000(MPa・%) 疲労限度比≧0.50 を具備することを特徴とする疲労特性に優れた耐熱軟化
性を有する加工用熱延高強度鋼板。
【0012】(8)重量比でC :0.03〜0.20
%、 Al:1.0〜5.0%、Mn:0.5〜3.
5%、 Si≦5.0%、P ≦0.05%、
S ≦0.01%、Nb:0.005〜
0.050%、Ca:0.0005〜0.01%また
は、REM:0.005〜0.05% 残部Feと不可避的成分を含む鋼片を用いて、800℃
〜1000℃で熱間圧延を行い、550℃〜700℃で
巻き取ることを特徴とする疲労特性に優れた耐熱軟化性
を有する加工用熱延高強度鋼板の製造方法。
【0013】
【作用】本発明者らは種々の実験検討を重ねた結果、A
lを多量に添加した硬質の第一相であるフェライト(マ
イクロビッカース硬さで150以上が望ましい)中にフ
ェライトと硬度差が小さい第二相(パーライト、ベイナ
イト、マルテンサイト、セメンタイト、残留オーステナ
イト及びそれらの焼戻し組織)を分散させることによ
り、従来技術が持つ問題点を解消し、加工性、疲労特性
及び耐熱軟化性の3つの特性を同時に達成できることを
見いだし、本発明に到ったのである。以下にその要旨を
述べる(以下、第一相であるフェライトはフェライトと
称す)。
【0014】まず、本発明の鋼板ミクロ組織について詳
述する。鋼板ミクロ組織はフェライトと第二相で構成さ
れる。フェライト占積率は50%以上、かつ、フェライ
トと第二相のミクロビッカース硬さ比(第二相硬さ/フ
ェライト硬さ)は1.5以下とする。フェライト占積率
が50%未満、ないしは、フェライトと第二相のミクロ
ビッカース硬さ比(第二相硬さ/フェライト硬さ)が
1.5超となると鋼板の諸特性に及ぼす第二相の悪影響
が大きくなり、加工性、疲労特性及び耐熱軟化性を合わ
せ持つことが不能となる。好ましくはフェライト占積率
は70%以上が望まれる。
【0015】なお、第二相とはパ−ライト、ベイナイ
ト、マルテンサイト、セメンタイト、残留オーステナイ
ト及びそれらの焼戻し組織の1種ないしは2種以上のい
ずれであってもミクロビッカース硬さ比(第二相硬さ/
フェライト硬さ)≦1.5を満足していればよい。すな
わち、第二相呼称を限定するものではない。また、フェ
ライトと第二相のミクロビッカース硬さ比(第二相硬さ
/フェライト硬さ)が1.5超であっても、その占積率
が5%以下であれば鋼板特性に及ぼす第二相の悪影響は
小さいため、含有してもよい。
【0016】次に、化学成分の規制値とその制限理由を
説明する(以下、%は重量%を意味する)。Cは0.0
3〜0.20%とする。フェライト占積率を増大させる
ためにはCは少ない方が好ましいが0.03%未満とな
るとAr3 変態点が上昇し、熱間圧延時の温度確保が難
しくなり、Ar3 変態点が確保できない部分では材質が
劣化するため、0.03%を下限とする。また、スポッ
ト溶接性の観点から、その添加上限を0.20%とす
る。好ましくは0.10%以下とする。
【0017】Alは1.0〜5.0%とする。フェライ
ト変態を促進し、フェライトを硬質化し、フェライトと
第二相のミクロビッカース硬さ比を低減するためにはA
lは多いほうが好ましいが、5.0%を超えると熱間圧
延時に割れが生じ易くなるため、5.0%を上限とす
る。また、1.0%未満ではフェライト変態を促進し、
フェライトを硬質化し、フェライトと第二相のミクロビ
ッカース硬さ比を低減し、加工性、疲労特性及び耐熱軟
化性を確保する効果が充分得られないため、1.0%を
下限とする。好ましくは1.5%を下限とする。また、
Siも同様の作用を有するため、5.0%まで添加して
もよいが、表面性状の観点からは無添加が好ましい。
【0018】Mnは0.5〜3.5%とする。0.5%
未満となるとAr3 変態点が上昇し、熱間圧延時の温度
確保が難しくなり、Ar3 変態点が確保できない部分で
は材質が劣化するため、0.5%を下限とする。Mnが
3.5%超となるとフェライト変態が著しく抑制される
ため、Mnの添加上限量は3.5%以下とする。Pは2
次加工性、靭性、スポット溶接性、リサイクルの観点か
ら、上限量を0.05%とする。これらの要求が厳格で
ない場合は、0.05%を超えて添加してもよい。ま
た、美麗な表面性状を得るという観点からは、0.01
%以上が好ましい。
【0019】Sは硫化物系介在物により、伸びフランジ
性(穴拡げ比)が劣化するのを防ぐため、その上限量を
0.01%とする。硫化物系介在物の形状制御(球状
化)により、穴拡げ比をより向上させるために、Caを
0.0005〜0.01%添加してもよい。また、RE
Mも同様の理由から0.005〜0.05%添加しても
よい。Nbはミクロ組織微細化に寄与し、優れた低温靭
性を発揮させるとともに強度確保に寄与する。その作用
を充分に発揮させるためには添加下限量は0.005%
以上である。ただし、過度に添加しても上記効果は飽和
し、かえって加工性を劣化させるため、0.050%以
下、好ましくは0.015%以下とする。
【0020】以上が本発明の主たる成分の添加理由であ
るが、強度確保、細粒化を目的にTi、Cr、Cu、N
i、V、B、Moを1種または2種以上添加してもよ
い。ただし、その添加量が合計で0.2%を超えると本
発明のミクロ組織を得ることが困難となるとともにコス
トが増大するため、上限を0.2%とする。
【0021】さらに、前記したミクロ組織を如何に達成
するかという観点から圧延規制、巻取り規制等の値とそ
の制限理由を説明する。仕上げ圧延終了温度(FT7)
の下限は加工組織(加工フェライト)・層状組織の出現
による特性の劣化を防ぐため、800℃とする。好まし
い範囲としては850〜900℃である。
【0022】次に巻取について述べる。巻取温度は第二
相を軟質化し、フェライトと第二相のミクロビッカース
硬さ比(第二相硬さ/フェライト硬さ)が1.5以下と
なるよう550℃を下限とする。好ましくは575℃以
上とする。上限は特に定めないが、スケールロスの低
減、ミクロ組織の粗大化抑制の観点から700℃以下が
望ましい。また、フェライト占積率の増加効果、フェラ
イト及び第二相の細粒化効果、さらにはホットランテー
ブル長の低減を狙って、いわゆる圧延直後急冷、多段冷
却を行ってもよい。
【0023】以上が本発明の製造方法の規制理由である
が、フェライト占積率の増加効果、フェライト及び第二
相の細粒化効果を高めるため、加熱温度上限を115
0℃とする、仕上げ圧延の開始温度(FT0)を10
00℃以下とする、仕上げ圧延の全圧下率を85%以
上とする等の手段を単独ないしは複合で行っても良い。
ただし、Nbを含有する場合、その固溶の観点から加熱
温度はl000℃以上が必要である。
【0024】なお、圧延に供する鋼片はいわゆる冷片再
加熱、HCR、HDRのいずれであってもかまわない。
また、いわゆる薄肉連続鋳造による鋼片であってもかま
わない。また、本発明による熱延鋼板をめっき原板とし
てもよいし、本発明による熱延鋼板を巻取工程を有しな
い厚鋼板製造設備において製造することも可能である。
【0025】
【実施例】第1表に示す化学成分を有する鋼を鋳造して
得た鋼片を用いて、熱間仕上げ圧延、冷却、巻取処理を
行い、鋼板を得た。鋼板ミクロ組織を第2表に、鋼板の
特性を第3表に、鋼板の製造方法を第4表に示す。本発
明例がA鋼〜F鋼である。比較例がG鋼、H鋼、I鋼で
ある。
【0026】
【表1】
【0027】
【表2】
【0028】
【表3】
【0029】
【表4】
【0030】実使用を想定した場合、鋼板が満たすべき
特性値として、加工性では張り出し性、伸びフランジ性
及び形状凍結性等の観点から、TS×T・EL(強度−
全伸びバランス)≧18000、TS×U・EL(強度
−均一伸びバランス)≧12000、d/d0 (穴拡げ
比)≧1.2、YR(降伏比)<90%、疲労特性で
は、疲労限度比≧0.50、耐熱軟化性ではΔTS≦5
5MPaが必要である。また、好ましくは低温靭性とし
て遷移温度≦−40℃が望まれる。
【0031】本発明例では加工性と疲労特性及び耐熱軟
化性の3つの特性を同時に満足する鋼板が得られてお
り、低温靭性も良好である。一方、比較例では加工性、
疲労特性及び耐熱軟化性の少なくとも一つ以上が未達で
ある。なお、本発明例は、曲げ性、2時加工性、スポッ
ト溶接性も良好であった。さらに本発明ではランアウト
テーブルでの急冷や低温巻取を行う必要がないため、コ
イル長手方向及び幅方向の材質バラツキも小さい。
【0032】ミクロ組織は以下の方法で評価した。粒径
及び占積率はナイタール試薬及び特開昭59−2194
73号公報に開示された試薬(ピクリン酸、チオ硫酸ナ
トリウム、硝酸、エタノール等の混合液とナイタール
液)により鋼板圧延方向断面を腐食し、倍率1000倍
の光学顕微鏡写真より求めた。硬さはミクロビッカース
試験により求めた。
【0033】特性評価は以下の方法で実施した。引張試
験はJIS5号にて実施し、引張強度(TS)、降伏強
度(YP)、全伸び(T・EL)、一様伸び(U・E
L)、局部伸び(L・EL)を求めた。◎穴拡げ試験は
20mmの打ち抜き穴をバリのない面から30度円錐ポン
チで押し拡げ、クラックが板厚を貫通した時点での穴径
(d)と初期穴径(d0 、20mm)との穴拡げ比(d/
d0 )を求めた。疲労特性は両振り平面曲げ疲労試験に
より疲労限度比(F)=200万回疲労強度/引張強さ
を求めた。耐熱軟化性は鋼板をソルトバスで熱処理(7
00℃×5分保持後放冷)し、処理前後の引張強度(T
S)の変化代ΔTS=熱処理前TS−熱処理後TSを求
めた。低温靭性は2mmVノッチの1/4サブサイス試験
片で実施し、脆性破面率が50%となる破面遷移温度
(vTrs)を求めた。
【0034】なお、曲げ性は35mm×70mmの試験片を
バリを外側にして、先端0.5Rの90度V曲げを行
い、割れを観察した。2次加工性は90mmφの打ち抜き
板を絞り比1.8でカップ成形したものを、−50℃で
圧壊し、割れを観察した。スポット溶接性はスポット溶
接試験片をたがねで剥離した時のナゲット(スポット溶
接時に溶融し、その後凝固した部分)内の破断有無を観
察した。
【0035】
【発明の効果】本発明により従来にない複合特性を合わ
せ持つ熱延高強度鋼板、すなわち加工性、疲労特性及び
耐熱軟化性の3つの特性を同時に満足する熱延高強度鋼
板を低コストかつ安定的に提供することが可能となった
ため、熱延高強度鋼板の使用用途・使用条件が格段に広
がり、工業上、経済上の効果は非常に大きい。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−3679(JP,A) 特開 平7−252592(JP,A) 特開 平7−252584(JP,A) 特開 平6−65645(JP,A) 特開 平5−195143(JP,A) 特開 平5−59485(JP,A) 特開 昭57−181360(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60

Claims (8)

    (57)【特許請求の範囲】
  1. 【請求項1】 重量比で C :0.03〜0.20%、 Al:1.0〜5.0%、 Mn:0.5〜3.5%、 Si≦5.0%、 P ≦0.05%、 S ≦0.01% 残部Feと不可避的成分を含み、 ミクロ組織として第一相であるフェライトと第二相で構
    成され、フェライト占積率が50%以上、かつ、フェラ
    イトと第二相のミクロビッカース硬さ比(第二相硬さ/
    フェライト硬さ)が1.5以下であり、 特性として 引張強さ(TS)≧400MPa、 強度−全伸びバランス(引張強さ×全伸び)≧1800
    0(MPa・%) 強度−均一伸びバランス(引張強さ×均一伸び)≧12
    000(MPa・%) 疲労限度比≧0.50 を具備することを特徴とする疲労特性に優れた耐熱軟化
    性を有する加工用熱延高強度鋼板。
  2. 【請求項2】 重量比で C :0.03〜0.20%、 Al:1.0〜5.0%、 Mn:0.5〜3.5%、 Si≦5.0%、 P ≦0.05%、 S ≦0.01% 残部Feと不可避的成分を含む鋼片を用いて、800℃
    〜1000℃で熱間圧延を行い、550℃〜700℃で
    巻き取ることを特徴とする疲労特性に優れた耐熱軟化性
    を有する加工用熱延高強度鋼板の製造方法。
  3. 【請求項3】 重量比で C :0.03〜0.20%、 Al:1.0〜5.0%、 Mn:0.5〜3.5%、 Si≦5.0%、 P ≦0.05%、 S ≦0.01%、 Ca:0.0005〜0.01%または、 REM:0.005〜0.05% 残部Feと不可避的成分を含み、 ミクロ組織として第一相であるフェライトと第二相で構
    成され、フェライト占積率が50%以上、かつ、フェラ
    イトと第二相のミクロビッカース硬さ比(第二相硬さ/
    フェライト硬さ)が1.5以下であり、 特性として 引張強さ(TS)≧400MPa、 強度−全伸びバランス(引張強さ×全伸び)≧1800
    0(MPa・%) 強度−均一伸びバランス(引張強さ×均一伸び)≧12
    000(MPa・%) 疲労限度比≧0.50 を具備することを特徴とする疲労特性に優れた耐熱軟化
    性を有する加工用熱延高強度鋼板。
  4. 【請求項4】 重量比で C :0.03〜0.20%、 Al:1.0〜5.0%、 Mn:0.5〜3.5%、 Si≦5.0%、 P ≦0.05%、 S ≦0.01%、 Ca:0.0005〜0.01%または、 REM:0.005〜0.05% 残部Feと不可避的成分を含む鋼片を用いて、800℃
    〜1000℃で熱間圧延を行い、550℃〜700℃で
    巻き取ることを特徴とする疲労特性に優れた耐熱軟化性
    を有する加工用熱延高強度鋼板の製造方法。
  5. 【請求項5】 重量比で C :0.03〜0.20%、 Al:1.0〜5.0%、 Mn:0.5〜3.5%、 Si≦5.0%、 P ≦0.05%、 S ≦0.01%、 Nb:0.005〜0.050% 残部Feと不可避的成分を含み、 ミクロ組織として第一相であるフェライトと第二相で構
    成され、フェライト占積率が50%以上、かつ、フェラ
    イトと第二相のミクロビッカース硬さ比(第二相硬さ/
    フェライト硬さ)が1.5以下であり、 特性として 引張強さ(TS)≧400MPa、 強度−全伸びバランス(引張強さ×全伸び)≧1800
    0(MPa・%) 強度−均一伸びバランス(引張強さ×均一伸び)≧12
    000(MPa・%) 疲労限度比≧0.50 を具備することを特徴とする疲労特性に優れた耐熱軟化
    性を有する加工用熱延高強度鋼板。
  6. 【請求項6】 重量比で C :0.03〜0.20%、 Al:1.0〜5.0%、 Mn:0.5〜3.5%、 Si≦5.0%、 P ≦0.05%、 S ≦0.01%、 Nb:0.005〜0.050% 残部Feと不可避的成分を含む鋼片を用いて、800℃
    〜1000℃で熱間圧延を行い、550℃〜700℃で
    巻き取ることを特徴とする疲労特性に優れた耐熱軟化性
    を有する加工用熱延高強度鋼板の製造方法。
  7. 【請求項7】 重量比で C :0.03〜0.20%、 Al:1.0〜5.0%、 Mn:0.5〜3.5%、 Si≦5.0%、 P ≦0.05%、 S ≦0.01%、 Nb:0.005〜0.050%、 Ca:0.0005〜0.01%または、 REM:0.005〜0.05% 残部Feと不可避的成分を含み、 ミクロ組織として第一相であるフェライトと第二相で構
    成され、フェライト占積率が50%以上、かつ、フェラ
    イトと第二相のミクロビッカース硬さ比(第二相硬さ/
    フェライト硬さ)が1.5以下であり、 特性として 引張強さ(TS)≧400MPa、 強度−全伸びバランス(引張強さ×全伸び)≧1800
    0(MPa・%) 強度−均一伸びバランス(引張強さ×均一伸び)≧12
    000(MPa・%) 疲労限度比≧0.50 を具備することを特徴とする疲労特性に優れた耐熱軟化
    性を有する加工用熱延高強度鋼板。
  8. 【請求項8】 重量比で C :0.03〜0.20%、 Al:1.0〜5.0%、 Mn:0.5〜3.5%、 Si≦5.0%、 P ≦0.05%、 S ≦0.01%、 Nb:0.005〜0.050%、 Ca:0.0005〜0.01%または、 REM:0.005〜0.05% 残部Feと不可避的成分を含む鋼片を用いて、800℃
    〜1000℃で熱間圧延を行い、550℃〜700℃で
    巻き取ることを特徴とする疲労特性に優れた耐熱軟化性
    を有する加工用熱延高強度鋼板の製造方法。
JP19541894A 1994-08-19 1994-08-19 疲労特性に優れた耐熱軟化性を有する加工用熱延高強度鋼板およびその製造方法 Expired - Fee Related JP3348365B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19541894A JP3348365B2 (ja) 1994-08-19 1994-08-19 疲労特性に優れた耐熱軟化性を有する加工用熱延高強度鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19541894A JP3348365B2 (ja) 1994-08-19 1994-08-19 疲労特性に優れた耐熱軟化性を有する加工用熱延高強度鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JPH0860305A JPH0860305A (ja) 1996-03-05
JP3348365B2 true JP3348365B2 (ja) 2002-11-20

Family

ID=16340760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19541894A Expired - Fee Related JP3348365B2 (ja) 1994-08-19 1994-08-19 疲労特性に優れた耐熱軟化性を有する加工用熱延高強度鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP3348365B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559673B2 (ja) * 2001-09-19 2010-10-13 新日本製鐵株式会社 溶接継手の疲労強度に優れた溶接構造用厚鋼板およびその製造方法
FR2836930B1 (fr) * 2002-03-11 2005-02-25 Usinor Acier lamine a chaud a tres haute resistance et de faible densite
KR100985298B1 (ko) * 2008-05-27 2010-10-04 주식회사 포스코 리징 저항성이 우수한 저비중 고강도 열연 강판, 냉연강판, 아연도금 강판 및 이들의 제조방법
KR101443447B1 (ko) * 2012-07-30 2014-09-19 현대제철 주식회사 고강도 강판 및 그 제조 방법

Also Published As

Publication number Publication date
JPH0860305A (ja) 1996-03-05

Similar Documents

Publication Publication Date Title
JP5163356B2 (ja) 歪時効硬化特性に優れた高張力熱延鋼板およびその製造方法
JP4470701B2 (ja) 加工性および表面性状に優れた高強度薄鋼板およびその製造方法
CA3035786A1 (en) High strength and high formability steel sheet and manufacturing method
WO2012157581A1 (ja) ホットスタンプ成形品、ホットスタンプ成形品の製造方法、エネルギ吸収部材、及びエネルギ吸収部材の製造方法
JP3846206B2 (ja) 歪時効硬化特性に優れた高張力冷延鋼板およびその製造方法
WO2001092593A1 (fr) Tole d'acier laminee a froid presentant d'excellentes proprietes de rheodurcissement par vieillissement, et procede de production
KR20070061859A (ko) 신장과 구멍 확장성이 우수한 고강도 박강판 및 그 제조방법
JP5699860B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
KR101445465B1 (ko) 가공성과 스폿 용접성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
JP2006183141A (ja) 高強度熱延鋼板およびその製造方法
JPH04259325A (ja) 加工性に優れた高強度熱延鋼板の製造方法
JPH083679A (ja) 成形性及び疲労特性に優れた耐熱軟化性を有する熱延高強度鋼板並びにその製造方法
JP7239685B2 (ja) 穴広げ率の高い熱間圧延鋼板及びその製造方法
WO2017169940A1 (ja) 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、熱処理板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6201571B2 (ja) 穴拡げ性と伸びと溶接特性に優れた高強度熱延鋼板及びその製造方法
JP5394306B2 (ja) メッキ性に優れた高強度鋼板及びその製造方法
JP2001220641A (ja) 延性に優れ降伏比の低い高強度薄鋼板および高強度亜鉛めっき薄鋼板ならびにそれらの製造方法
CN110832100B (zh) 用于拼焊板的钢材料及使用该钢材制造热冲压部件的方法
JP2010229514A (ja) 冷延鋼板およびその製造方法
CN113316649A (zh) 高强度高延展性的复相的冷轧钢带或板
JP2001226741A (ja) 伸びフランジ加工性に優れた高強度冷延鋼板およびその製造方法
CN110088331B (zh) 焊接性优异的电阻焊钢管用热轧钢板及其制造方法
TWI506146B (zh) 熔接性優異之高強度冷軋鋼板及其製造方法
JP2010126808A (ja) 冷延鋼板およびその製造方法
JP7167159B2 (ja) 電縫鋼管用熱延鋼板及びその製造方法、並びに電縫鋼管

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees