JP3343283B2 - Silver-palladium coprecipitated powder and method for producing the same - Google Patents

Silver-palladium coprecipitated powder and method for producing the same

Info

Publication number
JP3343283B2
JP3343283B2 JP31402093A JP31402093A JP3343283B2 JP 3343283 B2 JP3343283 B2 JP 3343283B2 JP 31402093 A JP31402093 A JP 31402093A JP 31402093 A JP31402093 A JP 31402093A JP 3343283 B2 JP3343283 B2 JP 3343283B2
Authority
JP
Japan
Prior art keywords
silver
palladium
containing solution
reducing agent
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31402093A
Other languages
Japanese (ja)
Other versions
JPH07145409A (en
Inventor
洋一 福田
康隆 福井
友理恵 猿木
昭夫 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP31402093A priority Critical patent/JP3343283B2/en
Publication of JPH07145409A publication Critical patent/JPH07145409A/en
Application granted granted Critical
Publication of JP3343283B2 publication Critical patent/JP3343283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は貴金属粉末及びその製造
方法に関する。特には銀−パラジウム共沈粉末及びその
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precious metal powder and a method for producing the same. In particular, it relates to a silver-palladium coprecipitated powder and a method for producing the same.

【0002】[0002]

【従来の技術】電子工業の分野では、厚膜回路を作製す
るのに貴金属粉末を不活性液体ビヒクル中に分散させた
導電性ペーストが利用されている。この貴金属粉末は、
最近では湿式還元析出法により製造する方法が主流を占
めている。銀−パラジウム合金粉末若しくは銀−パラジ
ウム複合粉末の場合には特公昭44−21968号公報
に代表される共沈還元法がよく知られている。
2. Description of the Related Art In the field of the electronics industry, conductive pastes in which a noble metal powder is dispersed in an inert liquid vehicle are used for producing a thick film circuit. This noble metal powder
In recent years, a method of manufacturing by a wet reduction precipitation method has become mainstream. In the case of a silver-palladium alloy powder or a silver-palladium composite powder, a coprecipitation reduction method represented by Japanese Patent Publication No. 44-21968 is well known.

【0003】ところで、この共沈還元法においては、好
ましい粒子を得るために還元剤の限定又はアンモニア水
等による反応液のpH調整、更には緩衝剤の添加による
pHの安定調整を図るなど、析出粒子の制御が種々行わ
れている。
[0003] In this coprecipitation reduction method, in order to obtain preferable particles, the precipitation is restricted by limiting the reducing agent or adjusting the pH of the reaction solution with aqueous ammonia or the like, and further stabilizing the pH by adding a buffer. Various control of particles is performed.

【0004】例えば、前記公報では金属塩含有溶液中に
塩基性物質を添加しpH4.5〜6.5の下で還元反応
を行わせている。その他、特公昭58−55204号公
報では還元剤に塩酸ヒドラジンを用い、還元反応はpH
3以上の条件下で行わせており、特公昭62−2003
号公報では還元剤にヒドラジンの酸性塩を用い、緩衝剤
を添加してpH1〜11の範囲内で還元反応を行わせて
いる。更に、特開平2−294416号公報では還元剤
にヒドラジン化合物を用い、pHのための緩衝剤として
アンモニア化合物を用いている。
For example, in the above publication, a basic substance is added to a metal salt-containing solution to perform a reduction reaction at a pH of 4.5 to 6.5. In Japanese Patent Publication No. 58-55204, hydrazine hydrochloride is used as a reducing agent, and the reduction reaction is carried out at pH
It is carried out under three or more conditions.
In the publication, an acidic salt of hydrazine is used as a reducing agent, and a buffering agent is added to perform a reduction reaction in a pH range of 1 to 11. Further, JP-A-2-294416 uses a hydrazine compound as a reducing agent and an ammonia compound as a buffer for pH.

【0005】上記従来技術で反応溶液に添加されている
水酸化アンモニウム、アンモニア化合物はいずれもpH
調整又はpHの安定化のための緩衝剤としてのみ作用
し、効果としては好ましい大きさ及び形状の粒子が得ら
れるという外観上のもののみに限定され、還元析出され
た金属粉末の特性自体に影響を及ぼす作用はなんら生じ
ていなかった。
[0005] Both ammonium hydroxide and ammonia compounds added to the reaction solution in the above prior art are pH
Acts only as a buffer for adjusting or stabilizing the pH, the effect is limited only to the appearance that particles of a preferred size and shape are obtained, and affects the properties of the reduced and precipitated metal powder itself Did not occur at all.

【0006】[0006]

【発明が解決しようとする課題】上記方法により製造さ
れる金属粉末には未だ0.1μm未満の微細粒子の生成
混入を避けることはできない。また、銀−パラジウム共
沈粉末の如き2種の金属塩から製せられる複合共沈粉末
は混合度が不均一であり、その結果低温での合金化は起
こり難いものであった。従って、上記従来技術で得られ
る金属粉末は酸化増量の多いものであり、電極特性には
不満が残るものであった。
However, it is still impossible to avoid the generation and mixing of fine particles of less than 0.1 μm in the metal powder produced by the above method. In addition, the composite coprecipitated powder produced from two kinds of metal salts such as the silver-palladium coprecipitated powder had an uneven mixing degree, and as a result, alloying at a low temperature was hard to occur. Therefore, the metal powder obtained by the above-mentioned conventional technique has a large amount of oxidation increase, and the electrode characteristics remain unsatisfactory.

【0007】そこで、本発明は混合度が均一であるため
低温で合金化が可能であり、且つ0.1μm未満の微細
粒子の混入のない実用に適した銀−パラジウム共沈粉末
を提供することを目的とする。及び前記銀−パラジウム
共沈粉末を工業的に安定して供給できるための製造方法
を提供することを目的とする。
Accordingly, the present invention is to provide a silver-palladium coprecipitated powder suitable for practical use, which can be alloyed at a low temperature because the degree of mixing is uniform, and which does not contain fine particles of less than 0.1 μm. With the goal. It is another object of the present invention to provide a method for producing the silver-palladium coprecipitated powder in an industrially stable manner.

【0008】[0008]

【課題を解決するための手段】上記目的に従い鋭意研究
を進めた結果、次に示す本発明が完成された。
Means for Solving the Problems As a result of intensive research pursuing the above object, the present invention shown below has been completed.

【0009】即ち、本発明は金属塩を含有する溶液と還
元剤含有溶液とを混合して還元せしめることにより、金
属を析出させ、粉末化する金属粉末の製造方法におい
て、(a)銀塩とパラジウム塩とを含有する溶液(以
下、金属塩含有溶液という)のpHをアルカリ性領域に
調整する工程、及び別途に(b)蟻酸アンモニウム及び
抱水ヒドラジン化合物を還元剤とする還元剤含有溶液の
pHを酸性領域に調整する工程、(c)前記工程(a)
により調製された金属含有溶液と前記工程(b)により
調製された還元剤含有溶液の少なくともどちらか一方の
溶液に酢酸アンモニウム又は炭酸アンモニウムから選択
される少なくとも1種以上を添加する工程、(d)前記
金属含有溶液と前記還元剤含有溶液とを混合し、銀とパ
ラジウムとを同時に還元析出せしめる工程、からなるこ
とを特徴とする、粒子形状がほぼ球状であって粒子径が
0.1〜2.0μmの範囲内にある銀−パラジウム共沈
粉末の製造方法及び該製造方法により得られる銀−パラ
ジウム共沈粉末に関するものである。
That is, the present invention provides a method for producing a metal powder in which a solution containing a metal salt and a solution containing a reducing agent are mixed and reduced to precipitate and powder the metal. A step of adjusting the pH of a solution containing a palladium salt (hereinafter referred to as a metal salt-containing solution) to an alkaline region, and separately (b) the pH of a reducing agent-containing solution using ammonium formate and a hydrazine hydrate compound as a reducing agent. (C) the step (a)
Adding at least one or more selected from ammonium acetate or ammonium carbonate to at least one of the metal-containing solution prepared in the above and the reducing agent-containing solution prepared in the step (b), (d) Mixing the metal-containing solution and the reducing agent-containing solution, and simultaneously reducing and precipitating silver and palladium, wherein the particle shape is substantially spherical and the particle diameter is 0.1 to 2 The present invention relates to a method for producing a silver-palladium coprecipitated powder within a range of 0.0 μm and a silver-palladium coprecipitated powder obtained by the production method.

【0010】[0010]

【好適な実施態様及び作用】本発明の製造法により得ら
れる銀−パラジウム共沈粉末はその粒子形状がほぼ球状
であって、粒子径が0.1〜2.0μmと粒度分布の幅
の狭いものである。このような銀−パラジウム共沈粉末
は、ペーストにした際の印刷性が良好である。更に均一
に混合したものであり、低温で合金化が起こるので酸化
増量(TGA)が少ないという特性を有し、コンデンサ
ー電極に好適である。
Preferred Embodiment and Operation The silver-palladium coprecipitated powder obtained by the production method of the present invention has a substantially spherical particle shape, a particle size of 0.1 to 2.0 μm, and a narrow particle size distribution range. Things. Such silver-palladium coprecipitated powder has good printability when made into a paste. Further, they are uniformly mixed, and have the property that the amount of oxidation increase (TGA) is small since alloying occurs at a low temperature, and they are suitable for capacitor electrodes.

【0011】本発明の各構成要件がその効果にどのよう
に寄与しているのかは、まだ十分にわかっていない。し
かし、いずれの一つが欠けても上記のような銀−パラジ
ウム共沈粉末を得ることはできない。
It is not yet fully understood how the constituent elements of the present invention contribute to the effect. However, even if one of them is missing, the above-mentioned silver-palladium coprecipitated powder cannot be obtained.

【0012】まず、還元剤は還元力が強力なヒドラジン
化合物を適用するが、抱水ヒドラジンと蟻酸アンモニウ
ムを組み合わせて使用しなければならない。これ以外の
還元剤では上記の特性を有する金属粉末を安定して得る
ことができない。一般に還元剤は反応溶液のpHの相異
によりその還元力に差異が生じ大きく変動する。例えば
抱水ヒドラジンの場合には、酸性側では銀塩に対する還
元力は殆どないが、アルカリ性側では銀塩に対する還元
力が逆に強く働きパラジウム塩の還元との速度に差異が
生じ、銀とパラジウムが別々に析出される。
First, a hydrazine compound having a strong reducing power is applied as a reducing agent, but hydrazine hydrate and ammonium formate must be used in combination. With other reducing agents, a metal powder having the above characteristics cannot be obtained stably. Generally, a reducing agent has a difference in reducing power due to a difference in pH of a reaction solution, and greatly varies. For example, in the case of hydrazine hydrate, on the acidic side, there is almost no reducing power for silver salts, but on the alkaline side, the reducing power for silver salts acts strongly, causing a difference in reduction rate between palladium salts and silver and palladium. Are separately deposited.

【0013】そこで、本発明の製造法では、パラジウム
塩の還元剤として酸性領域で抱水ヒドラジンを用い、銀
塩の還元を補うために、抱水ヒドラジンがパラジウム塩
に対するのと同程度の還元力を銀塩に対して酸性領域で
有する蟻酸アンモニウムを組み合わせて使用するもので
ある。この還元剤の使用により、銀塩とパラジウム塩と
は同程度に還元析出してくるので混合度のよい共沈粉末
が得られると考える。
Therefore, in the production method of the present invention, hydrazine hydrate is used in the acidic region as a reducing agent for palladium salt, and in order to supplement the reduction of silver salt, hydrazine hydrate has the same reducing power as palladium salt. Is used in combination with ammonium formate which has in the acidic region with respect to the silver salt. By using this reducing agent, the silver salt and the palladium salt are reduced and precipitated to the same extent, and it is considered that a coprecipitated powder with a good mixing degree can be obtained.

【0014】抱水ヒドラジンと蟻酸アンモニウムとの混
合比率は、所望の銀−パラジウム共沈粉末における銀と
パラジウムとの混合比に依存する。還元剤の合計量は還
元反応が完全に進行させるための理論量より過剰に用い
る方が好ましいが、銀塩又はパラジウム塩を還元させる
のに必要な1.5倍当量もあれば十分である。
The mixing ratio of hydrazine hydrate and ammonium formate depends on the mixing ratio of silver and palladium in the desired silver-palladium coprecipitated powder. The total amount of the reducing agent is preferably used in excess of the theoretical amount for allowing the reduction reaction to proceed completely, but it is sufficient if there is 1.5 equivalents required to reduce the silver salt or palladium salt.

【0015】反応溶液のpH値は、金属粉末の粒子の核
形成速度及び粒子成長速度を左右する重大な因子であ
り、pHが低過ぎると粒子成長速度が遅いため微粉しか
得られず、逆にpHが高過ぎても金属粒子の核形成速度
が粒子成長速度を上廻ってしまうので、生成してくる粒
子のほとんどが0.1μm未満のものである。
The pH value of the reaction solution is a critical factor that affects the nucleation rate and particle growth rate of the metal powder particles. If the pH is too low, the particle growth rate is slow, and only fine powder is obtained. Even if the pH is too high, the nucleation rate of the metal particles exceeds the particle growth rate, so that most of the generated particles are smaller than 0.1 μm.

【0016】本発明においては上述の理由により、還元
剤含有溶液のpHは酸性領域であることを要し、好まし
くはpH4以上pH7以下である。しかし、金属塩含有
溶液も酸性領域にすると、両溶液を混合した時に核形成
反応が急激に進み粒子成長速度との均衡がとれず生成す
る粉末は0.1μm未満の微細粒子のみであった。依っ
て、金属塩含有溶液のpHはアルカリ性領域にあること
を要し、pH7以上pH11以下であることが好まし
い。即ち、本発明において両溶液を混合して行われる金
属塩の還元反応はpH7〜pH10.5の領域で行われるこ
とが好ましい。
In the present invention, for the above-mentioned reason, the pH of the solution containing the reducing agent needs to be in the acidic range, and is preferably from pH 4 to pH 7. However, when the metal salt-containing solution was also set in the acidic region, the nucleation reaction rapidly proceeded when both solutions were mixed, and the powder was not balanced with the particle growth rate, and only fine particles of less than 0.1 μm were produced. Therefore, the pH of the metal salt-containing solution needs to be in an alkaline range, and is preferably in the range of pH 7 to pH 11. That is, in the present invention, the reduction reaction of the metal salt performed by mixing both solutions is preferably performed in a pH range of 7 to 10.5.

【0017】更に、金属含有溶液及び還元剤含有溶液の
少なくともどちらか一方には酢酸アンモニウム又は炭酸
アンモニウムの少なくとも1種以上を添加しておくこと
が本発明のもう一つの特徴である。このことにより、前
記両溶液を混合した際の還元析出反応において銀塩とパ
ラジウム塩との還元反応が調和されゆっくりと制御され
ながら行われ、銀成分とパラジウム成分との混合度がよ
く且つ0.1〜2.0μm(SEM観察)という極めて
粒度分布の幅が狭い粒子が生成し、低温で合金化するた
め焼成時の酸化増量が少ないものとなる。酢酸アンモニ
ウム又は炭酸アンモニウム以外のアンモニア化合物の存
在ではこの効果は得られず、生成する共沈粉末の合金化
温度は高いものであり焼成時の酸化増量も多くなる。
Furthermore, another feature of the present invention is that at least one of ammonium acetate and ammonium carbonate is added to at least one of the metal-containing solution and the reducing agent-containing solution. Thus, in the reductive precipitation reaction when the two solutions are mixed, the reduction reaction between the silver salt and the palladium salt is performed while being harmonized and controlled slowly, so that the degree of mixing of the silver component and the palladium component is good and 0.1. Particles having an extremely narrow particle size distribution of 1 to 2.0 μm (SEM observation) are generated and alloyed at a low temperature, so that the amount of increase in oxidation during firing is small. This effect cannot be obtained in the presence of an ammonia compound other than ammonium acetate or ammonium carbonate, and the resulting coprecipitated powder has a high alloying temperature and a large amount of oxidation during firing.

【0018】前記アンモニウム化合物の好ましい添加形
態としては、金属塩含有溶液には硝酸アンモニウム又は
酢酸アンモニウム又は炭酸アンモニウムから選択される
少なくとも1種以上を添加し、又は/及び還元剤含有溶
液には硝酸アンモニウム又は酢酸アンモニウムを添加す
ることである。
As a preferred mode of adding the ammonium compound, at least one selected from ammonium nitrate or ammonium acetate or ammonium carbonate is added to the metal salt-containing solution, and / or ammonium nitrate or acetic acid is added to the reducing agent-containing solution. Is to add ammonium.

【0019】但し、金属塩含有溶液に硝酸アンモニウム
を添加する場合は更に金属塩含有溶液に酢酸アンモニウ
ム又は炭酸アンモニウムから少なくとも1種を添加する
か、還元剤含有溶液に酢酸アンモニウムを添加すること
を要する。一方、還元剤含有溶液に硝酸アンモニウムを
添加する場合には、同様に更に還元剤含有溶液に酢酸ア
ンモニウムを添加するか、金属塩含有溶液に酢酸アンモ
ニウム又は炭酸アンモニウムの中少なくとも1種を添加
しなければならない。
However, when adding ammonium nitrate to the metal salt-containing solution, it is necessary to further add at least one of ammonium acetate and ammonium carbonate to the metal salt-containing solution or to add ammonium acetate to the reducing agent-containing solution. On the other hand, when adding ammonium nitrate to the reducing agent-containing solution, ammonium acetate must be further added to the reducing agent-containing solution, or at least one of ammonium acetate and ammonium carbonate must be added to the metal salt-containing solution. No.

【0020】還元反応は還元析出が生じる25℃以上で
あればよいが、析出した銀とパラジウムとの合金化のし
やすさの観点からすれば、還元析出温度が高い程好まし
い。しかるに、反応温度が高くなると析出粒子のサイズ
が小さくなるので好ましくは40℃から60℃の範囲内
が最も好ましい。
The reduction reaction may be performed at a temperature of 25 ° C. or higher at which reduction precipitation occurs. From the viewpoint of ease of alloying silver and palladium, the higher the reduction precipitation temperature, the better. However, the higher the reaction temperature is, the smaller the size of the precipitated particles is. Therefore, the temperature is preferably in the range of 40 ° C to 60 ° C.

【0021】[0021]

【発明の効果】本発明により得られる銀−パラジウム共
沈粉末はその粒子形状がほぼ球状であって、粒子径が
0.1〜2.0μmの範囲内にあり粒度分布の幅の狭い
ものである。このような銀−パラジウム共沈粉末は、ペ
ーストにした際の印刷性が良好であり、且つ銀とパラジ
ウムとが均一に混合分散し低温で合金化するので酸化増
量(TGA)が少ないという特性を有し、コンデンサー
電極に好適である。また、本発明の製造方法により、上
記の銀−パラジウム共沈粉末が工業的に安定供給するこ
とができる。
The silver-palladium coprecipitated powder obtained according to the present invention has a substantially spherical particle shape, a particle size in the range of 0.1 to 2.0 μm, and a narrow particle size distribution. is there. Such a silver-palladium coprecipitated powder has the characteristics of good printability when formed into a paste, and having a small amount of oxidized weight gain (TGA) because silver and palladium are uniformly mixed and dispersed and alloyed at a low temperature. It is suitable for a capacitor electrode. Further, the silver-palladium coprecipitated powder can be supplied industrially stably by the production method of the present invention.

【0022】[0022]

【実施例】【Example】

【評価試験】下記表1から表3に記載の処方に示す金属
塩含有溶液及び還元剤含有溶液をそれぞれ調製し、混合
して銀−パラジウム共沈粉末を製造した。また、製造さ
れた共沈粉末についてそれぞれ粒子径を測定し、更に2
50℃で焼成しその前後での酸化増量を調べ、その結果
を表4に示す。また、参考例1−2、実施例2−2、比
較例2及び実施例2−1、実施例3について、比較例1
−1、実施例4及び比較例3について、それぞれ共沈粉
末を250℃で焼成後X線分析を行い合金化の程度を調
べた。
[Evaluation Test] A metal salt-containing solution and a reducing agent-containing solution having the formulations shown in Tables 1 to 3 below were prepared and mixed to produce a silver-palladium coprecipitated powder. The particle diameter of each of the produced coprecipitated powders was measured,
The calcining was performed at 50 ° C., and the amount of increase in oxidation before and after firing was measured. Further, Comparative Example 1 was obtained for Reference Example 1-2, Example 2-2, Comparative Example 2, Example 2-1 and Example 3.
For each of Example-1, Example 4, and Comparative Example 3, the coprecipitated powder was fired at 250 ° C. and then subjected to X-ray analysis to examine the degree of alloying.

【0023】X線分析の測定条件は次の通りである。 X線源 :Cu 出力 :50kV,50mA スリット系 :1°−0.15mm−1° スキャン速度:4°/分 計数ステップ:0.02°(2θ)The measurement conditions of the X-ray analysis are as follows. X-ray source: Cu output: 50 kV, 50 mA Slit system: 1 ° -0.15 mm-1 ° Scanning speed: 4 ° / min Counting step: 0.02 ° (2θ)

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】比較例1−1及び比較例1−2と参考例1
−1及び参考例1−2との間では使用した還元剤の種類
が異なる(表1参照)。本発明の如く蟻酸アンモニウム
と抱水ヒドラジンとを組み合わせて還元剤とした参考例
の方が比較例に比べて、微細粒子が生成せず粒子径の揃
った共沈粉末を得ることができた(表4参照)。
Comparative Examples 1-1 and 1-2 and Reference Example 1
-1 and Reference Example 1-2 differ in the type of reducing agent used (see Table 1). The reference example in which ammonium formate and hydrazine hydrate were used as the reducing agent as in the present invention was able to obtain a coprecipitated powder in which fine particles were not generated and the particle diameters were uniform as compared with the comparative example ( See Table 4).

【0029】図3〜図7にてそれぞれ実施例1、参考例
1−1、参考例1−2、比較例1−1及び比較例1−2
の生成粒子の電子顕微鏡写真を示す(倍率:上段×10
00、下段×5000)。比較例では双方とも微細粒子
が多量に混入していることが確認される。一方、参考例
及び実施例では粒子形状が球状でほぼ揃っていることが
確認できる。即ち、本発明に示す還元剤の組み合わせに
よって、印刷適正を有する粒子径を持つ銀−パラジウム
共沈粉末を得ることができる。
FIGS. 3 to 7 show Example 1, Reference Example 1-1, Reference Example 1-2, Comparative Example 1-1 and Comparative Example 1-2, respectively.
An electron micrograph of the produced particles is shown (magnification: upper stage × 10
00, lower row × 5000). In the comparative examples, it is confirmed that both contain a large amount of fine particles. On the other hand, in Reference Examples and Examples, it can be confirmed that the particle shapes are spherical and almost uniform. That is, a silver-palladium coprecipitated powder having a particle size suitable for printing can be obtained by the combination of the reducing agents shown in the present invention.

【0030】また、酸化増量を比較すると、参考例1−
1及び参考例1−2の方が比較例1−1及び比較例1−
2よりも相対的に少なく、実施例1は更に少ない酸化増
量を示した。このことから、本発明において還元剤の種
類の限定の他に炭酸アンモニウム若しくは酢酸アンモニ
ウムの添加が重要であることがわかる。
Further, when comparing the oxidation weight increase, Reference Example 1-
Comparative Example 1-1 and Comparative Example 1
Example 1 showed a lower oxidation gain, relative to less than 2. This indicates that, in the present invention, addition of ammonium carbonate or ammonium acetate is important in addition to limiting the type of reducing agent.

【0031】次に、添加剤としてのアンモニア化合物の
種類について比較した(表2参照)。比較例2、実施例
2−1及び実施例2−2で生成した共沈粉末を焼成しX
線分析したところ、酢酸アンモニウム又は炭酸アンモニ
ウムの少なくとも1種以上を添加した実施例2−1及び
実施例2−2はいずれも他のアンモニア化合物を添加し
た比較例2に比べ、最大ピークが高角側の方へシフトし
ており合金化が進んでいることを示した(図1参照)。
Next, the types of ammonia compounds as additives were compared (see Table 2). The coprecipitated powders produced in Comparative Example 2, Example 2-1 and Example 2-2 were fired and X
As a result of the line analysis, the maximum peaks of Example 2-1 and Example 2-2 in which at least one or more of ammonium acetate or ammonium carbonate was added were higher than those of Comparative Example 2 in which other ammonia compounds were added. To indicate that alloying is progressing (see FIG. 1).

【0032】更に、参考例1−2と実施例2−1及び実
施例2−2のX線スペクトルを比較すると(図1参
照)、実施例2−1及び実施例2−2の最大ピークは参
考例1−2より高角側へシフトしていることを示し、炭
酸アンモニウム若しくは酢酸アンモニウムの添加による
効果は粒子形状及び大きさといった外観上への効果にと
どまらず、銀−パラジウム共沈粉末自体へも影響を及ぼ
していることが認められる。
Further, when the X-ray spectra of Reference Example 1-2, Example 2-1 and Example 2-2 are compared (see FIG. 1), the maximum peak of Example 2-1 and Example 2-2 is This shows that the angle is shifted to the higher angle side than in Reference Example 1-2, and the effect of adding ammonium carbonate or ammonium acetate is not limited to the effect on appearance such as particle shape and size, but also to the silver-palladium coprecipitated powder itself. It is also recognized that it is affecting.

【0033】また、実施例2−1及び実施例2−2はい
ずれも比較例2に比べて酸化増量が少なかった(表4参
照)。即ち、本発明に係る銀−パラジウム共沈粉末はコ
ンデンサー電極の特性に優れている。
Further, in both Example 2-1 and Example 2-2, the amount of increase in oxidation was smaller than that of Comparative Example 2 (see Table 4). That is, the silver-palladium coprecipitated powder according to the present invention is excellent in the characteristics of the capacitor electrode.

【0034】同様の試験を銀とパラジウムとの配合比を
変更して行った(表3参照)。比較例3と実施例4によ
り生成した共沈粉末を焼成しX線分析したところ(図2
参照)、実施例4は比較例3に比べて最大ピークが高角
側へシフトしており合金化が進んでいることを示してい
る。両者の酸化増量はほぼ同等であった(表4参照)。
しかし、図1に示す実施例3は実施例4よりも更に合金
化が進んでおり、酸化増量が少なくなっている。同様に
実施例5及び実施例6でも合金化は実施例4より更に進
んでおり(データは示さず)、酸化増量も少ないかった
(表4参照)。
A similar test was conducted by changing the mixing ratio of silver and palladium (see Table 3). The coprecipitated powders produced in Comparative Example 3 and Example 4 were calcined and analyzed by X-ray analysis (FIG. 2).
In Example 4, the maximum peak was shifted to the higher angle side as compared with Comparative Example 3, indicating that alloying was in progress. The oxidation gains of both were almost equal (see Table 4).
However, the alloying of Example 3 shown in FIG. 1 is further advanced than that of Example 4, and the amount of increase in oxidation is small. Similarly, in Examples 5 and 6, alloying was further advanced than in Example 4 (data not shown), and the amount of increase in oxidation was small (see Table 4).

【0035】以上述べたように、本発明に係る銀−パラ
ジウム共沈粉末は粒子形状がほぼ球状であり且つ粒度分
布の幅の狭い範囲内の粒子径を有する粉末であるので、
印刷特性に優れており、更には銀とパラジウムとが均一
に混合しており低温で合金化が進み且つ酸化増量の少な
いものであり、コンデンサー電極特性に優れている。
As described above, the silver-palladium coprecipitated powder according to the present invention is a powder having a substantially spherical particle shape and a particle size within a narrow range of the particle size distribution.
It has excellent printing characteristics, furthermore, silver and palladium are uniformly mixed, alloying progresses at a low temperature, and the amount of increase in oxidation is small, and the capacitor electrode characteristics are excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施態様を示す実施例2−1、実施例
2−2、実施例3及びその比較品である参考例1−2、
比較例2で得られた銀−パラジウム共沈粉末を250℃
で焼成したものをX線分析した結果を示すスペクトル図
である。
FIG. 1 shows an embodiment of the present invention, Examples 2-1 and 2-2, Example 3 and Reference Example 1-2 which is a comparative product thereof.
The silver-palladium coprecipitated powder obtained in Comparative Example 2 was heated at 250 ° C.
FIG. 4 is a spectrum diagram showing the result of X-ray analysis of the product fired in FIG.

【図2】本発明の実施態様を示す実施例4及びその比較
品である比較例1−1、比較例3で得られた銀−パラジ
ウム共沈粉末を250℃で焼成したものをX線分析した
結果を示すスペクトル図である。
FIG. 2 is an X-ray analysis of calcined silver-palladium coprecipitated powders obtained in Example 4 showing the embodiment of the present invention and Comparative Examples 1-1 and 3, which are comparative products, at 250 ° C. FIG. 9 is a spectrum diagram showing the result of the measurement.

【図3】実施例1により製造した本発明品の銀−パラジ
ウム共沈粉末の電子顕微鏡写真であり、前記共沈粉末の
粒子構造を現わす。上段は倍率が×1000であり、下
段は前記上段の白枠部分を×5000に拡大したもので
ある。
FIG. 3 is an electron micrograph of the silver-palladium coprecipitated powder of the product of the present invention manufactured according to Example 1, showing the particle structure of the coprecipitated powder. The upper part has a magnification of × 1000, and the lower part shows the white frame portion of the upper part enlarged to × 5000.

【図4】参考例1−1により製造した本発明の参考品の
銀−パラジウム共沈粉末の電子顕微鏡写真であり、前記
共沈粉末の粒子構造を現わす。上段は倍率が×1000
であり、下段は前記上段の白枠部分を×5000に拡大
したものである。
FIG. 4 is an electron micrograph of a silver-palladium coprecipitated powder of a reference product of the present invention produced according to Reference Example 1-1, showing the particle structure of the coprecipitated powder. The upper row has a magnification of × 1000
In the lower part, the white frame part of the upper part is enlarged to × 5000.

【図5】参考例1−2により製造した本発明の参考品の
銀−パラジウム共沈粉末の電子顕微鏡写真であり、前記
共沈粉末の粒子構造を現わす。上段は倍率が×1000
であり、下段は前記上段の白枠部分を×5000に拡大
したものである。
FIG. 5 is an electron micrograph of a silver-palladium coprecipitated powder of a reference product of the present invention produced according to Reference Example 1-2, showing the particle structure of the coprecipitated powder. The upper row has a magnification of × 1000
In the lower part, the white frame part of the upper part is enlarged to × 5000.

【図6】比較例1−1により製造した本発明に対する比
較品の銀−パラジウム共沈粉末の電子顕微鏡写真であ
り、前記共沈粉末の粒子構造を現わす。上段は倍率が×
1000であり、下段は前記上段の白枠部分を×500
0に拡大したものである。
FIG. 6 is an electron micrograph of a silver-palladium coprecipitated powder of a comparative product manufactured according to Comparative Example 1-1, showing the particle structure of the coprecipitated powder. The upper row has a magnification of ×
1000, and the lower part represents the white frame part of the upper part as x500.
It is enlarged to zero.

【図7】比較例1−2により製造した本発明に対する比
較品の銀−パラジウム共沈粉末の電子顕微鏡写真であ
り、前記共沈粉末の粒子構造を現わす。上段は倍率が×
1000であり、下段は前記上段の白枠部分を×500
0に拡大したものである。
FIG. 7 is an electron micrograph of a silver-palladium coprecipitated powder of a comparative product of the present invention manufactured according to Comparative Example 1-2, showing the particle structure of the coprecipitated powder. The upper row has a magnification of ×
1000, and the lower part represents the white frame part of the upper part as x500.
It is enlarged to zero.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 猿木 友理恵 愛知県名古屋市西区則武新町三丁目1番 36号 株式会社ノリタケカンパニーリミ テド内 (72)発明者 滝本 昭夫 愛知県名古屋市西区則武新町三丁目1番 36号 株式会社ノリタケカンパニーリミ テド内 (56)参考文献 特開 昭62−280308(JP,A) 特公 昭44−21968(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B22F 9/24 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomoki Saruki 3-36, Noritake Shinmachi, Nishi-ku, Nagoya City, Aichi Prefecture Inside Noritake Company Limited (72) Inventor Akio Takimoto 3-chome Noritake Shinmachi, Nishi-ku, Nagoya City, Aichi Prefecture No. 1 No. 36 Noritake Co., Limited (56) References JP-A-62-280308 (JP, A) JP-B-44-21968 (JP, B1) (58) Fields investigated (Int. Cl. 7) , DB name) B22F 9/24

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属塩を含有する溶液と還元剤含有溶液と
を混合して還元せしめることにより、金属を析出させ、
粉末化する金属粉末の製造方法において、 (a)銀塩とパラジウム塩とを含有する溶液(以下、金
属塩含有溶液という)のpHをアルカリ性領域に調整す
る工程、 及び別途に (b)蟻酸アンモニウム及び抱水ヒドラジン化合物を還
元剤とする還元剤含有溶液のpHを酸性領域に調整する
工程、 (c)前記工程(a)により調製された金属含有溶液と
前記工程(b)により調製された還元剤含有溶液の少な
くともどちらか一方の溶液に酢酸アンモニウム又は炭酸
アンモニウムから選択される少なくとも1種以上を添加
する工程、 (d)前記金属含有溶液と前記還元剤含有溶液とを混合
し、銀とパラジウムとを同時に還元析出せしめる工程、 からなることを特徴とする、粒子形状がほぼ球状であっ
て粒子径が0.1〜2.0μmの範囲内にある銀−パラ
ジウム共沈粉末の製造方法。
A metal is precipitated by mixing and reducing a solution containing a metal salt and a solution containing a reducing agent.
In the method for producing a metal powder to be powdered, (a) a step of adjusting the pH of a solution containing a silver salt and a palladium salt (hereinafter, referred to as a metal salt-containing solution) to an alkaline region, and (b) ammonium formate And adjusting the pH of the reducing agent-containing solution using a hydrazine hydrate compound as a reducing agent to an acidic region, (c) the metal-containing solution prepared in the step (a) and the reduction prepared in the step (b). Adding at least one or more selected from ammonium acetate or ammonium carbonate to at least one of the solution containing the agent, (d) mixing the metal-containing solution and the reducing agent-containing solution, and adding silver and palladium. Simultaneously reducing and precipitating the particles, wherein the particle shape is substantially spherical and the particle diameter is in the range of 0.1 to 2.0 μm. Silver - palladium co-precipitated powder manufacturing method.
【請求項2】前記工程(c)で、工程(a)により調製
された金属塩含有溶液に酢酸アンモニウム又は炭酸アン
モニウムから選択される少なくとも1種以上を添加する
ことを特徴とする請求項1記載の銀−パラジウム共沈粉
末の製造方法。
2. The method according to claim 1, wherein in the step (c), at least one selected from ammonium acetate and ammonium carbonate is added to the metal salt-containing solution prepared in the step (a). A method for producing a silver-palladium coprecipitated powder of the above.
【請求項3】前記工程(c)で、工程(b)により調製
された還元剤含有溶液に酢酸アンモニウムを添加するこ
とを特徴とする請求項1又は2記載の銀−パラジウム共
沈粉末の製造方法。
3. The process for producing a silver-palladium coprecipitated powder according to claim 1, wherein in the step (c), ammonium acetate is added to the reducing agent-containing solution prepared in the step (b). Method.
【請求項4】前記工程(c)で、工程(a)により調製
された金属塩含有溶液に硝酸アンモニウム塩を添加する
請求項2又は3記載の銀−パラジウム共沈粉末の製造方
法。
4. The method for producing a silver-palladium coprecipitated powder according to claim 2, wherein in the step (c), an ammonium nitrate salt is added to the metal salt-containing solution prepared in the step (a).
【請求項5】前記工程(c)で、工程(b)により調製
された金属塩含有溶液に硝酸アンモニウム塩を添加する
請求項2又は3記載の銀−パラジウム共沈粉末の製造方
法。
5. The method for producing a silver-palladium coprecipitated powder according to claim 2, wherein in the step (c), an ammonium nitrate salt is added to the metal salt-containing solution prepared in the step (b).
【請求項6】(a)銀塩とパラジウム塩とを含有する溶
液(以下、金属塩含有溶液という)のpHをアルカリ性
領域に調整する工程、 及び別途に (b)蟻酸アンモニウム及び抱水ヒドラジン化合物を還
元剤とする還元剤含有溶液のpHを酸性領域に調整する
工程、 (c)前記工程(a)により調製された金属含有溶液と
前記工程(b)により調製された還元剤含有溶液の少な
くともどちらか一方の溶液に酢酸アンモニウム又は炭酸
アンモニウムから選択される少なくとも1種以上を添加
する工程、 (d)前記金属含有溶液と前記還元剤含有溶液とを混合
し、銀とパラジウムとを同時に還元析出せしめる工程、 からなる方法により製造されることを特徴とする粒子形
状がほぼ球状であって粒子径が0.1〜2.0μmの範
囲内にある銀−パラジウム共沈粉末。
6. A step of (a) adjusting the pH of a solution containing a silver salt and a palladium salt (hereinafter referred to as a metal salt-containing solution) to an alkaline region; and (b) separately forming an ammonium formate and a hydrazine hydrate compound. Adjusting the pH of the reducing agent-containing solution using the reducing agent to an acidic region, (c) at least the metal-containing solution prepared in the step (a) and the reducing agent-containing solution prepared in the step (b). Adding at least one or more selected from ammonium acetate or ammonium carbonate to one of the solutions, (d) mixing the metal-containing solution and the reducing agent-containing solution, and simultaneously reducing and depositing silver and palladium. A silver-parameter having a substantially spherical particle shape and a particle size in the range of 0.1 to 2.0 μm. Codium precipitated powder.
JP31402093A 1993-11-22 1993-11-22 Silver-palladium coprecipitated powder and method for producing the same Expired - Fee Related JP3343283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31402093A JP3343283B2 (en) 1993-11-22 1993-11-22 Silver-palladium coprecipitated powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31402093A JP3343283B2 (en) 1993-11-22 1993-11-22 Silver-palladium coprecipitated powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07145409A JPH07145409A (en) 1995-06-06
JP3343283B2 true JP3343283B2 (en) 2002-11-11

Family

ID=18048242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31402093A Expired - Fee Related JP3343283B2 (en) 1993-11-22 1993-11-22 Silver-palladium coprecipitated powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3343283B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1853671T3 (en) * 2005-03-04 2014-01-31 Inktec Co Ltd Conductive inks and manufacturing method thereof
JP5105038B2 (en) * 2005-09-02 2012-12-19 学校法人千葉工業大学 Method for producing powder permanent magnet material and powder permanent magnet material
WO2008018718A1 (en) * 2006-08-07 2008-02-14 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
JP5320769B2 (en) * 2007-02-27 2013-10-23 三菱マテリアル株式会社 Method for synthesizing metal nanoparticles
TWI477332B (en) 2007-02-27 2015-03-21 Mitsubishi Materials Corp Metal-nanoparticle dispersion solution, production method thereof, and method of synthesizing metal-nanoparticle

Also Published As

Publication number Publication date
JPH07145409A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
US7534283B2 (en) Method of producing copper powder and copper powder
KR101407197B1 (en) Nickel powder and its production method
US20040221685A1 (en) Method for manufacturing nano-scaled copper powder by wet reduction process
US8084140B2 (en) Silver platelets comprising palladium
EP1930104A1 (en) Highly crystalline silver powder and process for production of the same
EP2210690A1 (en) Nickel powder or alloy powder having nickel as main component, method for manufacturing the powder, conductive paste and laminated ceramic capacitor
US7909908B2 (en) Method of improving the weatherability of copper powder
JP3343283B2 (en) Silver-palladium coprecipitated powder and method for producing the same
JPH07118868A (en) Production of palladium-coated spherical silver powder
JP4100244B2 (en) Nickel powder and method for producing the same
JP2900650B2 (en) Method for producing nickel fine powder
JP4569727B2 (en) Silver powder and method for producing the same
JP4639395B2 (en) Method for producing silver particles
JP2991700B2 (en) Method for producing nickel fine powder
WO2017158865A1 (en) Silver-tellurium-coated glass powder, production method for silver-tellurium-coated glass powder, conductive paste, and production method for conductive paste
JP3640552B2 (en) Manufacturing method of copper powder with small particle size distribution
TW201338893A (en) Silver powder
JP2005023395A (en) Production method of nickel powder
EP3778070B1 (en) Metal powder
JPH09256008A (en) Production of monodispersive silver-palladium multiple powder and the same powder
JP4012961B2 (en) Production method of plate copper powder
JPH0995705A (en) Silver-palladium coprecipitated powder and its production
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
KR102122317B1 (en) Method for manufacturing silver powder and conducitve paste including silver powder
JP7121884B1 (en) Copper particles and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees